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Abstract. Threshold Implementation (TI) is an elegant and promising
lightweight countermeasure for hardware implementations to resist first
order Differential Power Analysis (DPA) in the presence of glitches. Un-
fortunately, in its most efficient version with only three shares, it can
only be applied to 50% of all 4-bit S-boxes so far. In this paper, we in-
troduce a new approach, called factorization, that enables us to protect
all 4-bit S-boxes with a 3-share TI. This allows—for the first time—to
protect numerous important ciphers to which the 3-share TI counter-
measure was previously not applicable, such as CLEFIA, DES, DESL,
GOST, HUMMINGBIRD1, HUMMINGBIRD2, LUCIFER, mCrypton,
SERPENT, TWINE, TWOFISH among others. We verify the security
and correctness with experiments on simulations and real world power
traces and finally provide exemplary decompositions of all those S-boxes.

1 Introduction

In 1996, Paul Kocher [13] showed that although a cryptographic algorithm is
theoretically secure, when implemented on ordinary digital circuits, the physical
side-effect observed during the processing of the algorithm, such as the timing,
power [14], or electromagnetic emanation [10], could potentially leak information
if properly analyzed. Though the existence of these so-called side-channels have
been known since 1943 [23], Kocher’s work marks the beginning of the (public)
research in the field of side-channel analysis, and powerful attacks, such as Simple
Power Analysis (SPA) [14], Differential Power Analysis (DPA) [14], Correlation
Power Analysis (CPA) [6], and Mutual Information Analysis (MIA) [11] have
been developed since. At the same time ever more sophisticated countermeasures
have been proposed. Most countermeasures aim at decreasing the signal-to-noise
ratio (SNR) [17] by balancing the leakage, that is hiding the information pro-
cessed [27] and/or breaking the link between the processed data and the secret,
which is called masking [7]. However, in [18,19] it was shown that masking is
still vulnerable to DPA due to the presence of glitches in hardware implementa-
tions. For that reason, a secret-sharing based countermeasure called Threshold
Implementation (TI) [24] was proposed in 2006, that is provably secure against
first-order DPA even in the presence of glitches. A few follow-up papers have
discussed mostly applications to 4-bit S-boxes [24,26,25,5] and implementations
of TI have been reported for PRESENT [28], AES [20] and KECCAK [3,2].
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In its most resource-efficient form the TI countermeasure needs only 3 shares,
which implies the function that is to be shared can have at most an algebraic
degree of 2. In order to apply a 3-share TI to a function with a larger degree
(4-bit S-boxes typically have a degree of 3), this function, for minimal area re-
quirements,1 should be represented as a composition of quadratic functions [28].
According to [28,25] there are two stages in applying the 3-share TI: the de-
composition stage, during which a given S-box is decomposed into quadratic
permutations, and the sharing stage, during which all those quadratic permu-
tations are shared into 3 shares in a way that we obtain 12-bit permutations.
According to [5], all 4-bit S-boxes that can be protected by a 3-share TI using
the sequential structure, belong to the alternating group A16 of the symmetric
group S16. This result implies that we cannot apply a 3-share TI to those 50%
of all 4-bit S-boxes which do not belong to A16.

Our main contribution is the introduction of the factorization structure which
is an extension of the sequential structure. This idea allows to decompose any
4-bit S-box into quadratic vectorial Boolean functions and, hence, enables to
protect any given 4-bit S-box with the TI countermeasure using only 3 shares.

To support our claims we show how to apply the 3-share TI to SERPENT
and many other 4-bit S-boxes, what, up to now, was believed to be not possible.

The remainder of this article is organized as follows. In Section 2, we recall the
basics of the Threshold Implementation countermeasure. Then we will discuss
how to decompose any 4-bit S-box into quadratic decompositions, i.e., studying
the decomposition stage in Section 3. Subsequently, we show how to share each
quadratic decomposition in a way that the uniformity property is fulfilled, i.e.,
being a 12-bit permutation, in Section 4. We verify our claims by successfully
applying the 3-share TI countermeasure to the S-box S5 of SERPENT, which
does not belong to A16. Our experimental results, provided in Section 5, verify
that the protected S5 implementation is secure against first-order DPA attacks.
The paper is concluded in Section 6 and in the appendix we list 3-share TIs for
S-boxes and important permutations which are not in A16, and thus, previously
could not have been protected by 3-share TIs.

2 Threshold Implementation

In this section we recall the preliminaries of the Threshold Implementation coun-
termeasure and the results of [28] describing a 3-share TI of PRESENT.

2.1 Threshold Implementation Countermeasure

In [24], the Threshold Implementation (TI) was introduced as a side-channel
analysis countermeasure. It is based on secret sharing and multi-party computa-
tion and provably secure against first order DPA, even in the presence of glitches.
Let denote by small characters x, y, ... stochastic variables and by capitals X,
Y , ... samples of these variables. The probability that x takes the value X is
denoted by Pr(x = X). The variable x is divided into s shares xi, 1 ≤ i ≤ s,
such that x =

⊕s
i=1 xi. Denote x̄=(x1, . . ., xi−1, xi, xi+1, . . ., xs), x̄i=(x1, . . .,

1 See Section 5 for our detailed line of argumentation.
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xi−1, xi+1, . . ., xs) (or the vector x̄i does not contain the share xi) and denote
by Pr(x̄ = X̄|x = X) the conditional probability of an event that x̄ = X̄ under
condition x = X. The method can be described as follows. Let F(x, y, z, . . . )
be a vectorial Boolean function which needs to be shared. A sharing of F is a
set of s functions Fi which it must fulfill the following properties:

1. Non-completeness: All functions Fi must be independent of at least one
share of the input variables x, y, z, . . . This can be translated to Fi should
be independent of xi, yi, zi, . . . , i.e., the inputs of Fi does not have xi, yi,
zi, . . . or Fi= Fi(x̄i, ȳi, z̄i, . . .).

2. Correctness: F(x, y, z, . . . ) =
⊕s

i=1 Fi(x̄i, ȳi, z̄i, . . . ).

According to Theorems 2 and 3 of [24,26,25], if the inputs satisfy the following
condition

Pr(x̄ = X̄, ȳ = Ȳ , . . .) = q × Pr(x =

s⊕

i

Xi, y =

s⊕

i

Yi, . . .), (1)

where q is a constant or Pr(x̄ = X̄, ȳ = Ȳ , . . . |x =
⊕s

i Xi, y =
⊕s

i Yi, . . .) is
a constant, then the sharing of F can resist first order DPA even in the presence
of glitches.

In general, F is a round function (or a nonlinear function) and its output
is the input of next round (or of next nonlinear function). Hence, the following
property for the output of F is required in order to make the cipher resistant
against first order DPA in the presence of glitches. Assume that (u, v, . . . , w) =
F (x, y, . . . , z) and u =

⊕s
i=1 ui, ū = (u1, u2, . . . , us), . . ., w =

⊕s
i=1 wi, w̄ =

(w1, w2, . . . , ws), then the third property is defined as follows:

3. Uniformity: A shared version of (u, v, . . . , w) = F (x, y, . . . , z) is uniform,
if Pr(ū = Ū , . . . , w̄ = W̄ )=q × Pr(u =

⊕s
i Ui, . . . , w =

⊕s
i Wi) where q

is a constant or Pr(ū = Ū , . . . , w̄ = W̄ |u =
⊕s

i Ui, . . . , w =
⊕s

i Wi) is a
constant.

If the function u = F (x) is invertible, then every vector ū is reached for
exactly one input vector x̄. In this paper, the function F is a 4-bit S-box which
is a 4-bit permutation. Hence, its 3-share TI is required to be 12-bit permutation.

All 4-bit permutations constitute the symmetric group S16 [12]. The identity
permutation is an even permutation. An even permutation can be obtained as
the composition of an even number and only an even number of exchanges (called
transpositions) of two elements, while an odd permutation can be obtained by
(only) an odd number of transpositions [12]. All 4-bit even permutations in S16

constitute a subgroup which is called the alternating group A16. Let B16 be the
set of all 4-bit odd permutations or B16=S16 \A16.

Assume that the degree of F is d, then the number of shares s required is
computed as follows:

Theorem 1. [25] The minimum number of shares required to implement a prod-
uct of d variables satisfying Property 1 and 2 is given by

s ≥ 1 + d.
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Since the minimum degree of a nonlinear vectorial Boolean function is 2,
the number of shares s is at least 3. The more shares are needed, the bigger
the hardware implementation. Therefore, a 3-share TI is the most efficient—and
thus, most desirably–case.

2.2 3-share TI for cubic 4-bit S-boxes

In this section we revisit the results of [28] describing a 3-share TI of PRESENT.
Since the PRESENT S-box S(·) is a cubic 4-bit permutation, the minimum
number of shares is 4 [25]. To apply 3-share TI, the S-box is decomposed into two
quadratic permutations S(·) = F (G(·)) as shown in Figure 1, i.e., transforming
it into a sequential structure.

S
4 4

G
4 4

F
4

G3

G2

G1

4

4

4

4

4

4

y3

y2

y1

F1

F2

F3

4

4

4

4

4

4

Fig. 1. Composition of the PRESENT S-box [28].

According to [28,25] there are two stages in applying 3-share TI to a 4-bit
S-box when using a sequential structure:

1. Decomposition: Finding the decompositions of a given S-box, which are
required to be quadratic permutations.

2. Sharing: Constructing the 3-share TIs for those quadratic permutations.
Their shared versions should fulfill all three requirements, most importantly
uniformity, i.e., the shared versions must be 12-bit permutations.

Note 1. In the sharing stage, constructing a 3-share TI satisfying non-completeness
property and correctness property to any 4-bit at most quadratic permutation is
not difficult. Unfortunately it does not guarantee that its 3-share TI is a 12-bit
permutation, i.e., it is not guaranteed that the uniformity property is satisfied.
For that purpose, the so-called remasking technique [25] may be applied, which
remasks the input(s) of next round or the input(s) of the next function with
fresh (and uniformly distributed) random bits.

In this paper, we discuss how to decompose an arbitrary 4-bit S-box first
(decomposition stage), before we show how to obtain its 3-share TIs of decom-
positions which are 12-bit permutations. It means that these 3-share TIs satisfy
the uniformity without using the remasking method, which is a significant ad-
vantage, as the generation of random bits suitable for cryptographic masking
can be very expensive on embedded devices.
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Note 2. In order to apply 3-share TI to any arbitrary 4-bit S-box, we have
to extend the decomposition and the sharing stages. Those extensions yield the
factorization structure, our main contribution in this article. We will detail these
extensions in Section 3.2.

3 The Decomposition Stage

In this section we investigate the decomposability of 4-bit S-boxes. In Section 3.1,
we will recall the results from [5]. If a 4-bit S-box can be decomposed in a
sequential structure then it must belong to the alternating group A16. In order
to apply a 3-share TI to the remaining 50% of 4-bit S-boxes which are in B16,
we extend the sequential structure by using our new idea: Factorization, which
yields the factorization structure. Our contribution allows to decompose any
4-bit S-box.

3.1 Decomposition of 4-bit S-boxes using a Sequential Structure

Assume that S(·)= F (. . . G( H(·))) and if S is a permutation then all its
decompositions H, G, . . ., F have to be permutations as well. Hence, if S is a
4-bit permutation then H, G, . . ., F are also 4-bit permutations. We recall the
following important result about permutations in S16.

Theorem 2. [5] If a permutation F (·) is a composition of quadratic permuta-
tions, then F (·) is in A16.

However, 50% of all 4-bit S-boxes are not decomposable using a sequential
structure, i.e., all those S-boxes belong to B16. Hence, there is no method known
so far on how to apply 3-share TIs to those S-boxes. We now introduce a new
methodology to solve this open problem.

3.2 Decomposition of 4-bit S-boxes using a Factorization Structure

We start with a very simple example, i.e., decomposing a cubic term. The Al-
gebraic Normal Form (ANF) of a cubic 4-bit S-box contains at least one cubic
term. Without loss of generality, we first assume that the ANF contains only
one cubic term T (w, z, y, x)= (d, c, b, a)=(xyz, 0, 0, 0). The input bits of T are
x, y, z, w and the output bits of T are a, b, c, d. The left most bit represents the
most significant bit and the right most bit represents the least significant bit,
respectively. The ANF of T is:

d = xyz

c = 0

b = 0

a = 0.

We can also write T as follows:

T (·) = F (G(·))⊕ V (·),
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where F , G and V are the following quadratic vectorial Boolean functions:

G :

d = xy ⊕ w

c = z

b = y

a = x.

F :

d = zw

c = 0

b = 0

a = 0.

V :

d = zw

c = 0

b = 0

a = 0.

As one can see, using this approach, it is possible to represent a cubic term
of an ANF by a set of quadratic vectorial Boolean functions. By applying this
approach term-by-term, it is possible to decompose any cubic vectorial Boolean
function, including odd permutations. This observation results in the following
theorem

Theorem 3. For any given 4-bit S-box S we can always find a set of quadratic
vectorial Boolean functions Fi, Gi, 1 ≤ i ≤ n, and V such that:

S(·) =

n⊕

i=1

Fi(Gi(·))⊕ V (·).

We call the format above factorization structure and we summarize the idea for
the decomposition stage in Figure 2.

In order to make our idea clear, we provide another example, the 4-bit odd
permutation M=[0, 1, 2, 3, 4, 5, 6, 15, 8, 9, 10, 11, 12, 13, 14, 7]. Its ANF is:

d = w ⊕ xyz

c = z

b = y

a = x.

Please note that the example above is only one out of many choices for M .
We chose M for its simplicity and implementation efficiency. The permutation
M can be factorized as follows:

M(·) = M2(M1(·))⊕M3(·).

Where the ANFs of M1, M2, and M3 are:

M1 :

d = xy ⊕ w

c = z

b = y

a = x.

M2 :

d = zw

c = 0

b = 0

a = 0.

M3 :

d = zw ⊕ w

c = z

b = y

a = x.
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S A16

V

G1 F1

Gn Fn

No F1, G1, . . . , Fn, Gn, V : S() =
⊕n

i=1 Fi(Gi())
⊕

V ()

H G F
Yes

Factorization structure

Sequential structure

F,G, . . . , H : S() = F (G(H()))

Fig. 2. Flowchart of the decomposition stage for a given 4-bit S-box.

3.3 Decomposition of 4-bit S-boxes using a Hybrid Structure

We will discuss the sharing stage in Section 4 where we ensure that the 3-
share TI of a 4-bit S-box is a 12-bit permutation, i.e., the 3-share TI fulfills the
uniformity property. Please note that the sharing stage for sequential structures
is not complicated, and we will show how to solve this problem in Section 4.1.

Sharing a factorization structure, however, without using the remasking method
to fulfill the uniformity is a challenge, and it is extremely difficult for 4-bit S-
boxes which have many cubic terms. In order to make the workload in the sharing
stage easier, we propose the following approach:

1. If a given S-box S is in A16 (S is an even permutation) then we use the
method in Section 4.1.

2. If a given S-box S is in B16 (S is an odd permutation) then:
(a) Construct a 4-bit odd permutation M that can be shared into a 12-bit

permutation, for example M=[0, 1, 2, 3, 4, 5, 6, 15, 8, 9, 10, 11, 12, 13,
14, 7]. This permutation is decomposed by using a factorization structure
and it can be ensured that its 3-share TI is a 12-bit permutation, i.e.,
permutation M satisfies uniformity. This will be shown in Section 4.2.

(b) Since M and S are odd permutations, the permutation S
′

such that
S(·) = M(S

′
(·)) is an even permutation, i.e., S

′
is in A16 [12]. Then we

apply the result in Section 4.1 to share the decompositions of S
′
.

Actually, the method above is a hybrid structure between a sequential struc-
ture and a factorization structure. This hybrid structure is very useful, because
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it can help us to fulfill the uniformity property without using remasking, thus
we will work with the hybrid structure instead of a plain factorization structure.
Figure 3 depicts the hybrid structure.

M3

M1 M2

H G F

Factorization structure

Sequential structure

F,G, . . . , H,M : S() = M(S
′
()) = M(F (. . . G(H())))

M

S
′

S

Fig. 3. Hybrid Structure.

So far, we already presented how to decompose a given 4-bit S-box. If the
given S-box is in A16 we use a sequential structure, otherwise we use a hybrid
structure which is a mixture of a sequential and a factorization structure.

Now that the decomposition stage is done, we can move on to the sharing
stage, which will be treated in the next section. It is interesting to see how
to construct the 3-share TIs of these decompositions such that they are 12-
bit permutations, i.e., they fulfill the uniformity property without using the
remasking method.

3.4 Application to important S-boxes in B16

In the appendix we list decompositions of S-boxes in B16, that are used by the
following algorithms: CLEFIA [32], DES [22], DESL [15], GOST [35], HUM-
MINGBIRD1 [9], HUMMINGBIRD2 [8], LUCIFER [33], mCrypton [16], SER-
PENT [4], TWINE [34], TWOFISH [31], and the Inversion (x−1) function in
GF (24) which is used in mCrypton [16] or in [20]. Previously, all of these algo-
rithms could not have been protected by a 3-share TI.

4 The Sharing Stage

In this section, we discuss how to make 3-share TIs of decompositions of a
given 4-bit S-box being 12-bit permutations. Since the given S-box can belong
to A16 or B16, we have two structures: a sequential structure, which is treated in
Section 4.1, and a hybrid structure, which is composed of a sequential structure
and a factorization structure. Consequently, in Section 4.2 we will treat the
factorization structure, and we will also discuss its security, i.e., why it resists
first order DPA in the presence of glitches and why it satisfies uniformity.
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4.1 Sharing Stage using a Sequential Structure

In this subsection, we discuss how to share the decompositions of a given S-box S
in A16. We adopt the sharing in [24,25,28]. For a given function F (w, z, y, x) and
inputs x, y, z, w, they are split into 3 shares F1, F2, F3, x1, . . ., w3. For monomials
involving two indices, it is obvious which Fi to place them in. For example, we
must place monomials y1w2 and z2w1 in F3. For monomials involving just one
index, e.g., x1 or y2w2, we adopt the convention that terms with index 1 (resp. 2,
3) are placed in F3 (resp. F1, F2). The constant term is placed in F1. In [5], this
approach is called direct sharing. For example a given Boolean function f=xy
⊕ z ⊕ 1 then the 3-share TI by using the direct sharing is as follows:

f1 = z2 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2 ⊕ 1

f2 = z3 ⊕ x3y3 ⊕ x1y3 ⊕ x3y1

f3 = z1 ⊕ x1y1 ⊕ x1y2 ⊕ x2y1

According to [5], all 4-bit permutations in A16 can be decomposed by using
a sequential structure and their 3-share TIs satisfy uniformity by simply using
direct sharing.

4.2 Sharing Stage using a Factorization Structure

The sharing stage for S-boxes in B16 is detailed here. As we have already pointed
out, it is better to use a hybrid structure to decompose an S-box in B16. In
the previous section, based on [5], we already saw that all 3-share TIs of 4-bit
permutations in A16 can be made being 12-bit permutations by using direct
sharing. Hence, we only focus on the 3-share TI of M , i.e., the 3-share TIs of the
quadratic vectorial Boolean functions M1, M2, M3. Let denote Ms, Ms1 , Ms2 ,
Ms3 as 3-share TIs of M , M1, M2, M3, respectively.

The ANF of the 12-bit Ms1 of M1 is:

d1 = w2 ⊕ y2x2 ⊕ y2x3 ⊕ y3x2

d2 = w3 ⊕ y3x3 ⊕ y1x3 ⊕ y3x1

d3 = w1 ⊕ y1x1 ⊕ y1x2 ⊕ y2x1

c1 = z2

c2 = z3

c3 = z1

b1 = y2

b2 = y3

b3 = y1

a1 = x2

a2 = x3

a3 = x1.
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The ANF of the 12-bit Ms2 of M2 is:

d1 = z2w2 ⊕ z2w3 ⊕ z3w2

d2 = z3w3 ⊕ z1w3 ⊕ z3w1

d3 = z1w1 ⊕ z1w2 ⊕ z2w1

c1 = 0

c2 = 0

c3 = 0

b1 = 0

b2 = 0

b3 = 0

a1 = 0

a2 = 0

a3 = 0.

The ANF of the 12-bit Ms3 of M3 is:

d1 = w2 ⊕ z3w3 ⊕ z2w3 ⊕ z3w2

d2 = w3 ⊕ z1w1 ⊕ z1w3 ⊕ z3w1

d3 = w1 ⊕ z2w2 ⊕ z1w2 ⊕ z2w1

c1 = z2

c2 = z3

c3 = z1

b1 = y2

b2 = y3

b3 = y1

a1 = x2

a2 = x3

a3 = x1.

Then Ms = Ms2(Ms1(·))⊕Ms3(·) is a 12-bit permutation and thus M fulfills
uniformity. Note that all the sharings of all decompositions of M are found by
hand due to the simplicity of their ANF.

Note 3. Studying Figure 3 allows to observe the following:

1. Among three quadratic vectorial Boolean functions M1, M2, M3, only M1

is a 4-bit permutation and Ms1 is a 12-bit permutation. Hence, M1 satisfies
the uniformity property.

2. It is obvious that Ms2 and Ms3 do not fulfill the uniformity property. How-
ever, both functions are not required to satisfy uniformity, only their XOR
sum has to (as this will potentially be the input to a subsequently shared
function). Instead both functions Ms2 and Ms3 only need to satisfy non-
completeness and correctness, and their inputs need to fulfill Equation 1, in
order to resist first order DPA in the presence of glitches (Theorems 2 and
3 in [24,26,25]).
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3. The output of Ms is the result of XORing the outputs of Ms2 and Ms3 .
Since an XOR is a linear operation (i.e., having degree 1), only outputs from
the same share are combined together. This means, this operation is first
order DPA resistant in the presence of glitches, as potential leakage will only
depend on a single share, but information of all three shares are required for
a successful DPA.

4. Since M is in B16 and Ms is a 12-bit permutation, the 3-share TI of M
satisfies uniformity. It means our proposed hybrid structure is secure.

5. We will present experimental results for supporting our theoretical argu-
ments about the security of our proposed structure in the next section.

5 Experiments

To verify the correctness and security of our new scheme we decomposed and
shared the SERPENT S-box S5 as described in the previous sections. The de-
composition formulas for all stages can be found in the Appendix. We ensured
that every stage of the shared S-box fulfills all requirements given in [24], espe-
cially the uniformity property. It should also be noted that a register has to be
inserted in between every decomposition stage. Figure 5 shows a schematic of
the hardware implementation.

First, several attacks were mounted on noise-free simulated power traces (as-
suming a HW leakage), i.e., CPA attacks on all (intermediate) registers. Neither
of the attacks revealed the correct key hypothesis, hence supporting our claims.
For testing purposes we also attacked a non-uniform implementation of S5, i.e.,
M3 was varied such that the XOR-output is not uniform. Here, a CPA attack
on the output register was successful, proving (again) the importance of the
uniformity property.

Next, we implemented the (uniform) shared S-box as shown in Figure 5 on
an FPGA, i.e., a SASEBO-GII. To synthesize the design we used Xilinx ISE
Webpack 13.3. The FPGA hosting the S-box ran at 2 MHz derived from the 24
MHz on-board oscillator. 20,000,000 measurements were taken at 1.25 GS/s (625
samples per clock cycle) and a CPA was performed, using the Hamming distance
between the outputs of two consecutive S-box lookups as the attack model.
Furthermore, we mounted a correlation-enhanced collision attack [21] to test the
resistance against glitches, as failing attacks on registers do not necessarily prove
the security of a scheme [19]. Figure 4 shows the results of both attacks. The
first clock edge is at sample 125. One S-box computation takes four clock cycles,
thus the computation is finished at sample 2625. As we can see, in neither of
both attacks does the correct hypothesis yield the highest correlation.

Efficiency of 3-share TI for 4-bit Sboxes based on hybrid structure:
One of important factors in masking countermeasure is randomness. Gen-

erating a random number used for cryptographic purpose is very expensive in
terms of time and power consumption because at least one full encryption of
a cipher should be processed (hash function, block cipher, ...)[1,30]. Therefore,
the number of random numbers used should be as small as possible in crypto
system. In lightweight crypto designs the serialized implementation and 4-bit S-
boxes are preferred due to their hardware compactness. [5] has provided 3-share
TIs of all 4-bit S-boxes in A16 and 4- and 5-share TIs for the other in B16. Some
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(a) CPA results attacking the SERPENT S-box S5. (b) Correlation-enhanced collision attack

Fig. 4. Attack Results

of the 4- and 5-share TIs require less area than the corresponding 3-share TI
with hybrid structure. Thus, the authors concluded that a 3-share realization
may not be the optimal case in terms of hardware. However, it should be noted
that all shares need to be maintained (i.e. stored) throughout the whole encryp-
tion process. In a lightweight setting, i.e. serialized implementation, the S-box
layer contributes only 15% to the whole area [28], while the registers take the
lion’s share. Thus any reduction of the number of shares will reduce the overall
gate count significantly at the potential cost of a slightly larger S-box. Hence, in
all cases (with or without using remasking method) a 3-share TI is much more
efficient than 4- and 5-share TI in terms of hardware and randomness (or time
and power consumption).

It is well-known that the number of shares can be reduced to 2 for the lin-
ear layer to reduce the storage overhead for the shares. However, this approach
requires extensive use of fresh randomness which is an expensive resource espe-
cially in embedded systems for the remasking step. The more shares are used
in the non-linear part, the more randomness is required. Thus this approach
nullifies the elegance of TI as a lightweight DPA countermeasure (only needing
randomness once in the beginning), and consequently it is convinced the 3-share
case is the most optimal in all aspects.

6 Conclusion

Threshold Implementation (TI) [24] is an elegant and promising lightweight
countermeasure for hardware implementations to resist first order Differential
Power Analysis (DPA) in the presence of glitches. The most challenging part in
applying TI to ciphers are the non-linear functions, e.g., the S-boxes for block
ciphers. To implement TI in its most efficient version, namely with only three
shares, the functions to be shared have to have a degree smaller than three. For
50% of all S-boxes this requirement can be fulfilled by decomposing an S-box of
degree three to several functions with a smaller degree [28,5]. After decomposi-
tion, the quadratic and linear functions can now be split into three shares.

Unfortunately, for the other 50% of the S-boxes, said method can not be
applied. Therefore, we introduced the factorization structure which enables us
to decompose those functions of degree three, which previously were deemed
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to be not decomposable, to several quadratic and linear functions. It should
be noted that the shared version of a function has to fulfill certain properties
to be secure, namely correctness, non-completeness and uniformity. Using the
factorization structure exacerbates fulfilling those requirements; especially the
uniformity property is a very challenging task. Therefore, we introduced the hy-
brid structure combining the previous method and our factorization structure,
enabling us to decompose cubic functions into quadratic and linear functions
which subsequently can be easily shared and simultaneously fulfill all require-
ments of TI.
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A Appendix: 3-share TIs of S-boxes in B16

In this section, we present the 3-share TIs of some S-boxes or important per-
mutations which are in B16 by using a hybrid structure. All examples use the
odd permutation M=[0, 1, 2, 3, 4, 5, 6, 15, 8, 9, 10, 11, 12, 13, 14, 7] which is
also used in previous sections. Recall, that M can be any odd permutation of
which the shared version is a 12-bit permutation, i.e., satisfying the uniformity
property without using remasking.

M3

M1 M2

M = 0123456f89abcde7

G G F

type 1: S() = M(F (G(G())))S

Mb b b b b

b

b

b

G F

type 2: S() = M(F (G()))S

Mb b b b

b Register

b

Fig. 5. Decompositions of S-boxes.

For the sake of convenience, a given permutation is described in hexadecimal
representation. For example, if a permutation F=[15, 5, 6, 14, 13, 7, 2, 10, 8, 0,
11, 1, 12, 4, 9, b], then F is written as follows: F=f56ed72a80b1c493. All S-boxes
in this section can be found in [29,5] or from their respective specifications.

All S-boxes below belong to B16 and they can be decomposed in two different
ways (see Figure 5):

– type 1: S(·)=M(F (G(G(·))))
– type 2: S(·)=M(F (G(·)))

In fact nearly all S-boxes belong to type 1 and only two S-boxes (iS4 of
HUMMINGBIRD2 and S5 of SERPENT) belong to type 2. The 3-share TIs of
all F and G by using direct sharing are 12-bit permutations.

CLEFIA [32]

1. SS0: F=e6ca89d24b10537f, G=021346fda89bce57;
2. SS1: F=6f29a5e3781cd4b0, G=053f8db72694ae1c;
3. SS2: F=b56e7302da981cf4, G=094c187f2b6e3a5d;
4. SS3: F=a6d295c37bf048e1, G=02319b8a57ec46df;
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DES [22] Actually, the i − th DES S-box (DESi) contains a set of four 4-bit
S-boxes. Notation DESij means the j − th row (i.e., 4-bit S-box) of the i − th
DES S-box.

1. DES20: F=f986bda42c710e35, G=4c28a0f7d539b16e;

2. DES21: F=acd1265b97403fe8, G=1c593a7f0d482b6e;

3. DES22: F=d3f0c481b596a2e7, G=9d26a78503cf4e1b;

4. DES23: F=dc8b37421f6a5e09, G=0b1a46579382decf;

5. DES30: F=d69e75a410f2b3c8, G=168c079d24be35af;

6. DES31: F=803a46ed952f17bc, G=17069a8b5243dfce;

7. DES32: F=df47ae50b921c836, G=0d861c972ea53fb4;

8. DES33: F=9716fac0b8e4d532, G=fb647ec318a59d02;

9. DES40: F=fd3402cb75168ae9, G=419b03c8de62fa57;

10. DES41: F=3edf68ba70c41592, G=125ac68e9bd34f07;

11. DES42: F=abc4fd928375e610, G=094b6a285d1f3e7c;

12. DES43: F=36dea581b2f047c9, G=02d64f135e8a9bc7;

13. DES50: F=28fc1b569a7d304e, G=0e1f869725bcad34;

14. DES60: F=792bd3c54a81e06f, G=4e396f18a0d7c5b2;

15. DES63: F=48ac537b2e9f601d, G=0a7c1e68295f3d4b;

16. DES70: F=6b3d719c2e5a8f40, G=21e74da903c56f8b;

17. DES71: F=68f143bc970ead52, G=be364f290c1d57a8;

18. DES72: F=abd4c93e671805f2, G=1a084e5c293b7d6f;

19. DES80: F=d572c908143be6af, G=0eb4962c1da7853f;

20. DES81: F=fd963b2745c01ae8, G=1c0d3a2b59487f6e;

21. DES82: F=fa41e5830b6d72c9, G=048c9d152f6b3e7a;

DESL [15]

1. Row0: F=e6a3d4197f2b5c80, G=091d7f6b5c482a3e;

2. Row1: F=51ebc9378d6204af, G=02cf1b5e93d68a47;

3. Row2: F=15dbef74c2a63809, G=17ad358f269c04be;

4. Row3: F=dae51379f80b64c2, G=af53269e8d7104bc;

GOST [35]

1. k3: F=52840cadb79e613f, G=063d1f24acb5978e;

2. k4: F=f93457dec1a62b08, G=0e7d1b4a2c5f3968;

3. k7: F=d7954f6b2c08e1a3, G=0a6f384c1b7e295d;

4. k8: F=5b79d3f104ae62c8, G=179fda52e46cb038;

HUMMINGBIRD1 [9]

1. S0: F=82f7e639c40ab1d5, G=0f1e9687bd24ac35;

2. S1: F=063b7f42d1eca895, G=0f861e97ad24bc35;

3. S2: F=21430895dbeca76f, G=0ad7b16c92e54f38;

4. S3: F=0f2e7d5c4a6b3819, G=0a7f295c6e1b4d38;
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HUMMINGBIRD2 [8]

1. S1: F=f56ed72a80b1c493, G=0a5bd38217ce469f;
2. S2: F=a8034ce7b61d52f9, G=14860d9fae3cb725;
3. S3: F=2f6e5d1c4a380b79, G=0f5bc78293d64a1e;
4. S4: F=0819ae37c4d562fb, G=853b29a47ed1f06c;

The inverse S-boxes of HUMMINGBIRD2:

1. iS1: F=0d42ca8597eb631f, G=3c4b21de56a9780f;
2. iS2: F=de8c94b162305f7a, G=14a69d2fcbe05378;
3. iS3: F=c36740b18e5d2fa9, G=0c6f2a583b491d7e;
4. iS4: F=f5ac403b16927ed8, G=209a8b3164fced75; (type 2)

Inversion (x−1) in GF (24) The function x−1=019edb76f2c5a438 which is
defined over GF (2)/(x4 ⊕ x ⊕ 1).
F=843dae67f25bc91 and G=059dbf278e3416ac.

LUCIFER [33]

1. S0: F=a2fde8b7906534c1, G=1e482c6b0f593d7a;
2. S1: F=f21deb047c93658a, G=068f9e174bd3c25a;

mCrypton [16]

1. S0: F=4af0827c3516b9de, G=0a7c5e28396d4f1b;
2. S1: F=19df3b647580cea2, G=06d71fce8a5b9342;
3. S2: F=31078f46ec25ad9b, G=2b5f097d4e186c3a;
4. S3: F=b420af918c7e3d65, G=041d3f26ac97b58e;

SERPENT [4]

1. S3: F=072e351c9db4af86, G=0c792f5a3e4b1d68;
2. S4: F=53bd19f708e6ca24, G=ea5d69cf0873214b;
3. S5: F=7c4b259a3e6f01d8, G=05432761c89feabd; (type 2)
4. S7: F=18679d3f5acb024e, G=0d87961c3fa4b52e;

The inverse S-boxes of S3, S4, S5, S7:

1. iS3: F=09dacef3b1624578, G=0c483e7a6f2b195d;
2. iS4: F=98b7406fac5e21d3, G=1a0bc2d34e5f8796;
3. iS5: F=87f6dc43b915e2a0, G=0eb63c95842da71f;
4. iS7: F=35f921edc60a874b, G=0c489d5173bfa6e2;

TWINE [34]

1. S: F=d2305ebc7a98f614, G=bda5e92c0687431f;

TWOFISH [31]

1. q1, t1: F=a0f2d785c139b64e, G=0c483e7a6f2b195d;
2. q1, t0: F=2847ba6e1c9d350f, G=069c8d1734aebf25;
3. q0, t0: F=50d87b3fa6e29c14, G=b4ace16058732f9d;
4. q0, t2: F=456f09ba23e781dc, G=0d841cb73e952fa6;
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