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Abstract—Brain based diagnostic systems have recently re-
ceived attention as a tool in the characterization and diagnosis
of a variety of neurodevelopmental and psychiatric disorders.
Nonetheless, a majority of disorders are still diagnosed entirely
based on symptom assessments and behavioral correlates. We
therefore propose a method for fusing brain responses with
clinical measures for improved diagnosis. To this end, we utilized
the flexibility of clustered random subspace brain mapping to
detect regions where brain responses in conjunction with a
clinical measure could reliably differentiate patients from control
subjects. We demonstrate the approach on realistically simulated
functional magnetic resonance imaging (fMRI) brain activity
and a clinical parameter. We show that the method efficiently
identifies brain regions where fused analysis of brain responses
and clinical parameters improves diagnosis compared to either
measure alone. The proposed method is easy to implement and
highly flexible, offering an appealing basis for multimodal brain
mapping.

I. INTRODUCTION

The contemporary neuroscientist has access to a plethora
of increasingly sophisticated measuring techniques reflecting
the wide range of systems, levels and modalities found in
biological organisms – from genes through single spikes to
distributed brain activity and various measures of behavior. A
complete understanding of the human nervous system in health
and disease can clearly not be achieved from study of a single
level or modality, and the research community is therefore
turning their attention to the possibility of designing studies
that span multiple modalities (see e.g. [1]).

Concurrent with the development of increasingly advanced
neuroimaging technologies, there has been a surge of studies
investigating the utility of brain based diagnosis (for disorders
such as autism [2], depression [3], attention deficit disorder
[4] and Alzheimer’s disease [5]). Nonetheless, a majority of
disorders are still preferentially diagnosed based on clinical
symptom assessments or behavioral correlates, and few rely
mainly on brain based diagnostics (see e.g. [6], [7]). Instead,
it appears that an efficient neuroimaging diagnostic aid should
integrate multiple modalities, including clinical symptom as-
sessments and, where relevant, behavioral correlates.

A consequence of the long history of relative fragmentation
of neuroscientific research, however, is that each modality
is associated with its own peculiar processing and analysis
approaches. Conventional cross-modal studies process data
independently and, subsequently, estimate inter-modality cou-
pling using post hoc juxtaposition through statistical correla-

tion measures. Truly integrated analysis, in contrast, makes
explicit a priori assumptions about the coupling between
the modalities. The superiority of such fused analysis over
juxtaposition techniques was recently demonstrated in a study
of the coupling between haemodynamic (measured through
functional magnetic resonance imaging; fMRI) and electro-
physiological (acquired using electroencephalography; EEG)
brain activity: from an information-theory point of view, the
distribution of responses from the fused modalities was more
informative than any single modality [8]. Consequently, truly
synergistic multimodal analysis is a rapidly growing focus of
interdisciplinary research. Moreover, conventional correlation
approaches are poorly suited for generalizing the obtained
model to new data. Thus, integrated analyses should be both
highly sought after and highly beneficial in clinical situations,
e.g., for disease diagnosis.

Addressing these issues, we propose a method for direct
cross-modal neuroimaging analysis, where brain responses and
clinical scores are fused. To this end, we utilized machine
learning – a domain that provides highly appealing tools for
sophisticated recognition of otherwise unintelligible pattern
representations embedded in complex data structures [9]. Ma-
chine learning is generic, flexible (e.g. classification, regres-
sion, clustering), powerful (e.g. multivariate, linear and non-
linear), predictive, and applicable to various data modalities
with minor modality-specific preprocessing. Importantly, ma-
chine learning is data-driven, taking advantage of actual data
examples to capture relevant characteristics without requiring
prior information on underlying probability distributions. The
appealing properties of machine learning has attracted consid-
erable attention in various sectors of the community in recent
years, including analysis of fMRI [10].

We focused on fMRI-quantified brain activity, which is a
safe, non-invasive technique for exploring function-structure
relationships based on changes in local blood delivery within
different regions of the brain. The fMRI signal is derived
from magnetic properties of deoxygenated blood, reflecting
temporal changes in activity as the brain processes informa-
tion. Such processing is inherently distributed and multivariate,
and, therefore, recent applications of machine learning has had
crucial impact on fMRI analysis methods [10]. However, fMRI
yields a staggering amount of data - hundreds of thousands of
measurements, called voxels - which calls for efficient feature
selection. We therefore build on a locally multivariate brain
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mapping method based on random subspace sampling that we
recently proposed [11], [12]. We have previously demonstrated
the utility of this method for efficient and sensitive multivariate
brain mapping both on simulated data [12] and authentic
neuroscientific problems [13], [14].

Random subspace sampling maps are constructed by ran-
domly selecting a number of voxel subsets, each on which a
classifier is trained. The random subspace ensemble approach
is intuitive and simple, and yields highly competitive results
compared to other voxel selection methods [15], [16]. Notably,
in addition to providing an appealing tool for mapping brain
regions, random subsampling is highly flexible and allows easy
incorporation of external parameters as well as usage of any
information measure (including non-linear classifiers). In this
study, we therefore utilized the flexibility, efficiency and map-
ping sensitivity of clustered subspace brain mapping for mul-
timodal neuroimaging analysis. Specifically, we investigated
fused analysis of brain activity and an external parameter, here
interpreted as a clinical measure, to propose a method that
identifies brain areas where synergistic multimodal analysis
improves diagnostic accuracy.

We demonstrate the utility of the method on realistically
simulated data. We modeled the fMRI data to emulate brain
scans of 64 individuals, half of whom are patients with a
condition or disorder that yields deviating activity in a specific
brain region. This region corresponds to brain areas associated
with impaired processing in individuals diagnosed with the
disorder, such as impairment of the right posterior temporal
sulcus in autism [17]. The simulated clinical parameter em-
ulates a quantitative assessment assigned to each individual,
and is inspired by the social responsiveness score (SRS) in
autism [18]. Although the SRS is indicative of autism, it is
far from perfect: studies report that the SRS has a sensitivity
of 0.74 to 0.80 and a specificity of 0.69 to 1.00 in detecting
individuals diagnosed with autism [19].

Specifically, the simulated data aimed at emulating a situ-
ation where patients are reliably distinguished from controls
only when clinical assessment parameters and region-specific
brain response are analyzed simultaneously. Consequently, the
objective of the proposed algorithm was to efficiently identify
brain regions in which fused analysis is more diagnostic than
either of the measures alone.

II. METHODS

Simulated data

Clinical assessment score: The clinical assessment score
was simulated as one value per individual. All subjects’ values
were randomly generated uniformly in the range 1:10, after
which patients’ values were adjusted up by 4 points. Hence,
patients’ values were poorly separated from controls based on
this simulated behavioral correlate alone (Figure 1).

Brain activity: The brain activity was based on simulated
data from a previous study [20]. In summary, the data was
simulated in a cortex mask, obtained from a real subject,
containing 28502 voxels. Data modeling followed a block-
design with two conditions for a functional voxel resolution

Behavioral measure

Patients Controls

0 1 2 3 4 5 6 7 8 9 10

Fig. 1. The simulated clinical assessment score.

to 3×3×3 mm with 64 stimulations (equal number of each
condition) lasting 10.5 s each. Blood-oxygen-level dependent
responses were simulated by convolving the stimuli with a
double-gamma hemodynamic response function. Voxelwise
activations were added to temporally autocorrelated noise,
modeled as follows:

Ra(t) = ρkR0(t− 1) +
√

1− ρ2kR0(t) (1)

where R0 is random Gaussian noise and ρk : N(0.5, 0.1)
allowed adjustment of the amount of autocorrelation at voxel
k. Single-trial responses were estimated by fitting a voxel-wise
general linear model (GLM) with one predictor representing
each single stimulus (obtained by convolution of a boxcar with
a double-gamma hemodynamic response function; [21]) and
one linear predictor accounting for a within-trial linear trend.
The regressor β coefficients were subsequently obtained as an
estimate of each trial response.

Here, the simulated data was re-interpreted such that each
sample represents an individual’s brain response, and each
condition either a control subject or a patient. The final
simulated data hence consisted of 64 individuals, 32 of whom
were designated as patients and half as control subjects.

In one brain region (142 voxels), activity differentiating
control subjects from patients was added (indicated in blue
in Figure 2). These voxels were randomly assigned to one of
two populations (patients > controls; controls > patients). The
contrast-to-noise ratio (CNR; the difference between the group
responses compared to the standard deviation of the noise) was
set 0.2, ensuring that a multivariate analysis (i.e. joint analysis
of multiple voxels) was required to reliably detect differences.
In addition, all subject’s brain responses were adjusted such
that the patients could be clearly separated from controls only
in fusion with the simulated clinical parameter (Figure 3).

Clustered subsampling brain mapping

Kuncheva et al. proposed the following method of con-
structing a random subspace ensemble for brain decoding: let
V = v1, ..., vn be the set of n voxels. L voxel subsets, each
of size N , are drawn without replacement from a uniform
distribution over V and a classifier modelM is trained on each
subset [16]. The ensemble decision is subsequently made by
majority vote among the L classifiers. As shown in Algorithm
1, random subspace maps are constructed in a similar fashion
[11], [12]. A function Φ computes the classification accuracy
of model M, which is trained on each voxel subset, and the
accuracy is added to each voxel (and stored in vector R).
Importantly, however, the voxel subsets are selected such that
they form an approximately spherical cluster: a voxel v is
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Fig. 2. The brain region containing activity differentiating control subjects from patients, indicated in blue, across a number of axial brain slices.
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Fig. 3. Simulated brain responses from a randomly selected voxel in the
diagnostic region (shown in blue) as a function of the clinical assessment
score.

randomly selected in the brain volume and voxels neighboring
v are included in the subset. The process is iterated I times,
after which final voxel-wise values are obtained by averaging
across the values obtained in each iteration (i.e. normalization
of R; Figure 4). The resulting value reflects the usefulness of
each voxel in multivariate combination with other voxels: the
more informative the voxel, the more likely subsets containing
the voxel will obtain high results which will boost the average
value for that voxel. The required number of times the model
must be trained is L = b nN c per iteration, and, in the current
implementation, there is no majority vote to obtain a single
decoding accuracy representative of the brain volume.

Algorithm 1 Clustered sampling brain mapping
Input: Dataset X, voxel set V and learning model M
- Initialize vector R=[0, . . . , 0]
repeat

while: V is not empty do
- Randomly select a voxel v ∈ V
- Select the voxels Vk ⊂ V in the neighborhood of v
- Train the model M on voxels Vk

- ∀vi ∈ Vk update the rating Rvi = Rvi + Φ(M)
- Remove Vk from V

end while
until convergence
- Normalize R
return R

In the current study, Algorithm 1 is modified to include

the clinical parameter (variable C) in the modelling phase
(Algorithm 2). Here, each time local brain responses are input
to the model M, they are paired with the clinical variable
such that both brain responses and variable are used to train
M and in function Φvi

to evaluate the classification accuracy.

Algorithm 2 Modified clustered sampling brain mapping
Input: Dataset X, voxel set V , variable C and learning model M
- Initialize vector R=[0, . . . , 0]
repeat

while: V is not empty do
- Randomly select a voxel v ∈ V
- Select the voxels Vk ⊂ V in the neighborhood of v
- Train the model M on voxels Vk and variable C
- ∀vi ∈ Vk update the rating Rvi = Rvi + Φ(M)
- Remove Vk from V

end while
until convergence
- Normalize R
return R

Parameters

Two parameters require specification: the number of voxels
in the subsets (i.e., search sphere volume) and the number
of times the algorithm is iterated (i.e., the number of times
the model is trained on each voxel). In the current study, we
fixed the search sphere volume size to a radius of 3 voxels and
iterated the algorithm 5 times. The algorithm was implemented
in Matlab (The Mathworks, Massachusetts, USA).

Measure of diagnostic performance

As a learning model (i.e. to quantify the diagnostic power of
the voxel subsets) we used five-fold cross-validation scheme
with a support vector machine (SVM, in the LS-SVMlab
implementation; http://www.esat.kuleuven.be/sista/lssvmlab/
[22]) with a linear kernel.

We computed voxel-wise significance levels in the average
map using the binomial distribution. The obtained p-values
were corrected for multiple comparisons through controlling
for the false discovery rate (FDR) such that q<0.05 [23]. Also,
the voxel subset with the highest classification accuracy was
identified and this peak classification accuracy was reported.

As a measure of the mapping performance (i.e. the ability
of the mapping scheme to identify the simulated diagnostic
voxels), the receiver operating characteristic (ROC) curve (a
plot of the voxel detection sensitivity versus 1-specificity for
varying map thresholds) was computed for each map and the
area under the curve (AUC), was obtained. A value of 1
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Fig. 4. Clustered subsampling brain mapping maps are constructed by iteratively sampling spherical volumes within which a classification accuracy is
computed. The mean across these volumes is then computed to produce a map showing the average contribution of each voxel. The region with true diagnostic
(high-accuracy) voxels in this example is indicated in blue in the right-most panel.

corresponds to a perfect map, whereas the chance value in
the current dataset was 0.9 (due to the large number of true
negatives). Also, we noted the computing time required to
obtain the results as well as the number of times the classifier
model was estimated (i.e. trained) and evaluated.

Comparison with alternate methods

For comparison, we repeated the five-fold cross-validation
scheme in four additional ways: on the clinical variable only,
on single voxel brain responses only (i.e. on the data from
each individual voxel independently), on multivariate brain
responses (i.e. Algorithm 1), and, finally, on single voxel brain
responses and the clinical variable combined. Maps from the
single voxel analysis were obtained by saving the voxel-wise
classification accuracies. Again, we computed the area under
the ROC curve and noted the peak classification performance,
computing time and number of times the classifier model was
estimated and evaluated.

III. RESULTS

The results are summarized in Table I.
Detection of brain voxels: The clustered subsampling ap-

proach successfully identified the brain region where fused
brain and behavior analysis could separate patients from
controls (Figure 5A): the area under the ROC was 0.999 . The
peak search volume was also located in this region (Figure
5B). The single-voxel brain response mapping was, on the
contrary, unsuccessful in detecting the diagnostic voxels, with
an area under the ROC curve of 0.888 and suffering from a
severe number of false positives (Figure 6A). The performance
improved only marginally after fusion with the clinical pa-
rameter to 0.900 (Figure 6C). The multivoxel brain mapping
approach, on the other hand, was second most effective in
detecting the diagnostic voxels with an area under the ROC
curve of 0.993 (Figure 6B).

Diagnostic accuracy: The maximum classification accuracy
in the peak search volume (show in in Figure 5B) was
90.3%. Contrasting this result, the simulated clinical measure
alone yielded a classification accuracy of 67.0%, whereas the
multivoxel brain response obtained an accuracy of 81.4%.
The single-voxel brain response alone and the single-voxel
response fused with the clinical variable achieved relatively

A

B

C

Fig. 5. A) Voxels in the average classification map surviving the p < 0.05
corrected threshold. B) The voxel subset with the highest classification. C)
The true simulated diagnostic voxels.

high classification accuracies, at 79.9% and 86.2%, respec-
tively. However, it should be noted that the latter two are
likely to reflect an exaggerated diagnostic power given the
large number of computations involved (28502, compared to
only 3810 for the multivoxel brain mapping approaches).

Computational efficiency: The multivoxel algorithms, in-
cluding the proposed method, used 3810 computations (i.e.
training and testing of the classifier) to compute the results,
which required 18.6 minutes. The single-voxel methods were
faster at 12.8 and 14.1 minutes, but required the classifier
model to be estimated and evaluated 28502 times (i.e. as many
computations as there were voxels in the brain).
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TABLE I
RESULTS

Method Peak classification (%) Mapping performance (AUC) Time (minutes) Nr. computations
Clinical score 67.0 - - 1
Single voxel brain response 79.9 0.888 12.8 28502
Multivoxel brain response 81.4 0.993 18.6 3810
Single voxel fused brain and clinical score 86.2 0.900 14.1 28502
Multivoxel fused brain and clinical score 90.3 0.999 18.6 3810

>55 >70%

A

B

C

D

>67 >70%

Fig. 6. Results from all compared brain mapping methods: A) Single voxel
brain response B) Multivoxel brain response C) Single voxel fused brain and
behavior D) Multivoxel fused brain and behavior. The maps are thresholded
at the classification accuracy for behavior alone (67%).

IV. DISCUSSION

We have presented a computationally efficient multivariate
brain mapping approach which exploits fused classification of
brain responses and clinical scores for improved neurodiag-
nosis. We demonstrated that fused analysis is more effective
in brain mapping and, hence, achieves higher diagnostic ac-
curacy, than either measure alone, on simulated data where
either measure were only partially diagnostic.

The clinical score was modeled similar to the social respon-
siveness score used as a diagnostic aid in autism [18], and
the simulated brain activity was designed to mimic realistic
fMRI responses. Moreover, the brain data was simulated to
be inherently multivariate such that conventional univariate

statistics, including the general linear model (GLM [21]),
would fail to identify the diagnostic voxels. Multiple studies
have demonstrated the occurrence of subtle brain activity
changes encoded across multiple voxels which conventional
univariate statistics fail to capture [10], [24]–[30]. We therefore
believe that the proposed method should work well with
authentic data, in particular in situations where patient’s brain
responses represent a complex impairment.

We compared the proposed algorithm with single-voxel
methods, which, albeit being faster (at 12.8 and 14.1 compared
to 18.6 minutes), were substantially worse at detecting the
diagnostic voxels (with areas under the ROC curve of around
0.9, i.e. chance level, compared with a nearly perfect map for
the proposed method). Although the obtained maps are clearly
superior in the fused multivoxel approach, which should justify
the increased time requirements in some contexts, the achieved
classification accuracy for the single-voxel fused brain and
behavior method (86.2%) rivaled the proposed algorithm
(90.3%). Nevertheless, the single-voxel approach estimated the
diagnostic accuracy 28502 times, compared to a mere 3810
times for the multivoxel methods, and this high classification
accuracy likely reflects overfitting.

The proposed algorithm shares many similarities with the
Searchlight algorithm [31], which is highly popular for multi-
variate fMRI brain mapping (see e.g. [32]–[37]). Nonetheless,
our clustered random subsampling algorithm requires dramat-
ically less computation times (in the order of 75% less) for
the same mapping sensitivity [12] and is therefore a more
appealing alternative in, for example, large patient studies.

In the current implementation, we only considered locally
multivariate brain responses. However, improved prediction
power may be achieved from combing multiple brain regions.
This may be particularly useful when considering spatially dis-
joint brain impairments, such as in autism where connectivity
is disrupted (by e.g. considering the posterior superior tempo-
ral sulcus and the fusiform gyrus, both part of an extended net-
work that has been implied as being disrupted in autism [17]).
More sophisticated approaches where fused brain-behavior
analysis is feasible is through Memetic algorithms [38] or
particle swarm optimization [39]. Also, we simply reported
the classification accuracy from the voxel subset with the
best performance. An ensemble decision obtained majority
vote among the classifiers, akin to what was implemented
by Kuncheva and colleagues [16], is likely to improve the
accuracy.

A major benefit of the proposed method is that it can be
applied in conjunction with any modality and in combination
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with a large variety of information measures with minor
adjustment: it can be cross-modally used in conjunction with
classification, including both linear and non-linear classifiers
on categorical data, but also with regression (using e.g. rele-
vance vector machines, RVMs) to predict continuous variables
(such as the severity of a disorder). Other modalities may
include behavioral correlates, electroencephalography (EEG),
physiological parameters and so on. In particular, the method
has potential in the domain of imaging genomics: a wide range
of cognitive disorders have been studied in the framework
of imaging genomics, including psychiatric illness (such as
e.g. schizophrenia; [40]) and affective disorders (including
depression [41], [42] and bipolar disorder [43]). Genomics
and brain imaging belong to historically disparate fields of re-
search, and contemporary genetic linkage studies are therefore
typically limited to use mass-univariate linear modeling and
post hoc juxtaposition correlation approaches to examine gene-
phenotype relationships. The proposed algorithm has decided
potential in bridging this gap.

V. CONCLUSION

We have presented a method for mapping brain regions
where neural responses in combination with an external
variable, here modeled as a clinical correlate, can predict
the diagnostic category of individuals. The simplicity and
flexibility of the method makes it an appealing starting-point
for a general-purpose cross-modal brain mapping tool.
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