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Video Anomaly Search in Crowded Scenes via
Spatio-Temporal Motion Context

Yang Cong, Member, IEEE, Junsong Yuan, Member, IEEE and Yandong Tang, Member, IEEE

Abstract—Video anomaly detection plays a critical role for
intelligent video surveillance. We present an abnormal video
event detection system that considers both spatial and temporal
contexts. To characterize the video, we first perform the spatio-
temporal video segmentation and then propose a new region-
based descriptor called “Motion Context”, to describe both motion
and appearance information of the spatio-temporal segment. For
anomaly measurements, we formulate the abnormal event detec-
tion as a matching problem, which is more robust than statistic
model based methods, especially when the training dataset is
of limited size. For each testing spatio-temporal segment, we
search for its best match in the training dataset, and determine
how normal it is using a dynamic threshold. To speed up the
search process, compact random projections are also adopted.
Experiments on the benchmark dataset and comparisons with the
state-of-the-art methods validate the advantages of our algorithm.

Index Terms—Abnormal Event Detection, Video Analysis,
Event Recognition, Video Surveillance, Motion, Compact Pro-
jection 1

I. INTRODUCTION

NOWADAYS, a large number of surveillance cameras
have been installed due to the decreasing costs of video

cameras. Intelligent video surveillance [1] is of great interests
in industry applications due to the increasing demand to reduce
the manpower of analyzing the large-scale video data. Key
technologies have been developed for intelligent surveillance,
such as object tracking [2], [3], pedestrian detection [4], gait
analysis [5], vehicle template recognition [6], privacy protec-
tion [7], face and iris recognition [8], video summarization
[9] and crowd counting [10]. In this paper, we focus on
video anomaly detection (also named as outlier detection),
i.e. detecting the irregular patterns that are different from the
regular video events in a given data set [11]–[20], and we
intend to build an abnormal event detection system that can
work in crowded scenes as well.

Despite many previous work of detecting video anomalies
[11]–[20], few of them can work well in crowded scenes, due
to the following challenges:
• First, a crowded scene usually contains a large number

of moving persons; thus can easily distract the local
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Fig. 1. Examples of video anomalies in different scenarios.

anomaly detector. It is difficult, even for human beings,
to effectively identify all abnormal behaviors in real time.

• Second, whether an event is normal or abnormal usually
application and context dependent, thus it is difficult to
model the abnormal event. An event may be considered
as normal in one scenario while abnormal in another
scenario. For real applications, it is desired that we can
adaptively define the video anomaly rather than manually
do this for each scenario.

• Third, although it is easy to obtain training videos of
normal video events, it is difficult to collect sufficient
samples of abnormal video events. Such an unbalanced
training data brings challenges to build a robust video
anomaly detector.

We illustrate two spatio-temporal video anomalies in Fig.
1. In Fig. 1(a), as the majority of vehicles follow the green
trajectories, the U-turn moving is treated as abnormal. In Fig.
1(b), each ellipse stands for a moving pedestrian, but the
behavior of the red one is different from its neighborhood,
thus is considered as an abnormal event. To make a video
anomaly detection system easy to use, the detection added new
subsection to compare the influence of different image patch
size using of video anomaly should be adaptive to different
scenes.

A. Problem Definition
By considering different application scenarios for abnormal

event detection, we define the problem of video anomaly
detection as follows. Suppose we are provided a training set
D = {x1,x2, . . . ,xN}, where N is the number of training
samples; xi ∈ Rd is the feature vector describing a normal
training sample (d is the feature dimension), which can be an
image patch, a color histogram, a mixture of dynamic texture,
or our proposed motion context, etc. Suppose we have a test
sample y ∈ Rd, our task is to design a function to determine
whether y is normal or abnormal. That is

f : y 7→ {normal, abnormal} (1)
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There are in general two ways to achieve Eq. (1):
i) Probability model based methods, which fit probability

model, e.g. Gaussian Mixture Model (GMM) or Mixture
of Probability Principle Component Analysis (MPPCA),
using the training data set D, and calculate the posterior
probability to detect anomaly:

f =

{
normal p(y|D) ≥ θ
abnormal p(y|D) < θ

(2)

To fit a good model, these methods usually need sufficient
training samples (approximate O(d2)), and the situation
gets further deteriorated when using high dimensional
features. Unfortunately, the training dataset is usually of
limited size and it is not realistic to collect sufficient video
anomalies.

ii) Nearest neighbor (NN) based methods, which compare
the current testing sample with all the training data:

f =

{
normal ∀xi, Dist(y,xi) ≤ εi
abnormal otherwise

(3)

where Dist(·) is a pairwise feature distance and εi is
a threshold about xi. Compared with the probability
based methods, the advantage is that they can still obtain
robust results even if the training data is of limited
size. Therefore, we propose to detect video anomaly
by retrieving the most similar normal examples in the
training dataset. If the retrieved example is similar enough
to the query example, the query will be normal; otherwise
a video anomaly will be detected.

To detect video anomaly, another important issue is the
video event representation. Most of the state-of-the-art meth-
ods consider spatio-temporal information and extract features
from the local patch. Various types of co-occurrence matrices
are often chosen to describe the spatial context information.
These methods are inflexible and inefficient for the event
representation. We propose to dynamically group the local
patches with similar characteristics together to represent the
abnormal event. In summary, our contributions mainly lie in
three aspects:

i) By considering the spatio-temporal characteristics of
video events, we design a new feature to represent video
events in crowded scenes, called motion context, which
relies on the dynamic patch grouping (DPG).

ii) Based on motion context, we propose a unified approach
to detect spatio-temporal abnormal events, and is adaptive
to different scenes.

iii) We formulate the problem of abnormal event detection as
a retrieval problem, where for each spatio-temporal video
segment, we search for the best match in the training
dataset and determine how normal it is. Compared with
conventional probability based methods, our method can
achieve robust results with limited training samples of
normal events. To improve the maintain low computa-
tional cost, we apply compact projections to perform fast
nearest neighbor search.

The remainder of the paper is organized as follows. Sec.II
briefly surveys previous works while Sec.III summarizes our

Training Sample

Abnormal Sample

Normal Sample

Random Projection

NN-Searching

Fig. 2. The illustration of our algorithm. The definition of each symbol
is shown in the top-right. The radius of the circle of each training sample
corresponds to the dynamic threshold, which varies from one training sample
to another; and the radius of each testing sample denotes the nearest neighbor
searching radius. Please check the texts for details.

method. Then we propose our video representation in Sec.IV,
followed by our framework in Sec.V. The experiment results
and conclusion are presented in Sec.VI and Sec.VII, respec-
tively.

II. RELATED WORK

A detailed review is beyond the scope of this paper, which
can be referred to [21], [22]. Depending on the specific appli-
cations, abnormal event detection can be categorized into those
in the crowded scenes and the un-crowded scenes. For the un-
crowded scenario, binary feature based on background models
are usually adopted, such as Normalization Cut clustering [11]
and 3D spatio-temporal foreground mask feature fusion using
Markov random field [14]. There are also some trajectory-
based approaches to locate objects by tracking or frame-
difference, such as [23], [24], [25], [26], [27], [28], [29] and
[30], which can get satisfied results on traffic monitoring,
however, may fail on density crowded scenes due to bad
trajectories initialization.

For the crowded scenes, most of state-of-the-art methods
consider spatio-temporal information and extract motion or
gray-level SIFT-like features from local 2D image patches or
local 3D video bricks, like Histogram of optical flow, 3D
gradient, etc. The co-occurrence matrices are often chosen
to describe the context information. For example, Adam et
al. [15] use histograms to measure the probability of optical
flow in local patch. Thida et al. [31] learn video manifold for
abnormality detection. Thide et al. [32] also propose to detect
local abnormal event using Laplacian eigenmap. Kratz et al.
[33] extract spatio-temporal gradient to fit Gaussian model of
each 3D video brick, and then use HMM to detect abnormal
events in densely crowded subway. The saliency features are
extracted and associated using a Bayesian model to detect
surprising (abnormal) events in video [34]. Kim et al. [35]
model local optical flow with Mixture of Probability Principle
Component Analysis (MPPCA) and enforce consistency by
Markov random field. In [36], a graph-based non-linear dimen-
sionality reduction method using motion cues is applied for
abnormality detection. Mahadevan et al. [16] model the normal
crowd behavior by mixtures of dynamic textures. Mehran et
al. [17] present a new way to formulate the abnormal crowd
behavior by adopting the social force model [37]. In [38],
the authors define a chaotic invariant feature to describe the
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Fig. 3. Basic description unit (2D local patch or 3D local volume). Both motion and appearance information are adopted for each unit. For motion descriptor,
the Multi-layer Histogram of Optical Flow (MHOF) is used, and for appearance descriptor, the Edge Orientation Histogram (EOH) is adopted. The meaning
of the color of each pixel in the motion field image corresponds to the motion direction and magnitude as shown in the left-top sub-figure.

event. Boiman and Irani [18], [39] extract 3D video bricks and
use dynamic programming to infer the anomaly. The sparse
representation is used to overcome the problem between event
representation using high-dimensional features and statistic
model complexity, such as sparse reconstruction cost (SRC)
[19] proposed in our previous work, and also [40], [41], which
does not address the large-scale dictionary selection problem
and cannot handle both Local Abnormal Event (LAE) and
Global Abnormal Event (GAE) simultaneously as well.

III. OVERVIEW OF OUR METHOD

In this paper, we consider abnormal event detection as a
retrieval problem, where we search the video event for its
best match in the training dataset and determine how normal
it is. The general idea is illustrated in Fig. 2. Either normal or
abnormal event is described by motion context using a high
dimensional feature point. The training samples xi ∈ Rd all
belong to normal (denoted by green points). There are several
clusters of green points, as training samples have several
patterns; and each cluster contains limited training samples,
because we cannot collect enough training data. For each
testing sample yj ∈ Rd denoted by crossing point, whether
yj is normal or not, is determined by its nearest neighbor
set. To speed up the nearest neighbor searching, the compact
projection based on random projection is adopted here, as
shown in Fig. 2 by blue lines. Then, a dynamic threshold is
given to decide whether the current sample is normal or not,
depending on the similarity, as shown by different radius in
Fig. 2. Blue points with smaller searching radius belong to
normal class; in the contrast, red points with larger searching
radius are abnormal ones. More details will be discussed later.

IV. EVENT REPRESENTATION

In this section, we propose a flexible video representation
using dynamic patch grouping. Most of the state-of-the-art
event descriptors extract motion or appearance features from
local 2D patch or 3D sub-volume [33], [15], [11], [14], then
adopt co-occurrence matrix to describe the pairwise spatial
relationship. However, these descriptors are inflexible, because

it is unrealistic to predefine a suitable patch size, and moreover
the fixed spatial structure of co-occurrence matrix may lose
crucial information. In [19], we make a further step by defining
various types of spatio-temporal basis. Nevertheless, it also
needs to predefine the spatio-temporal topology structure of
the descriptor, which makes it inflexible in practical applica-
tions.

In crowded scenes, different moving objects interconnect
with each other frequently. Thus it is of great importance
to segment them and recover each own motion. As each
event may contain many image patches, which are similar to
each other in both spatial and feature space. We use dynamic
patch grouping (DPG) to adaptively cluster similar patches and
represent each group as motion context using the proposed
motion context descriptor. Our motion context descriptor re-
tains both spatio-temporal and co-occurrance information and
is similar to “superpixel” in image parsing [42], [43], but we
have two merits: 1) Because abnormal events all occur in the
foreground, our method only process the foreground region by
ignoring the static background. 2) Our DPG is a patch-level
method, which only needs to handle a much less number of
units thus is more efficient.

A. Basic Patch Descriptor

We first partition the image into a few units, 2D image patch
(30×30 pixels for each). Then we calculate the motion energy
of each pixel (the magnitude of motion vector), if more than
half of the number of pixels in each unit greater than zero, we
consider such a unit as local foreground unit and describe it
by fusing both motion and appearance information, as shown
in Fig. 3.

For motion feature, we adopt the Multi-scale Histogram of
Optical Flow (MHOF) proposed in [19], which preserves more
temporal contextual information. After estimating the motion
field [44], we quantize each pixel (x, y) into the MHOF using
Eq. (4):

h(x, y) =

{
round(pθ(x,y)2π ) mod p r(x, y) < τ

round(pθ(x,y)2π ) mod p + p r(x, y) ≥ τ
(4)
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Fig. 4. Dynamic Patch Grouping (DPG). Each dot (red or green) denotes a
local patch. The black arrow is the pairwise similarity. Each grouping stands
for a motion context, which is grouped by most similar patches in both spatial
and feature space. The red ones are the center of each motion context.

where r(x, y) and θ(x, y) are the motion energy and motion
direction of motion vector at (x, y), respectively. In our
implementation, the MHOF has two layers of B = 16 bins
as shown in Fig. 3: the first p = 8 bins denote 8 directions
with motion energy r < τ in the inner layer; the next p = 8
bins correspond to r ≥ τ (τ = 1) in the outer layer.

For appearance feature, we use the Edge Orientation His-
togram (EOH) to represent each unit by an 8−bin feature
vector. We first filter the image using Sobel masks, such as
[−1, 0, 1] and [−1, 0, 1]T , and get the gradient image in x
and y direction. Then, every pixel is quantized accordingly.
Moreover, there are some foreground image patches containing
too much noise or background pixels, we need to eliminate
them for robustness depending on the following two criteria
below:

i The foreground ratio, i.e. we consider it as the back-
ground, if

ratio =
]{foreground pixel}
]{background pixel}

< 1, (5)

where the foreground mask is generated by the back-
ground model.

ii The Entropy of the MHOF,

E(H) = −
∑
i

H(i) log(H(i)), i = {1 . . . B}, (6)

where H is the feature vector MHOF of each patch, B
is the feature dimension, i.e. B = 16 in our case, and
for E < 1, we consider it as the intersection of different
moving objects.

B. Dynamic Patch Grouping (DPG)

Motivated by Superpixel methods [42], [43] for image
representation, we intend to adaptively cluster the similar
image patches into one group for video event representation,
called Dynamic Patch Grouping (DPG). In order to get a
global optimization, we adopt the Normalized Cuts (NCut)
[45] algorithm here for DPG. We first build the similarity
matrix and estimate the group number accordingly. Then we
use NCut to split the region and cluster the most similar

patches into groups to generate the motion context. We call
this procedure as DPG, as shown in Fig. 4.

Initially, we consider the 8-connected foreground 2D patch-
es as a whole set, and construct the graph G = (V,E) by
taking each patch as a node, where V is the nodes consisting
of n patches and E is the edge set. The symmetric similarity
matrix S is defined with the edge weight as wij , which
corresponds to pairwise similarity as in Eq. (7):

wij = SImg ∗ SDist

= exp
(
−‖F (i)− F (j)‖

2

σ2
F

)
×{

exp
(
−‖x(i)−x(j)‖

2

σ2
x

)
‖x(i)− x(j)‖2 < τc

0 otherwise

(7)

where F (·) is the feature vector of each unit, which is
combined by MHOF and EOH; x(·) indicates the pixel po-
sition respectively; and σF and σx are scale parameters. We
predefine the distance threshold τc to specify the neighbor of
each node.

Actually, the DPG can be considered as a labeling pro-
cedure, in which one label c ∈ {1, . . . , C} is assigned to
each node i. Let −→yc = {yic}n×1 be a partitioning vector
with yic = 1 if i belongs to the k−th segment and yic = 0
otherwise.

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (8)

where cut(A,B) =
∑
i∈A,j∈B s(i, j) is the cut value and

assoc(A, V ) =
∑
i∈A,j∈V s(i, j) is the total connection from

the vertex set A to all vertices in G. To minimize the NCut in
Eq. (8), the issue can be transformed into a standard eigenvalue
problem:

D−
1
2 (D − S)D− 1

2 z = λz, (9)

where D is a diagonal matrix with
∑
j s(i, j) on its diag-

onal and zero otherwise. The eigenvector corresponding to
the second smallest eigenvalue can be used to partition V
into A and B. In the case of multiple classes partitioning,
the bipartition can be utilized recursively or just apply the
eigenvectors corresponding to the K+1 smallest eigenvalues.
The procedure of DPG is as shown in Alg. 1.

As mentioned by Wang et al. [46], the determination of
the number of clusters is a challenging problem for clustering
algorithms. In our case, we design an optimization processing
to estimate the number of classes for Normalized Cuts (NCut)
using the sum Energy of each cluster ENC

:

ENC
=

NC∑
i=1

∑
j∈Ci

‖F (i)
j − F

(i)‖22, (10)

where NC ∈ [1 . . . Nmax] is the range of NCut clusters, Ci is
the set of points belonging to cluster i and F

(i)
is the mean

value of cluster Ci. Therefore, our intention is to minimize the
within-cluster sum of squares of Eq. (10). We denote the first
derivative of ENC

as ∇ENC
. While the number NC increases

starting from one, the value of energy ENC
will decrease. The

optimal value of NC is the first ∇ENC
greater than zero, that

is the energy ENC
start to increase. In contrast with other pixel
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Algorithm 1 Dynamic patch grouping
Input: Similarity matrix S ∈ Rn×n, number of clusters to be

constructed c.
Output: Clusters A1, . . . , Ac

1: Construct a similarity graph by Eq. (7)
2: Compute the unnormalized Laplacian L
3: Compute the first k generalized eigenvectors u1, . . . , uc

as columns
4: Let U ∈ Rn×c be the matrix containing the vectors
u1, . . . , uc as columns

5: for each i = 1 . . . n do
6: Let yi ∈ Rc be the vector corresponding to the i−th

row of U.
7: Cluster the points (yi)i=1,...,n in Rc with the k−means

algorithm into clusters A1, . . . , Ac.
8: end for

based clustering methods, our motion context is based on patch
level. Since the number of patch is smaller, the computation
burden of NCut operation is also lower.

C. Motion Context

Similar patches of the same event have been grouped by
DPG and we represent them as motion context here by fusing
the spatio-temporal information. Suppose each motion context
is constructed by Nm local patches, and the motion and
appearance information of each patch is described by 16−bin
MHOF and 8−bin EOH, respectively. Therefore, each motion
context can be represented below,
• For motion feature, we consider both motion energy and

motion direction information. For motion energy, max,
min, mean and standard deviation of motion energy of
Nm patches are used. For motion direction, the average
of Nm 16−bin MHOF is adopted.

• For appearance feature, the average of EOH from Nm
patches with 8−bin is adopted.

Then we normalize them respectively, and combine them
into a high-dimensional feature vector as our event descriptor,
where the dimension d is equal to 28 in our case.

V. SPATIO-TEMPORAL ABNORMAL EVENT DETECTION

In this section, we formulate the anomaly detection as a
retrieval problem. As mentioned before, the probability model
based method may not provide a good matching especially
with limited training examples in high-dimensional feature
space. Thus, we detect abnormal event by measuring the
similarity, i.e. finding the nearest neighbor sample related to
each testing sample. Image similarity search is a fundamental
problem in computer vision. Define the training sample or
database as D = {x1,x2, . . . ,xN},xi ∈ Rd. Given a query
sample y ∈ Rd, the similarity d(·) may vary depending on
specific application or dataset. We define a `p−norm distance
d here,

d(x,y) = ‖x− y‖p = (

d∑
j=1

|x(j)− y(j)|p)1/p, (12)

Algorithm 2 Abnormal Event Retrieval
Input: Training Data Samples D = {x1, . . .xN ∈ Rd}

Testing Data Sample y ∈ Rd
Output: x∗, the label of y

1: Generate R ∈ Rk×d with independent normal distribution
Rij ∼ N(0, 1)

2: for each i = 1 . . . N do
3: xki = σ(Rxi),

where σ(x) =

{
1 x > 0
0 x ≤ 0

4: end for
5: x∗ = CompactProjSearch(D,xk,y, R)
6: Detect anomaly

y =

{
normal d(x?,y) ≤ 1.2× τx?

abnormal d(x?,y) > 1.2× τx?
(11)

Function x∗ = CompactProjSearch(D,xk,y, R)

1: Generate the code yk = σ(Ry).
2: for each i = 1 . . . N do
3: Compute the Hamming distance ‖yk − xki ‖0
4: end for
5: Select the points D̃ ⊂ D with whose code have T =

O(nl)(0 < l < 1) smallest Hamming distance from yk.
6: x∗ = argminx∈D̃ d(x,y)

where p = 1 is the `1−norm, and p = 2 is `2−norm (we use
p = 2 in our case). The critical task is to efficiently return
a vector x∗ ∈ D, which is similar to y, i.e. the distance
d(y,x∗) is as small as possible. The most straightforward
method is to simply scan through the database and return the
point x? ∈ D that minimizes d(x,y), yielding an excellent
neighbor: d(y,x?) = minx∈D d(x,y). However, the algorith-
m complexity of such a method is about O(dN). If in practical
searching d and N are large, such an exhaustive searching
for finding nearest neighbors in the high-dimensional feature
space is too time consuming and unacceptable for both abnor-
mal event detection and web-scale image retrievals.

Efficient similarity search across large image training data
depends critically on the availability of compact image repre-
sentations and good data structures for indexing them. The
random projection (by Johnson-Lindenstrauss lemma [47])
presents a way for efficient similarity searching. Given a
random projection function, f : Rd → Rk, k < d into
a k = O(log(N)) dimensional space nearly preserves the
pairwise distances between the points with high probability:

(1− ε)‖x−y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1+ ε)‖x−y‖22 (13)

for all pairs x,y ∈ D. This phenomenon is fairly flexible
with respect to the distribution of f . Therefore, in this paper,
we adopt compact projection [48] for motion context simi-
larity search. Compact projection is an approximate nearest
neighbor algorithms with excellent performance guarantees,
in some cases nearly optimal. In contrast to locality sensitive
hashing (LSH) [49], which exploits the distance preserving
properties of random projections, compact projection generates
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Fig. 5. The example results of Dynamic Patch Grouping (DPG) for motion context extraction. Different colors denote different moving direction of each
motion context. The images of top row include both normal and abnormal events, while the images of bottom row only include normal ones.

compact binary representations of image data based on random
projections.

There are two tuning parameters, k and l, in which k
controls the number of random projections, and l determines
the feedback ratio of rough searching by binary compact
projection. The greater the value of these two parameters are,
the higher the accuracy of the searching results is, while the
lower the efficiency of searching. Here, we have k > logN ,
and set k = N

2 and l = 0.1.
For each training sample xi, i ∈ {1, · · · , N}, we find its

nearest neighbor x?i by Alg.2. Therefore, we can set the
threshold τxi

of each training sample according to d(xi,x?i ).
The value of τx? = d(xi,x

?
i ) is related to the radius of

green circle of each training sample in Fig. 2. Therefore, the
threshold τxi is different for varying xi.

For testing, we find the nearest neighbor x? of query sample
y and compute the similarity d(x?,y), whether y is normal or
not depends on both the similarity d(x?,y) and the threshold
τx? as shown in Eq. (11). Please refer to Alg.2 for more
details. When there are some noises in the detection, the rough
detection results have many false alarms, which will affect the
accuracy. As the abnormal event cannot occur stand-alone in
only one frame or one patch, there exists Markov properties.
Therefore, we use a simplified version of spatial-temporal
Markov random field to eliminate noise and maintain speed.

VI. EXPERIMENTS AND COMPARISONS

A. Dataset

We use the UCSD dataset [16], [50] in our experiments,
where the crowd density varies from sparse to very crowded.
The training set are all normal events and contain only
pedestrians. The abnormal events in testing set are due to either
1) the circulation of non pedestrian entities in the walkways,
or 2) anomalous pedestrian motion patterns. Commonly occur-
ring anomalies include bikes, skaters, small cars, and people
walking across a walkway or in the grass that surrounds it.

For Ped1, the training set includes 34 normal video clips
and the testing set contains 36 video clips in which some of
the frames have one or more anomalies present (a subset of 10
clips in testing set are provided with pixel-level binary masks
to identify the regions containing abnormal events). For each
clip, there are about 200 frames with the resolution 158×238,
The total number of anomalies frames (≈ 3400) is somewhat
smaller than that of normal frames (≈ 5000).

For Ped2, the training set includes 16 normal video clips
and the testing set contains 14 video clips with the image
resolution 320 × 240. The total number of anomalies frames
(≈ 2384) is also smaller than that of normal frames (≈ 2566).

B. Measurements

To test the effectiveness of our proposed algorithm, two
different levels of measurements are applied for evaluation,
i.e. Pixel-level and Frame-level.

• Frame-level: If a frame contains at least one abnormal
pixel, it is considered as a detection. These detections
are compared to the frame-level ground truth annotation
of each frame. Note that this evaluation does not verify
whether the detection coincides with the actual location of
the anomaly. It is therefore possible for some true positive
detections to be “lucky” co-occurrences of erroneous
detections and abnormal events.

• Pixel-level: To test the localization accuracy, detections
are compared to pixel-level ground truth masks, on a
subset of ten clips. The procedure is similar to that
described above. If at least 40% of the truly anomalous
pixels are detected, the frame is considered detected
correctly, and counted as a false positive otherwise.

The Receiver Operating Characteristic (ROC) curve is used
to measure the accuracy.
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Fig. 6. The evaluation results of UCSD Ped1 dataset. (a) Frame-level ROC for Ped1 Dataset, (b) Pixel-level ROC for Ped1 Dataset.

EER RD AUC
MPPCA [16] 40% 18% 20.5%
SF-MPPCA [16] 32% 18% 21.3%
MDT [16] 25% 45% 44.1%
Adam [15] 38% 24% 13.3%
Sparse [19] 19% 46% 46.1%
Ours 23% 47% 47.1%

TABLE I
THE EVALUATION RESULTS OF UCSD PED1 DATASET. QUANTITATIVE

COMPARISON OF OUR METHOD WITH [16], [15] AND [19]: EER IS EQUAL
ERROR RATE, RD IS RATE OF DETECTION, AND AUC IS THE AREA UNDER

ROC.

C. Performance

The performance of motion context extraction is crucial
for our algorithm. The key challenge is how to separate the
adjacent objects or events in the foreground blobs. As shown
in Fig. 5, we list the result of motion context extraction for
both normal and abnormal events. Different motion contexts
have been extracted and labeled using different colors, which
correspond to the main moving direction. We can see that the
abnormal objects have been separated and labeled, which is
useful for the further processing. Moreover we only extract
motion context from the foreground region by using a patch-
level method (DPG), thus the estimated number of cluster ENC

in Eq. (10) is not too much (usually ENC
= 2 from each

adjacent foreground region).
In Fig. 6, we compare our method with the state-of-the-

art methods, such as MDT [16], Social Force model [17],
MPPCA [35], Adam’s work [15] and our previous work [19]
by using sparse reconstruction cost (SRC) for abnormal event
detection. We use pixel-level and frame-level measurements
defined above for quantitative comparison. It is easy to find
that for frame-level measurement, our ROC curve is better
than others except a bit lower than [19], and for pixel-level
measurement, our ROC curve outperforms all of others.

We present the results in Tab. I with different evaluation
criteria:
• Equal Error Rate (EER), which reports the percentage of

misclassified frames when the false positive rate is equal
to the miss rate;

• Rate of Detection (RD), which is the detection rate at

EER AUC
Adam [15] 42% 63.4%
SF [16] 42% 62.3%
SF-MPPCA [16] 36% 71.0%
MPPCA [16] 30% 77.4%
MDT [16] 25% 84.8%
Sparse [19] 25% 86.1%
Ours 24.8% 86.8%

TABLE II
THE STATISTICAL RESULT OF UCSD PED2 DATASET.

equal error point;
• Area Under Curve (AUC), which measures the area under

the ROC curve.

For EER, ours is 23%, which is slightly worse than our
previous work [19] 19%, but outperforms all of others. For RD,
ours is 47%, which outperforms the state-of-the-art methods,
including [19] with RD as 46%. For AUC, ours is 47.1%,
which also performs the best and the second best one is [19]
with AUC as 46.1%.

Some image results are shown in Fig. 7 (the abnormal events
are labeled by red masks), in which the top row is generated
by MDT method [16], the second and third rows are given by
SF-MPPCA method [16] and SRC method [19], respectively,
and the bottom is by our algorithm. For SF-MPPCA method,
they completely miss the skater in (b), the person running
in (c) and the bike in (d). For MDA method, although they
detect nearly all of the abnormal events, the foreground mask
is too large, which is not accurate. For ours, we can detect the
abnormal objects robustly with more accurate boundary, such
as bikers, skaters, small cars, etc. Obviously, ours outperforms
the other methods.

In Fig. 8, we show the results on UCSD Ped2 dataset. As
Ped2 dataset does not provide pixel-level groundtruth, we only
use Frame-level ROC for comparison, and ours outperforms
the state-of-the-art methods as well. The statistical result is
also shown in Tab. II. For the Equal Error Rate (EER), ours
is 24.8%, which is better than MDT [16]; and for the Area
Under Curve (AUC), ours is 86.8%, which also outperforms
the state-of-the arts [16] [15] .
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Fig. 7. Examples of abnormal detections using (I) the MDT method [16]; (II) the SF-MPPCA method [16], which completely misses the skater in (b), the
person running in (c) and the bike in (d); (III) the SRC method [19]; and (IV) our results.
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Fig. 8. Frame-level ROC for UCSD Ped2 Dataset.

D. Comparisons

1) The Influence of Image Patch Size: In this sub-section,
we will evaluate the influence of different image patch sizes for
UCSD Ped2 dataset and we choice the patch size as 15× 15,
30 × 30 and 45 × 45. Then, the statistical results of AUC is
shown in Tab. III and the ROC curves are shown in Fig. 9.
We find that the AUC of 15× 15 is similar to that of 30× 30,
this is because our DPG method can adaptively group related
image patches to generate the motion context automatically;
and the result of the larger size 45×45 is much more worse as
it is too large and contains more background pixels and noise,
which makes the result deteriorated.

2) Multi-layer MHOF vs. Single-layer HOF: In this subsec-
tion, we compare our multi-layer MHOF with the traditional
HOF, i.e. single layer HOF, where for MHOF we set the
motion magnitude threshold as τ = 1 and the scale as s = 2.
The results of AUC is shown in Tab. IV and the ROC curves

15× 15 30× 30 45× 45
AUC 86.2% 86.8% 83.7%

TABLE III
COMPARISON THE AUC OF DIFFERENT IMAGE PATCH SIZES FOR UCSD

PED2 DATASET.
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Fig. 9. Comparison the ROC of different image patch sizes (15×15, 30×30,
45× 45) for UCSD Ped2 Dataset.

are shown in Fig. 10. We find that the AUC of multi-scale,
i.e. the MHOF, is better than single-layer, because the MHOF
is more precise to represent the motion, e.g. the fast moving
objects.

3) Searching Efficiency: The efficiency for similarity
searching is crucial for our proposed video anomaly detection
method. In this section, we compare the efficiency of Compact
Projection (CP) based searching with the traditional K-Nearest
neighbor (KNN) searching. In the training procedure, we
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Multi-layer MHOF Single-layer HOF
AUC 86.8% 78.73%

TABLE IV
COMPARISON THE AUC OF MULTI-LAYER WITH SINGLE-LAYER FOR

UCSD PED2 DATASET.
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Fig. 10. Comparison the ROC of Multi-layer MHOF (S=2) with Single-layer
MHOF for UCSD Ped2 Dataset.

collect the query samples from the normal training dataset,
and for the testing procedure, we extract testing sample and
find the most similar query sample for anomaly detection. In
our case, we collect about 10k and 4k query samples from
the UCSD Ped1 and Ped2 dataset, respectively. As shown in
Fig. 11, we compare the time cost for one thousand times
searches. Clearly, the CP based searching is more efficient
than exhaustive K-NN search. In practice, the amount of video
dataset will be much larger thereby generating more nearest
neighbors. As point out in [48], when the size of query dataset
increases, CP is more efficient and will occupy less memory
than other methods. With the help of CP to speed up the NN
search, our method is efficient for video anomaly searching in
practice. All the experiments are done on a Pentium 4 3.0GHz
machine with 4GB memory.

4) Time Consumption: We compare the time consumption
here in this subsection. For the “sparse” method [19], it takes
3.8second/frame for UCSD dataset on the platform with 2GB
RAM and 2.6GHz CPU. For MDT [16], the testing time is
about 25second/frame on a standard platform with 3GHz CPU
and 2GB RAM. For Adam [15], the authors claim that their
propose method can run in real-time. For our method, it takes
about 1.2second/frame on a platform with 4GB RAM and
3GHz CPU. So for video anomaly searching, our proposed
method is more efficient than most of the state-of-the-art
methods except Adam [15], however ours outperforms other
methods as shown above.

Ped1 Ped2
0

0.5

1

1.5

2

Qu
ery

 Ti
me

(s)

 

 

K−NN
CP

Fig. 11. Speed comparison with Compact Projection (CP) and K-Nearest
neighbor (KNN).

VII. CONCLUSION

In this paper, we present an algorithm for abnormal event
detection in spatio-temporal video space by considering video
anomaly detection as a retrieval problem. Two key technolo-
gies are developed here for both event representation and
anomaly measurement. Motivated by “superpixel” methods
[42], [43], we design a patch-level event descriptor, named
as dynamic patch grouping (DPG), to represent each event
as motion context by associating both motion and appearance
cues, which is more effective and flexible than existing meth-
ods, such as [33], [15] or [19]. For anomaly measurement,
the abnormal event is detected based on the nearest neigh-
borhood searching procedure via dynamic threshold, which
overcomes the contradiction between insufficient training data
and high-dimensional feature vector for fitting most state-of-
the-art probability models. Moreover, the compact projection
is applied here to speed up the searching procedure. The
experiments on the benchmark datasets show favorable results
when compared with the state-of-the-art methods.
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