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This paper considers a manufacturing system that operates in a high-variety low-volume environment, with significant setup times.
The goal is to determine the optimal Work-In-Process (WIP) inventory for operating the system to meet the required demand
for each product. The decision variables are the number of pallets (containers) for each product and the number of units in
each pallet (lot size). The objective is to minimize the total WIP inventory across all products. To capture congestion in the
system, it is modeled as a closed queueing network with multiple product types. However, this leads to a complex non-linear
integer program with a non-convex objective function. A lower bound on the objective function is developed which is used to
develop upper and lower bounds on the number of pallets for each product. The bounds on the number of pallets allow the
use of exhaustive enumeration within these bounds to obtain the optimal solution to this complex queueing network-based op-
timization problem. A simple heuristic is developed to further reduce the number of candidate configurations evaluated in the
search for the optimal solution. A computational study reveals that the heuristic obtains the optimal solution in many of the test
instances.

[Supplementary materials are available for this article. Go to the publisher’s online edition of IIE Transactions for free supplemental
resources containing details on some procedures and heuristics.]
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1. Introduction

Once seen as just another new management fad, lean manu-25
facturing and just-in-time manufacturing concepts are still
finding increased application and acceptance, as organi-
zations continue their efforts to remain competitive in a
global economy. These concepts are well understood and
readily applied to organizations with a relatively stable de-30
mand and a relatively small product mix. For such orga-
nizations, there is a well-developed methodology, primar-
ily based on the Toyota Production System (Ohno, 1988;
Monden, 1993). A key feature of lean manufacturing sys-
tems is their use of pull signals to trigger production. The35
pull mechanism is typically implemented using kanbans or
a Constant Work-In-Process (CONWIP) protocol. These
implementations place a cap on the Work-In-Process (WIP)
inventory.

∗Corresponding author

Placing a cap on WIP inventory has a number of benefits. 40
It reduces flow times, reduces variation and improves qual-
ity (Suri, 1998). Setting WIP inventory levels for pull sys-
tems is, however, not straightforward. It is well known that
pull systems set WIP inventory levels and observe through-
put (Hopp and Spearman, 2000). Determining WIP in- 45
ventory levels that will satisfy a given set of throughput
requirements presents a challenge, especially for plants
operating in a high-product-variety low-demand-volume
environment. In such an environment, a small change in
WIP inventory level for one product can dramatically af- 50
fect the throughputs of other products that share common
resources, particularly if these resources are potential bot-
tlenecks. A poor choice of WIP levels can lead to demands
not being satisfied. This problem is often exacerbated by
the presence of large setup times, where smaller lot sizes 55
could result in non-bottleneck stations becoming bottle-
necks (see, for instance, Goldratt and Fox (1986)).

This paper is motivated by earlier work carried out by one
of the co-authors at Woodward Aircraft Engine Systems in

0740-817X C© 2010 “IIE”



2 Srinivasan and Viswanathan

Rockford, Illinois. This organization manufactures a wide60
range of products such as fuel nozzles and governors for the
aircraft industry. Consequently, demand for these products
is typically very small. A typical cell in Woodward produces
over 200 products with annual demand ranging from 40
to 200. Setup times at the workstations are typically very65
large, often about 30 to 50 times the processing time per
unit. Woodward required a methodology to determine the
batch size (lot size) for each product type machined in a
cell, and the amount of WIP inventory to carry in order to
meet the demand placed on each product type.70

A spreadsheet-based methodology was developed for
Woodward by Srinivasan et al. (2003), to set the lot size
and WIP inventory levels needed to meet the required de-
mand on the different products. Each cell was modeled as a
Closed Queueing Network (CQN) with multiple customer75
classes, where each customer class represented a different
product type. A heuristic bisection search procedure was
used to determine the number of pallets for each product
type and the number of parts in each pallet (the lot size).
Using this methodology, Woodward was able to reduce the80
WIP inventory in its cells from 3 weeks to less than 1 week of
inventory. While Woodward found the bisection approach
effective in determining the lot sizes and number of pal-
lets, there was a question whether the bisection approach
could be improved and whether the optimal solution to the85
problem could be determined.

In this paper, we consider a problem setting very sim-
ilar to the situation faced by Woodward, and present an
approach to determine the optimal lot sizes (in each pal-
let) and number of pallets (or containers or lots) for each90
product type, so as to meet the customer demands on each
product type. As in Srinivasan et al. (2003), we use a CQN
model with multiple customer classes to model the differ-
ent product types. The decision variables are the number
of pallets for each product and the number of products95
placed in each pallet (lot size). The problem of minimizing
the value of the WIP inventory is formulated by develop-
ing state equations for the CQN using mean value analysis.
However, this leads to a complex non-linear integer pro-
gram with a non-convex objective function.100

We first develop a lower bound for this objective func-
tion. Using this bound and further analysis, we develop
upper and lower bounds on the number of pallets for each
product. The bounds on the number of pallets allow us to
use exhaustive enumeration within these bounds to obtain105
the optimal solution to this complex queueing-network-
based optimization problem.

The optimal algorithm works well for problems with up
to ten or 20 products but the computational effort required
increases exponentially with the number of products in the110
system. Therefore, we also develop a simple heuristic to
further reduce the number of configurations evaluated in
the search for the optimal solution. Our computational
study reveals that the heuristic obtains the optimal solution
in many of the test instances.115

The next section reviews related literature on production
control in manufacturing systems. Section 3 introduces the
notation and the optimization model. In Section 4, we de-
velop lower bounds on the objective function as well as
upper and lower bounds on the optimal number of pallets 120
for each product and upper bounds on the total number
of pallets in the system. We use these bounds to develop
an enumeration-based optimal algorithm. In Section 5, we
develop a heuristic for the problem. Section 6 provides sev-
eral numerical examples and discusses the results of a com- 125
prehensive computational study. Concluding remarks are
provided in Section 7.

2. Literature review

A significant amount of research exists on determining lot
sizes for manufacturing systems. Similarly, many papers 130
exist on determining the number of containers/pallets that
will satisfy some objective function. We review work on lot
size models, and the use of queueing network models to
optimally determine the number of pallets under various
assumptions. 135

Approaches to setting parameters such as lot sizes or
number of pallets typically fall into one of two categories.
One approach uses optimization models with determinis-
tic processing times and either deterministic/constant de-
mand (see, for instance, Maxwell and Muckstadt (1985) 140
and Maes and Van Wassenhove (1986)) or time-varying
demand (see, for instance, Billington et al. (1983), and
Erenguc and Tufekci (1987)). These models typically do
not consider congestion effects (queueing delays). Hill and
Raturi (1992) include a constraint for queue times at work- 145
stations; these times are derived using an M/G/c queueing
system to model each workstation.

The other approach is based on queueing network mod-
els. Queueing network models present an analytical chal-
lenge. Even with some simplifying assumptions, the result- 150
ing expressions for performance measures of interest are
quite complex. However, despite their complexity, queueing
network models are widely used to model and analyze man-
ufacturing systems because they explicitly consider conges-
tion effects. Moreover, as shown by Suri (1985), these mod- 155
els are robust in the sense that they can analyze real-world
manufacturing systems with rather forgiving assumptions,
such as the product form assumption (Baskett et al., 1975).

Queueing models, in turn, can be categorized as descrip-
tive (provide values for performance measures of interest 160
for a given configuration), or prescriptive (provide guide-
lines for running the system most effectively). An alternate
categorization is Open Queueing Network (OQN) versus
CQN models. OQN models are more appropriate for push
systems, whereas CQN models are appropriate for pull sys- 165
tems. See Govil and Fu (1999) for a comprehensive survey
of queueing models in manufacturing.
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There is a very large body of literature on descrip-
tive or prescriptive single-queue models (see, for instance,
Karmarkar (1987) and Benjaafar (1996)), OQN models170
(see, for instance, Karmarkar et al. (1985), and Dessouky
(1998)), and CQN models (see, for instance, Solberg (1980),
Spearman and Zazanis (1992), Dar-El et al. (1999) and Lee
et al. (2006)). For the problem we consider, CQN models are
more appropriate. More specifically, since we are consider-175
ing multiple product types in the manufacturing system,
the appropriate model is a CQN with multiple customer
classes (Baskett et al., 1975). Thus, we restrict discussion to
a prescriptive CQN with multiple customer classes.

In a manufacturing context, CQN models are often re-180
ferred to as being CONWIP models (Spearman et al.,
1990). Golany et al. (1999) study a CONWIP model with
multiple customer classes, where products are grouped into
families and machines are grouped into cells. They provide a
heuristic solution to a mathematical program to determine185
the optimal allocation of a fixed number of containers to
cells. Their numerical experiments suggest that flow times
are lower if containers are allowed to migrate freely among
the cells.

Ryan et al. (2000) study a model with multiple products190
that have distinct routings, with the objective of determin-
ing the minimum total WIP inventory and the WIP mix
to satisfy a given service level across product types. Ryan
and Choobineh (2003) develop a non-linear programming
model to determine WIP inventory level for each product in195
a CQN with multiple product classes. Ryan and Vorasayan
(2005) develop a non-linear program to optimize the num-
ber of containers for each class in a multiple class CQN
model with lost sales.

Suri et al. (2005) present a CQN model with multiple200
classes where the number of customers in each class need
not be an integer. The rationale for allowing a non-integer
number of customers is that with fractional numbers it is
possible to meet a required throughput exactly. They in-
terpret these values to represent the average number of205
customers in each class in the network, and implement a
control rule to achieve these averages. Askin et al. (2006)
consider a multiple class CQN model and obtain a fixed
point solution that determines the (fractional) number of
customers in each class to meet a given throughput for210
each class. These papers use an approximation technique,
the Schweitzer–Bard approximation technique, developed
independently by Schweitzer (1979) and Bard (1979). The
technique is based on the Mean Value Analysis (MVA) al-
gorithm (Reiser and Lavenberg, 1980). The MVA algorithm215
is an exact algorithm that provides performance measures
such as throughput, mean response times and the mean
number of customers at individual stations in the network
for a CQN model. However, the computational complex-
ity increases exponentially with the number of customer220
classes, which makes the MVA algorithm impractical to
use in real-world problems.

The above papers typically focus on determining the
number of pallets required to satisfy a given demand mix.
Further more, they assume that setup times at workstations 225
are insignificant. The problem we address requires explicit
consideration of both the lot size and the number of pallets
for each product type for two reasons: (i) there is a signifi-
cant setup time involved at each workstation; and (ii) there
is a limit on the number of parts a pallet can hold. 230

3. The model

The manufacturing system uses M workstations to process
J different products. The mean setup time for a batch of
product j at workstation m is Smj and the mean processing
time per unit of product j at workstation m is Pmj . The 235
demand per unit time for product j is Dj .

The number of batches or pallets of product j in the
system at any time (as per the CONWIP protocol) is Nj ;
that is, as soon as a pallet of product j is processed and exits
the system, a new pallet of product j is released into the 240
system to maintain a constant WIP inventory. The batch
size or number of units in a pallet of product j is Bj .
All units in a pallet are processed with a single setup at a
workstation and each pallet incurs a separate setup. The
maximum amount of WIP in the system is controlled by 245
the decision variables, Nj and Bj .

The manufacturing system described above is modeled
as a CQN. Based on the MVA algorithm of Reiser and
Lavenberg (1980), the performance of the system, for par-
ticular values of N and B, is described using the following 250
equations. Q1

Q2

Rmj (N, B) = (Smj + Pmj Bj )(1 + Qm(N − e j , B))
m = 1, . . . , M, j = 1, . . . , J, (1)

CTj (N, B) =
M∑

m=1

Rmj (N, B) j = 1, . . . ., J, (2)

Qm(N, B) =
J∑

j=1

qmj (N, B) m = 1, . . . ., M, (3)

qmj (N, B) = Nj Rmj (N, B)/CTj (N, B)
m = 1, . . . ., M, j = 1, . . . ., J. (4)

Note that Rmj (N, B), CTj (N, B), Qm(N, B) and qmj (N, B)
are all functions of N and B. The notation presented so far
will now be summarized.

J : number of products in the 255
manufacturing system;

M : number of machines or work-
stations in the system;

Smj : mean setup time for product
j on workstation m; 260
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Pmj : mean processing time per unit
of product j on workstation
m;

Dj : demand per unit time for
product j ;265

Nj : number of pallets (or batches)
of product j allowed in the
system;

Bj : number of units per pallet (or
batch size) for product j ;270

BLO, BHI : constraint on smallest and
largest batch size: BLO ≤
Bj ≤ BHI;

K j : dollar value per unit of WIP
of product j ;275

N : : j = 1,. . . ,J;
B : j = 1,. . . ,J;
Rmj (N, B) : average time spent by a batch

of product j at workstation
m;280

CT j (N, B) : average cycle time (time in
system) for a batch of prod-
uct j ;

qmj (N,B) : average number of batches of
product j at workstation m;285

Qm(N, B)
∑J

j=1 qmj (N, B) : average number of batches of
all products at workstation m;

NTOT :
∑J

j=1 Nj , the total num-
ber of batches of all prod-
ucts in the system, note290
that NTOT is also equal to∑M

m=1 Qm (N, B).

The reader might note that this system does not satisfy
the Product Form (PF) assumption since the presence of
setup times implies that the service time for a pallet (setup295
time plus processing time for the batch) is unlikely to follow
an exponential distribution. However, we know that the PF
assumption is satisfied for general service times if we assume
the Last-Come First-Served (LCFS)-PR queue disciplineQ3

(Baskett et al., 1975). We also know that the expected time300
spent at a station is unaffected by the queue discipline (at
least with a single class of customers). Thus, if we ignore the
preempt–resume requirement, but simply assume that the
station completes service on an entire batch before picking
up the next batch (in LCFS order), we can model the system305
using the PF assumption reasonably well (also, see, Suri
(1985)).

Let λ j (N, B) be the throughput of product j per unit
time achieved by the system for a given N and B. As the
demand for product j is Dj , we require λ j (N, B) ≥ Dj . By310
Little’s law, λ j (N, B) = Nj Bj/CTj (N, B) ≥ Dj . Therefore,

Nj Bj ≥ Dj CTj (N, B), j = 1, . . . , J. (5)

Practical considerations on pallet size and the number
of units that can be processed as a batch at a workstation

without preempting it impose constraints on the smallest
batch size, BLO, and the largest batch size, BHI, allowed for 315
any product. Therefore, we require:

BLO ≤ Bj ≤ BHI. (6)

To evaluate Rmj (N, B) for a particular value of N = N1,
we must evaluate Qm(N1 − e j , B) which, in turn, requires us
to determine Rmj (N1 − e j , B). This essentially entails eval-
uating Rmj (N, B) for all possible values of vector N in the 320
range 0 ≤ N ≤ N1. We face the curse of dimensionality and
typically approximations such as the Schweitzer–Bard ap-
proximation are used to obtain the values for performance
measures of interest. We note that we use the Schweitzer–
Bard approximation only to determine the batch sizes, B, 325
for a particular value of N, and the corresponding cycle
times. However, the lower bound on the optimal value of
the objective function and the bounds on N used in the
enumerative optimal algorithm are all determined using
the (exact) MVA algorithm rather than any approximation 330
technique.

Our objective is to minimize the dollar value of the WIP
inventory required to meet the demand for each product.
The problem is formulated as follows:

(P-OPT) : min Z(N, B) =
j∑

j=1

K j Nj Bj ,

subject to: Constraints (1), (2), (3), (4), (5) and (6),
Nj , Bj ≥ 1 and integer, j = 1, . . . , j.

where Constraints (1) to (4) are the MVA equations that 335
govern the performance of the system, Equation (5) is the
demand constraint developed based on Little’s law and
Equation (6) is a batch size constraint based on prac-
tical considerations. The remaining constraints are non-
negativity and integer constraints. As it is a discrete man- 340
ufacturing system, there is an integrality constraint on the
batch size for a product. The number of batches or pallets
allowed into the system as per the CONWIP protocol also
has to be an integer.

4. The optimal algorithm 345

As discussed earlier, even for a given N, the solution to
the system of Equations (1) to (4) suffers from the curse of
dimensionality. Furthermore, problem (P-OPT) is a very
complex, non linear, integer programming problem. Even
to obtain a lower bound to this problem requires the solu- 350
tion of a model with a non-convex objective function (with
respect to N), thus potentially resulting in multiple local op-
tima. Therefore, developing an effective algorithm to solve
(P-OPT) to optimality presents a significant challenge.

To deal with this challenge, we note at the outset that, 355
for a given N, we can determine the smallest value of B
that satisfies Constraints (1) to (6). Therefore, the objective
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function Z can be expressed as just a function of N. Thus,
we first obtain an expression for the lower bound on Z(N).
(An upper bound on Z(N) is readily obtained from a360
feasible solution.) The expression for the lower bound on
Z(N), together with an upper and lower bound on Z(N),
are next used to obtain a lower bound, NL, and an upper
bound, NU, on N. The optimal solution is now obtained by
explicitly enumerating Z(N) for all values of NL ≤ N ≤ NU.365

4.1. Lower bound on the objective function

The decision variables in (P-OPT) are N = {Nj , j =
1, . . . , J} and B = {Bj , j = 1, . . . , J}. If the integer con-
straint on Bj is relaxed, we get a relaxed version of the
problem. From Equation (5) and the fact that we are370
minimizing the sum

∑J
j=1 K j Nj Bj , it follows that Nj Bj =

Dj CTj (N, B),∀ j , when Bj is allowed to be a non-integer.
The implication is that a larger CTj (N, B) results in a larger
value of Nj Bj and, therefore, a larger value for the objec-
tive function of the relaxed problem. Similarly, a lower375
CTj (N, B) implies a smaller WIP inventory value. Hence, a
lower bound on CTj (N, B) generates a lower bound on the
objective function value for the relaxed problem as well as
the original problem, (P-OPT).

Let S̄j =∑M
m=1 Smj , P̄j =∑M

m=1 Pmj ,
�

Sj = minm{Smj }380
and

�

P j = minm{Pmj }. Then from Equations (2) and (1):

CTj (N, B)

≥
M∑

m=1

((Smj+Pmj Bj )+(
�

Sj+Pj Bj )Qm(N−e j , B))

= Sj + P j Bj + (
�

Sj + �

P j Bj )(NTOT − 1).

(7)

From Equations (5) and (7):

K j Nj Bj ≥ K j Dj ((S̄j + P̄ j Bj ) + (
�

Sj + �

P j Bj )(NTOT−1)).

(8)

The right-hand side of Equation (8) is a lower bound on
K j Nj Bj , that effectively incorporates Constraints (1) to (5)
of (P-OPT). (Constraints (1), (2) and (5) are explicitly taken385
into account in deriving Equation (8). Constraints (3) and
(4) become irrelevant since Qm(N − e j , B) appears in Equa-
tion (8) only through its summation over all workstations,
m.) Thus, ignoring Constraint (6), a lower bound on the
objective function of the original problem is obtained if we390
can solve the following problem:

(P-LB-1) : min
�

Z(N)
j∑

j=1

K j Nj Bj ,

subject to Constraints (8),
Nj ≥ 1 and integer j = 1, . . . , J.

For a particular value of N, clearly, the objective function of
(P-LB-1) is minimized by having the lowest possible value
of Bj . Therefore, for a given N, Bj (N) is calculated by
solving Equation (8) as an equality and that results in the395

following expression:

Bj (N) =
S̄j + �

Sj Nj+�

Sj
(∑

k�= j Nk−1
)

(Nj/Dj ) − P̄j − Nj
�P j−�P j (

∑
k�= j Nk − 1)

.(9)

Define α j = K j (S̄j − �

Sj ), β j = K j
�

Sj ,

γ j = P̄j − �

P j , δ j = �

P j , ρ j = (1/Dj ) − �

P j , (10)

and let

z j (N) = K j Nj Bj (N). (11)

From Equations (9) and (10), and ignoring Constraint (6),
we get

z j (N) = α j + β j Nj + β j
∑

k�= j Nk

ρ j − (γ j/Nj ) − (δ j/Nj )
∑

k�= j Nk
. (12)

Note that the objective function of problem (P-LB-1) is 400
now the sum

∑J
j=1 z j (N). Ignoring setup times in Equation

(8), and noting that Bj (N) ≥ 0, we derive the following
feasibility condition that should be satisfied by a solution
to the problem (P-LB-1) as well as problem (P-OPT):

Nj ≥ Dj (P̄j + �

P j (NTOT − 1)).

Using Equation (10), and noting that NTOT also includes 405
Nj , the above feasibility condition is written as

Nj ≥
⎛
⎝γ j + δ j

∑
k�= j

Nk

⎞
⎠/ρ j , j = 1, . . . .., J. (13)

Property 1. For a fixed Nk, k �= j , z j (N) in Equation (12) is
convex with respect to Nj for all values of N j that satisfy the
feasibility condition Equation (13). (See online supplement:
Appendix A for a proof.) 410

While z j (N) is convex with respect to Nj for fixed
Nk, k �= j , it is not jointly convex with respect to N =
{N1, N2, ....., NJ}. Even if feasibility condition (13) is satis-
fied for a particular N = Na, it is not necessary that it is satis-
fied for all N > Na. To see this, let Nb > Na with N b

j = N a
j 415

and N b
k > N a

k , for k �= j . For this case it is possible that
(γ j + δ j

∑
k�= j N a

k )/ρ j < N a
j (which satisfies the feasibility

condition) but Nb
j < (γ j + δ j

∑
k�= j N b

k )/ρ j (which violates
the feasibility condition). As we search across N, if feasi-
bility is lost, attempts to recover feasibility by increasing 420
Nj can result in high z j (N) values (the denominator in
Equation (12) for z j (N) becomes very small). Therefore,
there may be multiple local minima for the lower bounding
problem (P-LB-1) as well as the original problem (P-OPT).
Hence, to determine the optimal solution to problem (P- 425
OPT), we have to evaluate Z(N) for all possible values of
N. To that end, we develop upper and lower bounds on N
to restrict the enumeration.

While the lower bound function
�

Z(N) is not jointly con-
vex with respect to N, we know that z j (Nj ) is convex. Also, 430
as we will see later, a lower bound on zk(Nj ), k �= j , can
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be expressed as a linear function of Nj . Therefore, one can
derive a lower bound expression that is a convex function of
just Nj . Using this lower bound expression, one can derive
bounds on Nj , j = 1, . . . , J, provided we have an actual435
numerical value of the lower bound, ZL, and upper bound,
ZU, on Z(N). An upper bound, ZU, is obtained using a
heuristic solution to the problem. However, since z j (N) is
not jointly convex with respect to N, an actual value for the
lower bound, ZL, can be obtained only by relaxing z j (N)440
further. Clearly, the right hand side of Equation (12) has
its lowest value, when Nk = 1, for all k �= j . Setting Nk = 1,
for all k �= j in Equation (9):

Bj (Nj ) =
S̄j + �

Sj Nj + �

Sj (J − 2)

(Nj/Dj ) − P̄ j − Nj
�

P j − �

P j (J − 2)
, (14)

and so

z j (N) ≥ z1
j (Nj ) = α j + β j Nj + β j (J − 1)

ρ j − (γ j/Nj ) − (δ j (J − 1)/Nj )

= ω j + β j Nj

ρ j − (φ j/Nj )
, (15)

where ω j = α j + β j (J − 1), and φ j = γ j + δ j (J −445
1) It can be shown that for both Equations (9) and (14),
∂ Bj/∂ Nj ≤ 0. Therefore, as Nj increases, Bj given by Equa-
tion (9) or Equation (14), decreases and vice versa. Let N j

HI

and N j
LO be the value of Nj for which Bj (Nj ) given by Equa-

tion (14) is BHI and BLO respectively1, i.e., Bj (N j
HI) = BHI,450

and Bj (N j
LO) = BLO. Note that N j

HI ≤ N j
LO. Constraint (6)

can then be written in terms of Nj as shown in Equa-
tion (17). Therefore, another (possibly weaker, but solvable)
lower bound for problem (P-OPT) is obtained by solving
the following problem for each product j :455

(P-LB-2) : min zl
j (Nj ) = ω j + β j Nj

ρ j − (φ j/Nj )
, (16)

subject to : N j
HI ≤ Nj ≤ N j

LO
Nj ≥ 1 and integer.

(17)

In problem (P-LB-1), each z j is expressed as a function of
N, but Constraint (6) is ignored. While we do not solve (P-
LB-1), the expression for z j (N) is used in the determination
of the bounds on the optimal value of N. In problem (P-
LB-2), the objective function is relaxed, as it is now only460
a function of Nj , but Constraint (6) is incorporated in
the form of Equation (17). Since z j (Nj ) is convex, the Nj

that minimizes z1
j (Nj ) is obtained by solving the first-order

condition for Equation (16). For high-variety low-volume
manufacturing systems the setup time and processing time465
matrices can be sparse and a product may not be processed

1For ease of exposition, we assume that N j
HI and N j

LO are integers.
If they are not integers, the analysis can be suitably modified by
fixing Bj to its binding value (i.e., BLO or BHI as the case may be)
and solving for Nj .

at all workstations. Thus, it is possible that
�

Sj and
�

P j are

equal to zero, i.e., β j = 0 and δ j = 0. If β j = 0, then z1
j (Nj )

is a linear function with a negative slope and the optimal
solution to (P-LB-2) has Ñj = N j

LO. Hence, the solution to 470
(P-LB-2) before considering Constraint (17) is

N̄j =

⎧⎪⎪⎨
⎪⎪⎩

N j
LO ifβ j = 0,(

1
2ρ jβ j

) (
2φ jβ j +

√
(2φ jβ j )2 + 4φ jω jρ jβ j

)
otherwise.

(18)
As Nj is required to be integer, the solution to (P-LB-2),
ignoring Constraint (17), is

N̂ j = arg min(z j (�N̄j	), z j (
N̄j�)). (19)

Taking into account constraint (17), the solution to (P-LB-
2) is 475

Ñj =

⎧⎪⎨
⎪⎩

N j
LO if N̂j > N j

LO,

N j
HI if N̂j < N j

HI,

N̂j if N j
HI ≤ N̂j ≤ N j

LO.

(20)

The corresponding lower bound on the objective function
value, denoted by ZL is thus

ZL =
J∑

j=1

z1
j (Ñ j ) =

J∑
j=1

ω j + β j Ñ j

ρ j − (φ j/Nj )
. (21)

4.2. Lower and upper bound on the optimal number of
pallets, N

As discussed earlier, since the objective function Z(N) is not 480
jointly convex with respect to all the components {Nj , j =
1,. . . , J} of N, the optimal solution to (P-OPT) has to be
obtained by exhaustive enumeration. Therefore, to reduce
the search space we develop an upper bound, NU and a
lower bound, NL, on the optimal value of N. Note that 485
the complexity of the search is exponential in the number
of products, J. For example, if NL = {1, 1, 1, . . . , 1} and
NU = {u, u, u, . . . , u}, the total number of N for which
Z(N) has to be evaluated is u J . Hence, it is important to
develop as tight a bound (i.e., as low a NU and as high a 490
NL) as possible.

We discuss several methods to develop lower and up-
per bounds, NL

j , and NU
j , j = 1, . . . , J, as well as

bounds on NTOT =∑J
j=1 Nj , in the optimal solution.

All these bounds rely on an upper bound, ZU, on Z(N). 495
(The next section describes a simple heuristic to obtain
an initial value for ZU). For a given ZU we first de-
velop the upper bound on the optimal Nj , j = 1, . . . ,
J. We know ZL, the lower bound on Z(N) from Equa-
tion (21). Since ZL =∑J

j=1 z1
j (Ñj ), we can use the expres- 500

sion, ZL − z1
j (Ñj ) + z1

j (Nj ) ≤ ZU, to find upper and lower
bounds on Nj . However, this expression only accounts for
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the increase in z1
j (Nj ) as Nj increases. Actually, as Nj in-

creases, zk(N), k �= j , also increases since zk(N) depends on
Nj as per Equation (12). We use this information to obtain505
the bounds on Nj . For a fixed Nk, k �= j :

zk(Nj ) = αk + βkNk + βk
∑

i �=k Ni

ρk − (γk/Nk) − (δk/Nk)
∑

i �=k Ni

≥ αk + βkNk + βk(J − 2) + βkNj

ρk − (γk/Nk) − (δk/Nk)(J − 2) − (δkNj/Nk)

≥ αk + βkNk + βk(J − 1) − βk + βkNj

ρk − (1/Nk)(φk − δk + δkNj )

≥ z1
k(Ñk) + βkNj − βk

ρk − (φk/Nk)
. (22)

Therefore, an upper bound on Nj can be obtained by solv-
ing the following expression:

ZU ≥ z1
j (Nj ) +

∑
k�= j

zk(Nj ). (23)

Substituting Equations (16) and (22) into Equation (23):

ZU ≥ ω j + β j Nj

ρ j − (φ j/Nj )
+
∑
k�= j

(
z1

k(Ñk) + βkNj − βk

ρk − (φk/Nk)

)
.

Rewriting the above, we get510

ψU
j ≥ ω j + β j Nj

ρ j − (φ j/Nj )
+
∑
k�= j

βkNj − βk

ρk − (φk/NU
k

) , (24)

where ψ U
j = ZU − (ZL(Nj ) − z1

j (Ñj )). An upper bound,
N U

j , and lower bound, NL
j , on the optimal Nj is now found

by solving Equation (24) as an equality, resulting in the
following quadratic equation for Nj :

aN2
j + bNj + c = 0,

where515

a = β j + ρ j

∑
k�= j

βk

ρk − (φk/NU
k

) ,
b = ω j − ρ j

∑
k�= j

βk

ρk − (φk/NU
k

)
− ψU

j ρ j − φ j

∑
k�= j

βk

ρk − (φk/NU
k

)
and

c = φ j

⎛
⎝ψU

j +
∑
k�= j

βk

ρk − (φk/NU
k

)
⎞
⎠ .

Solving the above quadratic equation, we get

NU,1
j =

⌈
1

2a
(−b +

√
b2 − 4ac)

⌉

NL,1
j = max

{⌊
1

2a

(
−b −

√
b2 − 4ac

)⌋
, 1
}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (25)

Note that the bounds given in Equation (25) depend on NU
k ,

k �= j , the upper bounds on the optimal number of pallets
for the other products. As NU

k increases, the linear com- 520
ponent of the quadratic expression (24) (which is convex)
increases, and hence the bounds given by Equation (25) will
improve. Therefore, NU,1

j and NL,1
j , j = 1,. . . , J, is deter-

mined iteratively. A second upper bound NU,2
j is obtained

by noting that z1
j (Nj ) ≥ K j Nj BLO. Therefore, substituting 525

the first term on the right-hand side of Equation (24) with
K j Nj BLO, we get

NU,2
j =

ψU
j +

(∑
k�= j βk/

(
ρk − (φk/NU

k )
))

K j BLO +
(∑

k�= j βk/
(
ρk − φk/NU

k

)) . (26)

Similar to NU,1
j , the upper bound NU,2

j depends on the other
upper bounds, NU

k , k �= j , and is thus improved iteratively.
After deriving the two upper bounds on Nj , we choose the 530
best one:

NU
j = min

{
NU,1

j , NU,2
j

}
, j = 1, . . . , J. (27)

A second lower bound on Nj is obtained using Equation
(8) and some algebraic manipulations, to get

NL,2
j = Dj

((
P̄ j + �

P j

(∑
k

NL
k − 1

))

+

(
S̄j + �

Sj

(∑
k NL

k − 1
))

BHI

⎞
⎟⎟⎠ . (28)

Similar to the expressions for the upper bound, NL,2
j de-

pends on prior lower bounds, NL
k , for all products k, and so 535

improved lower bounds are obtained iteratively. The best
lower bound is thus

NL
j = max

{
NL,1

j , NL,2
j

}
, j = 1, . . . , J. (29)

Apart from the bounds on the optimal number of pallets
for each product, we also obtain upper bounds on NTOT,
the total number of pallets to further reduce the number of 540
evaluations of the objective function. For example, if a par-
ticular value of N is within the bounds, we may be required
to evaluate the corresponding value of the WIP inventory,
Z(N). However, it is possible that N is such that

∑
j Nj

exceeds this upper bound on the total number of pallets. In 545
that case we do not evaluate Z(N) for this particular value
of N. Thus, an upper bound on NTOT helps reduce the
number of evaluations of Z(N) in the optimal algorithm.

Since Bj ≥ BLO, we have ZU ≥ Z(N) ≥∑ j K j Nj BLO ≥∑
j

�

K Nj BLO =
�

K BLO NTOT , where
�

K = min j {K j }. This 550
gives an upper bound on NTOT as

NTOTU,1 = ZU/
�

K BLO.
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Another upper bound on NTOT is obtained as follows.
Equation From (12):

z j (N) = α j + β j NTOT
ρ j − (γ j/Nj ) − (δ j/Nj )

∑
k�= j Nk

≥ α j + β j NTOT
ρ j − (γ j/Nj ) − (δ j (J − 1)/Nj )

.

Therefore

ZU ≥
J∑

j=1

z j (N) ≥
J∑

j=1

α j + β j NTOT
ρ j − (φ j/Nj )

≥
J∑

j=1

α j + β j NTOT
ρ j − (φ j/NU

j )
. (30)

From Equation (30), we get555

NTOTU,2 = ZU −∑J
j=1

(
α j/
(
ρ j − (φ j/NU

j )
))

∑J
j=1

(
β j/
(
ρ j − (φ j/NU

j )
)) . (31)

The upper bound on NTOT is thus

NTOTU = min{NTOTU,1, NTOTU,2}. (32)

In addition to the above bounds, the number of objective
function evaluations is further restricted through dynamic
bounds. One such dynamic bound is the upper bound on
NTOT. For a given N, if

∑
j Nj > NTOTU, there is no need560

to evaluate Z(N). There are two other dynamic bounds used
in the enumeration algorithm. Similar to the lower bound
in Equation (28), from Equation (8):

Nj ≥ Dj

(
(P̄j + �

P j (NTOT(N) − 1))

+
(

S̄j + �

Sj (NTOT(N) − 1)
)

BHI

)
. (33)

Therefore, for a particular decision vector, N, there is no
need to evaluate Z(N) if

Nj < Dj

(
(P̄j + �

P j (NTOT(N) − 1))

+
(S̄j + �

Sj (NTOT(N) − 1))

BHI

)
.

Finally, for a given N, Z(N) ≥∑ j K j Nj BLO. Therefore,
for a given N, we do not evaluate Z(N) if we find that565 ∑

j K j Nj BLO > ZU.

4.3. Optimal algorithm to determine the number of pallets
and batch size for each product

Once the upper and lower bounds on N and the dynamic
bounds on N and NTOT are determined, the optimal solu-570
tion to (P-OPT) is determined by exhaustive enumeration
of Z(N) for all possible values of N within the bounds. For
a given vector, N, the corresponding batch size for each

product B =Bj , j = 1,. . . , J and Z(N) are calculated by
solving the system of Equations (1) to (6). The algorithm 575
searches among all possible values of N to determine Z*,
the optimal value of Z(N). Apart from restricting the enu-
meration between the lower and upper bounds of N, the
algorithm also employs the dynamic bounds on NTOT and
N to restrict the total number of enumerations. When an 580
improved solution, Z, is found during the enumeration, it
becomes the new upper bound, ZU on the optimal Z*, and
the upper bounds on N and NTOT are then recalculated.
Our computational experience reveals that these dynamic
bounds and recalculation of the upper bounds on N and 585
NTOT significantly reduce the total number of cost evalua-
tions required compared to just using the initial upper and
lower bounds on N. The steps of the enumeration based
optimal algorithm are formally stated in the Appendix.

4.4. Determining the batch sizes and value of the WIP 590
inventory for a given N

The optimal enumeration algorithm, as well as the heuristic
presented in the next section, evaluates the batch size B(N)
and Z(N) for every given N. For a given N, the behavior of
the manufacturing system is governed by the MVA Equa-
tions (1), (2), (3) and (4). The batch size B(N) = {Bj} and
the value of WIP inventory, Z(N), are determined precisely
from Equations (1) to (6). However, as discussed earlier,
the exact solution for the MVA equations suffers from the
curse of dimensionality and can be very time-consuming
even for a single value of N. As our optimal algorithm (as
well as the heuristic) evaluates Z(N) for a large number of
N, we resort to the Schweitzer–Bard approximation for the
MVA equations. As per this approximation:

qmk(N − e j , B) =
⎧⎨
⎩

qmk(N, B) k �= j,

qmk(N, B)
(Nj − 1)

Nj
k = j.

(34)

Using the Schweitzer–Bard approximation, Equations (1)
to (6) are solved iteratively to determine the optimal B for
a fixed N. The detailed procedure (PROC-B) to determine
B(N) and Z(N) for a given N is provided in the online 595
supplement: Appendix B.

5. Heuristic algorithm

The optimal algorithm developed in Section 4 is based on
exhaustive enumeration and so, despite the bounds on N
and NTOT, the computational complexity increases ex- 600
ponentially with the number of products in the system.
Therefore, a heuristic approach to solve problems with a
large number of products is highly desirable. This section
develops such an approach.

The initial value of N used in the heuristic is Ñ, the value 605
corresponding to the lower bound obtained using Equation
(20). The initial value of N = Ñ need not generate a feasible
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solution. Feasibility could be violated, if the value of the
batch size Bj obtained with the initial value of Nj is either
negative or greater than BHI for a particular product j , in610
which case Nj is increased until a feasible value of Bj is ob-
tained. Thus, starting with Ñ, the Nj ’ values are increased if
necessary (for products with infeasible values of the batc h
size, Bj ), until a feasible initial value of N is obtained. For a
particular value of N, the corresponding batch size vector,615
B(N), and the objective function value Z(N), is obtained
using procedure (PROC-B) explained in Section 4.4.

The search proceeds by incrementing or decreasing the
components of N, Nj , one at a time. That is, we evaluate
a new N = N = N ± e j for each j . If the new value of N620
decreases Z(N), the solution is updated. If no improvement
in the solution is obtained after a round that evaluates all
the J directions of change, we stop the search and use the
currently available best solution.

It is possible to increase (or decrease) the value of more625
than one component of N at a time. This approach would
significantly increase the complexity of the heuristic, as the
number of search directions increases from J to almost
J2/2. However, searching only along the unit vectors e j
in step sizes of ±1 might result in not getting good solu-630
tions, as Z(N) may have many local optima. Therefore, we
search only along all unit vector directions e j for incremen-
tal changes in N, but consider step sizes of ±1, ± 2and ± 3.
The formal statement of the heuristic is given in online sup-
plement: Appendix C.635

6. Numerical example and computational results

To illustrate the performance of the optimal algorithm and
the heuristic we first discuss two numerical examples. The
data for the first example is given in Table 1. For this exam-
ple, ZL = $4241, and the corresponding Ñ = {1, 2, 2, 1}.640
The heuristic as well as the optimal solution gives the value
of the WIP inventory as Z* = ZH = $5300, and the corre-
sponding N* = {1, 3, 2, 1}. The batch sizes corresponding
to this solution B* = {3, 9, 10, 3}. The heuristic solution
required 21 cost evaluations. Using only the initial lower645
and upper bound on N, 805 evaluations would have been
necessary. However, the dynamic bounds and dynamic re-
calculation of the upper bounds on N and NTOT reduced
the actual number of enumerations required for the optimal

Table 1. Data for numerical example 1 J = 4, M = 2, D1 = D4 =
0.5, D2 = D3 = 5, K1 = K2 = K3 = K4 = 100, BLO = 1, BHI =
10

Setup times Processing time

m j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

1 0.5 0.5 0.5 0.5 0.001 0.004 0.005 0.001
2 0.6 0.7 0.3 0.3 0.003 0.001 0.004 0.004
3 0.3 0.3 0.3 0.8 0.003 0.005 0.005 0.003

Table 2. Data for numerical example 2 J = 2, M = 15, D1 =
2.20244, D2 = 2.667455, K1 = K2 = $1.0, BLO = 1, BHI = ∞

Setup times Processing times

j = 1 j = 2 j = 1 j = 2

1 0 0.5 0 0.085
2 0 0.5 0 0.1
3 0.5 0 0.1 0
4 0 0.1 0 0.061
5 0 0.4 0 0.15
6 0 0 0.02 0.025
7 0.5 0 0.0388 89 0
8 0.25 0 0.143 0
9 0 0 0.005 0.005

10 0 0 0.01 0.01
11 0 0 0 0.196
12 0 0 0.03 0
13 0 2.5 0 0.001
14 2 0 0.001 0
15 0 0 0.005 0.005

solution to just 186. In this example, the heuristic obtained 650
the optimal solution.

Our second example is a partial extract of an indus-
trial data set from Woodward Aircraft Engine Systems
(Srinivasan et al., 2003). This example contains two prod-
ucts and 15 workstations. The data for the example is given 655
in Table 2. In addition to the processing time data given
in Table 2, for this example, there is also a processing time
or holding time outside the system, L0 j , that is indepen-
dent of the batch size for each pallet. This processing time
could be due to transportation and additional processing 660
at a subcontractor. For this example, L01 = L02 = 51.2. We
note that a processing time outside the system, L0 j , can be
readily incorporated into our model. Essentially, the term
L0 j is added to the right-hand side of Equation (2), and
procedure (PROC-B) can be modified appropriately based 665
on this approach. For this example, the value of the lower
bound, ZL = $20, and the corresponding Ñ = {8, 12}. The
value of the WIP inventory in the optimal solution Z∗ =
$327, and ZH = $332. N∗ = {15, 16} and B∗ = {9, 12}.
N H = {10, 16} and BH = {14, 12}. The heuristic solu- 670
tion required 35 cost evaluations. The total number of cost
evaluations required for the optimal solution was 52, 987.
The number of evaluations based on the initial bounds on
N would have been 100 385. In this example, the objective
function has more than one local optimum and our heuris- 675
tic gives a solution inferior to the optimal solution.

We now provide the results of a computational study on
randomly generated problems. The number of products in
these problems varied from four to 20 (the specific values
of J were 4, 5, 8, 10 and 20) and the number of work- 680
stations varied from four to 12 (M = 4, 8, 12). For all
problems, the batch size constraints were set as BLO = 1,
and BHI = 10. The demand, Dj , dollar value per unit, K j ,
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Table 3. Computational results—random data set 1

Number of
cost evaluations

Number of
Products

Number of
workstations

Lower
bound ($)

Optimal WIP
value ($)

Heuristic
solution ($)

J M ZL Z∗ ZH
Optimal

algorithm Heuristic

4 4 2 611 4 071 4 071 25 20
4 8 4 252 6 893 6 893 56 27
4 12 5 953 9 994 10 064 137 30
5 4 4 838 7 729 7 729 75 26
5 8 7 517 12 834 12 834 628 29
5 12 10 362 16 449 16 449 240 29
8 4 6 476 10 198 10 198 157 38
8 8 8 844 14 104 14 104 2943 39
8 12 11 416 18 519 18 554 3 436 67

10 4 7 935 12 879 12 879 8 826 48
10 8 10 382 15 864 15 864 3 025 47
10 12 13 026 21 732 21 732 41 072 52
20 4 14 742 22 388 22 388 1 035 308 89
20 8 17 152 26 251 26 251 3 392 428 90
20 12 19 853 30 570 30 570 12 730 660 91

setup times Smj and processing times Pmj were generated
randomly from uniform distributions. The values for K j685
were randomly generated from U[$90, $110] and the val-
ues for Smj and Pmj were randomly generated from U[0.45,
0.55], and U[0.002, 0.003] respectively. The demand, Dj ,
was randomly generated from U[8, 10] with a probability
0.1 and from U[0.8, 1.0] with probability 0.9. If the gen-690
erated demands violated the machine production capacity
constraint (evaluated assuming that all the processing times
were equal to 0.003), then they were proportionately scaled
down. For each combination of number of products, J, and
number of workstations M, a total of three problems were695
randomly generated. The computational results reported in
Table 3 for each (J, M) combination is the average value for
the three problems. For each (J, M) combination, Table 3
reports the value of the lower bound, ZL, the optimal WIP
inventory Z*, the WIP inventory value corresponding to700
the heuristic solution, ZH, and the number of cost evalua-
tions required for the optimal algorithm and the heuristic.

The results provided in Table 3 show that the number
of cost evaluations required for the heuristic increases only
linearly with the number of products, whereas for the op-705
timal algorithm the number of cost evaluations increases
very rapidly and exponentially as the problem size increases,
and for problem sizes larger than 20, it is not possible to
solve the problem optimally in reasonable computational
time. For all except two (highlighted) cases, the local neigh-710
borhood search heuristic generated the optimal solution.
However, this should not be construed as evidence that
the heuristic is efficient. One reason why the heuristic per-
formed well on this data set is that the variances in the
demand, setup times and processing times across the prod-715
ucts are relatively small, and the setup time and processing

time matrices are dense (there is no j , m for which either
Smj or Pmj is zero). In reality, for high-variety low-volume
manufacturing systems, the setup time and processing time
matrices will be sparse and in this case cost of the heuristic 720
solution can be much larger than the optimal solution. We
give a third numerical example to illustrate this.

The data for the third numerical example is given in Ta-
ble 4. For this example, the value of the lower bound, ZL =
$17, 200, and the corresponding Ñ = {1, 1, 1}. Z* = $37, 725
090, and ZH = $104, 001. N* = {1, 1, 90} and B* = {3, 7,
1}. N H = {2, 1, 1} and B H = {5, 4, 1}. The heuristic solu-
tion required 28 cost enumerations and optimal algorithm
required 24, 598 enumerations. In the case the heuristic
solution is about 180% more than the optimal solution! 730

We performed another computational study with data
that had more variance and sparse setup time and pro-
cessing time matrices compared to the first data set. For
this data set, the data for the first J-2 products had less
variance, and the setup time and processing time for these 735
products were non-zero with low variance. The setup time
and processing time data for the remaining two products

Table 4. Data for numerical example 3 J = 3, M =
3, D1 = 1, D2 = D3 = 0.05, K1 = $10 000, K2 = $1 000, K3 =
$1, BLO = 1, BHI = ∞

Setup times Processing times

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

1 0.8 20 0 0.5 0.0002 0
2 0 1 1 0 0 0
3 0 1 1 0 0 0.0001
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Table 5. Data specification for random data set 2

j, m Dj K j Smj Pmj

j <= J − 2 m < M From U[0.8, 1.2] FromU [$8000, $120 000] FromU [0.7, 0.9] From U [0.4, 0.6]
m = M 0 0

j = J − 1 M < M− 1 From U [0.04, 0.05] From U [$8, $12] 0 0
M = M− 1 FromU [100, 200] FromU [0.0001, 0.0005]

m = M From U [1, 2] 0
j = J m < M From U [0.04, 0.05] From U [$0.8, $1.2] 0 0
j = J m = M From U [1, 2] 0

were very sparse. The values of Dj , K j , Smj and Pmj were
generated as per the details given in the Table 5.

The computational study for this data set was carried for740
J = 3, 4, 6, 8 and 10 and M = 3, 4, 6 and 10 respectively.
The batch size limits for all problems were BLO = 5, and
BHI = 1000. As the total number of enumerations required
by the optimal algorithm for the bigger problems in this
data set was very large, we did not perform complete enu-745
meration in the optimal algorithm. Instead, we stopped the
algorithm when either the cost of the solution was less than
95% of the cost of the heuristic or when the number of cost
evaluations reached 100 000. Clearly, solutions using the al-
gorithm need not be optimal for these cases. Computational750
results for this data set (provided in Table 6) show that for
17 out of 20 cases, the best solution is much better than the
heuristic solution. In the remaining three cases, the optimal
algorithm was not able to find a better solution than the

Table 6. Computational results—random data set 2

Number of
cost evaluations

Number of
products

Number of
workstations

Best WIP
value ($)

Heuristic
solution ($)

J M ZBest ZH
Optimal

algorithm Heuristic

3 3 146 954 189 626 831 32
3 4 240 217 265 212 1 236 36
3 6 377 823 401 673 4 033 38
3 10 856 729 880 579 20 807 45
4 3 293 885 312 448 826 22
4 4 421 207 440 488 47 596 67
4 6 678 417 832 505 851 26
4 10 1 954 604 3 309 442 598 52
6 3 294 645 332 953 125 26
6 4 564 798 564 798 100 000 97
6 6 804 251 853 391 453 32
6 10 1 439 671 1 566 494 10 697 72
8 3 353 484 361 534 100 000 34
8 4 529 050 570 245 1 312 114
8 6 710 015 710 015 100 000 44
8 10 1 346 089 1 728 983 179 82
10 3 454 977 454 977 100 000 42
10 4 489 939 498 507 100 000 42
10 6 696 246 756 098 141 42

heuristic even after 100 000 cost evaluations. Even though 755
the data set we generated might be an extreme scenario,
these results suggest that for high-variety low-volume man-
ufacturing systems with sparse setup time and processing
time matrices, as often observed in practice, the local neigh-
borhood search heuristic need not always be very efficient. 760
However, the optimal algorithm may take a prohibitively
long computational time for problem sizes bigger than ten
or 20 products. The bounds we develop on N and NTOT can
be used to create an efficient heuristic based on evolutionary
optimization. 765

7. Summary and conclusions

This paper presents an optimal algorithm to determine
the number of pallets and pallet sizes (batch sizes) in a
CONWIP-controlled high-variety low-volume manufac-
turing system. Unlike earlier papers using CQN models, 770
this paper considers non-zero setup times, and treats both
the number of pallets and pallet sizes as decision variables.
The objective is to minimize the WIP inventory value (in-
directly, minimize cycle times) while meeting the annual
demand for the products. The objective function is not 775
convex and may have several local minima. Using bounds
on the WIP inventory value and on the number of pallets
for each product, an enumeration-based optimal algorithm
is developed using MVA.

A heuristic based on neighborhood search is provided 780
for further reducing the number of candidate configu-
rations evaluated in the search for an optimal solution.
The heuristic appears to be efficient for problems with
dense setup and processing time matrices and low vari-
ance in data across products, but for some high-variety 785
low-volume manufacturing systems, the heuristic solu-
tion can be much larger than the optimal. However, the
bounds on the optimal number of pallets for each prod-
uct may be used to design heuristics based on evolutionary
optimization. 790

The solution methodology presented in this paper will
help manufacturing facilities such as Woodward set their
WIP inventory levels more accurately. The methodology
can readily be extended to handle manufacturing systems
with multiple machines at each workstation. 795
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There are at least two ways in which the methodology
can be extended further, presenting opportunities for fu-
ture research. One way is to model machine breakdowns.
In practice, breakdowns are handled in two ways: continue
running the other machines (while the broken machine is800
being repaired) until the downstream machines begin to
starve for parts, or put into operation another standby
machine. Woodward, for instance, was adopting both ap-
proaches as it saw fit. Modeling breakdowns presents an
interesting and a challenging opportunity since it is not805
clear whether the product form assumption will give ro-
bust results any more.

Another way the research could be extended is to model
finite buffers in front of each machine. Finite buffer models
have been extensively studied for CQNs with a single prod-810
uct; however, these models do not readily extend to handle
problems involving multiple products. Since the product
form assumption is clearly violated with finite buffer mod-
els, some simplifying assumptions need to be made and
carefully validated, either through an actual implementa-815
tion or using simulation.
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Appendix 1

Algorithm for determining the optimal solution to (P-OPT)

A: Determine lower bound

Step 1. For ∀ j = 1, ....., J, determine the Ñ j , the opti- 910
mal solution to the lower bounding problem using
Equations (18), (19) and (20).
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Step 2. Determine the lower bound to the optimal solu-
tion, ZL using Equation (21).

B: Determine upper bound915

Step 3. Determine an upper bound to the optimal solution,
ZU = Z(Ñ), where Ñ = {Ñj , j = 1, . . . , J}. Alter-
natively, determine ZU as the cost of the solution
obtained using the heuristic described in Section 5.

C: Determine bounds on N and NTOT920

Step 4. Determine NL and N U using Equations (29) and
(27).

Step 5. Determine NTOT U using Equation (32).

D: Enumeration of valid solutions

Step 6. Set Z* = Z U, and N* as equal to the corresponding925
value of N.

Step 7. For all values of N, with NL ≤ N ≤ NU , do

{ If ( (NTOT(N) < NTOTU) & (Nj satisfies
Equation (33) for all j ) & (

∑
j K j Nj BLO930

≤ ZU)), then

{ evaluate B(N) and Z(N) using procedure
(PROC-B).

935
If N does not give a feasible solution, set Z(N)

= INFINITY.

if (Z(N) < Z∗), then set Z∗ = Z(N),
and N∗ = N), re-evaluate bounds on N

and NTOT using Steps 4 and 5. 940
}

}
Step 8. STOP. The optimal number of pallets is N*, and

the corresponding WIP inventory = Z∗.
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