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Abstract 

The piezoelectric response from β-phase poly (vinylidene fluoride) (PVDF) can potentially be 

exploited for biomedical application. We hypothesized that α and β-phase PVDF exert direct but 

different influence on cellular behavior. α- and β-phase PVDF films were synthesized through 

solution casting and characterized with FT-IR, XRD, AFM and PFM to ensure successful 

fabrication of α and β-phase PVDF films. Cellular evaluation with L929 mouse fibroblasts over 

one-week was conducted with AlamarBlue® metabolic assay and PicoGreen® proliferation assay. 

Immunostaining of fibronectin investigated the extent and distribution of extracellular matrix 

deposition. Image saliency analysis quantified differences in cellular distribution on the PVDF 

films. Our results showed that β-phase PVDF films with the largest area expressing piezoelectric 

effect elicited highest cell metabolic activity at day 3 of culture. Increased fibronectin adsorption 

towards the cell-material interface was shown on β-phase PVDF films. Image saliency analysis 

showed that fibroblasts on β-phase PVDF films were more homogeneously distributed than on α-

phase PVDF films. Taken collectively, the different molecular packing of α and β-phase PVDF 

resulted in differing physical properties of films, which in turn induced differences in cellular 

behaviors. Further analysis of how α and β-phase PVDF may evoke specific cellular behavior to 

suit particular application will be intriguing.    
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1. Introduction 

Poly (vinylidene fluoride) (PVDF) is a semi-crystalline polymer that has found many 

applications due to its pyroelectric, piezoelectric and ferroelectric properties [1, 2]. 

Piezoelectricity refers to the interchangeable effects of mechanical and electrical stimuli on a 

material [3], which is known to be a property of natural composites including dentin, skin and 

tendon [4, 5]. The piezoelectric responses of β-phase PVDF are the highest known for any 

homopolymer, as a result of its high dielectric constant, crystallinity and the molecular 

arrangement of the fluorine atoms along the carbon backbone [6-8]. PVDF is used as a protective 

barrier in chemical industry applications due to its resistance to caustic chemical [9]. The 

technology which has allowed fabrication of PVDF with smooth surfaces made it applicable as 

pipe linings for handling high purity chemicals or water, since it prevents bacteria and biofilm 

growth [10]. Other early uses of PVDF include sensors and actuators, such as in equipment for  

medical ultrasonic measurements since 1979 [11]. In the biomedical context, PVDF has been 

used extensively as a suture material due to its high flexibility and ease of handling [10]. It is 

also commonly used as a membrane for immunoblotting of proteins today. Looking ahead, 

PVDF could find other interesting biomedical applications where its piezoelectric properties can 

be an advantage. 

Synthetic biomaterials are often used as a supporting material or scaffold for the attachment and 

growth of anchorage-dependent cells. The surface properties of such templates, including 

topography, wettability, stiffness and chemistry not only play essential roles in cell adhesion, but 

also in cell differentiation. For example, fibroblasts have been shown to attach, spread and grow 

more rapidly on mirror-polished surfaces than micro rough titanium [12]. Using different 

approaches, biomaterials have been surface engineered to guide cell adhesion and modulate cell-
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biomaterial interactions [13]. Moderating template stiffness and surface chemistry can also 

directly influence stem cell differentiation [14, 15].  

The influence of a piezoelectric material or surface is intriguing and can be potentially exploited 

to enhance cellular interactions with a biomaterial. Research done in the 1980s showed that 

proteins and DNA function as piezoelectric crystal lattice structures in nature [14], which 

influenced transcription, translation, bone formation, adenosine triphosphate (ATP) generation, 

protein synthesis and membrane transport [16]. In the context of a biomaterial, Rodrigues et al. 

described enhanced proliferation, attachment and phosphatase alkaline activity on goat bone 

marrow cells seeded on β-phase PVDF membranes, especially when cultures were subjected to 

agitation, suggesting that this was a result of the piezoelectric property of the material [2, 17]. As 

a medical implant, piezoelectric materials have the potential to replace cochlear hair cells by 

mimicking the function of the cochlear sensory epithelium, which converts sound into electrical 

signals [18].  

Although polarized PVDF has been reported to enhance cellular adhesion and proliferation, there 

are limited reports comparing the effects of PVDF polymorphism on cellular behavior, and 

therefore this topic remains poorly understood. In this study, we hypothesized that the intrinsic 

properties of α and β-phase PVDF polymorphs will elicit different cellular behaviors. Our results 

indicate that β-phase PVDF induced more homogeneous distribution of murine fibroblasts and 

encouraged more significant deposition of fibronectin towards the cell-material interface.   
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2. Experimental 

2.1 Characterization of PVDF films  

PVDF films were fabricated as described previously [19, 20].  Immersion of PVDF in 95% 

ethanol as anti-solvent, for 24 h, was used to remove residual solvents [1, 16, 19]. This was 

demonstrated to be effective using thermogravimetric analysis and preliminary cytotoxicity 

evaluation (data not shown). Fourier transformed Infra-red (FT-IR) measurements were done to 

ascertain the short range molecular arrangements at the following parameters: range 400 – 1000 

cm-1, resolution 1 cm-1, diaphragm diameter 1 cm. The fraction of β-phase within the crystalline 

region was calculated using a method first described by Osaki and Ishida [19, 21]. X-ray 

diffraction (XRD) was recorded with a Bruker X-Ray Diffractometer (Bruker D8 Advance) 

using Cu Kα radiation at  =15.54Å.  

Atomic force microscopy (AFM) (DI-3100, Digital Instrument) and Piezoforce microscopy 

(PFM) (MFP-3D, Asylum Research) in tapping/contact mode were also used to ascertain the 

surface topography and piezoelectricity of the fabricated PVDF films. Piezoresponse imaging 

was performed over an area of 10 x 5 µm, using a conductive Pt/Ir coated Si tip with an a.c. bias 

of 6 V in amplitude (peak-to-peak). The out-of-plane PFM phase (OP-PFM-p) images were 

recorded to determine the direction of polarization. Surface morphology was assessed by 

scanning electron microscopy (SEM) after 80 s gold sputtering at 18 mA. SEM micrographs 

were taken at 3.0 kV, spot size 40 – 50. 

Water contact angle measurement was performed at room temperature by sessile drop in static 

mode (FTA32, First Ten Ångstroms) using ultra-pure de-ionized water of volume between 1.3 to 

1.9 µL, at the flow rate of 5 L/s. Snapshots of water droplets were taken 5 s after touching 
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samples for equilibrium to be reached. Mean water contact angles over 5 random points on each 

sample were recorded, taking into account the entire drop shape.  

 

2.2 Cell culture 

Immortalized L929 murine fibroblasts between passage 5 to 20 were used to ascertain in vitro 

cell compliance, according to ASTM F813-07 standard (Standard Practice for Direct Contact 

Cell Culture Evaluation of Materials for Medical Devices). 

PVDF films were punched into identical circular pieces (area = 2.14 cm2), placed into a single 

TCPS petri dish lined with Poly dimethylsiloxane (PDMS) (Slyard® 184 Silicone Elastomer Kit, 

Dowing Corning) in the ratio 1:30 (curing agent/base) and dried at 37°C in vacuum over 1 week. 

These were sterilized by UV exposure for 20 min before cell seeding. Cells were maintained in 

Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS, 

Hyclone, USA), 1% penicillin-streptomycin, 1% 2 µM L-glutamine, 1% 1 mM sodium pyruvate 

and 1% non-essential amino acids at 37°C and 5% CO2. Cells were allowed to proliferate in T75 

flasks before harvesting at 80-90% confluence with 0.25% trypsin. Cell numbers were 

determined with a haemocytometer, and 1 x 104 cells were seeded onto each specimen in a 12-

well plate, with complete DMEM. Tissue culture polystyrene (TCPS) was used as the positive 

control since it is widely considered the gold standard for in vitro cell culture experiments [22]. 

Phase contrast images of cells were taken at 400X magnification on an inverted light microscope 

(Olympus IX51), at two hour intervals post seeding, up to 12 hours, to assess cellular attachment.  
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2.2.1 Cell Viability and Proliferation 

Cell metabolic activity and proliferation were ascertained using the AlamarBlue® (BioSource 

International) metabolic assay and Quant-iTTM PicoGreen® (Molecular Probes) assay 

respectively. All assays were performed at 1, 3, 5 and 7 days post seeding. To measure metabolic 

activity, fibroblasts were incubated with 0.5 mL of 10% AlamarBlue® reagent and 90% medium 

without FBS for 1 h at 37°C, in darkness.  At the end of the incubation period, 100 L of 

solution from each well was transferred (n=3) into a clean 96-well plate prior to absorbance 

measurement at 570 nm and 600 nm. Cell metabolic activity levels were directly correlated to 

percentages of reduction of AlamarBlue® reagent, which were calculated and compared against a 

standard calibration curve prepared in compliance with the manufacturer’s recommendations.   

Quant-iTTM PicoGreen® assay was used to quantify the amount of double stranded DNA (ds-

DNA) present after a stipulated time of culture. Cell lysates were obtained by the addition of 1 

mL 0.2% Triton X-100 at room temperature into each well, agitated on a shaker for 30 min 

before 50 L of lysate (n=3) was transferred into 96-well plates. Equal amount of PicoGreen® 

dye, prepared in accordance to manufacturer’s instruction was added into the lysate and the 

mixture incubated at room temperature for 5 min in darkness. Fluorescence was measured at an 

excitation wavelength of 485 nm and emission wavelength of 535 nm, on a microplate reader 

(Tecan). Cultures of L929 fibroblasts with known cell numbers were used to obtain a straight 

line calibration curve in order to correlate the corresponding cell number on each sample.       

 

2.2.2 Immunocytochemistry 
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At stipulated timepoints, samples were washed with phosphate buffer saline (PBS) before cell 

fixation with 4% paraformaldehyde (PFA) in PBS at 4°C overnight. Cells were rinsed thrice with 

PBS for 10 min each on a shaker to remove residual PFA. Fixed cells were permeabilized with 

0.1% Triton X-100 in PBS at room temperature for 15 min. In order to reduce non-specific 

background, samples were treated with a blocking solution (1% BSA and 10% goat serum) for 

30 min at 37°C. Identification of fibronectin (FN) deposition was performed by 

immunocytochemical labeling using rabbit anti-mouse FN IgG (1:100; AB2413, Abcam) 

followed by probing with Alexa Fluor 488 conjugated goat anti-rabbit IgG (1:500; A11034, 

Invitrogen) for 1 h each at room temperature. F-actin was stained for 20 min with Alexa Fluor 

568 conjugated phalloidin (Invitrogen) at a dilution of 1:40 in PBS/BSA at 37°C, in the dark. 

Nuclei were counterstained with DAPI (Invitrogen) for 5 min at room temperature, in the dark. 

Samples were mounted onto glass slides and cover-slipped with DAKO fluorescent mounting 

medium before viewing under a fluorescence microscope (Nikon) or confocal microscope (Leica 

TCS SP5).  

 

2.2.3 Scanning Electron Microscopy and Saliency Test 

The morphology and distribution of cells cultured over various timepoints on the PVDF films 

were evaluated by SEM after fixation with 2.5% glutaraldehyde (Sigma Aldrich). Dehydration 

was carried out step-wise in increasing ethanol concentrations from 50% to 100%, for 10 min 

each step at room temperature. The affinity of cells towards each of these films was determined 

by taking multiple SEM micrographs for cell morphology evaluation.  
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Saliency test was conducted on SEM images to make comparisons of fibroblasts distribution on 

the two PVDF polymorphs studied (n=20). Protocol of the computer-assisted mapping approach 

consisted of 2 stages: thresholding and cell identification. Surface morphological background of 

PVDF films sharing similar morphology features with fibroblasts was suppressed by 

thresholding. The saliency of grey-scaled images was sectioned into 0.05 degree for computation 

of intensity results, and thus the level of significance from each point is 0.05. Clusters of cells 

were viewed as more pronounced points with higher saliency when compared to surrounding 

regions where cells were flat and spread. Statistical results of the intensity values in saliency 

maps were obtained from the MATLAB computing algorithm and plotted as frequency versus 

intensity. 

 

2.2.4 Statistical Analysis 

Statistical analyses were performed using Statistical Package for the Social Sciences (SPSS) 

version 20.0. Results were analyzed for statistical significance using one way analysis of 

variance (ANOVA) with 95% confidence interval, followed by post hoc procedure (Tukey’s 

test). A p-value of less than 0.05 was considered to be significant. Analyses of fluorescence 

images were done using Image J software.  

 

3. Results 

3.1 Characterization by FT-IR and XRD  

The FT-IR spectra of fabricated PVDF films were recorded and presented in Figure 1A. DMF-

PVDF and DMAc-PVDF dried at 140°C showed prominent α-phase peaks at 615 cm-1, 764 cm-1 
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and 976 cm-1, while β-phase peak at 840 cm-1 were most evident in HMPA-PVDF films dried at 

140°C. By using the method discussed previously [19], the relative fraction of β-phase [F(β)] 

PVDF  in the films were calculated. Congruent to our previous study, the F(β) of DMF-PVDF 

and DMAc-PVDF films dried at 60°C were between 73.93% and 85.95% within the crystalline 

regions. When drying temperature was increased to 140°C, F(β) of these two groups dropped to 

between 18.04% and 35.84%. However, the F(β) of HMPA-PVDF dried at 140°C remained 

above 90%, in agreement with our previous data [19].  

Results from XRD analysis of DMF-PVDF and DMAc-PVDF dried at 140°C showed distinct 

peaks at 18.4° and 19.9°, corresponding to crystal planes at (020) and (110) of α-phase PVDF 

(Figure 1B) [23]. These peaks were negligible in other spectra where the F(β) was significantly 

higher. HMPA-140 films most strongly expressed the characteristic β-phase peaks at 20.3°.  

 

3.2 Characterization of PFM results 

To quantify the piezoelectric response of our PVDF films, a consistent a.c. bias of 6 V was 

applied to the tip during the sample scanning. Commercially available PVDF-TrFE (poled) was 

used as the positive control while PET acted as the negative control. The OP-PFM-p images 

(Figure 2A) confirmed that regions of β-phase exhibited piezoelectric properties. Compared with 

the positive control, the largest piezoelectric area came from HMPA-140 films, which had more 

than 90.0% β-phase within the crystalline region. DMF-140 and DMAc-140, which were 

previously calculated to have the least amount of β-phase PVDF, showed uniform phase 

distribution throughout the scanned area that was similar to non-piezoelectric PET, indicating the 

absence of β-phase PVDF.  
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The plots of distribution of polarization direction (Figure2B) showed sharp peaks for all PVDF 

films, but peak broadening towards negative voltage region was only observed for β-phase 

PVDF films, indicating upwards polarization. Congruent to our results from the FT-IR 

calculations, HMPA-140 had the highest proportion of polarized β-phase.  

 

 

3.3 Surface topography, roughness and water contact angle 

Surface topographies were observed under the SEM while AFM recorded the average surface 

roughness (Figure 3A-B). For DMF-60 and DMAc-60 PVDF films, the mean roughness recorded 

was between 55.7 ± 4.6 nm to 60.8 ± 5.9 nm, compared to 291.0 ± 4.7 nm for HMPA-140 film. 

Polarized microscopy images confirmed the formation of spherulites in PVDF films (Figure 3C). 

The spherulites grew in size when drying temperature increased from 60°C to 140°C, with the 

most apparent increase observed for DMAc-140. The mean roughness of DMAc-140 was 860.0 

± 7.1 nm, higher than that of DMF-140, at 222.0 ± 6.3 nm.  

Contact angle measurements were performed to compare the hydrophilicity of fabricated PVDF 

films before cell culture studies. Our results showed that contact angles were statistically higher 

for DMF-60 and DMAc-60 films (Figure 3D; p<0.05). The rest hovered between the ranges 

73.16 ± 3.1° to 78.74 ± 2.9° and were statistically indifferent. All PVDF films prepared were 

statistically more hydrophobic than TCPS which recorded a contact angle of 66.06 ± 1.0°.   

From our characterization results, the PVDF films were classified as having majority α or β-

phase PVDF, denoted in parentheses as follows: DMF-140(α), DMAc-140(α), DMF-60(β), 
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DMAc-60(β) and HMPA-140(β). This classification allows us to investigate the influence of the 

two polymorphs on cellular behavior. 

 

 

3.4 Cell Proliferation and Metabolic Activity per Cell 

Fibroblasts seeded were monitored with phase contrast light microscopy for the formation of 

filopodia and lamellipodia, as indications of adhesion, from the point of seeding up to 12 h 

(results not shown). Cells typically took between 2 to 4 h to adhere onto TCPS surface, but up to 

12 h before attachment on PVDF films. The proliferation profiles and metabolic activity per cell 

of L929 fibroblasts cultured on PVDF films and TCPS over one-week were presented in Figure 

4. As adhesions were weak and incomplete at day 1, biological assay may not portray accurate 

metabolic activity and proliferation of fibroblast. Therefore, the assays were not carried out on 

day 1.    

Proliferation of L929 fibroblasts from days 3 to 7 was measured by quantifying DNA using the 

PicoGreenTM assay and normalizing to TCPS (Figure 4A). No significant differences were 

observed between the numbers of fibroblast on all PVDF films at each timepoint, except for  

DMAc-140(α) which registered lower cell numbers across all timepoints. Metabolic activity per 

cell was calculated with the AlamarBlue® assay and normalized to DNA quantity from the 

proliferation data (Figure 4B). With increasing number of fibroblasts, metabolic activity per cell 

dropped, possibly due to contact inhibition. Cell metabolic activity on HMPA-140(β), the group 

with the highest proportion of β-phase PVDF, was significantly higher than all other PVDF films 

at day 3 of culture, although this difference was lost after day 3. Conversely, cell metabolic 
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activity on DMAc-140(α), the group with the lowest proportion of β-phase PVDF, was lower 

than the other PVDF groups at day 5 of culture.      

 

3.5 Scanning Electron Microscopy, Saliency Mapping and Fibronectin Expression 

Representative SEM images of fibroblasts fixed at stipulated timepoints were taken to evaluate 

differences in cell morphology on the different PVDF films. At day 1, cells were few and far 

between, an indication that fibroblast were weakly attached and may have been washed off due 

to the rinsing and dehydration procedures undertaken. On day 3 when cell densities were low, 

the morphology of fibroblasts on all PVDF films were indifferent. Spindle, triangular and 

polygonal cells were observed, typical of fibroblasts cultured on TCPS. In addition, fibroblasts 

also appeared as clusters of round cells on α-phase (DMF-140 and DMAc-140) PVDF. By day 5, 

cell densities had increased by at least 5 folds from day 3, as shown in Figure 4A. As cell 

densities increased, cell morphology on the α-phase PVDF films became distinct from those on 

the β-phase PVDF films. By day 7, random clustering of fibroblasts was prominent on α-phase 

PVDF films, with single cells appearing to migrate out of these clusters. On the contrary, 

fibroblasts on DMF60(β), DMAc-60(β) and HMPA-140(β) were considerably more spread out 

(Figure 5A). From the SEM images, spreading of fibroblasts was indifferent on DMF60(β) 

compared to DMAc60(β) while cells were harder to distinguish on HMPA140(β) due to higher 

surface roughness. Fibroblasts on TCPS were confluent at day 7 of culture but did not cluster in 

the manner observed on the PVDF films.  

Saliency test was conducted, with statistical accuracy up to 0.05 intensity in grey-scaled images,  

to quantify the extent of differences in cellular distributions between α and β-phase PVDF films 
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at day 7 (n = 20). Results revealed that the distribution and morphology of fibroblasts on β-phase 

PVDF resembled that on TCPS control group, in contrast to α-phase PVDF. Cell morphology 

and spreading were similar on both the α-phase PVDF films (Figure 5B).  

Immunocytochemical staining of fibronectin (FN) was carried out to evaluate the distribution of 

cell secreted extracellular matrix proteins. The cross sectional views of the samples assembled 

from z-stacked confocal images showed that on α-phase dominant PVDF films, FN was 

distributed relatively homogeneously throughout the depth of the samples (Figure 6). However, 

FN distribution on all β-phase dominant PVDF films showed higher concentration towards the 

cell-material interface.     

 

4. Discussion 

Many biological applications of materials require improving or preventing cell adhesion for 

different purposes. In PVDF, we hypothesized that due to the intrinsic properties of the α and β-

phase polymorphs, cellular behavior on these two surfaces would be different. In this study, we 

followed up on our earlier report [19] to evaluate more specifically the differences in cellular 

behavior that α and β-phase PVDF may evoke.  

From our FT-IR and XRD characterization results, DMF-140 and DMAc-140 films had majority 

α-phase PVDF while DMF-60, DMAc-60 and HMPA-140 films had majority β-phase PVDF. 

Although α and β-phase PVDF are similar to each other in the 2 values of X-ray diffractions 

[24], our results confirmed the differences in polymorphic phases based on existing literature 

[25-31].  
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Theoretically, PVDF polymer is an insulator of electricity, especially at the amorphous regions. 

When an insulator is subjected to a.c. bias during PFM scanning, charge accumulation occurs at 

the surface. Charge accumulation creates electrostatic force between the tip and sample to result 

in an artificial phase shift towards the positive voltage direction, as seen in the graphs of all 

PVDF films tested (Figure 2B). Polarization in the upwards direction were recorded but 

polarization in the downwards direction were masked by the charge accumulation effect, and 

therefore cannot be distinguished for all PVDF films tested. Our PFM results showed that 

HMPA-140(β) films exhibited the largest piezoelectric area among the films tested, while α-

phase PVDF polymorph films did not exhibit piezoelectric property.  

PVDF polymorphism was shown to play a more significant role in determining the water contact 

angle than surface roughness in Figure 3. The significantly lower surface roughness of DMF60 

and DMAc60 β-phase PVDF films were more hydrophobic compared to all the other PVDF 

films. However, when comparison was done between DMF-140(α) and HMPA-140(β), lower 

surface roughness of DMF-140(α) did not translate into higher hydrophobicity. Instead, the water 

contact angle of DMF-140(α) and DMAc-140(α) were not significantly different even though 

DMAc-140(α) recorded the highest surface roughness (860 ± 7.1 nm). Therefore, wettability of 

PVDF is more closely related to polymorphism than surface roughness. Wettability of a substrate 

is also associated to the surface energy. It was reported that crystalline polymers, being more 

hydrophobic, has higher surface energy than amorphous polymer. It was also reported that 

increasing protein adsorption on surfaces with higher energy allows cell spreading [32].  

Fibroblasts are common in connective tissues that adhere to the extracellular matrix (ECM) 

through bio-specific interactions. In a study conducted by Wei et al., L929 mouse fibroblasts 

were seeded on hexamethyldisiloxane (HMDSO) surfaces modified by oxygen plasma treatment 
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to attain wettability between 0° to 106° [33]. Their results revealed that initial fibroblasts 

attachment were higher on hydrophilic surfaces but proliferation rate was not affected for 

wettability between 0° to 80°. On the contrary, our results also showed no difference in initial 

attachment of fibroblasts on all PVDF films between the points of seeding up to 12 hours. 

However, proliferation of L929 was in agreement to the results presented by Wei et al. Since the 

measured water contact angle of our fabricated α and β-phase PVDF films were close to the 

range studied, we concluded that surface wettability did not result in the differences in 

proliferation rate observed on α and β-phase PVDF films. On the contrary, Chen et al. reported 

that the wettability of a surface affects the initial attachment of cells and protein adsorption onto 

the substrate surface, while hydrophobicity inhibited cellular proliferation but not adhesion [34]. 

Likewise, Park and Cima also reported lower growth rate of 3T3 fibroblasts on crystalline 

substrate, that was hydrophobic [32]. However, the slight difference in contact angle between 

each fabricated PVDF films in our experiment was insufficient to cause prolonged initial cellular 

attachment, since our results showed that fibroblasts seeded on both α and β-phase PVDF films 

took more than 12 h before attachment. Even though the proliferation rates were similar on the 

PVDF films tested, cell morphology was different on α and β-phase polymorphs.  

It is known that surface roughness plays a role in influencing cellular distribution, and fibroblasts 

are known to spread less on rough and more on smooth surface, due to mechanical stabilization 

[12]. Fibroblasts seeded on rough surfaces are supported by ridges and pitches and thus do not 

have to express distinctive F-actin network. On the other hand, fibroblasts on smooth surface 

need to develop a strong network to stabilize on the surface. When comparison was done 

between DMAc-60(β) and HMPA-140(β) of surface roughness 60.8 ± 5.9 nm and 291.0 ± 4.7 

nm respectively, the significantly different roughness values did not cause any significant effects 
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on cellular distribution as observed from saliency mapping results (Figure 5). Instead, our 

saliency mapping and SEM images suggested that fibroblasts seeded on α-phase PVDF films 

were clustered while fibroblasts on β-phase films were spread. This implied that surface 

roughness within this range studied did not result in differential cell behavior on films with 

similarly high proportion of β-phase PVDF, based on the assays used.  

Likewise, on PVDF films of predominant α-phase, DMF-140(α) and DMAc-140(α) where 

surface roughness were 222.0 ± 6.3 nm and 860.0 ± 7.1 nm respectively, saliency mapping 

results and cross-sectional fibronectin distributions did not reveal significant differences in cell 

spreading patterns and fibronectin (FN) deposition. It suggests that surface topography 

differences between these films did not affect these two aspects of cell behavior.  

Meanwhile, DMF-140(α) and HMPA-140(β) films with significantly different PVDF polymorph 

proportions but relatively similar surface roughness (222.0 ± 6.3 nm vs 291.0 ± 4.7 nm) resulted 

in clear differences in cellular behavior. Saliency mapping and cross sectional FN distribution 

showed that HMPA-140(β) induced higher degree of fibroblast spreading and more FN 

deposition towards the cell-material interface than DMF-140(α). This suggests that protein 

adsorption on β-phase PVDF was likely more significant than on α-phase films. Consequently, 

cells proliferated in clusters on α-phase dominant films.  PVDF polymorphism therefore 

appeared to play a more significant role than surface roughness in determining cellular 

distribution and FN deposition pattern by fibroblasts.  

In summary, our results indicated that β-phase PVDF induced more homogeneous distribution of 

L929 murine fibroblasts and encouraged more significant deposition of FN towards the cell-

material interface.   
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5. Conclusion 

In this study, we investigated the differential effects that α and β-phase PVDF may exert on L929 

murine fibroblasts. In agreement with the literature, films with majority β-phase PVDF exhibited 

greater piezoelectric characteristics compared with films with majority α-phase PVDF.  

Comparative assays for proliferation rate and metabolic activity of L929 fibroblasts on the films 

samples showed no significant influence of surface roughness within the range studied. 

Consequently, our results suggest that PVDF films of predominant β-phase induced more 

homogeneous cell distribution and increased fibronectin deposition towards the cell-material 

interface. In essence, the difference in molecular packing of α and β-phase had resulted in 

different piezoelectric properties in the films, which in turn induced different cellular behaviors. 

These findings could be significant in exploiting novel biomedical applications of PVDF where 

the ability to modulate piezoelectric properties in a single material could be advantageous.  
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Figure 1 Characterization of PVDF polymorphs. (A) FT-IR spectral showed prominent α-PVDF 

peaks for DMF-140 and DMAc-140 films. β-PVDF peaks were most evident in HMPA-140 

films. In agreement with FT-IR results, (B) XRD diffractograms of PVDF films showed that 

DMF-140 and DMAc-140 films expressed the characteristic α-PVDF peaks (18.4° and 19.9°) 

most prominently while HMPA-140 films most strongly expressed the characteristic β-PVDF 

peaks (20.3°).     

 

Figure 2 PFM analysis of piezoelectric properties on PVDF films. (A) The OP-PFM-p signal of 

PVDF films showed distinct positions exhibiting piezoelectric responses on films dominated by 

β-phase PVDF. Commerically available PVDF-TrFE and PET films were used as positive and 

negative controls, respectively. (B) Plots of direction of polarization showed a single sharp peak 

for all PVDF films. Broadening of this peak towards the negative voltage was observed only for 

β-phase PVDF films. 

 

Figure 3 Surface properties characterization of PVDF films. (A) SEM and corresponding (B) 

AFM images of the 5 PVDF films showed distinct variations in their surface topographies. (C) 

Polarizing light microscopy confirmed the formation of spherulites on the PVDF films. (D) The 

average contact angle and surface roughness of the PVDF films are tabulated (n=3). Mean 

roughness values were independent on PVDF polymorphism, but contact angle measurements 

showed that films of majority β-phase PVDF were generally more hydrophobic than those made 

of majority α-phase PVDF.  
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Figure 4 Cell proliferation and metabolic activity on PVDF films over 7 days. (A) No significant 

differences in cell number were recorded on the different films except on DMAc140-α which 

registered significantly lower cell number than other samples at every time point. (B). Metabolic 

activity per cell decreased as cell number increased. However at day 3, metabolic activity per 

cell was significantly higher on HMPA140-β compared to the other PVDF films, although this 

was lower than on TCPS.  (*p<0.05; ANOVA and Tukey’s test) 

 

Figure 5 (A) SEM analysis was carried out to evaluate L929 fibroblast morphology on PVDF 

films over 7 days. As cell densities increased due to proliferation, aggregated cell clusters began 

to appear on PVDF films. This was most pronounced on DMF140 and DMAc140 samples at day 

7. (B) Saliency analysis of SEM images (n=20) of PVDF samples cultured with L929 fibroblasts 

for 7 days. Fibroblasts seeded on α-phase displayed stronger cell-cell interaction, while 

morphology of fibroblasts resembled that of TCPS control.  

 

Figure 6 Fibronectin expression on PVDF films. Confocal laser microscopy images of sample 

cross sections showed fibronectin expression (green) across the cell layers. The corresponding 

plots of the relative expression levels of fibronectin across the vertical depths of cell layers are 

shown. Fibronectin expression on films of predominately β-phase PVDF was more pronounced 

towards cell-material interface.  
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