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Abstract For weak-coupling electronic plasmas in the presence of small fluctuations, we calculate Green-Kubo
formula for transport coefficients employing the ab initio theory, i.e., the two-time ensemble technique. The microscopic
interpretations of Onsager’s hypothesis on fluctuations are presented in the framework.
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1 Introduction

It is well known that Green–Kubo formula is essen-
tial in understanding linear transport processes. How-
ever, its generality also arises great difficulties in practice.
Since 1950’s there have been a few methods of calculat-
ing it, but they are all not the ab initio theory. Among
these is the one imposed by Chandrasekhar then further
developed by Mclennan,[1] which is based on Brownian
motion, or equivalently, linearized Fokker–Planck equa-
tion (FPE). Another important method is the field theory
formalism.[2] A great advantage is that collective modes
are incorporated, thus it is capable of treating anomalous
transport.[3] Nevertheless, the problem still remains that
the stochastic dynamical model is in prior, so the method
is phenomenological and cannot yield the first principle
calculation via Green–Kubo formula.

In many realistic cases like plasmas, it is interesting to
understand transport processes through time correlation
and of great value to explore calculating transport coef-
ficients through Green–Kubo formula based on the first
principle. It is indicated through the exact Green–Kubo
formula derived from Liouville equation[4] that generally
transport is in the close connection with both the time
correlation of the same particle and the correlation of dif-
ferent particles. So we naturally investigate the time cor-
relation by the statistics of Γ space.

In this paper we generalize the method adopted in
Ref. [5] to dissipative cases. For simplicity, we discuss
the correlation function of the weak-coupling plasma, tak-
ing into account neutral ion background and small static
electric fluctuations caused by electronic motions. Then
we calculate the transport coefficients employing the two-
time ensemble technique.[5] The better and deeper under-
standing of the previous theories are presented.

2 The Two-Time Ensemble Technique

The similar idea was illustrated by Balescu.[6] How-
ever, no further research has been pursued to our knowl-
edge. In Ref. [5], we introduced the so-called two-time
ensemble technique for analyzing the time correlation.

Introduce the two-time ensemble distribution, say
f(Γ′,Γ; t + τ, t), where Γ′ = (1′, 2′, · · · , N ′) and Γ =
(1, 2, · · · , N). We use k to denote arguments (xk,pk) and
k′ to denote arguments (x′k,p′k). The well-known contin-
uing equation and the measure preserving yield( ∂

∂τ
+

N∑
k=1

v′k·∇x′
k
+

N∑
k=1

F ′
k·∇p′

k

)
f(Γ′,Γ; t+τ, t) = 0 . (1)

The initial condition is

f(Γ′,Γ; t, t) = f(Γ; t)δ(1′ − 1) · · · δ(N ′ −N) . (2)

F ′
k is the force exerted on particle k at time (t + τ). The

current-current correlation is

〈je(t)je(t + τ)〉 =
( Ze

V m

)2
∫ N∑

j=1

N∑
k=1

pjp
′
kf(Γ′,Γ; t + τ, t)d1′ · · · dN ′d1 · · · dN

=
( Ze

V m

)2
∫

p1p
′
1f1(1′, 1; t + τ, t)d1′d1 +

( Ze

V m

)2
∫

p2p
′
1f1(1′, 2; t + τ, t)d1′d2 . (3)
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Here the distributions f1(1′, 1; t + τ, t) and f1(1′, 2; t + τ, t) have been introduced

f1(1′, 1; t + τ, t) = N

∫
f(Γ′,Γ; t + τ, t)d2′ · · · dN ′d2 · · · dN , (4)

f1(1′, 2; t + τ, t) = N(N − 1)
∫

f(Γ′,Γ; t + τ, t)d2′ · · · dN ′d1d3 · · · dN . (5)

The Green–Kubo formula for the electric conductivity is expressed as[4,6]

¯̄σ = β

∫ ∞

0

dτ〈 jeje(τ)〉eq , (6)

where

je = V −1
N∑

n=1

(Ze/m)pn

is the microscopic electric current density with V being the volume of the system.
The problem remains unsolved how to calculate both the f1(1′, 1; t+τ, t) and f1(1′, 2; t+τ, t). This will be performed

in the following section. For the purpose of illustrating the technique, we are restricted to the case of weak-coupling
Coulombian plasmas.

3 Calculating f1(1′, 1; t + τ, t)

Due to the similarity of Eq. (1) to ordinary Liouville’s equation, the subdynamic theory also applies.[5,6] The great
advantage of the theory is that it provides a systematic technique of obtaining kinetic equation based on perturbation
theory. Adopting the notations of Ref. [6] and simply following the technique, we can expand Eq. (1) up to the second
order (i.e., the weak-coupling approximation) in the interaction parameter λ as

∂

∂τ
V f̄(Γ′,Γ; t + τ, t) = V Γ∗V f̄(Γ′,Γ; t + τ, t)

= V L0f̄(Γ′,Γ; t + τ, t) + λV L′f̄(Γ′,Γ; t + τ, t)

+ λ2

∫ ∞

0

dsV L′CU0(s)L′U0(−s)V f̄(Γ′,Γ; t + s, t) . (7)

Since Γ and t play only the role of parameters, we drop them from now on for convenience. Then in the realization of
specific correlation pattern, equation (1) can be written as

∂

∂τ
f̄1(1′; t + τ) = L0′

1 f̄1(1′; t + τ) + λ

∫
dx′2L

′′
12f̄1(1′; t + τ)f̄1(2′; t + τ)

+ λ2

∫ ∞

0

ds

∫
dx′′L′′12U

0′
12(s)L

′′
12U

0′
12(−s)f̄1(1′; t + τ)f̄1(2′; t + τ) . (8)

Before further processing, some words are in order. It is well known that the regression of macroscopic small
fluctuation can be described through linear hydrodynamics, which is the nucleus of Onsager’s hypothesis.[7] The
technique here presents its understanding at the microscopic level. That is, in our opinion, the kinetic equation
resulting in the evolution of macroscopic fluctuation preserves the same form of the one resulting in hydrodynamics.
For the dispersive case, it has been put into practice in the previous work.[5] The present paper is dedicated to exploring
how to generalize it to the dissipative case.

Taking the above discussions into account, we reduce Eq. (8) into the formal Landau equation straightforward

∂

∂τ
f̄1(1′; t + τ) + v′1 ·∇

′
1f̄1(1′; t + τ)− eE′

m
·∇v′

1
f̄1(1′; t + τ)

= B

∫
dv′2∂

′r
12

g′2δrs − g′rg′s

g′3
∂′s12f̄1(x′1,v

′
1; t + τ)f̄1(x′1,v

′
2; t + τ) (9)

with the self-consistent fluctuating static electric field E′ satisfying

∇′ ·E′ = −4πe

∫
dv′1[f̄1(1′; t + τ)− Zn+] , (10)
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where B = 8π5
∫∞
0

dkk3V 2
k with Vk being the Fourier component of the interaction potential V (r), and we also take

into account neutral ion background. Combined with the initial condition f̄1(1′, 1; t, t) = f1(1; t)δ(1′ − 1) , equations
(9) and (10) yield f̄1(1′; t + τ).

Consider the fundamental solution of Eqs (9) and (10): G(x′,v′,x,v; t+τ, t). For simplicity, we rewrite Eq. (9) as

∂

∂τ
G + εÂG = K̂G , (11)

where

K̂G = −v′1 ·∇
′
1G + B

∫
dv′2∂

′r
12

g′2δrs − g′rg′s

g′3
∂′s12G(x′1,v

′
1,x,v; t + τ)G(x′1,v

′
2,x,v; t + τ) (12)

and

εÂG = − eE′

m
·∇v′

1
G =

4πe2

m

{
∇x′

1

∫
dx′′1

1
|x′1 − x′′1 |

∫
dv′′1 [G(x′′1 ,v′′1 ,x1,v1; t + τ)− Zn+]

}
·∇v′

1
G(x′1,v

′
1,x1,v1; t + τ) . (13)

Here ε is a small parameter being characteristic of the perturbation by the mean field. In Eq. (11), K̂G can be regarded
as the counterpart of the regression hypothesis of fluctuations. While ÂG implies the relation between dispersion and
fluctuation.[5] Generally K̂G, or collision, dominates so that the perturbative technique can be made used of.

Expand the solution G with respect to ε,

G = G(0) +
∞∑

n=1

εnG(n) (14)

with G(0) satisfying
∂

∂τ
G(0) = K̂G(0) (15)

and
G(0)|τ=0 = δ(x′1 − x)δ(v′1 − v) . (16)

Below we will find that the linear transport results from linearized K̂, hence we expand Eq. (11) up to the first order
in ε (that is, fluctuations are small) after linearizing K̂, and obtain

G = G(0) + ε

∫ τ

0

ds e(τ−s)K̂∗
(−ÂG(0)|τ=s) . (17)

The initial condition G(1)|τ=0 = 0 implied by Eq. (16) has been employed. K̂ is linearized as K̂∗. Equivalently, equation
(17) can be expressed as

G(x′1,v
′
1,x,v; t + τ) = G(0)(x′1,v

′
1,x,v; t + τ) + ε

∫ τ

0

ds e(τ−s)K̂∗

×
{∫

dudwδ(x′1 − u)δ(v′1 −w)[−ÂG(0)(u,w,x,v; t + s)]
}

= G(0)(x′1,v
′
1,x,v; t + τ) + ε

∫ τ

0

ds

∫
dudw e(τ−s)K̂∗

{δ(x′1 − u)δ(v′1 −w)

× [−ÂG(0)(u,w,x,v; t + s)]} . (18)

In the above equation, the linear property of eτK̂∗
has been used. e(τ−s)K̂∗

δ(x′1 − u)δ(v′1 − w) is the fundamental
solution of linearized Eq. (15).

From Eq. (12) we notice that Landau collision operator is a nonlinear Fokker–Planck operator,[6]

K̂G(x′1,v
′
1,x,v; t + τ) = Bm−2∂′r1

[
−Ar(v′1) +

1
2
∂′s1 [Brs(v′1)]

]
G(x′1,v

′
1,x,v; t + τ) , (19)

where

Ar(v′1) =
∫

dv′2

[
(∂′s1 − ∂′s2 )

g′2δrs − g′rg′s

g′3

]
G(x′1,v

′
2,x,v; t + τ) , (20)
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Brs(v′1) = 2
∫

dv′2
g′2δrs − g′rg′s

g′3
G(x′1,v

′
2,x,v; t + τ) , (21)

and the dummy indices r, s run from 1 to 3. Here a key issue must be addressed. That is, although the time in
Green–Kubo formula runs over the positive axis, it is reasonable to assume that the integration is dominated by the
time of hydrodynamic scale since in the smaller scale, the regular correlation is not formed, consequently leading to
the counteraction of transient correlation.[1] Moreover, we believe that Onsager’s hypothesis about the evolution of
small fluctuation implies the great similarity between the kinetic equations describing fluctuation and hydrodynamics.
Since the linear Landau equation yields hydrodynamic modes, naturally we linearize Eqs (19) ∼ (21) also. Thus
G(v′2) in Eqs (20) and (21) can be substituted by the stationary solution of δ(x′1 −x′′1)δ(v′1 − v′′1), i.e., the well-known
Maxwell–Boltzmann distribution

G(v′2) = n
( m

2πkBT

)3/2

e−mv′2
2 /2kBT . (22)

With the approximation of the small angle head-on collision introduced, A and ¯̄B are further simplified as

Ar(v′1) = −γ(v′1)v
r′
1 , (23)

Brs(v′1) = α(v′1)δ
rs + β(v′1)v

′r
1 v′s1 −∆rs(v′1) (24)

with

γ(v′1) =
( 4n2

π3/2

)( mv′21
2kBT

)(4Ω
v′31

) ∫ ∞

√
mv′21 /2kBT

dx e−(x−
√

mv′21 /2kBT )2 =
(2
√

2n2

π

)( mv′21
2kBT

)(4Ω
v′31

)
, (25)

α(v′1) =
( 2n2

π3/2

)( mv′21
2kBT

)1/2(4Ω
v′1

) ∫ ∞

√
mv′21 /2kBT

dxx e−(x−
√

mv′21 /2kBT )2 =
(1 +

√
2π

π3/2
n2

)( mv′21
2kBT

)1/2(4Ω
v′1

)
, (26)

β(v′1) = −γ(v′1) +
( 2n2

π3/2

)( mv′21
2kBT

)3/2(4Ω
v′31

) ∫ ∞

√
mv′21 /2kBT

dx
1
x

e−(x−
√

mv′21 /2kBT )2 (27)

and

¯̄∆(v′1) =

 I1 0
I2

0 I3

 . (28)

Here I1, I2 and I3 can be explicitly expressed as

I1 = I2 =

[( 2n2

π3/2

)( mv′21
2kBT

)1/2(4Ω
v′1

) ∫ ∞

0

dx
x4 e−x2

(x +
√

mv′21 /2kBT )3

](4Ω
4π

)
(29)

and

I3 =

[( 2n2

π3/2

)( mv′21
2kBT

)1/2(4Ω
v′1

) ∫ ∞

0

dx
x4 e−x2

(x +
√

mv′21 /2kBT )3

]
, (30)

where 4Ω is the solid angle within which the head-on col-

lision occurs. 4Ω/4π is a small parameter. In the limit

of 4Ω/4π −→ 0, I1 and I2 are dropped out. Moreover,

the numerical calculation shows that in the regime of near

equilibrium, Ar(v′1) and the first two terms of Eq. (24) are

much greater than ∆rs(v′1). Hence it is also dropped out.

Notice that the vrvs (r 6= s) terms involves higher-order

hydrodynamic behavior (nondiagonal momentum flow or

shear modes), we can drop them in the linear approxima-

tion. Finally, equation (19) reaches the standard form of

linear FPE,[1]

∂

∂τ
G + v′1 ·∇

′
1G = γ∗∇v′

1
(v′1G) +

1
2
α∗∇2

v′
1
G , (31)

where

γ∗ = 4
√

2π
4Ω
4π

( m

2kBT

)3/2

n2Bm−2 (32)

and

α∗ =
[4(1 +

√
2π)

π1/2
− 4

√
2π +

4
π1/2

∫ ∞

√
3

dxx−1 e−(x−
√

3)2
]

× 4Ω
4π

( m

2kBT

)1/2

n2Bm−2 . (33)
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Chandrasekhar obtained the exact fundamental solution
of Eq. (31),

G =
1

8π(FI −H2)3/2
exp

[
−IR2 − 2HR · S+FS2

2(FI −H2)

]
, (34)

where

F =
1
2

( α∗

γ∗3

)
[2γ∗t− 3 + 4 e−γ∗t − e−2γ∗t] ,

I =
1
2

(α∗

γ∗

)
[1− 2 e−2γ∗t], H =

1
2

( α∗

γ∗2

)
[1− 2 e−γ∗t]2 ,

R = x− x1 − v1
1− e−γ∗t

γ∗
,

and S = v − v1 e−γ∗t . It should be clarified that the start-
ing point here substantially differs from that of Ref. [1],
although the exact solution of Ref. [1] is employed. The
latter is based on the stochastic model describing Brown-
ian motion.

4 The Transport Coefficients

For normal transport, combining Eqs (3) and (6) yields

σij = β
( Ze

V m

)2
∫ ∞

0

dτ

∫
d1d1′pi

1p
′j
1 f1(1′, 1; t + τ, t)

= β
( Ze

V m

)2
∫ ∞

0

dτ

∫
d1d1′pi

1p
′j
1

× e−L̂
′τδ(1′ − 1)f1(1; t), (35)

where e−L̂
′τδ(1′−1) is nothing but the fundamental solu-

tion of the linearized Eqs (11) ∼ (13) up to the first order
in ε. Thus taking Eq. (34) into it, σij is written as

σij = β
( Ze

V m

)2
∫ ∞

0

dτ

∫
d1d1′p′i1 p′j1 [G(x′1,p

′
1,x1,p1;τ)

× f1(x1,p1; t) + ε

∫ τ

0

ds

∫
dudw

×G(x′1 − u,v′1,w; τ − s)

× (−ÂG(u− x1,w,p1; s))f1(x1,p1; t)]

=
1
2
δijβ(Ze)2α∗/γ∗2 + εβ

( Ze

V m

)2
∫ ∞

0

dτ

∫ τ

0

ds

∫
d1d′1

×
∫

dudwpi
1p
′j
1 (G(x′1 − u,v′1,w

′; τ − s) . (36)

In the last line we employ the integral performed by
Mclennan[1] with α∗ and γ∗ expressed in terms of micro-
scopic variables. We find that the electric conductivity
consists of two parts. The leading part is proportional to
diffusion coefficient,[1] as one may expect. The second part
arises from the first order self-consistent field correction,
which can be neglected in many cases.

5 Conclusions

In this paper, we calculate Green–Kubo formula for
transport coefficients through the first principle. The
stochastic model has been recovered at the kinetic level.
The technique gives us deep insight into the microscopic
meaning of Onsager’s hypothesis on fluctuations. Indeed,
the present calculations are restricted to specific cases. We
take into account both the weak-coupling approximation
and small static electric fluctuation approximation. Be-
sides, the neutral ion background is employed, implying
that only electronic motions account for fluctuations. It
is essential that the calculations are valid for equilibrium
systems, however, we hope to explore whether it is pos-
sible to generalize the present technique to other cases in
future work.
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