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ABSTRACT

Cloud classification of ground-based images is a challenging task. Recent research has focused on extracting

discriminative image features, which are mainly divided into two categories: 1) choosing appropriate texture fea-

tures and 2) constructing structure features. However, simply using texture or structure features separatelymay not

produce a high performance for cloud classification. In this paper, an algorithm is proposed that can capture both

texture and structure information from a color sky image. The algorithm comprises three main stages. First,

a preprocessing color census transform (CCT) is applied. The CCT contains two steps: converting red, green, and

blue (RGB) values to opponent color space and applying census transform to each component. The CCT can

capture texture and local structure information. Second, a novel automatic block assignment method is proposed

that can capture global rough structure information. A histogram and image statistics are computed in every block

and are concatenated to form a feature vector. Third, the feature vector is fed into a trained support vectormachine

(SVM) classifier to obtain the cloud type. The results show that this approach outperforms other existing cloud

classificationmethods. In addition, several different color spaceswere tested and the results show that the opponent

color space is most suitable for cloud classification. Another comparison experiment on classifiers shows that the

SVM classifier is more accurate than the k–nearest neighbor (k-NN) and neural networks classifiers.

1. Introduction

In recent years, ground-based imaging devices have

been widely used for obtaining information on sky condi-

tions. These devices, including the whole-sky imager

(WSI) (Shields et al. 2003; Heinle et al. 2010), total-sky

imager (TSI) (Pfister et al. 2003; Long et al. 2001) and all-

sky imager (ASI) (Lu et al. 2004; Long et al. 2006; Cazorla

et al. 2008), can provide continuous sky images fromwhich

one can infer cloud macroscopic properties—for example,

cloud height, cloud cover (or cloud fraction), and cloud

type. Most cloud-related studies require such information.

According to the specifications of the China Meteorolog-

ical Administration (CMA 2003) for ground-based mete-

orological observations, cloud height, cloud cover, and

cloud fraction are three basicmeteorological elements that

weather stations must observe and record. These obser-

vations have been historically performed by human ob-

servers, which is expensive. Therefore, automatic

observations are needed. Cloud height can be mea-

sured using paired ground imagery with photogrammetric

methods (Allmen and Kegelmeyer 1996; Seiz et al. 2002;

Kassianov et al. 2005), and cloud cover can be estimated

using many algorithms (Pfister et al. 2003; Long et al.

2006; Kalisch andMacke 2008). The automatic cloud type

classification of ground-based images is a challenging task

and is still under development. Typically, an automatic

cloud classification algorithm comprises three main

stages: preprocessing, feature extraction, and a classifier.

The first stage is the preprocessing of images, which

includes converting red, green, and blue (RGB) to gray-

scale images (Isosalo et al. 2007; Calb�o and Sabburg 2008;

Heinle et al. 2010), image segmentation methods (Singh

andGlennen 2005; Calb�o and Sabburg 2008; Heinle et al.

2010; Liu et al. 2011), image smoothing methods, and

image enhancement methods (Liu et al. 2011). The main
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purpose of image preprocessing is to obtain certain image

types for extracting features. Some preprocessingmethods

(e.g., image segmentation) can be considered part of

a feature extraction due to their high dependency (e.g., the

features computed directly from segmented images).

The second stage, feature extraction, plays an im-

portant role in achieving comparative classification re-

sults; numerous feature extraction methods have been

studied in the literature. Buch et al. (1995) first applied

Law’s texture measures (125 features), which was also

used by Singh and Glennen (2005). The other four well-

known texture feature extraction approaches that were

adopted by Singh and Glennen (2005) are autocorrela-

tion (99 features), co-occurrence matrices (14 features),

edge frequency (50 features), and run length encoding

(5 features). Isosalo et al. (2007) compared two texture

features, local binary patterns (LBP) (256 features) and

local edge patterns (LEP) (407 features), finding that

LBP performed better than LEP. Calb�o and Sabburg

(2008) applied statistical texture features (12 features),

pattern features based on a Fourier spectrum (4 features),

and features based on the threshold image (6 features).

Heinle et al. (2010) tested a large number features and

selected 12 features with Fisher distances, a selection

criterion. These 12 features included spectral features

(7 features), co-occurrence matrix-based features (4 fea-

tures), and a cloud cover feature (1 feature). Liu et al.

(2011) proposed structure features of infrared images for

cloud classification. These features included cloud frac-

tion (2 features), edge sharpness (1 feature), and cloud

maps and gaps (4 features).

It should be noted that the feature selection step is

needed if a large number of features are extracted be-

cause pattern recognition algorithms are known to de-

grade in classification accuracy when faced with many

features that are not necessary for predicting the desired

output. The feature selection step consists of finding a

subset of features to improve the classification accuracy

and to reduce the computational burden. Heinle et al.

(2010) used a feature selection method based on the

Fisher distance. In our algorithms, we adopted principal

component analysis (PCA), an alternate way to reduce

the number of features (see section 2c).

In the third stage, a trained classifier receives an

extracted feature vector and determines the cloud type.

In previous studies, few classifiers have been explored

because most researchers have focused on designing new

sky image features and are less concerned about classi-

fiers. The most frequently used classifier is the k–nearest

neighbor (k-NN) (Singh and Glennen 2005; Isosalo et al.

2007; Heinle et al. 2010). Both Calb�o and Sabburg (2008)

and Liu et al. (2011) used a simple classifier that was

developed based on the two-dimensional parallelepiped

technique. Other classifiers—for example, a binary de-

cision tree (Buch et al. 1995) and linear classifier (Singh

and Glennen 2005)—have also been applied.

To visually show the workflow of typical cloud clas-

sification algorithms, we take examples from previous

studies (Calb�o and Sabburg 2008; Liu et al. 2011) and

present them in Figs. 1 and 2. Here, both methods have

preprocessing, feature extraction, and a classifier. The

detailed description of each feature calculation pro-

cedure can be found in the corresponding study (Calb�o

and Sabburg 2008; Liu et al. 2011).

In this paper, our goal is to propose an algorithm that

can automatically distinguish different cloud types. This

classification algorithm should also contain the three

stages described above. Our primary concern is how to

describe sky image features. In previous studies, there are

generally two ways: choosing appropriate texture fea-

tures (Singh and Glennen 2005; Calb�o and Sabburg 2008;

Heinle et al. 2010) and constructing structure features

(Liu et al. 2011). In the first approach, clouds are treated

as a texture type. However, despite using many texture

features, the classification accuracy is not satisfactory,

that is, below 75%. For example, Singh and Glennen

(2005) achieved only a mean accuracy of approximately

70%. Moreover, Calb�o and Sabburg (2008) achieved

FIG. 1. Workflow of the cloud classification method proposed by Calb�o and Sabburg (2008). Values in parentheses

represent the dimension of features.
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approximately 62% accuracy and Heinle et al. (2010)

achieved approximately 74%accuracy.A possible reason

for these results is that these studies considered only

texture information while ignoring the cloud structure

information. Liu et al. (2011, p. 411) suggested that

‘‘manual cloud classification takes cloud shape as the

basic factor, together with considering the cause of its

development and the interior microstructure.’’ There-

fore, they developed structure features, including edge

sharpness, cloud maps, and gaps, and the total classifi-

cation accuracy increased to 90.97% on their selected

infrared image sets. However, the structure features that

Liu et al. (2011) proposed may not be robust. For ex-

ample, cloud boundaries and sky are usually blurred—

that is, across several pixels—and it is hard to define

a clear cloud edge. Thus, edge detection images may be

very different when imaging conditions, such as illu-

mination and visibility, change. For the same reason,

segmentation images are not robust, which results in

unreliable segmentation-image-based information—that

is, cloud maps and gaps.

We believe that clouds that appear in ground-based

images contain both texture and structure information.

For example, cirrus is feather like, which can be inter-

preted as texture. Moreover, cumulus clouds resemble

cotton balls. Similarly, we can easily determine that other

cloud types—for example, cirrocumulus, cirrostratus, al-

tocumulus, and stratocumulus—also have texture and

structure information. More precisely, the structure

should be rough because of the large intraclass variations

of clouds. Thus, our main concern with describing fea-

tures is to find an approach that can capture both texture

and rough structure information. Fortunately, in the field

of computer vision and image processing, census trans-

form (Zabih and Woodfill 1994) and spatial pyramid

strategy (Lazebnik et al. 2006) meet our requirements.

Census transform can encode texture and local shape

structure in a small image—that is, a 33 3 image patch—

while spatial pyramid strategy can capture the global

structure on larger scales. To achieve higher perfor-

mance for the specific cloud classification task, these

two techniques are extended and improved in this paper.

Specifically, the standard census transform is extended to

a color census transform, and a novel automatic block

assignment method is developed for spatial representa-

tion. In our approach, we adopt the support vector ma-

chine (SVM) classifier, a powerful and popular classifier

used in recent years.

In this paper, wemake threemain contributions: 1) we

introduce census transform into the cloud classification

task for ground-based images and extend it to a color

census transform; 2) we propose an automatic block

assignment method for spatial representation; and 3) we

apply, for the first time to our knowledge, the SVM

classifier in the field of ground-based imagery.

2. Methodology

In this section, we provide details on our cloud clas-

sification algorithm, including the three main stages:

color census transform (CCT) for preprocessing, a spa-

tial representation method to form features, and the

SVM as a classifier. Figure 3 shows a flowchart of our

proposed algorithm.

a. CCT for color sky images

Census transform (CT) is a nonparametric local

transform (Zabih and Woodfill 1994) that is applied to

grayscale images, that is, images whose pixels are de-

scribed by a single value. Census transform compares a

pixel value with its eight neighboring pixels. If the center

pixel is larger than or equal to one of its neighbors, then

a bit is set to 1 at the corresponding location [see Eq. (1)

below]. Otherwise, a bit is set to 0. Then, the eight bits

are put together from left to right and top to bottom. The

ordered eight bits represent a base-2 number that is

consequently converted into a base-10 number in [0, 255]

and is the CT value for this center pixel. Notice that the

boundary pixels and corner pixels (i.e., those that do not

have eight surrounding pixels) are simply ignored be-

cause they are relatively few in number. An example of

our algorithm is given below:

FIG. 2.Workflowof the cloud classificationmethod proposed by Liu et al. (2011). Values in parentheses represent the

dimension of features.
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As illustrated in Eq. (1), the census transform opera-

tion maps a 3 3 3 image patch to one of 256 cases, each

corresponding to a special local structure type. Such

a local transform relies only on pixel value comparison.

Therefore, it is robust to, for example, illumination

changes and gamma variations (Poynton 2003, 260–265).

Note that the census transform has the ability to capture

texture information because it is equivalent to the local

binary pattern code LBP8,1 (Ojala et al. 2002), which has

been widely used for texture image analysis and adopted

by Isosalo et al. (2007) for cloud texture measures.

Another important property is that the CT values of the

neighboring pixels are highly correlated; this constraint

makes the CT values capture not only local structure

information but also implicitly contain information de-

scribing global structures (Wu and Rehg 2011).

Because the sky images in our research are captured in

RGB color space—that is, pixels are described by three

values (red, blue, and green)—we require a method to

convert them into one or a group of grayscale images. In

previous research, Calb�o and Sabburg (2008) converted

an RGB image into a single grayscale image in two ways:

computing a red-to-blue components ratio (R/B) and

intensity values. However, color information is lost using

these two conversion methods. Heinle et al. (2010) parti-

tioned an RGB image into three grayscale images, each of

which contains only one component (R,G, or B).However,

the three components R, G, and B are highly dependent.

Thus, the RGB space is not an optimal choice. As a result,

we need a color transformation that can retain the full

color information.Moreover, the transformed components

should be as independent as possible. We investigated

several color transformations and their corresponding color

spaces and found that the opponent color space (van de

Weijer et al. 2005; van de Sande et al. 2010) performed best

for cloud classification (see experiments in section 3b). The

opponent color space is an orthonormal transformation

given by (excluding scaling factors) the following:

0
B@

O1

O2

O3

1
CA5

R2Gffiffiffi
2

p

R1G2 2Bffiffiffi
6

p

R1G1Bffiffiffi
3

p

0
BBBBBBBBB@

1
CCCCCCCCCA
. (2)

In opponent color space, the intensity information is

represented by componentO3 and the color information

by O1 and O2. We applied the census transform to each

component (i.e., O1, O2, and O3) and obtained three

corresponding census-transformed images, respectively,

by replacing a pixel with its CT value. The example in

Fig. 4 shows that the difference between components

becomes larger when converting RGB color space to

opponent color space. The census transform for each

component retains global structures of the picture (espe-

cially discontinuities) besides capturing the local struc-

tures and textures. Although the CCT is adopted for the

preprocessing stage, it can also be seen as part of feature

extraction. The following section describes how to encode

the global structures and form a feature vector.

b. Spatial representation

The goal of spatial representation is to encode rough

structure information from a sky image on a larger scale.

FIG. 3. Flowchart of our method. Values in parentheses represent the dimension of features.
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The structure information is related to physical size. In

other words, we should determine the spatial size of im-

age regions in which the structure information is repre-

sented. Here, we do not attempt to use a specific region

size and instead use a spatial pyramid strategy that con-

siders structure information from different region sizes.

A traditional spatial pyramid (Lazabnik et al. 2006;

Wu and Rehg 2011) divides an image into subregions of

different sizes and provides integrated correspondence

results in these regions. As shown in Fig. 5a, there are

four level splits in the spatial pyramid. Level l (l 5 1, 2,

3, 4) divides the image into l 3 l blocks, for example,

level 4 has 16 blocks; a total of 30 blocks are created.

However, the block shapes are rectangular with bound-

aries that are artificially specified. Therefore, errors may

occur when a homogeneous region is divided into two

adjacent blocks.

To overcome this limitation, we propose an automatic

block assignment method in which the blocks are not

rectangular regions and instead automatically computed

in accordance with the image content. Specifically, for

an image in opponent color space, O 5 [O1, O2, O3] at

level l, we first set center points for each l 3 l block

as p(ci, cj), i, j5 1, 2, . . . , l, where ci5 b(i2 0.5)N/l)c, cj5

b(j 2 0.5)M/l)c, and M and N denote the image size.

Then, every M 3 N pixels are assigned to a block with

the closest distance as shown:

argmin
i,j

akO(x, y)2p(ci, cj)k2

1 (12a)
l2

M3N
k(x, y)2 (ci, cj)k2 , (3)

where a is a parameter, which allows us to weigh the

relative importance between color similarity and spa-

tial proximity. When a is small, the spatial proximity

is more important and the resulting blocks are more

compact. In particular, when a 5 0, the result of (3) is

equivalent to the traditional spatial pyramid with rect-

angle blocks.Whena is large, the resulting blocks adhere

more tightly to cloud boundaries and have a less regular

size and shape. In our sky image set, a can be in the

range [0.02, 0.5].

Figures 5b and 5c show an example of two partitions

for the sky image shown in Fig. 4. Unlike the rectangular

block approach (Fig. 5b), the boundary computed us-

ing the automatic block assignment method (Fig. 5c) is

deformable, which can ensure that a relatively small

FIG. 4. Example opponent color space and corresponding census-transformed image. Values of opponent color space are adjust to an

integer range [0,255] to produce the 8-bit grayscale image.
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homogeneous region will not be divided into different

blocks. It should be noted that for some cloud types—

for example, stratus, altostratus, and clear sky—there

are no strong edges. Thus, the automatic block assign-

ment method will assign blocks similar to rectangles.

c. Feature vectors and SVM classifiers

A histogram of CT values will be counted for blocks

of a census-transformed image. Because the CT values

have an integer value in the range [0, 255], the dimension

of a counting histogram is 256. However, the histogram

bins are strongly correlated. As described in section 2a,

the census transform compares neighboring pixel values

to generate the CT values. Therefore, adjacent CT values

are dependent. In the classification task, it is important to

use independent features. Therefore, we utilize PCA to

reduce the dimensions to 40.

Because the CT values are based solely on pixel in-

tensity comparisons, it might be helpful to include a few

image statistics. Inspired by the previous studies of Calb�o

and Sabburg (2008) and Heinle et al. (2010), we use four

statistical features of pixels, including the average value,

standard deviation, skewness, and entropy, in a block of

opponent color images Ok. Then, we concatenate the

histograms of dimensionality reduction and four statistics

features in all blocks to form the final feature vector.

In our proposed approach, weuse a level 4 pyramid and

a total of 30 blocks (161 91 41 15 30) (see Fig. 5a) for

each opponent color channel. For each block, a histogram

of 40 dimensions and four statistics are computed. Thus,

in one opponent color channel, we have a feature of

(401 4)3 305 1320. Because the opponent color space

has three channels, the final feature vector has 13203 35
3960 dimensions for one sky image.

The classifier we used in our algorithms is the SVM

(Boser et al. 1992; Cortes and Vapnik 1995), which is

a powerful classifier that has achieved great success in

the field of pattern classification. The basic SVM is a

two-class classifier. For example, suppose a training set

has n dimensional feature vectors xi 2 Rn, and the cor-

responding label yi 2 f21,1g. Then, the SVM solves the

following optimization problem:

min
w,b,j

1

2
wTw1C �

l

i51

ji

subject to yi[w
Tf(xi)1 b]s12 ji,

jis0. (4)

where f(xi) maps xi into a higher dimensional space to

obtain the nonlinear classification and C . 0 is the pen-

alty parameter of the error term. Furthermore,K(xi, xj)[
f(xi)

Tf(xj) is defined as the kernel function. In our

method, we use the radial bases function (RBF) kernel,

that is, K(xi, xj) [ exp(2gjjxi 2 xjjj2), g . 0. The kernel

parameter and the penalty parameter are chosen by cross

validation on the training set.

Notice that the dimension of a feature vector is 3960,

and the kernel function maps the input feature vectors

into a higher dimensional feature space. Such a high di-

mensionality does not increase the difficulty for training

an effective SVMclassifier with a relatively small training

set because special properties of the decision surface

ensure the high generalization of the SVM (Cortes and

Vapnik 1995).

For multiclass classification, the one-against-one

strategy is used (Knerr et al. 1990). If K is the number of

classes, then K(K 2 1)/2 two-class classifiers are con-

structed, one for every possible pair of classes. The final

classification is made using voting strategy. In the fol-

lowing section, the LibSVM software package (Chang

and Lin 2011) was used throughout the experiments.

FIG. 5. Illustrations of spatial representation: (a) spatial pyramid splitting an image into four levels, (b) splitting the sky image with

rectangular blocks at level 4, and (c) splitting result of the automatic block assignment method at level 4.
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3. Experiments

In this section, we report experimental results based

on a number of sky images taken by a sky camera in

Beijing, China. The sky camera consists of an ordinary

charge-coupled device (CCD) and an auto iris lens; its

viewing angle is approximately 608. Images acquired by

the sky camera are stored in 8-bit color JPEG format

with a resolution of 3523 288 pixels. To cover the entire

sky, the camera is fixed on a pan-till platform and scans

the entire sky in horizontal intervals of 308 and vertical

intervals of 408. Controlled by a servo motor, the sky

camera can move fast and the time of capturing two ad-

jacent images is approximately 2 s. Therefore, informa-

tion on the entire sky is contained in an image sequence

of 28 images (see Fig. 6) with a time less than 1min. This

device is advantageous because unlike the WSI, TSI, or

ASI, which use a fish-eye lens, it can capture images

similar to a human eye—that is, without the so-called fish-

eye distortion. Another advantage is that the sun disk (if

it exists) only appears in a few images in a sequence; for

example, as shown in Fig. 6, only six images contain the

sun disk.

The sky images used in the experiment were acquired

fromAugust 2010 toMay 2011. A subset of these images

was selected with the help of Xiangang Wen, a meteo-

rological observer from the China Meteorological

Administration who has more than 10 years of sky ob-

servation experience. The selected images should be

of good quality and can be well recognized by visual

screening. If the image contains other objects or the sun

disk, then an image mask that sets all corresponding

pixel values to zero is used. After selecting a subset of sky

images, we need to label them to evaluate our proposed

approach. However, how to classify cloud types remains

an unresolved problem. Liu et al. (2011) argued that the

criteria developed by the WMO (1975) for classifying

different cloud types is unsuitable for automatic cloud

classification. Moreover, there is still no consensus on

defining different cloud types or sky conditions in recent

studies (Isosalo et al. 2007; Calb�o and Sabburg 2008;

Heinle et al. 2010; Liu et al. 2011). In this study, similar to

Heinle et al. (2010), we classified sky images into six

categories based on visual similarity: 1) cumulus (172

images); 2) cirrus and cirrostratus (241 images); 3) cir-

rocumulus and altocumulus (181 images); 4) clear sky

(195 images); 5) stratocumulus (262 images); and 6) stra-

tus and altostratus (180 images). Here, each selected im-

age (or sample) is a color image of 352 3 288 pixels,

similar to the RGB image in Fig. 4. In other words, we

selected only one or more representative images (i.e., not

all 28 images) of a whole-sky area. The minimum mean

intensity (darkness) of all selected images was 80. Notice

that the cumulonimbus, nimbostratus, and towering cu-

mulus classes were not included here due to a lack of

available data. Details on the characterization of each

cloud type can be found in Heinle et al. (2010).

A cloud classification experiment should be repeated

over 10 runs to obtain an average performance. For each

run, we chose a fixed number of training images at

random from each category, placing the remaining im-

ages in the testing set. For example, if the number of

training images is 5, then the number of testing images

is, for example, 167 for cumulus and 236 for cirrus and

cirrostratus. As mentioned before, the whole-sky area

contains 28 images. Therefore, images selected from the

same whole-sky area may be placed in both the training

and testing sets. However, adjacent images from the same

whole-sky area overlap in only a few parts (see Fig. 4).

Therefore, each image can be considered as a different

FIG. 6. Image sequence captured by our sky camera, which can cover the whole-sky area.
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sample. Additionally, multiple rounds of experiments

using randomly selected training samples can reduce

the impact of the specific samples when evaluating the

performance of the classification algorithms.

a. Comparison results of different methods

In this experiment, we performed a quantitative com-

parison of our proposed approach and five alternate

methods, including Isosalo et al. (2007), Calb�o and

Sabburg (2008), Heinle et al. (2010), Liu et al. (2011),

and the CT value–based method with rectangle blocks

(CTR). Because these previous approaches used differ-

ent classifiers that lead to incomparable classification

results, we only implemented the feature stage described

in their methods and adopt the SVM classifier with the

same training images in each run. Note that the Liu et al.

(2011) method was designed for infrared images (only

one channel). Therefore, we first converted our RGB im-

ages to grayscale images (more precisely, intensity images),

and then evaluated their method.

The classification results are shown in Fig. 7 and Table 1

(rows 1–6). As the number of training images increased,

the classification accuracy of all methods increased. How-

ever, our approach always outperformed the other

methods. After improving the rectangle block (in CTR)

with the adaptive boundaries (in ours), the mean classi-

fication accuracy increased, especially when the training

images were large (e.g., 40 or 80 training images). The

accuracy of the Liu et al. (2011) method was the lowest,

which indicates that the extracted structure features may

not work for visible images. The texture features of the

Isosalo et al. (2007) method, using only LBP (or census

transform), outperformed traditional texture features of

the Calb�o and Sabburg (2008) and Heinle et al. (2010)

methods. However, thesemethods were still less accurate

than our approach, and CTR, which improves the struc-

ture information on a larger scale, was helpful for cloud

classification.

The confusion matrix for our approach from one run

on 80 training images is shown in Fig. 8, where row and

column names are true and predicted labels, respectively.

The biggest confusion occurred between the cirrus and

cirrostratus class and the cumulus class. Moreover, the

cirrus and cirrostratus class had the lowest classification

accuracy. This is because cirrus and cirrostratus are thin

clouds with some of the internal fine structure that our

approach occasionally failed to extract discriminative

features in this situation. The cirrus and cirrostratus class

is notmisclassified as clear skymore frequently compared

to misclassification as cumulus because the clear sky

contains almost no texture or structure patterns. This

indicates that our algorithms have an ability to capture

information from thin cloud images. The next largest

error occurred when classifying stratocumulus. This is

FIG. 7. Comparison of different methods. Each point in the figure shows the mean and standard

deviation of the cloud classification accuracy (%).

86 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 31



because stratocumulus clouds are very complex, which

vary in color from dark gray to light gray and may ap-

pear as, for example, rounded masses or rolls. These

results suggest that we should increase the training data

to cover enough variations. Moreover, future studies

with more robust features are necessary.

To further analyze the classification results quantita-

tively, we utilized paired t tests. Here, we let X and Y

denote the classification accuracy of our approach and

one of the other methods, respectively. Then, we as-

sumed thatX andY have difference variances. Thus, the

t statistic to test whether the means X and Y are dif-

ferent can be calculated as follows:

t5
X2Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2X 1 s2Y

q . ffiffiffi
n

p ,

where sX and sY are the standard divisions of X and Y,

respectively; and n is the number of runs. For use in sig-

nificance testing, the distribution of the test statistic was

approximated as being an ordinary Student’s distribution

with the degrees of freedom (df) calculated using

df5 (n2 1)
(s2X 1 s2Y

i
)2

s4X 1 s4Y
i

.

Once a t statistic and the corresponding degrees of free-

dom were determined, a p value was found using a table

of values corresponding to the Student’s distribution. The

right-tailed test p values are shown in Table 2. In most

cases, except for CTR with 5 and 10 training images, the

p values are far below 0.01, which means that the mean

of our classification accuracy was higher than the other

methods at the 99% confidence level. However, when

5 and 10 training images were used, the p values are 0.131

and 0.057, respectively. Because these values are larger

than 0.05, our approach does not significantly improve

TABLE 1. Sky image classification results. Values represent the mean and standard deviation of the cloud classification accuracy (%).

Row 1 shows the results of our method; rows 2–6 show the results of different classification algorithms; rows 7–11 show the results of

different color spaces; rows 12–14 show the results of the k-NN classifier; and row 15 shows the results of the neural networks classifier. The

bolded values indicate the highest classification accuracy in each column.

Training images 5 10 20 40 80

Ours 45.2 6 3.6 53.5 6 2.8 66.2 6 2.1 74.7 6 1.0 79.8 6 1.2

CTR 43.4 6 3.5 51.3 6 3.0 63.5 6 2.1 71.7 6 1.2 76.9 6 1.3

Isosalo 39.8 6 3.1 47.7 6 4.8 58.3 6 2.1 66.5 6 1.3 72.2 6 1.0

Calbo 37.4 6 2.4 43.3 6 3.8 50.9 6 2.0 57.6 6 3.0 63.8 6 1.2

Heinle 34.4 6 2.3 37.7 6 3.1 44.9 6 1.9 51.5 6 1.5 56.8 6 1.6

Liu 29.0 6 2.5 30.6 6 2.0 33.8 6 1.5 38.1 6 1.1 41.1 6 1.9

RGB 44.5 6 2.9 52.2 6 2.6 64.9 6 1.9 72.2 6 1.3 77.6 6 1.3

HSV 45.6 6 3.8 52.6 6 3.9 64.9 6 2.1 72.4 6 1.1 77.4 6 1.4

Intensity 42.0 6 3.6 46.2 6 3.1 60.1 6 2.2 69.2 6 1.7 76.6 6 1.6

rgb 39.8 6 3.5 46.4 6 3.0 55.2 6 2.6 62.1 6 1.5 67.2 6 1.2

R/B 36.9 6 2.5 42.2 6 2.0 50.2 6 1.9 57.6 6 1.5 64.5 6 1.2

1-NN 43.7 6 2.8 50.1 6 1.8 60.0 6 2.2 67.8 6 1.9 73.6 6 1.7

3-NN 36.1 6 3.9 44.8 6 2.7 56.2 6 2.4 64.8 6 1.6 71.0 6 1.5

5-NN 33.1 6 2.5 42.3 6 2.4 53.8 6 2.3 63.5 6 1.4 70.4 6 1.7

Neural networks 34.5 6 1.9 43.2 6 1.9 49.2 6 1.3 55.3 6 1.7 60.0 6 1.3

FIG. 8. Confusion matrix for our approach from one run on 80

training images. Only rates higher than 0.1 are shown in the

figure.
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the CTR method. The primary reason is that when few

training images were used (e.g., 5 or 10), many different

in-class patterns were not included. Therefore, the

trained classifier was not reliable.

To evaluate our method for different cloud type se-

lections, we relabeled the sky images from six to nine

categories and compared the experiments. Specifically,

all of the categories that contain two cloud forms were

divided into two classes. For example, the cirrus and

cirrostratus class was relabeled as a cirrus class and a cir-

rostratus class separately.We used 40 training images per

category. The comparison results are shown in Fig. 9.

Although the average classification accuracy decreased to

64.1%, our method still outperformed the others in each

category. The remarkable difference in classification ac-

curacies comparing six categories (see Fig. 8) and nine

categories (see Fig. 9) is the large decrease in accuracy of

clear sky (from 95% to 72.8%). The main reason is the

difference of training images per category (80 vs 40). We

carefully observed the misclassified samples of clear sky

and found that the cirrus and the cirrostratus classes were

the two classes into which samples were most frequently

misclassified. For example, a total of 41 clear-sky samples

weremisclassified fromone run, inwhich 24 samples were

misclassified into cirrus and 10 samples were misclassified

into cirrostratus. This happened because sometimes un-

expected objects occurred in the image caused by the

camera, for example, lens flares (see Fig. 10, left) or pol-

luted lens (see Fig. 10, right). Since all compound cloud

classes in six categories were separated, some cloud clas-

ses contained a relatively small number of images, for

example, stratus and cirrocumulus. Thus, these two cloud

classes achieved the highest classification accuracies

shown in Fig. 9.

TABLE 2. The p values of paired t tests (right tailed), which were calculated between our approach and other existing methods.

Number of training images per category

5 10 20 40 80

CTR 0.13 0.06 4.2 3 1023 7.9 3 1026 2.9 3 1025

Isosalo 1.0 3 1023 2.6 3 1023 5.6 3 1028 4.4 3 10212 1.2 3 10211

Calbo 1.9 3 1025 1.6 3 1026 1.1 3 10212 1.1 3 1029 5.7 3 10217

Heinle 3.6 3 1027 3.1 3 10210 2.5 3 10215 1.5 3 10217 9.3 3 10218

Liu 1.5 3 1029 2.1 3 10213 5.6 3 10218 3.8 3 10224 2.0 3 10219

FIG. 9. Comparison of different methods on classifying nine cloud classes on 40 training images

per category.
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Notice that several observers would label the samples

differently when the number of cloud classes is large

(e.g., nine categories). Garand (1988) showed that the

agreement of experts on a 20-class scheme is of the order

of 75%. In that case, the experts only need to make

a binary decision (i.e., agree or disagree on the machine

labeling). Therefore, in the future studies, we should

explore how to combine visual features and physical char-

acteristics (e.g., height, fraction, albedo, and directionality).

This would give rise to more objective criteria for labeling

and classifying cloud samples.

b. Comparison results of different color space

We compared the performance of several color spaces,

including the opponent color space, RGB; normalized

RGB (rgb); and hue, saturation, and value (HSV). The

components r, g, and b of the normalized RGB color

space are defined as

0
@ r

g

b

1
A5

R

R1G1B

G

R1G1B

B

R1G1B

0
BBBBBBB@

1
CCCCCCCA
.

Moreover, the components h, s, and y of the HSV color

space can be computed as

h5
1

6
3

8>>>><
>>>>:

0, if max5min
(G2B)/(max2min), if max5R and G$B
(G2B)/(max2min)1 6, if max5R and G,B
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(R2G)/(max2min)1 4, if max5B
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12min/max, otherwise

, y5
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,

FIG. 10. Example images of (left) lens flares and (right) polluted

lens.

FIG. 11. Performance of different color space. Each point in the figure shows the mean and

standard deviation of the cloud classification accuracy (%).
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where max 5 Max(R,G,B) and min 5 Min(R,G,B).

In addition, we tested the grayscale space converted in

two ways: intensity (R 1 G 1 B)/3 and R/B. For sim-

plicity, the block regions used in the spatial represen-

tation step were the same for all methods, which were

calculated with the automatic block assignment method

in the opponent color space. The classification accura-

cies are shown in Fig. 11 and Table 1 (rows 1 and 7–11).

The opponent color space outperformed other color

spaces and the grayscale space. When the number of

training images was small (e.g., 5 or 10), the classification

accuracies for different color spacewere close and greatly

varied. With more training images, the performances of

the RGB and HSV color spaces remained close. How-

ever, both color spaces were better than the other color

spaces. It is surprising that the normalized RGB (rgb)

color space performed even worse than the intensity

space, which indicates that it is crucial to choose an ap-

propriate color space for the cloud classification task. The

red-to-blue ratio (R/B) space performed the worst, and

thus this space may not be a good candidate for cloud

classification.

c. Comparison results of different classifiers

Because the k-NN classifier has been widely used for

cloud classification (Peura et al. 1996; Singh and Glennen

2005; Isosalo et al. 2007; Heinle et al. 2010), we first

compared it with the SVM classifier. As suggested by

Heinle et al. (2010), the distance measure in the k-NN

classifier was the Manhattan distance, and the number of

considered neighbors—that is, the parameter k—was set

to 1, 3, and 5. The comparison of classification results is

shown in Fig. 12 and Table 1 (rows 1 and 12–14). For the

k-NN classifier, its performance decreased as k increased

in this case. However, even for k 5 1, the classification

accuracy of the k-NNapproach remained below the SVM

classifier. The reason for the decreasing performance as k

increased is related to the complexity of clouds. In the

feature space, cloud features that belong to the same

class cover a very complex and irregular area. Therefore,

neighbors of one sample that belong to different classes

are possible, which leads 1-NN performing the best.

We investigated another popular classifier, neural

networks (Singh and Glennen 2005), for comparison.

We used a three-layer feed-forward network with sig-

moid output neurons. The number of nodes in the input

layer was 3960 (the same as the feature dimension), 6 in

the output layer (the same as the number of cloud types),

and 120 in the hidden layer. The classification results

are shown in Fig. 12 and Table 1 (last row). The accu-

racy of the neural network classifier was significantly

lower than that of the SVM and k-NN, and achieved

only 60% accuracy for 80 training images per category.

A possible reason is that neural networks are susceptible

to getting stuck in local minima for the high dimension

of features.

FIG. 12. Performance with different classifiers: SVM, k-NN, and neural networks. Each point in

the figure shows the mean and standard deviation of the cloud classification accuracy (%).
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4. Conclusions

In this paper, we proposed a cloud classification ap-

proach for ground-based sky images. On the basis of

previous studies, we believe that clouds contain both

texture and rough structure information. To capture tex-

ture and local structure information, we proposed a color

census transform (CCT) operation that first converts RGB

color space into opponent color space and applies census

transform to each color component. To capture global

rough structure information more precisely, we proposed

an automatic block assignment method. The experiment

results showed that our approach outperforms existing

cloud classification methods.

In addition, we tested different color spaces and de-

termined that the opponent color space was the optimal

choice for cloud classification of color sky images. We

also compared different classifiers and the experimental

results showed that our SVMclassifier outperformed the

k-NN and neural networks.

Our approach occasionally confused cirrus and cirro-

stratus with cumulus.Hierarchical classification processes

or more robust features could be adopted in future work

to better represent these cloud types. Moreover, the

misclassification of stratocumulus could be reduced by

increasing the number of training samples to cover more

patterns. In the future, we will explore some modern pat-

tern classification techniques—for example, a bag ofwords

model (Wu et al. 2009) and random forest (Breiman

2001)—to classify the cloud types more effectively.

The experimental results showed that our approach

can distinguish different cloud types from ground-based

images, which are captured during daytime and have good

quality to be easily recognized by human observers. At

night and in low-visibility situations (e.g., rain, snow, fog,

and haze), the sky images captured from ground-based

devices will have poor quality (i.e., blurred, low contrast,

and noisy) so that even an experienced observer cannot

recognize cloud information from it. Therefore, in future

work, some specific image enhancement algorithms—for

example, the preprocessing stage for the classification

method—must be studied.
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