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On the value of customer information for an independent supplier 
in a continuous review inventory system 

 
Abstract 

 
We consider the inventory control problem of an independent supplier in a continuous 

review system. The supplier faces demand from a single customer who in turn faces 

Poisson demand and follows a continuous review (R, Q) policy. If no information about 

the inventory levels at the customer is available, reviews and ordering are usually carried 

out by the supplier only at points in time when a customer demand occurs. It is common to 

apply an installation stock reorder point policy. However, as the demand faced by the 

supplier is not Markovian, this policy can be improved by allowing placement of orders at 

any point in time. We develop a time delay policy for the supplier, wherein the supplier 

waits until time t after occurrence of the customer demand to place his next order. If the 

next customer demand occurs before this time delay, then the supplier places an order 

immediately. We develop an algorithm to determine the optimal time delay policy. We 

then evaluate the value of information about the customer’s inventory level. Our numerical 

study shows that if the supplier were to use the optimal time delay policy instead of the 

installation stock policy then the value of the customer’s inventory information is not very 

significant. 

Keywords: Supply chain management, Erlangian demand, Continuous review system, 
Optimal no-information policy, Value of information 
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1. Introduction 

With increased focus on supply chain management and the tremendous improvements in 

the IT and communications infrastructure in the last decade, there has been a greater interest in 

formation of strategic alliances and exchange of information among suppliers and customers in a 

supply chain. Software solutions and concepts such as web-based Enterprise Resource Planning 

and Collaborative Planning, Forecasting and Replenishment (CPFR) have made this easily 

possible. This has led to initiatives for collaboration and greater visibility of demand and 

inventory information in the supply chain. 

While technology exists to share information among the entities in a supply chain, 

whether it is being effectively done and/or is beneficial to all parties is a question that still 

requires considerable research. Beyond the well publicized cases of successful information 

sharing and collaboration efforts, there have only been limited success stories (Larsen, Thernøe, 

and Andresen 2003). One reason for the apparent lack of success in collaboration and sharing 

information is the reluctance of companies to share what is perceived as sensitive data (Scheraga 

2002, Danese 2006). A specific issue that has attracted the attention of researchers is the benefit 

of sharing information about inventory/demand in a supply chain.  

In this paper, we consider the inventory control problem of a supplier facing demand 

from a single customer who in turn faces Poisson demand and follows a continuous review (R, 

Q) policy. The supplier therefore faces batch demands of fixed size Q, whose inter-arrival times 

are Erlangian. The supplier is an independent entity and not part of an integrated supply chain.  

In an integrated system, the inventory at the supplier would be referred to as installation 

stock (of the supplier) and the sum of the inventory at the supplier and the customer together 

would be referred to as echelon stock (of the supplier). As the customer is the last echelon, for 
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him the echelon stock and the installation stock (of the customer) refer to the same thing which is 

his own inventory. Even though we are not dealing with an integrated system in this paper, we 

still refer to the installation stock for the supplier as his own inventory and the echelon stock as 

the sum of the inventory at his installation as well as that at the customer.  

The supplier follows a continuous review system and his objective is to minimize his 

long run average inventory costs. Traditionally, reviews are carried out by the supplier only at 

points in time when a customer demand occurs. If no information about the inventory levels at 

the customer is available, it is then common for the supplier to adopt an installation stock policy, 

where both the reorder point and the order quantity are multiples of the demand batch size Q. In 

an installation stock policy, a replenishment order is triggered at the supplier when the inventory 

position at his location (inventory on hand + outstanding orders - backorders) drops to or below 

the reorder point. However, as the demand faced by the supplier is not Markovian, this policy 

can be improved by allowing placement of orders at any point in time. We develop a time delay 

policy for the supplier, and also develop an algorithm to find the optimal time delay policy. If the 

information on inventory levels of the customer were available to the supplier, then the optimal 

policy would be an echelon stock policy, where an order is placed when the echelon inventory 

position (sum of the installation inventory positions at the customer and the supplier) reaches the 

reorder point. We evaluate the value of information about the customer’s inventory level for the 

supplier.  

There are a number of related papers that have considered the value of information 

sharing in supply chains. These papers, in general, adopt the perspective of an integrated multi-

echelon supply chain, rather than that of an independent supplier. Examples of such papers are 

Chen (1998), Moinzadeh (2002), Marklund (2002), and Axsäter and Marklund (2008). 
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The idea of a time delay policy for non-Markovian demands (where orders are allowed to 

be placed at any time) was earlier proposed by Moinzadeh and Zhou (2008), as well as by 

Katircioglu (1996) (see also Schultz 1989). However, in this paper, we derive the time delay 

policy for our setting in a simpler way. Moreover, we also develop an efficient method to 

determine the optimal time delay policy when the supplier has non-zero set-up costs. The other 

main contribution of the paper is the finding that when the optimal time delay policy is used, the 

value of information about the customer’s inventory level is quite negligible for the supplier.  

The paper is organized as follows. We provide a review of the related literature in the rest 

of this section. In the next section, we develop our model and analyze the problem for the 

traditional installation stock policy, the echelon stock policy (which requires sharing of the 

customer’s inventory information) as well as our time delay policy with no information sharing. 

Algorithms to determine the optimal policy under each of these scenarios are also developed. In 

Section 3, we extend the analysis to the case with positive set-up costs at the supplier. In Section 

4, we present the results of a computational study. Finally some concluding remarks and possible 

issues for future research are discussed in Section 5.  

1.1. Literature review 

When no information is shared across the supply chain and each echelon acts to optimize 

its own costs, the demand variability in the supply chain gets amplified as it moves upstream in 

the supply chain. This phenomenon, known as the bullwhip effect was first observed by Forrester 

(1961), and has been studied further by Lee, Padmanabhan and Whang (1997) and later by Chen, 

Drezner, Ryan and Simchi-Levi (2000). One of the solutions proposed to counter the bullwhip 

effect is to have information sharing across the supply chain.  
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The literature on the value of inventory or demand information in this context can be 

classified based on the type of external demand pattern (from the end-customer) and type of the 

review system used. Lee, So and Tang (2000) considered a manufacturer facing periodic 

demands from a retailer. The external demand at the retailer follows a non-stationary AR(1) 

process. As there are no set-up costs, orders are placed in every period in this periodic review 

system. Lee et al. quantified the value of the demand information and showed that there is value 

for the manufacturer to have information about external demand. Raghunathan (2001) studied 

the same model, and showed that if the manufacturer knows the form of the external demand 

process, and if the autocorrelation coefficient for the AR(1) process is non-negative, there is no 

additional value in knowing the actual external demand in each period. Gaur, Giloni and 

Seshadhri (2005) extended Lee et al.’s model to consider a more general ARMA process for the 

demand. They identify conditions when demand information is valuable for the manufacturer. 

They also show that for the AR(1) process with autocorrelation coefficient less than -0.5, there is 

value in information sharing for the manufacturer. 

The rest of the related papers in the literature have mainly considered the value of 

information for the entire, integrated supply chain as opposed to an independent supplier. 

Gavirneni, Kapuscinski and Tayur (1999) consider a two-echelon, capacitated supply chain 

under a periodic review system. The supplier has no ordering cost, but has constraints on the 

production capacity in each period. The retailer faces independent and identically distributed 

(i.i.d.) demands in each period and follows an (s, S) policy. Gavirneni et al. consider three 

different scenarios. In the first scenario (M0), the supplier has no information about the external 

demand, but by using the history of past orders from the retailers, assumes an i.i.d. demand from 

the retailer, and correspondingly adopts a stationary modified base stock policy in each period. 
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(In their modified base stock policy, the quantity ordered is either the quantity based on the 

specified base stock level or the maximum capacity available in the period, whichever is lower.) 

In the second scenario (M1), the supplier monitors the number of periods since the previous 

order from the retailer, and also the retailer’s policy values (s, S). He uses this information to 

determine a different modified base stock policy for each period. In the final scenario (M2) the 

supplier has full information about the retailer’s demand and inventory position and determines 

the optimal modified base stock policy in each period according to this information. The lead-

time for production and shipment is assumed to be zero and to make the model tractable, it is 

also assumed that the retailer obtains the necessary stock from another external supplier, in case 

the supplier is not able to satisfy the demand. Gavirneni et al. (1999) quantify the value of 

information by comparing the inventory cost for the two-echelon supply chain under the three 

scenarios. They find that there is a significant value of information even when comparing the 

scenarios M1 and M2.  

Cachon and Fisher (2000) considered a one supplier, multi-retailer supply chain with 

stationary and stochastic external demand at each retailer in a periodic review setting. In a 

traditional no information policy, the supplier uses a (R, nQ) policy which is not necessarily 

optimal for this case. A lower bound on the total supply chain cost under any scenario is 

developed using simulation. The difference between this and the cost of the traditional, no-

information policy is the upper bound on the value of information. While there is some benefit in 

sharing inventory/demand information, Cachon and Fisher found that the benefit of other 

technology improvements such as lead-time reduction was much more significant than the 

benefit from information sharing. 
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Other examples of papers dealing with control rules that are based on the echelon stock 

(or extended information concerning the inventory situation at different echelons or installations 

in the supply chain) are Chen (1998), Moinzadeh (2002), Marklund (2002), and Axsäter and 

Marklund (2008). The cost reduction (compared to the traditional installation stock policy) 

obtained by using such methods is commonly seen as the value of information. In general, these 

papers find that there is significant value to be obtained by using the inventory information at 

different echelons. For example, a computational study by Moinzadeh (2002) revealed that the 

savings from information sharing can be as high as 10 to 20%. Our numerical study shows that if 

the supplier were to use the optimal time delay policy instead of the installation stock policy as 

the baseline (or base case) then the value of the customer’s inventory information is not very 

significant.  

2. Model and analysis 

2.1. Problem formulation 

We consider a continuous review inventory control system at a supplier. The supplier has 

a single customer facing Poisson demand. If we include the customer we have a two-echelon 

system. However, our purpose is exclusively to minimize the costs at the supplier. The costs at 

the customer are disregarded. This is a more realistic scenario when the supplier and customer 

are independent and separate entities in the supply chain. The replenishment lead-time for the 

supplier is constant. It is known that the customer applies a continuous review (R, Q) policy, so 

the demands at the considered supplier are in batches of size Q. No partial deliveries are allowed. 

Furthermore, the intensity of the Poisson demand at the customer is known1. However, the 

                                                
1 Even if the demand information is not shared by the customer, the supplier can statistically estimate this based on 
the historical data of the customer orders over long periods of time. The expected value of the customer orders per 
unit time should be equal to the expected demand per unit time over long time intervals.  
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inventory position and the demands at the customer can not be observed. The supplier can only 

observe the orders from the customer. Note that the reorder point R used by the customer does 

not affect the steady state situation at the supplier. This is because the stochastic flow of orders is 

independent of the reorder point.  

There are standard holding and backorder costs per unit of time at the considered 

supplier. The backorder cost may, for example, be a penalty cost that is paid to the customer. 

Initially we assume that there are no ordering or set-up costs at the supplier, but this assumption 

is relaxed in Section 3. This assumption means that the supplier, like its customer, will order in 

customer batches (of size Q), which will meet the batch demands from its customer. The 

problem is to optimize the timing of these orders under the given limited information. In other 

words, we wish to optimize the “safety time” for each batch.  

For comparison, we shall also consider a standard installation stock policy and an echelon 

stock policy. The latter policy requires information about the demands at the customer. Let us 

introduce the following notation:  

 

L = lead-time, 

h = holding cost per unit, per unit time, 

p = backorder cost per unit, per unit time, 

λ = known intensity of Poisson demand, 

Q = known batch quantity, Q > 1, 

Ri = installation stock reorder point at the supplier, 

Re = echelon stock reorder point at the supplier, 

IPi = installation stock inventory position, 

IPe = echelon stock inventory position, 

IL = inventory level, 

D(L) = stochastic lead-time demand, 
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S = order-up-to inventory position (of installation stock), 

C = expected cost rate, 

po(i, �) = Poisson probability mass function, 

Po(i, λ) = Poisson cumulative distribution function. 
 

2.2. Poisson demand at the supplier 

Let us first assume that the demand at the supplier is Poisson. (This is the case if Q = 1. 

The results with Q = 1 are used later when optimizing the policy in the considered case with Q > 

1.) It is well known (see e.g., Axsäter 2006) that the optimal policy is then an S policy, or 

equivalently an (S – 1, S) policy. This means that when the installation stock inventory position 

(inventory on hand + outstanding orders – backorders) declines to S – 1, an order for one unit is 

triggered so that the inventory position is raised to S. For the rest of the discussion in the paper, 

when we just say “inventory position” or “inventory level”, we mean the inventory position 

(level) of the installation stock at the supplier.  

The inventory position is always S. We consider some arbitrary time t. Let us first 

evaluate a certain S in a standard way. All outstanding orders at time t would have been delivered 

by time t + L. New orders that have been triggered between t and t + L would not be delivered at 

time t + L. We then get the inventory level (inventory on hand – backorders) at time t + L, IL(t + 

L) as 

  ( ) ( ),IL t L S D L+ = −                (1)  

where D(L) is the Poisson demand during the lead-time. This means that it is easy to determine 

the distribution of the inventory level. Given the inventory level, we get the cost rate as 
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In (2) x+ = max (x, 0) and x- = max (-x, 0). Note that x = x+ - x-, and hence 

( ) ( ) ( )p E IL pE IL p E IL− += − . The corresponding cost per unit is C(S)/λ. It is easy to show that 

C(S) is convex in S (see Axsäter 2006), and that the optimal S is always nonnegative. 

Consequently, it is also easy to optimize S. Starting with S = 0 we simply need to look for a local 

optimum. Let the optimal S be denoted by S*. 

It is also well known (see Axsäter 1990) that an ordered item will meet the S-th future 

demand for a unit, and that we can see C(S)/λ as the expected cost rate for a unit that is ordered 

at some time and will meet the S-th forthcoming Poisson demand. What determines the costs is 

the stochastic time until an ordered unit is demanded. In our case it is the time of an Erlang 

distribution with S stages and intensity λ. Let  

gk(t) = -1 - ( -1)!k k tt e kλλ  = density of an Erlang distribution with k stages and 

intensity λ, 

Gk(t) = 1 – Po(k-1, λt) = corresponding cumulative distribution function of an 
Erlang distribution with k stages and intensity λ. 

 

As an alternative to (2) we can therefore equivalently express the costs as 
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      (3) 

In (3) we multiply with λ to get the costs per unit of time. If the demand comes after the end of 

the lead-time, we get a holding cost and if the demand comes before the end of the lead-time, we 

get a backorder cost. We use that 1( ) ( ) /S Sg t t g t S λ+= . 

In this paper we shall use the view in (3) and assume that a demand occurs after a certain 

Erlang distributed time. Using this view it is also evident that C(S*) is a lower bound on the cost 

of any policy. 

2.3. Batch demands – installation stock policy 

Now we turn to the considered case with batch demands of size Q > 1 at the supplier and 

constrained information. Because no partial deliveries to the customer are allowed, it is obvious 

that the inventory level at the supplier should be a multiple of Q at all times. Because all 

demands and all replenishments at the supplier are for batches of size Q, the initial stock at the 

supplier should also be a multiple of Q. We assume that this is the case. 

Assume that we have already determined S* and C(S*). As mentioned, C(S*) is a lower 

bound on the cost of any policy.  

A simple and straight-forward way to control the inventory under the limited availability 

of information is to apply an installation stock (Ri, Q) policy. The inventory position at the 
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supplier is denoted IPi. Recall that the supplier only knows Q and the intensity of the Poisson 

demand at the customer. Furthermore, we can without lack of generality assume that Ri is also a 

multiple of Q. (See e.g., Axsäter and Rosling 1993.) Because all demands are for batches of size 

Q, the inventory position is kept at Ri + Q = jQ all the time (where j is an integer). Assume that a 

batch demand and the corresponding order have just occurred at the supplier. The next such 

batch demand will evidently appear after Q additional Poisson demands at the customer. 

Similarly, the j-th future batch demand will occur after jQ Poisson demands at the customer. This 

is the demand for the batch that just has been ordered. The whole batch will be demanded at the 

same time. Recall (3) and the discussion immediately before that expression. The costs per batch 

are QC(jQ)/λ and there are λ/Q batches per unit of time. Consequently, we get the costs per unit 

time as C(jQ). Recall now that C(S) is minimized by S*. We can consequently state the following 

simple proposition:  

Proposition 1 If S* is an integer multiple of Q, the best installation stock policy provides the 

optimal solution (with or without information on the customer’s inventory position). The optimal 

reorder point is then Ri = S* - Q. 

Assume that S* is not a multiple of Q. Let ĵ  be the smallest integer such that S*< ĵ Q. 

Due to the convexity of the cost rate function, it is obvious that for the installation stock policy, it 

is optimal to use either j = ĵ -1 or j = ĵ , and the resulting costs are obtained as  

Ci = min {C(( ĵ -1)Q), C( ĵ Q)}.  

Example: We now provide a numerical example to illustrate the method to determine the 

optimal installation stock policy. The same example is used throughout this section to illustrate 

the various policies. The problem parameters for this example are as follows: λ = 50, L = 4, h = 

1, p = 20, Q = 200. For this problem, S* = 224 so it is not an integer multiple of 200. It is obvious 
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that ĵ  = 2. We get C (200) = 118.43, and C(400) = 200.00. Therefore the optimal installation 

stock policy is to keep a base stock level of 200. i.e., as soon the installation inventory position 

of the supplier goes down to the reorder point 0, an order of size 200 is placed by the supplier to 

bring the inventory position back to the base stock level R + Q = 200. The resulting cost 

according to (2) or (3) is $118.43. 

2.4. Batch demands – echelon stock policy 

If we do not have the considered restrictions on the available information, the supplier 

can apply an echelon stock policy. The echelon stock inventory position IPe is the sum of the 

installation stock inventory positions at the supplier and the customer. The reorder point at the 

customer does not affect the steady state costs at the supplier. Let us therefore for simplicity set 

this reorder point equal to zero. This means that the inventory position at the customer is 

uniformly distributed on the interval [1, Q]. 

Consider first the case in Proposition 1 when S* is an integer multiple of Q. Let the 

echelon stock reorder point at the supplier be Re = (Ri + Q) = jQ = S*. Assume that we start at 

some time when both the customer and the supplier have just ordered. The echelon stock 

inventory position at the supplier is then jQ+Q and correspondingly, the installation stock 

inventory position at the supplier is jQ. A batch that has just been ordered by the supplier will 

then always be demanded after jQ customer demands and the costs per unit of time are C(S*), 

i.e., the same as with the installation stock policy.  

Consider then the case where S* = jQ + x where 0 < x < Q and j is an integer. Note that j 

is unique. Let the echelon stock reorder point at the supplier be eR jQ x= + . Assume that the 

supplier has just ordered and that the inventory positions just after the order are x at the 

customer, and ( 1)iIP j Q= +  and ( 1)eIP j Q x= + + , at the supplier. The batch that has just been 
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ordered will evidently be demanded at customer demand x + jQ = S*. See Table 1 for an 

example.  

 

Table 1: Development of inventory positions for j = 1, Q = 2, x = 1, i.e., S* = 3. 

Supplier IPe 5 4 5 4 5 

Supplier IPi 4 2 4 2 4 

Customer 1 2 1 2 1 

Demands Initial state Demand 1 Demand 2 Demand 3 Demand 4 

 

The expected costs per unit of time for this policy will therefore be C(S*). Recall that this 

is a lower bound for the costs of any policy. It is easy to see that the expected costs are the same 

also for future orders. We can state 

Proposition 2 Using an echelon stock policy, we can always get the optimal solution. 

We note again that an echelon stock policy requires information about the inventory 

position at the customer, i.e., it is not a feasible solution with our assumptions. The ordering at 

the supplier and the customer are generally not nested, i.e., they will order at different times.  

Example: Using the same example as before (i.e. λ = 50, L = 4, h = 1, p = 20, Q = 200), S* = 

224, and the corresponding cost C(224) = 30.02. We assume as above, without any loss of 

generality, that the reorder point at the customer is equal to zero. Evidently j = 1 and x = 24. 

Therefore the optimal echelon stock policy is to place an order when the echelon stock inventory 

position (the sum of the inventory positions at the supplier and the customer) reaches 224. That 
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is, when the inventory position of the supplier is 200, and the inventory position of the customer 

reaches 24, an order of size 200 is placed by the supplier. The resulting cost is $30.02. 

2.5. Batch demands – installation stock policy with a possible time delay 

We shall now determine an optimal time delay policy for the supplier under the 

considered information constraint. The supplier can only see the batch orders from its customer, 

but not the Poisson demands at the customer. However, he knows the intensity of this Poisson 

demand.  

Assume that a batch demand has just occurred. Assume also that the supplier wants to 

order the batch that will meet the j-th forthcoming batch demand. We shall determine the optimal 

j later. The next such batch demand will evidently appear after Q additional Poisson demands at 

the customer. Similarly, the j-th future batch demand will occur after jQ Poisson demands at the 

customer. If Q is large there will in general be relatively long times between the batch demands. 

One possibility is to order the considered batch directly. However, there is also another 

possibility that must be considered. The supplier can also decide to wait a certain time t. If 

another batch demand is triggered during this time the considered batch demand will now satisfy 

the (j – 1)-th future batch demand from that time. But it may also happen that no batch demand is 

triggered, i.e., if there are 0 � i < Q customer demands during t. In that case the supplier orders 

when the delay time is over. The batch demand is then triggered by the (jQ – i)-th forthcoming 

customer demand. It is clear that the considered policy is a very general policy under the given 

information constraint. The time since the last batch demand is the only information we use. 

Especially, we note that t = 0 is equivalent to ordering immediately, or equivalently, apply an 
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installation stock policy. Furthermore, t = � means that we always will order when the next 

batch demand occurs, i.e., the ordered batch will meet the (j – 1)-th future batch demand instead 

of the j-th. So this can be seen as using j – 1 and t = 0 instead of j and t = �. 

Consider first the case where S* is an integer multiple of Q. According to Proposition 1 it 

is then optimal (even without any information on the customer’s inventory position) to apply an 

installation stock policy with Ri = (S* – Q). In terms of our general policy it is then optimal to  

choose j such that jQ = S*  and order with delay t* = 0. We then obtain the optimal costs C(S*). 

Let us now consider the case when S* is not an integer multiple of Q. Assume that we 

have ( ĵ - 1)Q < S*< ĵ Q. Assume, furthermore, that we use j = ĵ - 1 and t = 0. This means that 

an ordered batch will be demanded after ( ĵ - 1)Q customer demands. Compared to the optimal 

solution this means that we order too late. It is also evident that it is no advantage to use t > 0 

because that means that we order even later. Consider then j = ĵ and t = 0. This means that we 

order too early. However, it is then possible to delay the order by using t > 0. Recall that j 

= ĵ and t = ∞  is equivalent to j = ĵ - 1 and t = 0. 

We need the following simple lemma: 
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Lemma 1 (a) [po(2, λt) + po(3, λt) +… po(Q - 1, λt)]/ po(1, λt) � 0 as t � 0, 

      (b)  [po(0, λt) + po(1, λt) +… po(Q - 2, λt)]/ po(Q - 1, λt) � 0 as t � �. 

We omit the proof that follows directly from the Poisson probability mass function. 

Let us now formulate the following proposition.  

Proposition 3 The optimal time delay policy is to use j = ĵ  and a certain positive and finite 

delay time. If a new batch demand is triggered during the delay time the considered batch should 

be ordered immediately.  

Proof It follows from the convexity that it is not optimal to use j > ĵ . Recall that j and t = � is 

equivalent to j – 1 and t = 0. So j > ĵ  means always that we order too early. This demonstrates 

that j = ĵ  is optimal. The convexity implies also that it is optimal to order the considered batch 

immediately in case a new batch demand is triggered. Recall that ˆ 1j j= −  and t = 0 means that 

we order too late. 

Assume then that it is optimal to have delay t* = 0. Consider a very small t. Due to 

Lemma 1 (a) the probability for a single demand during t is λt, while the probabilities for larger 

demands can be disregarded. Clearly C( ĵ Q – 1) < C( ĵ Q), so the delay will reduce the expected 

costs. Similarly we can rule out t* = � compared to a finite large t. When t becomes larger, 

Lemma 1 (b) shows that the probabilities for demand sizes 0, 1, ..., Q – 2 can be disregarded 

compared to the probability for demand Q – 1. Because C(( ĵ - 1)Q + 1) < C(( ĵ - 1)Q), we can 

conclude that a finite but large t will give lower expected costs. �  

It remains to determine the optimal delay and the expected optimal costs C*. We obtain 

  
1

*
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The first term in the parenthesis covers the case when another batch demand is triggered during t, 

and the second term corresponds to the case with less than Q customer demands during the 

considered delay time. The one-dimensional optimization of t is easy to carry out by a search 

procedure. For large values of t we can stop when Po(Q – 1, λt) < ε, where ε is a small positive 

number. The cost in (4) for a given t is then approaching C(( ĵ - 1)Q). Although, this has not been 

proved, the cost function seems to be unimodal. It is not convex, though. 

It is obvious that the installation stock policy in Section 2.3 provides an upper bound for 

C*, while the optimal costs with the echelon stock policy in Section 2.4 gives a lower bound. The 

difference between C* and the echelon stock costs can be interpreted as the value of detailed 

customer information.  

Example: For the same example used before (i.e. λ = 50, L = 4, h = 1, p = 20, Q = 200), the 

optimal time delay is t* = 3.364. We have ĵ  = 2 and get t* by carrying out the minimization in 

(4). The optimal time delay policy works as follows: After the inventory position of the supplier 

reaches 400, place the next order either after a time delay of 3.364 time units or when the next 

batch demand from the customer occurs, whichever is earlier. The expected cost of this policy is 

$40.09. Note that for this example the cost of the optimal echelon stock policy was $30.02, and 

the cost of the optimal installation stock policy was $118.43. If we think of the installation stock 

policy as the default no-information policy; then the total cost saving potential in this case is 

$88.41 (118.43-30.02). However, with the use of the optimal time delay policy, a saving of 

$78.34 (118.43-40.09) is obtained. Therefore with the optimal time delay policy, 88.60% 

(78.34/88.41) of the potential saving is achieved. The value of information in this particular 

example is only $10.07.  
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3. Analysis of the model for non-zero set-up costs: Ordering larger batches 

So far we have assumed that the considered supplier has no ordering or set-up costs. 

Because all customer orders are for batches of size Q and no partial deliveries are allowed, it is 

then obvious that the supplier will also order in batches of size Q. However, if there is an 

ordering or set-up cost it may be more economical to order larger batches that are integer 

multiples of Q. Because partial deliveries are not allowed, we do not need to consider other batch 

sizes. In this section we shall therefore consider a batch size nQ where n is a positive integer. Let 

*
nC  = expected optimal holding and backorder costs per unit of time for batch size nQ. 

Consider a supplier batch of size nQ that is ordered at some time. Assume that the sub-

batch of size Q that will be demanded first by the customer is triggered by the k-th Poisson 

demand at the customer. Clearly, the second sub-batch will be triggered by the (k + Q)-th 

Poisson demand at the customer etc. Consequently, we obtain the corresponding expected costs 

per unit of time as 

  
-1

0

1
( ) (   )

n

n
i

C k C k iQ
n =

= +� .              (5)  

Obviously, Cn(k) is a convex function of k. Furthermore, the optimal k*(n) is less than or 

equal to S*. For n = 1 we have k*(1) = S*. C1(S*) is evidently also a lower bound for Cn
*. Also, 

unlike the case for n = 1, k* can take negative values, and this needs to be taken into account in 

the algorithm for determining the optimal k*. (If S � 0, C(S) in (3) degenerates to  

C(S) = -p(S – λL).) It is evident that k*(n) is non-increasing in n.  

We shall now provide a simple recursive algorithm for determination of k*(n). Let us first 

prove the following simple proposition. 

Proposition 4 * *( ) ( 1)k n k n Q≥ − −  for n > 1. 
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Proof Note that we can express Cn(k) as 

 .  

We know that the second term is minimized for k + Q = k*(n–1), i.e. for k = k*(n–1) – Q. The 

first term is minimized for k*(1) = S* � k*(n–1). So we can conclude that both terms are non-

increasing with k for k � k*(n–1) – Q. This proves the proposition. � 

 

Using Proposition 4 we can determine k*(n) by the following simple procedure. Assume that we 

know k*(n–1). Recall that k*(n) � k*(n–1) and that k*(1) = S*. We evaluate k*(n–1), k*(n–1)–1, 

k*(n–1)–2 , ... as potential values of k*(n) and stop when we reach a local minimum. Due to the 

convexity we then have the optimal k*(n). Furthermore, due to Proposition 4 the local minimum 

will at the latest occur at k*(n – 1) – Q, so we never need to consider more than Q +1 values for 

each unit increase in n. 

Let us now consider an installation stock policy like in Section 2.3. Again we can without 

lack of generality assume that the reorder point Ri is a multiple of Q, i.e., Ri = jQ. In complete 

analogy with Proposition 1, we will reach the lower bound if k*(n) is a multiple of Q. The 

corresponding optimal installation stock reorder point is then Ri = k*(n) – Q. Consider then the 

case where k*(n) is not a multiple of Q. Let ĵ  be the smallest integer such that k*(n) < ĵ Q. The 

convexity implies that it is optimal to use either j = ĵ –1 or j = ĵ , and the resulting costs are 

obtained as i
nC  = min {Cn(( ĵ –1)Q), Cn( ĵ Q)}. 

Next we turn to an echelon stock policy like in Section 2.4. We can always obtain the 

lower bound Cn(k*(n)). If k*(n) is a multiple of Q, this is obviously the optimal installation stock 

as well as echelon stock policy (i.e. Ri = k*(n) – Q, and Re = k*(n)). Otherwise we can in analogy 

with Section 2.4 assume that k*(n) = jQ + x where 0 < x < Q and j is an integer. Let the echelon 
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stock reorder point at the supplier be eR jQ x= + . Assume that the supplier has just ordered and 

that the inventory positions just after the order are x at the customer, respectively ( )iIP j n Q= +  

and ( )eIP j n Q x= + + at the supplier. The first sub-batch of the larger batch that has just been 

ordered will then evidently be demanded at customer demand x + jQ. The expected costs per unit 

of time for this policy is therefore Cn(k*(n)). 

Finally, we consider the case corresponding to Section 2.5 where ( ĵ –1)Q < k*(n) < ĵ Q. 

Assume that the supplier wants to order a large batch so that the j-th forthcoming demand for a 

batch of size Q will be a demand for the first sub-batch. The optimal policy is then to use j = ĵ  

and a time delay t. The optimal delay and the corresponding costs can be determined in complete 

analogy with (4)  
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If another batch is triggered during t, j = ĵ  is replaced by j = ĵ –1 and there should be no 

additional time delay. This case is covered by the first term in (6). The second term covers the 

case when no additional customer order is triggered during t. 

Finally we determine the optimal time delayed installation stock policy for a given ordering or 

set-up cost. Let 

A =  ordering or set-up cost, 

Ctot = expected total cost rate per unit of time. 

  We then have 

  *
tot n

A
C C

nQ
λ= + .                (7) 
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We note that the first term in (7) is decreasing with n and that *
nC  obviously is increasing with n. 

Furthermore, *
nC  is unbounded. This is the case because C(S) = -p(S - λL) for S < 0, and because 

C(S) is asymptotically approaching h(S–λL) as S � �. In order to optimize (7) we can therefore 

simply evaluate n = 1, 2, ... and stop when *
nC  exceeds the lowest total costs so far.  

  If we want to determine the optimal installation stock policy without a time delay or the 

optimal echelon stock policy we replace *
nC  in (7) by i

nC  and Cn(k*(n)) respectively. The optimal 

value of n is not necessarily the same in these three cases. 

4. Computational results 

To compare the effectiveness of the three policies namely, installation stock policy (no 

information sharing), echelon stock policy (with information sharing), and installation stock 

policy with time delay, we carried out a numerical study. In the first instance, we assumed that 

the set-up cost A = 0. The various parameter values used were λ = 10, 30, 50; L = 2, 4, 8; h = 1; p 

= 5, 10, 20; and Q = (λL/4), (λL/2) and λL. Later we ran the tests for the same set of problem 

parameters, with A = 50, 100, 200 and 300 respectively.  

The computational results for λ = 10, h = 1, and A = 0 are reported in Table 2. Similar 

results for λ = 30, and λ = 50 are available from the authors (included as appendix for the benefit 

of the referees only). For each value of the parameters L, p, and Q, we report the cost of 

installation stock policy (CI), echelon stock policy (CE) and cost of the installation stock policy 

with time delay (CT). The total savings potential in dollars (CI–CE), as well as in percentage 

[(CI–CE)/CI] is also reported. Traditionally and in earlier papers in the literature (under a 

continuous review framework) the value of information is represented by (CI–CE) or in 
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percentage as (CI–CE)/CI. Table 2 also reports the value of information in percentage  

[(CT–CE)/CT] if the time delay policy is used as the base line.  
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 Table 2: Computational results for λ = 10, h = 1, A = 0 

Lead- 
time  

L 

Backorder  
cost  

p 

Batch 
quantity 

Q 

Cost of 
installation 
stock policy 

CI 

Cost of 
echelon 

stock policy 
CE 

Cost of 
installation 
stock policy 

with time 
delay 
CT 

Total cost 
savings 

potential in 
$ 

CI-CE 

Total cost 
savings 

potential in 
percentage 
(CI-CE)/CI 
(Value of 

information as 
per traditional 

definition) 

Value of 
information 
when base-
line is time 

delay 
policy  

(CT-CE)/CT 

Percentage 
of potential 

savings 
obtained by 
time delay 

policy 
(CI-CT)/(CI-

CE) 

2 5 5 6.98 6.93 6.98 0.06 0.85% 0.72% 8.78% 

2 5 10 10.19 6.93 7.66 3.27 32.05% 9.53% 77.65% 

2 5 20 10.66 6.93 8.53 3.73 35.03% 18.76% 57.07% 

2 10 5 8.64 8.41 8.63 0.23 2.71% 2.55% 4.71% 

2 10 10 10.35 8.41 9.03 1.95 18.82% 6.87% 68.06% 

2 10 20 19.54 8.41 10.42 11.14 56.99% 19.29% 81.93% 

2 20 5 10.67 9.85 10.21 0.82 7.69% 3.53% 56.14% 

2 20 10 10.67 9.85 10.23 0.82 7.69% 3.71% 54.02% 

2 20 20 20.00 9.85 11.96 10.15 50.73% 17.64% 79.23% 

4 5 10 11.09 9.70 10.09 1.39 12.56% 3.87% 71.77% 

4 5 20 15.11 9.70 11.00 5.41 35.80% 11.82% 76.01% 

4 5 40 15.11 9.70 12.15 5.41 35.80% 20.16% 54.66% 

4 10 10 12.00 11.78 11.90 0.23 1.89% 1.01% 43.62% 

4 10 20 20.03 11.78 13.11 8.26 41.22% 10.14% 83.90% 

4 10 40 27.70 11.78 14.99 15.92 57.48% 21.41% 79.78% 

4 20 10 13.82 13.72 13.82 0.11 0.76% 0.72% 0.00% 

4 20 20 20.07 13.72 14.96 6.35 31.64% 8.29% 80.40% 

4 20 40 40.00 13.72 17.36 26.28 65.71% 20.97% 86.13% 

8 5 20 20.31 13.64 14.48 6.67 32.83% 5.80% 87.43% 

8 5 40 21.39 13.64 15.70 7.74 36.21% 13.12% 73.39% 

8 5 80 21.39 13.64 17.27 7.74 36.21% 21.02% 53.23% 

8 10 20 20.57 16.47 17.18 4.1 19.91% 4.13% 82.76% 

8 10 40 39.21 16.47 18.86 22.74 57.98% 12.67% 89.52% 

8 10 80 39.21 16.47 21.45 22.74 57.98% 23.22% 78.10% 

8 20 20 21.09 19.18 19.66 1.9 9.02% 2.44% 75.02% 

8 20 40 40.00 19.18 21.64 20.82 52.04% 11.37% 88.19% 

8 20 80 74.86 19.18 24.99 55.67 74.37% 23.25% 89.58% 
 

In the final column in Table 2, the savings obtained by the installation stock policy with 

time delay CI–CT is given as a percentage of the total potential savings CI–CE. If this percentage 



  

25 

is very high, then it implies that the value of information is quite low as the smart, no-

information policy captures most of the potential savings. This percentage seems to be problem 

dependent and it varies from 0 to 90% in Table 2. This result might appear very inconclusive. 

However, a closer examination of the results revealed that whenever the percentage of the 

potential savings obtained by the time delay policy was low, the potential savings (CI–CE) itself 

was very low. This is shown in Figures 1 and 2. In Figure 1, the potential savings in dollars are 

plotted against the percentage of potential savings obtained by the installation stock policy with 

time delay. Figure 2 plots the potential savings in percentage against the percentage of potential 

savings obtained by the installation stock policy with time delay. 

FIGURE 1: Cost saving potential in dollars versus percentage of savings obtained through installation 
stock policy with time delay 
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As can be seen from Figure 1 and Figure 2, there are many data points with low values of 

(CI–CT)/(CI–CE), but all these correspond to situations where the potential savings (CI–CE) 

itself was low. In other words, whenever the potential savings between CI and CE was high, the 

smart no information policy was able to capture most of this. For the problems with A = 0, the 

real value of information given by (CT–CE)/CT is only about 14.6%, whereas based on 

traditional measures (CI–CE)/CI, this appears to be 54.6%.  

FIGURE 2: Cost saving potential in percentage versus percentage of savings obtained through 
installation stock policy with time delay 

 
 

 

We conducted further computational tests for A = 50, 100, 200 and 300. The detailed 

results for these tests are provided in the online appendix. The set-up costs did not seem to have 

any discernable relationship with the real value of information, or the percentage of potential 
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savings captured by the time delay policy. It was a combination of parameters that influenced 

this. However, as in the earlier cases, whenever the percentage of potential savings captured by 

the time delay policy was low, the potential savings itself was low. Figure 1 and Figure 2 

actually plots the graph for the entire set of problem data including higher values of A. For the 

entire set of problem data used in the numerical tests, the real value of information given by 

(CT–CE)/CT is about 4.7%, and the value of information based on traditional measures (CI–

CE)/CI, is 23.4%. 

5. Summary and conclusions  

We have considered the inventory control problem faced by an independent supplier in a 

continuous review system. The supplier faces batch demands with Erlangian inter-arrival times 

from a single customer. When the supplier has no information on the customer’s inventory 

position, traditional policies such as (R, Q) or (s, S) are optimal only when ordering is restricted 

to the points in time when the customer demands arrive. We derive and develop an optimal time 

delay policy for the supplier when no information sharing takes place. We show that if this 

policy is used, then the value of information sharing is significantly reduced. When there is no 

information sharing, the supplier can use the time elapsed since the previous demand occurrence 

as an effective proxy for the inventory position at the customer. Future research could possibly 

address the problem of determining a corresponding (no information) policy for a supplier with 

multiple customers.  
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Appendix (included for the benefit of the referees only) 

 
 Table 3: Computational results for λ = 30, h = 1, A = 0 

Lead- 
time  

L 

Backorder  
cost  

p 

Batch 
quantity 

Q 

Cost of 
installation 

stock 
policy 

CI 

Cost of 
echelon 

stock 
policy 

CE 

Cost of 
installation 

stock 
policy with 
time delay 

CT 

Total cost 
savings 

potential in 
$ 

CI-CE 

Total cost 
savings 

potential in 
percentage 
(CI-CE)/CI 
(Value of 

information as 
per traditional 

definition) 

Value of 
information 
when base-
line is time 

delay 
policy  

(CT-CE)/CT 

Percentage 
of potential 

savings 
obtained by 
time delay 

policy 
(CI-CT)/(CI-

CE) 

2 5 15 15.58 11.85 12.47 3.73 23.93% 4.97% 83.36% 

2 5 30 18.52 11.85 13.55 6.66 35.98% 12.55% 74.52% 

2 5 60 18.52 11.85 14.93 6.66 35.98% 20.63% 53.88% 

2 10 15 16.07 14.34 14.77 1.73 10.78% 2.91% 75.19% 

2 10 30 30.00 14.34 16.23 15.67 52.21% 11.65% 87.93% 

2 10 60 33.94 14.34 18.50 19.61 57.76% 22.49% 78.77% 

2 20 15 17.04 16.69 16.87 0.36 2.09% 1.07% 48.67% 

2 20 30 30.01 16.69 18.59 13.32 44.40% 10.22% 85.72% 

2 20 60 60.00 16.69 21.50 43.31 72.19% 22.37% 88.88% 

4 5 30 26.20 16.66 17.84 9.54 36.42% 6.61% 87.60% 

4 5 60 26.20 16.66 19.31 9.54 36.42% 13.72% 72.23% 

4 5 120 26.20 16.66 21.19 9.54 36.42% 21.38% 52.57% 

4 10 30 30.16 20.10 21.23 10.06 33.36% 5.32% 88.80% 

4 10 60 48.04 20.10 23.27 27.94 58.16% 13.62% 88.67% 

4 10 120 48.04 20.10 26.40 27.94 58.16% 23.86% 77.44% 

4 20 30 30.31 23.39 24.34 6.92 22.83% 3.90% 86.23% 

4 20 60 60.00 23.39 26.77 36.61 61.02% 12.63% 90.77% 

4 20 120 91.71 23.39 30.83 68.32 74.50% 24.13% 89.11% 

8 5 60 37.07 23.46 25.43 13.61 36.73% 7.75% 85.52% 

8 5 120 37.07 23.46 27.45 13.61 36.73% 14.54% 70.69% 

8 5 240 37.07 23.46 30.03 13.61 36.73% 21.88% 51.68% 

8 10 60 60.00 28.27 30.36 31.73 52.89% 6.88% 93.42% 

8 10 120 67.96 28.27 33.21 39.69 58.40% 14.88% 87.55% 

8 10 240 67.96 28.27 37.57 39.69 58.40% 24.75% 76.56% 

8 20 60 60.01 32.83 34.91 27.18 45.29% 5.96% 92.34% 

8 20 120 120.00 32.83 38.33 87.17 72.64% 14.35% 93.69% 

8 20 240 129.74 32.83 44.02 96.91 74.69% 25.42% 88.46% 
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Appendix (included for the benefit of the referees only) 

 
 Table 4: Computational results for λ = 50, h = 1, A = 0 

Lead- 
time  

L 

Backorder  
cost  

p 

Batch 
quantity 

Q 

Cost of 
installation 
stock policy 

CI 

Cost of 
echelon 

stock 
policy 

CE 

Cost of 
installation 
stock policy 

with time 
delay 
CT 

Total cost 
savings 

potential in 
$ 

CI-CE 

Total cost 
savings 

potential in 
percentage 
(CI-CE)/CI 
(Value of 

information-as 
per traditional 

definition) 

Value of 
information 
when base-
line is time 

delay 
policy  

(CT-CE)/CT 

Percentage 
of potential 

savings 
obtained by 
time delay 

policy 
(CI-CT)/(CI-

CE) 

2 5 25 23.92 15.23 16.25 8.69 36.34% 6.28% 88.24% 

2 5 50 23.92 15.23 17.60 8.69 36.34% 13.47% 72.70% 

2 5 100 23.92 15.23 19.32 8.69 36.34% 21.17% 52.83% 

2 10 25 25.30 18.40 19.31 6.91 27.30% 4.71% 86.82% 

2 10 50 43.85 18.40 21.17 25.45 58.05% 13.08% 89.09% 

2 10 100 43.85 18.40 24.05 25.45 58.05% 23.49% 77.77% 

2 20 25 25.58 21.38 22.12 4.2 16.41% 3.35% 82.44% 

2 20 50 50.00 21.38 24.34 28.62 57.23% 12.16% 89.68% 

2 20 100 83.71 21.38 28.06 62.33 74.46% 23.81% 89.29% 

4 5 50 33.84 21.44 23.17 12.4 36.65% 7.47% 86.01% 

4 5 100 33.84 21.44 25.03 12.4 36.65% 14.34% 71.06% 

4 5 200 33.84 21.44 27.40 12.4 36.65% 21.75% 51.90% 

4 10 50 50.01 25.84 27.64 24.18 48.34% 6.51% 92.53% 

4 10 100 62.04 25.84 30.25 36.2 58.35% 14.58% 87.80% 

4 10 200 62.04 25.84 34.25 36.2 58.35% 24.55% 76.76% 

4 20 50 50.03 30.02 31.77 20.01 39.99% 5.51% 91.25% 

4 20 100 100.00 30.02 34.89 69.98 69.98% 13.96% 93.04% 

4 20 200 118.43 30.02 40.10 88.41 74.65% 25.14% 88.60% 

8 5 100 47.86 30.22 32.96 17.64 36.86% 8.31% 84.49% 

8 5 200 47.86 30.22 35.52 17.64 36.86% 14.92% 69.94% 

8 5 400 47.86 30.22 38.82 17.64 36.86% 22.15% 51.25% 

8 10 100 87.75 36.38 39.43 51.36 58.54% 7.74% 94.07% 

8 10 200 87.75 36.38 43.08 51.36 58.54% 15.55% 86.96% 

8 10 400 87.75 36.38 48.66 51.36 58.54% 25.24% 76.09% 

8 20 100 100.00 42.23 45.41 57.77 57.77% 7.00% 94.49% 

8 20 200 167.52 42.23 49.82 125.29 74.79% 15.23% 93.95% 

8 20 400 167.52 42.23 57.11 125.29 74.79% 26.05% 88.12% 
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Appendix (included for the benefit of the referees only) 

 
Table 5A:  Impact of setup cost on percentage of potential savings obtained by time based 

installation stock policy 

          Percentage of potential savings obtained by time based policy 

Lambda 
λ 

Lead-
time 

L h p Q A = 0 A = 50 A = 100 A = 200 A = 300 

10 2 1 5 5 8.78% 18.81% 15.69% 0.07% 54.66% 

10 2 1 5 10 77.65% 50.59% 72.71% 54.77% 100.00% 

10 2 1 5 20 57.07% 1.14% 0.00% 100.00% 59.09% 

10 2 1 10 5 4.71% 100.00% 51.72% 10.90% 100.00% 

10 2 1 10 10 68.06% 4.16% 100.00% 41.70% 60.75% 

10 2 1 10 20 81.93% 50.89% 9.21% 14.57% 0.05% 

10 2 1 20 5 56.14% 67.63% 11.51% 100.00% 16.35% 

10 2 1 20 10 54.02% 74.84% 57.93% 13.98% 1.05% 

10 2 1 20 20 79.23% 79.99% 65.64% 52.33% 47.42% 

10 4 1 5 10 71.77% 42.12% 70.82% 55.98% 100.00% 

10 4 1 5 20 76.01% 11.50% 100.00% 100.00% 68.64% 

10 4 1 5 40 54.66% 54.66% 54.20% 1.58% 1.58% 

10 4 1 10 10 43.62% 37.45% 0.52% 24.85% 56.15% 

10 4 1 10 20 83.90% 71.96% 35.27% 1.31% 2.88% 

10 4 1 10 40 79.78% 79.65% 66.37% 49.00% 49.00% 

10 4 1 20 10 0.00% 63.21% 79.20% 51.49% 27.76% 

10 4 1 20 20 80.40% 84.08% 82.59% 71.32% 68.51% 

10 4 1 20 40 86.13% 86.13% 81.97% 78.52% 76.43% 

10 8 1 5 20 87.43% 37.09% 100.00% 71.35% 71.35% 

10 8 1 5 40 73.39% 73.39% 54.72% 11.41% 11.41% 

10 8 1 5 80 53.23% 53.23% 53.23% 53.23% 53.23% 

10 8 1 10 20 82.76% 85.31% 64.25% 21.10% 21.10% 

10 8 1 10 40 89.52% 85.88% 77.58% 69.03% 69.03% 

10 8 1 10 80 78.10% 78.10% 78.10% 78.10% 78.10% 

10 8 1 20 20 75.02% 83.12% 81.74% 86.30% 81.61% 

10 8 1 20 40 88.19% 88.19% 88.19% 88.36% 85.37% 

10 8 1 20 80 89.58% 89.47% 88.84% 87.32% 85.31% 
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Appendix (included for the benefit of the referees only) 

 
 

Table 5B:  Impact of setup cost on percentage of potential savings obtained by time based 
installation stock policy 

          Percentage of potential savings obtained by time based policy 

Lambda 
λ 

Lead-
time 

L h p Q A = 0 A = 50 A = 100 A = 200 A = 300 

30 2 1 5 15 83.36% 62.94% 85.89% 13.87% 66.51% 

30 2 1 5 30 74.52% 11.30% 100.00% 75.56% 89.68% 

30 2 1 5 60 53.88% 53.88% 0.53% 1.73% 1.73% 

30 2 1 10 15 75.19% 25.66% 100.00% 72.16% 78.87% 

30 2 1 10 30 87.93% 70.02% 36.61% 3.20% 0.00% 

30 2 1 10 60 78.77% 78.77% 45.48% 48.05% 41.03% 

30 2 1 20 15 48.67% 84.01% 63.25% 17.28% 1.04% 

30 2 1 20 30 85.72% 86.54% 80.29% 67.49% 50.96% 

30 2 1 20 60 88.88% 85.50% 76.76% 77.45% 66.95% 

30 4 1 5 30 87.60% 33.88% 100.00% 80.38% 90.40% 

30 4 1 5 60 72.23% 72.23% 8.62% 11.55% 11.55% 

30 4 1 5 120 52.57% 52.57% 52.57% 52.57% 52.57% 

30 4 1 10 30 88.80% 81.99% 61.20% 18.17% 0.00% 

30 4 1 10 60 88.67% 85.22% 64.51% 67.88% 48.16% 

30 4 1 10 120 77.44% 77.44% 77.44% 77.44% 76.14% 

30 4 1 20 30 86.23% 89.07% 90.17% 83.62% 72.35% 

30 4 1 20 60 90.77% 90.77% 87.70% 86.98% 80.08% 

30 4 1 20 120 89.11% 89.11% 89.11% 87.05% 83.45% 

30 8 1 5 60 85.52% 84.33% 32.04% 32.04% 0.00% 

30 8 1 5 120 70.69% 70.69% 70.69% 70.69% 70.69% 

30 8 1 5 240 51.68% 51.68% 51.68% 51.68% 51.68% 

30 8 1 10 60 93.42% 91.00% 82.88% 82.88% 60.97% 

30 8 1 10 120 87.55% 87.55% 87.55% 87.55% 82.49% 

30 8 1 10 240 76.56% 76.56% 76.56% 76.56% 76.56% 

30 8 1 20 60 92.34% 92.34% 92.34% 92.74% 89.77% 

30 8 1 20 120 93.69% 93.59% 93.09% 91.80% 89.92% 

30 8 1 20 240 88.46% 88.46% 88.46% 88.46% 88.46% 
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Table 5C:  Impact of setup cost on percentage of potential savings obtained by time based 
installation stock policy�

          Percentage of potential savings obtained by time based policy 

Lambda 
λ 

Lead-
time 

L h p Q A = 0 A = 50 A = 100 A = 200 A = 300 

50 2 1 5 25 88.24% 100.00% 76.29% 87.92% 24.93% 

50 2 1 5 50 72.70% 11.43% 11.43% 100.00% 80.46% 

50 2 1 5 100 52.83% 52.83% 52.83% 1.89% 1.89% 

50 2 1 10 25 86.82% 62.07% 19.32% 27.60% 71.50% 

50 2 1 10 50 89.09% 68.36% 68.36% 35.45% 3.45% 

50 2 1 10 100 77.77% 77.77% 77.77% 47.21% 47.21% 

50 2 1 20 25 82.44% 88.88% 78.90% 57.32% 34.93% 

50 2 1 20 50 89.68% 88.29% 84.66% 78.68% 65.81% 

50 2 1 20 100 89.29% 88.49% 85.32% 76.46% 76.46% 

50 4 1 5 50 86.01% 32.15% 32.15% 100.00% 85.16% 

50 4 1 5 100 71.06% 71.06% 71.06% 11.54% 11.54% 

50 4 1 5 200 51.90% 51.90% 51.90% 51.90% 51.90% 

50 4 1 10 50 92.53% 83.37% 79.33% 59.04% 17.18% 

50 4 1 10 100 87.80% 87.80% 85.37% 66.76% 66.76% 

50 4 1 10 200 76.76% 76.76% 76.76% 76.76% 76.76% 

50 4 1 20 50 91.25% 92.66% 91.93% 88.42% 81.76% 

50 4 1 20 100 93.04% 92.69% 91.01% 87.05% 87.05% 

50 4 1 20 200 88.60% 88.60% 88.60% 88.60% 88.60% 

50 8 1 5 100 84.49% 84.49% 84.49% 31.45% 31.45% 

50 8 1 5 200 69.94% 69.94% 69.94% 69.94% 69.94% 

50 8 1 5 400 51.25% 51.25% 51.25% 51.25% 51.25% 

50 8 1 10 100 94.07% 93.23% 90.63% 81.77% 81.77% 

50 8 1 10 200 86.96% 86.96% 86.96% 86.96% 86.96% 

50 8 1 10 400 76.09% 76.09% 76.09% 76.09% 76.09% 

50 8 1 20 100 94.49% 94.49% 94.49% 93.67% 93.26% 

50 8 1 20 200 93.95% 93.95% 93.95% 93.49% 92.71% 

50 8 1 20 400 88.12% 88.12% 88.12% 88.12% 88.12% 
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Research highlights EJOR D11-00226 
• We consider the inventory control problem for an independent supplier in a continuous 

review inventory system 
• The supplier has a single batch-ordering customer 
• The paper develops an optimal time delay policy for the supplier 
• We evaluate the value of information about the customer’s inventory level 

 

 


