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Abstract 

Flow resistance in open channels is usually estimated by applying the approach that is 

developed originally for pipe flows. Such estimates may be useful for engineering 

applications, but they always differ to some extent from measurements.  This paper first 

summarizes empirical approaches that have been proposed in the literature to reconcile the 

resistance difference, which include various modifications of the pipe friction for 

applications to rectangular ducts and open channel flows.  An improved friction equation is 

then derived for evaluating flow resistance of smooth rectangular open channels.  
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Comparisons are made with experimental data reported by previous researchers and those 

collected in the present study. It is shown that the new proposed equation is applicable for 

both narrow and wide channels and more accurate than those available in the literature.  

 

Keywords: open channel, resistance, pipe friction 
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Introduction 

Many studies of flow resistance in open channels have been conducted in the past decades, 

of which a complete review would be in itself a challenging task (Yen 2002).  However, no 

general method is available for dealing with data obtained even with smooth rectangular 

channels of different width-to-depth or aspect ratios. This is largely due to the existence of 

the non-uniform distribution of boundary shear stress and free surface, which causes open 

channel flows more complicated than circular pipe flows. On the other hand, for practical 

applications, open channel friction could be directly estimated by applying the approach 

developed originally for pipe flows.  It should be noted that the channel friction so obtained 

generally deviates from measurements; therefore various modified equations based on the 

standard flow friction of pipes have been proposed for open channel flows.  

The present study first reviews various empirical approaches that have been proposed in 

the literature to reconcile the flow resistance difference between circular pipes and 

rectangular channels, which consist of various modifications of the pipe friction equation.  

An improved friction equation is then derived for evaluating rectangular open channel 

friction for the case of smooth boundary.  Comparisons are made with experimental data 

reported by previous researchers and also those collected in the present study.  Finally, it is 

shown that the present equation is applicable for a wide range of aspect ratios and more 

accurate than those available in the literature.  
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Modifications of Prandtl’s friction law for open channel flows 

Since Nikuradse performed the celebrated experiments in the 1930s, the dependence of the 

pipe friction factor on the Reynolds number has been well understood for both smooth and 

rough pipes (Nikuradse 1933, Schlichting 1979).  The dependence can be analytically 

formulated using the logarithmic law to approximate the velocity profile over the entire 

cross section of the flow.  For example, the resulting formula for smooth pipe flows, which is 

usually referred to as Prandtl’s friction law, is expressed as 

 10 20

1
log(Re )c f c

f
 (1) 

where f is the friction factor, Re = VD/, V is the average velocity, D is the pipe diameter,  is 

the kinematic viscosity of fluid, and c10 and c20 are the constants. With Nikuradse’s 

experimental data, Prandtl obtained c10 = 2 and c20 = 0.8 (Schlichting 1979).   

Eq. (1) has also been applied to other wall-bounded flows such as non-circular pipes and 

open channel flows.  It is noted that such extensions are useful for practical applications, 

although the friction factors so estimated always differ to some extent from measurements.  

For example, Myers (1982) reported that on average, the channel friction factor was greater 

than the equivalent pipe value by 8.3%. After reviewing historical data of turbulent friction 

in smooth rectangular ducts, Jones (1976) concluded that the non-circular duct friction 

scatters around the Prandtl’s friction law by approximately -5 to 15%. Knight’s (1984) 

measurements show that smooth channel friction factors are 5 to 10% higher than those 

predicted by the Prandtl equation. Moreover, the discrepancies reported cannot be simply 

interpreted in terms of surface roughness or inadequate development of the flow field 

(Jones 1976, Knight 1984). 
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To classify various approaches proposed in the previous studies, the Prandtl’s friction 

law is rewritten in the form  

1 2

1
log(Re )E E

E

c f c
f
   (2) 

where fE = mffch, ReE = mReRech, fE is the equivalent friction factor, ReE is the equivalent 

Reynolds number, fch (= 8gRhS/V2) is the open channel friction factor, Rech (= 4RhV/) is the 

open channel Reynolds number, Rh is the hydraulic radius, S is the energy slope, mf and mRe 

are the modification coefficients, and c1 and c2 are the modified constants.  

With Eq. (2), all the previous approaches can be then categorized into (1) Modification of 

the two constants, taking mf = mRe = 1; (2) Modification of the friction factor, taking c1 = c10, 

c2 = c20, mRe = 1 and fE = mffch; and (3) Modification of the Reynolds number, taking c1 = c10, 

c2 = c20, ReE = mReRech and mf = 1.   Further discussions on these modifications are followed 

next. 

 

(1) Modification of the two constants 

Keulegan (1938) pioneered the study of open channel friction by developing analytical 

formulas in the form similar to that obtained by Nikuradse for circular pipes.  He stated that 

the two constants, c10 and c20, depend on the characteristics of the wall-confined turbulence 

and the channel surface finish, respectively. 

Keulegan’s analysis includes two assumptions. The first is that the logarithmic velocity 

distribution is generally applicable near a solid boundary. The second is related to combined 

effects of secondary currents and free surface, which were considered to be a small quantity 

being merged in c2. The resulting friction formula for open channels is then identical in form 

to that for circular pipes, but with different constants. The analysis presented by Keulegan, 
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though incomplete in fixing the constants, has been followed by many subsequent 

researchers. However, it should be noted that the experimental data used in Keulegan’s 

analysis are limited to those collected by Bazin in the years 1855 to 1860.  

Empirically, the adjustment of the two constants (c1, c2) can also be visualized by plotting 

experimental data of fch and Rech in the form of 1 / chf  against Rech chf . The plot so 

obtained usually shows that the channel friction deviates almost consistently from the 

Prandtl’s friction law for smooth boundary conditions (e.g., see Fig. 1).  Therefore, empirical 

adjustment of the two constants is a simple way to roughly estimate the friction for 

channels with non-circular cross sections.   Table 1 summarizes various values of c1 and c2 

being reported in the literature.  It can be seen that c1, the slope of the data trend in Fig. 1, 

varies in a limited range (from 1.81 to 2.14), while c2, the intercept, varies widely from 0.35 

to 1.83. 

 

(2) Modification of the friction factor 

Kazemipour and Apelt (1979) suggested that the friction factor for channels with non-

circular cross sections be corrected as KAfCW, where KA is the shape factor and fCW was 

computed using the Colebrook-White formula at given Reynolds numbers. By noting that 

the Colebrook-White equation reduces to the Prandtl’s friction law for smooth pipes, and 

comparing the suggested corrections in Eq. (2), it is obtained that mf = 1/KA and mRe = 1.  

Kazemipour and Apelt further defined the shape factor as KA = 1/ 2, where 1 and 2 

were used to account for non-uniform distribution of boundary shear stress and effect of 

aspect ratio, respectively. For rectangular open channels, 1 =  ( 2) / , where  = B/h, B 

is the channel width and h is the flow depth. The dependence of 2 on  was presented as a 
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curve by Kazemipour and Apelt, which was calibrated using the experimental data collected 

by Tracy and Lester (1961) and Shih and Grigg (1967) for smooth rectangular open-channels. 

For convenience, the Kazemipour and Apelt’s curve is represented in the present study by 

the following formula (see Fig. 2), 

2

1

1.09 1.13exp( 0.82 )





 
 (3) 

Therefore, 

1

21.09 1.13exp( 0.82 )
fm






 
 (4) 

In spite of the fact that the 2- relationship was developed using the data only for smooth 

rectangular open channels, Kazemipour and Apelt further showed that their approach was 

also applicable for rough rectangular channels and smooth channels of triangular and 

trapezoidal sections. 

Pillai (1997) considered mf as a function of P/Rh [=(2+)2/], where P is the wetted 

perimeter and Rh is the hydraulic radius, and obtained the following empirical relationship: 

0.195(10 )0.898 0.034e s
fm    (5) 

where  

2

2

2

(2 ) / 2

16 (2 ) / 0.656 2

(2 ) / 5.5 0.656

  


    


  

for

s for

for

  

  

  

 (6) 

Pillai’s analysis was performed based on the same data used by Kazemipour and Apelt 

(1979). Comparisons between Eq. (5) and Eq. (4) in Fig. 3 show that they are close only when 

3 <  < 40.  

 

(3) Modification of the Reynolds number 
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Jones (1976) noted that the low aspect ratio data in general tend to agree with the 

prediction using the Prandtl’s friction law, while the high aspect ratio data are greater than 

the prediction. By comparing the Prandtl equation with turbulent flow data of smooth 

rectangular ducts , Jones (1976) concluded that the hydraulic diameter is not the proper 

length dimension to use for the Reynolds number to ensure similarity between circular and 

rectangular ducts. By exploring the different friction relations derived for circular pipes and 

non-circular ducts, Jones defined a ‘laminar equivalent’ diameter to modify the Reynolds 

number.  With the modified Reynolds number, Jones was able to reduce the error in the 

prediction of channel friction from a scatter band of -5 to 20% to 5%. 

For rectangular ducts, Jones proposed that 

2

Re 5 5
0

2 1 192 1 (2 1)
1 1 tanh

3 (2 1) 2
r

nr r

n A
m

A A n









   
     

   
  (7) 

where Ar is the aspect ratio of duct. In spite of the free surface effect, a rectangular open 

channel is comparable to half of a rectangular duct, as demonstrated by Knight (1984) 

through experimental observations of the boundary shear stress distribution.  By noting that 

Ar = /2, Eq. (7) can be then applied for open channels in the revised form, 

2

Re 5 5
0

2 2 384 1 (2 1)
1 1 tanh

3 (2 1) 4n

n
m

n



  





  
        

  (8) 

Obot (1988) attempted to associate the friction variation from circular to non-circular 

channels with flow transition phenomena, and then scaled the Reynolds number and 

friction factor of non-circular channels with their respective critical values.  By noting that 

the friction factor at transition remains almost constant for circular, rectangular and 

triangular cross-sections, the Reynolds number is the only variable to be modified to 

reconcile friction differences between circular and non-circular cross-sections.  Therefore 
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Obot defined a scale factor, OB, to reduce the Reynolds number in the form of OBRech = 

ReE, which implies that mRe = OB. The experimental data summarized by Obot show that OB 

varies with the aspect ratio, Ar, for rectangular ducts. The relation between mRe  and  Ar, as 

plotted in Fig. 4, can be approximated as 

 0.061
2

3
rA

OB e    (9) 

When applied to open channel flows, Eq. (9) is rewritten as 

 0.03
Re

1
2

3
m e    (10) 

Obot reported that the pipe friction equation remains if the reduced Reynolds number is 

used for non-circular cross-sections and application of OB is comparable to the use of 

‘laminar equivalent’ diameter proposed by Jones (1976).  However, the comparison of Eqs. 

(7) and (9) shows that the difference between the two approaches is obvious, as seen in Fig. 

4. 

Present consideration 

First, consider smooth rectangular channels of B  2h or   2.  In light of the approach 

developed by Keulegan (1938), the half cross section is divided into two zones, i.e. the 

corner zone (x < h) and the central zone (h < x < 0.5B), as sketched in Fig. 5(a).   It should be 

noted that this division seems artificial and does not represent exactly complicated 

structures of open channel flows, the latter being not well understood at present (Yang and 

Lim 1997).  However, it facilitates mathematical treatment for the rational determination of 

the cross-section average velocity in open channels, as demonstrated subsequently. A 

further discussion on the division approach is given later in this paper. 
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 In the corner zone, the corner bisector is used to further divide the area into two parts: 

the lower part being affected by the channel bed and the upper part by the side wall.  It is 

known both secondary flow and free surface effects could affect the velocity profile, 

particularly in the zone near the wall, but there is no general formula to describe such a 

profile at present. However in a close examination of 3D flow structure, Yang and Lim (1997) 

have found that the log law can be used to express the velocity distribution near the bed. By 

considering the continuity of flow in the corner secondary flows, it is assumed that the 

contributions of the two parts of the corner zone to the average velocity are approximately 

the same. Similar to the analysis by Adachi (1962), the velocity profiles are generally 

approximated using the logarithmic law, 

*

*

1
ln

u yu
A

u  

 
  

 
 (11) 

where y is the vertical distance from the channel bed, u* is the local shear velocity,  is the 

von Karman constant and A is a constant.  Because of the existence of sidewalls and 

secondary flows, the bed shear stress and thus the shear velocity vary laterally.  Knight’s 

(1984) data show that the shear stress declines slowly towards the sidewall from its peak 

value, which occurs almost at the middle of the channel. It appears that the measured 

reduction can be approximated using a power function, e.g. 

2

max 0.5

m

b

b

x

B





 
  
          

or       




 
   

 

2

m

(2 1)
0.5

m

b

b ean

x
m

B
  (12) 

and therefore, 

*

*max 0.5

m
u x

u B

 
  
 

 (13) 

where x is measured laterally from the sidewall, and m is a constant. Knight’s (1984) shear 

stress data suggest that m  0.045, as shown in Fig. 6.   
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With the above considerations, the sectional average velocity for B  2h can be 

computed by 

0.5

0 0 0

1
2

h x B h

h

V udydx udydx
Bh

 
  

 
     (14) 

Substituting Eqs. (11) and (13) into Eq. (14) gives 

*
1 2

*

1
ln Re

4

  
   

  

mean

mean

V w A u
a a

u w V

 


 (15) 

where Re = 4RhV/ is the hydraulic diameter based Reynolds number, Rh  (= Bh/(B+2h)) is 

the hydraulic radius, w = B/(2h) = /2, and , a1 and a2 are the coefficients given as follows,  




 
 



*max
2

*

(2 1)( 1)
m

mean

u m w

u w w
 (16) 


 

  
1 1

1

1 ( 2)( 1) m

m
a

m m m w
 (17) 

 

   
  

    

2 3 2

2 1 2 2 1 2

ln( ) 2 5 4 2 2 1

( 2)( 1) ( 2) ( 1) ( 1)m m

m w m m m m
a

m m w m m w m
 (18) 

Bearing in mind, Eq. (14) is derived using a logarithmic law to approximate the velocity 

profile, which might not be accurate in the regions near the wall due to effects of secondary 

flows and free-surface; however it is considered relatively appropriate by noting 

uncertainties in the other parameters and data used, as discussed subsequently. 

Alternatively, possible deviations of the prediction can be taken into account by merging 

them into the three parameters, i.e. m,  and A,  which are to be calibrated with data.  Such 

ideas were developed previously by Prandtl (Schlichting 1979) and Keulegan (1938). 

Therefore, it is expected that the performance of Eq. (15) can be improved further using the 

parameters with optimized values. To this end, a series of computations were conducted by 

taking m = 0 – 0.2,  = 0.35 – 0.45, and A = 5 – 15, with the data by Tracy and Lester (1961) 
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who measured the channel friction for both subcritical and supercritical flows with  = 6.96 

- 40.37. The computed results were then used to observe prediction error variations with 

the three parameters.   

Fig. 7(a) shows the variation of the prediction error with  for A = 9 and m = 0 – 0.2. For 

each m, the error first reduces with increasing , until it reaches a minimum at a critical -

value, and afterwards, the error increases again with . Furthermore, as m changes 

gradually from 0 to 0.2, the minimum error slightly increases and the related critical -value 

varies from 0.42 to 0.435.  Fig. 7(b) shows similar variations of the prediction error with A 

for  = 0.42 and m = 0 – 0.2.  It shows that the minimum error decreases slowly as m 

changes from 0.2 to 0, and the best prediction occurs at about A = 9.   

Fig. 8 further presents the variation range of the prediction error, which minimizes at m 

 0,   0.42 and A  9.   It is interesting to note that (1) there are only slight changes in both 

m and  to achieve the best performance of the derived formula; (2) the m-value reduces to 

0 from 0.045, the latter being estimated using Knight’s data; and (3) the -value obtained 

differs from the traditionally recommended 0.40, but is very close to 0.422 derived from the 

recently-published pipe flow data (McKeon et al. 2005). 

Simplification of the present approach 

With the above sensitive analysis on the parameters, the approach proposed in this study 

can be further simplified. By substituting m  0 into Eqs. (16) to (18), it follows that  = 1, a1 

= 1 and a2 = 1 + 1/(2w).  Eq. (15) is then rewritten as 

*

*

1 1 1
ln Re 1

4 2

    
      

    

mean
ch

mean

V w A u

u w V w
 (19) 

or in the form of Eq. (1), 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

13 
 

 Re

1
2log Re 0.8 ch f ch

f ch

m m f
m f

 (20) 

where  

mf =  
2

2 8 log( )e  0.939, (21) 

mRe = 
   

1
1

2
2.51 log( ) 1

2
w

A e w
e

w
 0.758


1

2
1

w
w

e
w

 (22) 

and  
2

*8 /ch meanf u V . To avoid iterative procedure of computing fch in Eq. (20), by 

following the approximation proposed by Haaland (1983),  Eq (20) can be expressed as 


     

      
       

22 1

Re 2
Re 1

1.8 log 0.33 log 0.11Re
6.9

ch w
ch f

m w
f m e

w
 (23) 

It should be noted that the limitation of B  2h or   2 is applied in deriving Eqs. (15) 

and (20). However, for narrow channel flows in the case of B < 2h or  < 2, the two 

equations in exactly the same form can also be derived by applying the corner division 

approach (see Fig. 5(b)) and the logarithmic velocity distribution to the half cross section, 

provided that w is revised to be 2h/B or 2/. Therefore, Eqs. (15), (20) or (23) applies for 

both narrow and wide channel flows with w expressed in the following general form, 

/ 2 2

2 / 2

if
w

if

 

 


 


       or      

1/

2

2

kk k

w




    
     

     

 (24) 

where k  10. 

Experiments 

To compare the flow resistance formulae of the present approach (i.e. Eq. (20) or (23)) with 

the previous modifications, experiments were also conducted in this study using three 

different sizes of tilting flumes under various uniform flow conditions.  The width (m) x 
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length (m) of the flumes were 0.075 x 5, 0.30 x 12, and 0.60 x 14, respectively.  The data 

collected are summarized in Table 2. The aspect ratio ( = B/h) varied from 1.07 to 15, 

Reynolds number (Re = 4RhV/) from 7.7 x 103 to 5.4 x 105, and Froude number (Fr = V/ gh ) 

from 0.24 to 0.75.  Flow discharges were measured as an average of more than 100 readings 

taken from a built-in turbine or electromagnetic flowmeter, which was verified regularly 

using a portable ultrasonic flow meter. The flowmeter reading varied and its standard 

deviation was about 0.2-1.3%. The channel slopes were calculated from longitudinal flow 

depth variations, which were measured using a point gauge accurate to 0.1 mm while water 

in the flume remained stationary. Extra care was taken in measuring the short flume slope. 

Each case of uniform flow was achieved by a process of trial and error.  For a given bed 

slope, the applied flow rate was estimated using the Manning equation by taking n = 0.01, 

and the flow depths were then measured at five preselected sections in the working region 

of the flume.  Both the tailgate and pump speed were then adjusted repeatedly until the 

measured flow depths were almost the same at the five sections. Large fluctuations 

occurred in the measurement of flow depth for cases of large bed slope and high flow 

velocity.  The kinematic viscosity of water,  (in m2/s), was calculated by the formula 

proposed here, 

  
  

 

1.45

660
10

40T
 (25) 

where T is the temperature in degree Celsius. Eq. (25) applies for T = 0 - 100oC, and agrees 

with the standard dataset given by Linstrom and Mallard (2005), with errors less than 0.54% 

for T = 0-100oC.   
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Comparisons of different approaches 

The general procedure for computing the open channel friction factor is given as follows: 

(1) First, work out the two modification coefficients, mRe and mf; 

(2) Then, calculate ReE (= mReRech), and substitute it into the Prandtl’s friction law or Eq. (2) 

to get fE; and 

(3) Finally, fch is calculated to be fE/mf. 

Plotted in Fig. 9 is an example of the variations of the predicted friction factor with the 

aspect ratio at Re = 106 using the different formulas proposed previously and in the present 

study. It can be seen that for high aspect ratios ( > 8), the present approach predicts 

similar results to those given by Kazemipour and Apelt (1979) and Pillai (1997), while for 

very narrow channels ( < 0.2), the present prediction is comparable only to that given by 

Pillai (1997). The methods that were proposed for rectangular ducts by Jones (1976) and 

Obot (1988), respectively, generally underestimate the open channel friction.  This 

observation is also confirmed in Fig. 10.  In addition, it is interesting to note that the friction 

factor predicted using Eq. (23) varies in the way similar to that given by Jones’ (1976) 

approach, the latter being developed based on the concept of ‘laminar-equivalent 

diameter”. It should be mentioned that the variations shown in Fig. 9 are computed for  = 

0.1 – 100, which is much wider than the range of the experimental data used subsequently 

(see Table 3).  

Fig. 10 shows comparisons of the predicted and measured friction factor for  = 0.3 – 

40.4 and Re = 7.7  103 – 7.3  105 (see Table 3). The data used were presented previously 

by Tracy and Lester (1961) and Knight (1984), in addition to those collected in this study. 

The difference between prediction and measurement is assessed using the error defined by 
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
 100 (%)

prediction measurement
error

measurement
 (26) 

The average and maximum errors obtained using the different methods are summarized in 

Table 4.  By applying the original Prandtl’s friction law with no modifications, the predicted 

channel friction gives an average error of 9.1%, and could underestimate by up to 20.4%. 

This prediction is improved by the four empirical methods reviewed in the present study.  

However, the predicted channel friction is generally underestimated, in particular, by the 

methods developed by Jones (1976) and Obot (1988), respectively.  The other two methods, 

proposed by Kazemipour and Apelt (1979) and Pillai (1997), respectively, predict friction 

factors with similar accuracies, as expected because they were developed from the same 

database. Among the four approaches, Pillai’s method is the only one applicable to narrow 

channels, and thus performs better in terms of overall average error.  By comparing with all 

the empirical approaches, the analytical equation (20 or 23) proposed in this study provides 

the best friction prediction for both narrow and wide smooth rectangular channels, with the 

average error reduced to 2.1% and 3.5% for B > 2h and B  2h, respectively. Fig. 11 shows 

the distribution of errors in the prediction of friction factor using Eq. (23). 

 

Discussion  

In open channel flows, effects of free surface and secondary currents may not be negligible. 

However, how to quantify such effects into the evaluation of flow resistance is still a 

challenging task. For example, the log-wake law may be applicable to delineate the free-

surface effect on flow velocity profiles. However, there is not such a wake function that is 

available in a general form. On the other hand, it has been observed that secondary currents 
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appear considerably weak, in comparison to the longitudinal or primary flows in open 

channels. For example, Montes (1998) noted that the velocity of secondary currents is two 

orders of magnitude smaller than or  about 1-2% of the main flow velocity. Wang and Cheng 

(2006) observed that the maximum vertical velocity was only 0.6-2.5% of the depth-

averaged velocity for the secondary currents that were induced by the lateral variation of 

the bed roughness in a wide channel.  In addition, the production of secondary currents 

could be well explained by considering gradients of Reynolds stresses (Montes 1998). 

Therefore, the effect of secondary currents on the primary flow could be effectively 

evaluated using highly complex models, which is beyond the objective of the present study. 

 However, in spite of complex 3D flows, there is a general agreement that flows in a 

simple rectangular channel can be analyzed in the central zone with 2D features and near 

wall zones with strong secondary flows, as demonstrated, for example, by Tracy and Lester 

(1961). In the corner zone, Keulegan (1938) proposed a simple straight line to divide the 

corner zone into two, one corresponding to the bed and the other to the sidewalls. The 

rationality of the simplification has been confirmed by subsequent researchers, for example, 

De Cacqueray et al (2009), who have recently demonstrated that an approximate zero stress 

division line exists along the bisector for a smooth rectangular channel when B/h > 2 using a 

high order Reynolds stress model.  

 Despite some approximations made in the derivation of the flow resistance equation, Eq. 

(15), as discussed above,  it is appropriate to apply the resulting Eq. (19) or (23)  to 

evaluation of the flow resistance as the three parameters, i.e. m,  and A, were evaluated 

through a large set of experimental data. However, it should be noted that Eq. (19) or (23) 

could be improved when more data are available.  
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Conclusions 

With the concept of hydraulic diameter, the Prandtl’s pipe friction law can be used to 

predict the open channel friction, which could lead to a deviation of up to 20% from 

measurement. In the present study, various approaches available in the literature are first 

unified, which apply empirical modifications to either Reynolds number, friction factor, or 

the constants involved in the Prandtl’s friction law. Then, the log law is used to approximate 

the velocity profile over the cross section and a new analytical approach is thus derived for 

the evaluation of the flow resistance in smooth rectangular channels. The results show that 

both friction factor and Reynolds number need to be modified in the application of the 

Prandtl’s friction law to open channel flows.  In comparison with all the empirical 

approaches, the new analytical equation applies for both narrow and wide channels and 

provides the best friction prediction for smooth rectangular channels. However, it should be 

mentioned that the comparisons were made based on the limited data, of which the aspect 

ratio varied from 0.3 to 40.4 and the Reynolds number from 7.7  103 to 7.3  105. 
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Notation 
 
The following symbols are used in this paper: 

A constant 

Ar aspect ratio of duct 

a1, a2 coefficient 

B channel width 

c1, c2, c10, c20  constant 

D pipe diameter 

Fr Froude number (= V/ gh ) 

f friction factor  

fch open channel friction factor (= 8gRhS/V2) 

fCW friction factor computed using Colebrook-White formula 

fE equivalent friction factor(= mffch) 

h flow depth 

k constant 

m constant 

mf modification coefficient 

mRe modification coefficient 

P wetted perimeter 

Re Reynolds number for pipe flows (= VD/) 

ReE equivalent Reynolds number (= mReRech) 

Rech Reynolds number for open channel flows (= 4RhV/) 
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Rh hydraulic radius 

S energy slope 

T temperature of water 

u* local shear velocity 

V cross-sectional average velocity 

w  = B/(2h) 

x distance measured laterally from sidewall 

y vertical distance measured from channel bed 

  width-to-depth or aspect ratio for open channel flows (= B/h) 

 kinematic viscosity of fluid 

 von Karman constant 
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Table 1.  Empirical values of c1 and c2 in Eq. (2) for smooth rectangular channels. 

Investigator c1 c2 

Reinus (1961) 2.00 1.06 

Tracy and Lester (1961) 2.03 1.30 

Myers (1982) 2.10 1.56 

Knight (1984) 1.81 0.35 

Yen (2002) 2 – 2.14 0.47 – 1.83 

Prandtl (pipe flow) 2 0.8 

 

Table 1
Click here to download Table: Table 1.doc

http://www.editorialmanager.com/jrnhyeng/download.aspx?id=127177&guid=d94ba47f-35a9-4d63-a078-18ce3758d9aa&scheme=1
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Table 2.  Summary of Experimental Data 

No. Discharge 
(10

-3
 m

3
/s) 

Width 
B 

(m) 

Height 
h 

(m) 

Slope 
(10

-3
) 

Temperature 
(

o
C) 

No. Discharge 
(10

-3
 m

3
/s) 

Width 
B 

(m) 

Height 
h 

(m) 

Slope 
(10

-3
) 

Temperature 
(

o
C) 

1 0.95 0.3 0.020 0.586 26.8 66 2.86 0.3 0.032 1.049 27.4 

2 1.20 0.3 0.023 0.586 26.8 67 3.30 0.3 0.035 1.049 27.4 

3 1.38 0.3 0.025 0.586 26.8 68 3.55 0.3 0.037 1.049 27.4 

4 1.55 0.3 0.027 0.586 26.8 69 3.94 0.3 0.040 1.049 27.4 

5 1.77 0.3 0.030 0.586 26.8 70 4.87 0.3 0.045 1.049 27.4 

6 2.07 0.3 0.033 0.586 26.8 71 5.72 0.3 0.050 1.049 27.4 

7 2.35 0.3 0.035 0.586 26.8 72 6.54 0.3 0.055 1.049 27.4 

8 2.55 0.3 0.037 0.586 26.8 73 7.40 0.3 0.060 1.049 27.4 

9 2.91 0.3 0.040 0.586 26.8 74 8.23 0.3 0.065 1.049 26.6 

10 3.42 0.3 0.045 0.586 26.8 75 9.44 0.3 0.070 1.049 26.6 

11 4.09 0.3 0.050 0.586 26.8 76 10.31 0.3 0.075 1.049 26.6 

12 5.44 0.3 0.060 0.586 26.8 77 11.30 0.3 0.080 1.049 26.6 

13 6.73 0.3 0.070 0.586 26.8 78 12.35 0.3 0.085 1.049 26.6 

14 8.23 0.3 0.080 0.586 26.8 79 13.41 0.3 0.090 1.049 26.6 

15 9.58 0.3 0.090 0.586 26.8 80 14.48 0.3 0.095 1.049 26.6 

16 11.09 0.3 0.100 0.586 26.8 81 15.54 0.3 0.100 1.049 26.6 

17 13.05 0.3 0.110 0.586 26.8 82 16.63 0.3 0.105 1.049 26.6 

18 14.48 0.3 0.120 0.586 26.8 83 17.76 0.3 0.110 1.049 26.6 

19 16.28 0.3 0.130 0.586 26.8 84 19.02 0.3 0.115 1.049 26.6 

20 17.70 0.3 0.140 0.586 26.8 85 20.18 0.3 0.120 1.049 26.6 

21 19.80 0.3 0.150 0.586 26.8 86 21.26 0.3 0.125 1.049 26.6 

22 2.64 0.3 0.030 1.141 26.5 87 22.35 0.3 0.130 1.049 26.6 

23 3.10 0.3 0.033 1.141 26.5 88 11.11 0.6 0.055 0.669 28.5 

24 3.38 0.3 0.035 1.141 26.5 89 11.94 0.6 0.057 0.669 28.5 

25 3.77 0.3 0.037 1.141 26.5 90 13.06 0.6 0.060 0.669 29.2 

26 4.24 0.3 0.040 1.141 26.5 91 15.00 0.6 0.066 0.669 29.2 

27 5.04 0.3 0.045 1.141 26.5 92 16.94 0.6 0.072 0.669 26.8 

28 5.93 0.3 0.050 1.141 26.5 93 19.44 0.6 0.078 0.669 26.8 

29 6.86 0.3 0.055 1.141 26.5 94 22.22 0.6 0.085 0.669 26.8 

30 7.87 0.3 0.060 1.141 26.5 95 25.14 0.6 0.093 0.669 26.8 

31 8.68 0.3 0.065 1.141 26.5 96 27.92 0.6 0.100 0.669 26.8 

32 9.64 0.3 0.070 1.141 26.5 97 31.39 0.6 0.108 0.669 26.8 

33 10.87 0.3 0.075 1.141 26.5 98 34.44 0.6 0.113 0.669 28.0 

34 11.76 0.3 0.080 1.141 26.5 99 36.81 0.6 0.118 0.669 28.0 

35 13.02 0.3 0.085 1.141 26.5 100 42.50 0.6 0.131 0.669 28.0 

36 14.23 0.3 0.090 1.141 26.5 101 46.25 0.6 0.139 0.669 29.5 

37 15.29 0.3 0.095 1.141 26.5 102 49.58 0.6 0.146 0.669 29.5 

38 16.26 0.3 0.100 1.141 26.5 103 54.03 0.6 0.153 0.669 29.5 

39 17.57 0.3 0.105 1.141 26.5 104 56.67 0.6 0.160 0.669 29.5 

40 18.60 0.3 0.110 1.141 26.5 105 61.94 0.6 0.170 0.669 29.5 
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41 19.73 0.3 0.115 1.141 26.5 106 68.75 0.6 0.183 0.669 29.5 

42 21.30 0.3 0.120 1.141 26.8 107 80.28 0.6 0.204 0.669 29.5 

43 22.35 0.3 0.126 1.141 26.8 108 95.28 0.6 0.232 0.669 30.8 

44 22.11 0.3 0.110 1.484 26.3 109 122.08 0.6 0.277 0.669 30.8 

45 20.53 0.3 0.105 1.484 26.0 110 4.08 0.6 0.042 0.242 26.5 

46 18.83 0.3 0.100 1.484 26.0 111 5.39 0.6 0.050 0.242 26.5 

47 17.54 0.3 0.095 1.484 26.3 112 6.11 0.6 0.054 0.242 26.5 

48 16.39 0.3 0.090 1.484 26.3 113 7.36 0.6 0.061 0.242 26.5 

49 15.13 0.3 0.085 1.484 26.3 114 8.33 0.6 0.067 0.242 26.4 

50 13.89 0.3 0.080 1.484 26.3 115 9.58 0.6 0.072 0.242 26.4 

51 13.24 0.3 0.078 1.484 26.3 116 12.22 0.6 0.084 0.242 26.4 

52 12.62 0.3 0.075 1.484 26.3 117 14.72 0.6 0.094 0.242 27.0 

53 11.97 0.3 0.072 1.484 26.3 118 17.50 0.6 0.107 0.242 27.0 

54 11.31 0.3 0.070 1.484 26.3 119 20.00 0.6 0.117 0.242 27.0 

55 10.74 0.3 0.067 1.484 26.3 120 22.64 0.6 0.126 0.242 27.0 

56 10.15 0.3 0.065 1.484 26.3 121 26.47 0.6 0.140 0.242 27.0 

57 9.59 0.3 0.062 1.484 26.3 122 0.19 0.075 0.020 0.6 26.4 

58 9.10 0.3 0.060 1.484 26.3 123 0.28 0.075 0.025 0.6 26.4 

59 15.71 0.3 0.080 1.89 26.5 124 0.36 0.075 0.030 0.6 26.4 

60 17.40 0.3 0.085 1.89 26.5 125 0.46 0.075 0.035 0.6 26.4 

61 17.45 0.3 0.086 1.89 26.5 126 0.49 0.075 0.040 0.6 26.4 

62 18.78 0.3 0.090 1.89 26.5 127 0.68 0.075 0.050 0.6 26.0 

63 20.24 0.3 0.095 1.89 26.5 128 0.80 0.075 0.055 0.6 26.0 

64 22.17 0.3 0.100 1.89 26.5 129 0.90 0.075 0.060 0.6 26.0 

65 2.53 0.3 0.030 1.049 27.4 130 1.04 0.075 0.070 0.6 25.4 
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Table 3.  Range of data used for comparisons 
 

Investigator 
Re f  

max min max min max min 

Tracy and Lester (1961) 726900 35720 0.0257 0.0128 40.37 6.96 

Knight (1984) 164087 27051 0.0267 0.0178 19.12 0.31 

This study 539700 7657 0.0384 0.0140 15.00 1.07 
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Table 4.  Summary of errors in channel friction predictions 

Approach mRe mf 

B > 2h B  2h 

Average 
error 
(%) 

Maximum 
error 
(%) 

Average 
error 
(%) 

Maximum 
error 
(%) 

Jones (1976) Eq. (8) 1 7.7 19.7 10.9 19.7 

Kazemipour and 
Apelt (1979) 

1 Eq. (4) 2.8 16.3 7.4 16.3 

Obot(1988) Eq. (10) 1 7.7 19.2 9.9 17.2 

Pillai (1997) 1 Eq. (5) 2.8 16.1 5.7 13.0 

Prandtl’s friction 
law 

1 1 9.1 20.4 10.2 17.5 

Present study 
Eq. (20) 

Eq. (22) Eq. (21) 2.1 17.4 3.4 10.5 

Present study 
Eq. (23) 

- - 2.1 17.1 3.5 10.9 
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Fig. 1.  Comparison of channel resistance data with Prandtl friction law. 
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Fig. 2.   Aspect‐ratio effect on the parameter, ψ2, proposed by Kazemipour and Apelt (1979). 

The circles are the points read from Kazemipour and Apelt’s curve. 
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Fig.  3.      Comparison  of  mf  given  by  Kazemipour  and  Apelt  (1979)  and  Pillai  (1997), 

respectively. 
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Fig. 4.   Relations of mRe to aspect ratio for rectangular ducts, proposed by Jones (1976) and 

Obot (1988), respectively. 
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Fig. 5.  Division of rectangular cross section for (a) B > 2h and (b) B ≤ 2h.  
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Fig. 6.  Bed shear stress distribution in smooth rectangular channels. Data were collected by 

Knight (1984). 
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Fig. 7.  Variations of prediction error (a) with m and κ for the case of A = 9, and (b) with m 

and A for the case of κ = 0.42. 
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Fig. 8.   Ranges of prediction error varying with m, κ and A.   The data used are from Tracy 

and Lester (1961). 
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Fig. 9.   Comparison of different approaches for predicting friction factor at Re = 106. 
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Fig. 10. Comparisons of measured and predicted friction factors 
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Fig. 11.  Distribution of errors in friction factor prediction with Eq. (23). 
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