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ASYMPTOTIC INEQUALITIES FOR K-RANKS AND THEIR

CUMULATION FUNCTIONS

RENRONG MAO

Abstract. Asymptotic formulas for the positive moments of rank and crank
of partitions were obtained by K. Bringmann and K. Mahlburg recently. Mo-

tivated by their works, in this paper, we prove asymptotic formulas for the k-

ranks and their cumulation functions. Asymptotic inequalities between these
combinatorial objects are also discovered. In particular, we show that, for

fixed integer l and sufficiently large N ,

M(l, N) ∼ N (l, N)

and

M(l, N) < N (l, N),

whereM(l, N) (resp. N (l, N)) denotes the number partitions of N with crank
(resp. rank) l.

1. INTRODUCTION

The ranks and cranks of partitions provide combinatorial explanations for Ra-
manujan’s famous congruences. Recently, A. O. L. Atkin and F. G. Garvan [5]
studied the even moments of rank and crank which were modified and generalized
by Andrews, Chan and Kim in [2]. Let j be a positive integer. Then the (modified)
j-th moments of the rank and crank are defined by, respectively,

N j(N) =

∞∑
r=1

rjN (r,N),

Mj(N) =

∞∑
r=1

rjM(r,N),

where M(r,N) (resp. N (r,N)) denotes the number partitions of N with crank
(resp. rank) r. In [19], Garvan proved that the even moments of crank were
always larger than the rank’s which was first conjectured also by Garvan [18].
Andrews, Chan and Kim [2] established these inequalities for all positive moments.
K. Bringmann, K. Mahlburg and R. C. Rhoades [11] proved asymptotic formulas
for the even moments and established these inequalities asymptotically. In [12],
also by those authors, a strengthening asymptotic result for the even moments
was obtained. Asymptotic results for the positive moments were first proved by
Bringmann and Mahlburg in [9].
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On the other hand, in [17], Garvan studied a partition statistic called k-rank
which generalized the rank and crank. For an integer l, he defined Nk(l, N) by∑

N≥0

Nk(l, N)qN =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn((2k−1)n−1)/2+|l|n(1− qn), (1.1)

where for n ∈ N0

⋃
{∞} we adopt the standard q-factorial notation (a)n = (a; q)n :=∏n−1

j=0 (1 − aqj). When k = 1 (resp. k = 2), this is the generating function for the

crank (resp. rank). For k ≥ 3, the interpretation of Nk(l, N) was also discussed in
[17]. The even k-rank moments and the inequalities between them were also studied
by A. Dixit and A. J. Yee in [14]. Moreover, with a similar method by Bringmann,
Mahlburg and Rhoades in [12], M. Waldherr [22] obtained asymptotic formulas for
the even k-rank moments. In this article, with a similar method used by Bringmann
and Mahlburg in [9], we study the asymptotic properties of the k-ranks and their
cumulation functions which will be defined later.

We begin with an interesting phenomenon discussed by K. Bringmann and K.
Mahlburg in the concluding remarks of [10]. Following their notations, for a non-
negative integer l, we define the crank and rank cumulation functions by

M(l, N) : =
∑
r≤−l

M(r,N) =
∑
r≥l

M(r,N) (by symmetry)

and

N (l, N) : =
∑
r≤−l

N (r,N) =
∑
r≥l

N (r,N) (by symmetry).

Then Bringmann and Mahlburg tested with MAPLE for 1 ≤ N ≤ 100 and found
that, for l > 0,

N (l, N) ≤M(l, N) ≤ N (l − 1, N).

By definition, we have N (l − 1, N) = N (l − 1, N) − N (l, N). Hence, the above
inequalities give

0 ≤M(l, N)−N (l, N) ≤ N (l − 1, N), (1.2)

for l ≥ 1 and 1 ≤ N ≤ 100. Noting that p(N) =M(0, N) +M(1, N) = N (0, N) +
N (1, N), by (1.2), we find that

0 ≤ N (0, N)−M(0, N) ≤ N (0, N), (1.3)

for l ≥ 1 and 1 ≤ N ≤ 100.
In our paper, we obtained generalizations of asymptotic versions of (1.2) and

(1.3) for k-ranks and their cumulation functions. Generalizing the definitions by
Bringmann and Mahlburg, we define the k-rank cumulation functions by

N k(l, N) :=
∑
r≥l

Nk(r,N).

By (1.1), when l ≥ 0, we have the following generating function for N k(l, N).∑
N≥0

N k(l, N)qN =
1

(q; q)∞

∞∑
n=1

(−1)n−1qn((2k−1)n−1)/2+ln. (1.4)
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Remark : Equality (1.4) with k = 1 (resp. k = 2) can be deduced from [16, Theorem
7.19] (resp. [6, Eq. (2.12)]).

For convenience, let

Sk,l(q) :=

∞∑
n=1

(−1)n−1qn((2k−1)n−1)/2+ln

and

Fk,l(q) :=
1

(q; q)∞
Sk,l(q).

Then we have
∑
N≥0N k(l, N)qN = Fk,l(q). To generalize (1.2) and (1.3), we first

estimate the magnitude of the cumulation functions N k(l, N) as follows.

Theorem 1.1. Suppose that k ∈ N+ and l ∈ N.

(i) As N →∞, we have

N k(l, N) ∼ 1

8
√

3N
e2π
√

N
6 ∼ 1

2
p(N), (1.5)

where p(N) is the number of partitions of N .
(ii) As N →∞, we have

N k(l, N)−N k+1(l, N) ∼ (2l − 1)π2

384
√

3N2
e2π
√

N
6 ∼ (2l − 1)π2

96N
p(N) (1.6)

The following corollary follows immediately from Theorem 1.1.

Corollary 1.2. For fixed k ∈ N+ and sufficiently large N , we have

N k(0, N) < N k+1(0, N)

and for l ≥ 1,

N k(l, N) > N k+1(l, N).

In particular, for sufficiently large N , both of the first inequalities of (1.2) and (1.3)
are true.

Special case of Corollary 1.2 with k = 1 can also be deduced from [3, Theorem
1.3]. Indeed, the unconditional inequality for all N ( but “>” should be replaced
by “≥”) is equivalent to [3, Conjecture 1.1] (see [3, Theorem 1.2]) which was proved
by William Y.C. Chen, Kathy Q. Ji and Wenston J. T. Zang in [13].

The proof of Theorem 1.1 depends on the following representation of the main
terms in the asymptotic expansion of N k(l, N) in terms of the modified Bessel
functions.
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Theorem 1.3. As N →∞, we have

N k(l, N) =
π

2
√

2
×
(

1√
6

)3/2

N−3/4I−3/2

(
π

√
2N

3

)

− π2

√
2

(
l

4
− 5

48

)
×
(

1√
6

)5/2

N−5/4I−5/2

(
π

√
2N

3

)

− π3ξk,l√
2

(
1√
6

)7/2

N−7/4I−7/2

(
π

√
2N

3

)
+O

(
N−5/2e2π

√
N
6

)
, (1.7)

where ξk,l = (2l−1)(2k−1)
32 − l

96 + 11
2304 and Iν(x) is the modified Bessel function.

Our proof of Theorem 1.3 is motivated by the work in [9] and depends on a
variant of the Hardy-Ramanujan Circle Method due to E. Wright. We will discuss
this in Section 4.

To find generalizations of asymptotic versions of the second inequalities in (1.2)
and (1.3), we need to establish an asymptotic formula for Nk(l, N). Before stating
our results, we recall an asymptotic formula for the cranks of partitions conjectured
by F. J. Dyson [15, Eq. (1.24)] (We modify the Dyson’s notation so that the formula
agrees with our previous definitions). As N →∞,

M(l, N) ∼ 1

4
βsech2

(
1

2
βl

)
p(N), (1.8)

where

β =

(
π2

6N

)1/2

.

Noting that sech x = 1 +O(x) (as x→ 0), equation (1.8) gives

M(l, N) ∼ π

4
√

6N
p(N) (as N →∞). (1.9)

Although we have no idea to prove (1.8), a generalization of (1.9) is obtained with
the aid of Theorem 1.3.

Theorem 1.4. Suppose that k ∈ N+ and l ∈ N.

(i) As N →∞, we have

Nk(l, N) ∼ π

48
√

2N3/2
e2π
√

N
6 ∼ π

4
√

6N
p(N). (1.10)

In particular, equation (1.9) is true.
(ii) As N →∞, we have

Nk(l, N)−Nk+1(l, N) ∼ π2

192
√

3N2
e2π
√

N
6 ∼ − π2

48N
p(N). (1.11)

Now, by (1.6) and (1.10), we see that, for fixed k ∈ N+, l ∈ N, and sufficiently
large N , ∣∣N k(l, N)−N k+1(l, N)

∣∣ < Nk(l, N),
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which generalizes both of the second inequalities of (1.2) and (1.3). As a corollary
of Theorem 1.4, we give some interesting inequalities between the k-ranks.

Corollary 1.5. For fixed k ∈ N+, l ∈ N, and sufficiently large N , we have

Nk(l, N) < Nk+1(l, N).

In particular, we have

M(l, N) < N (l, N). (1.12)

.

It was conjectured by S. J. Kaavya in [21] that M(0, N) ≤ N (0, N) for all
positive integer N . Thus our inequality (1.12) implies Kaavya’s conjecture asymp-
totically.

The paper is organized as follows. We prove Theorem 1.1 and Theorem 1.4 in
Section 2. In Section 3 we study the asymptotic behavior of Sk,l(q) and Fk,l(q)
when q is near their singularities. We need these when we apply the Circle Method
in Section 4 where we complete the proof of Theorem 1.3. In Appendix A, we
discuss the asymptotic expansions of certain partial theta functions and prove a
result on Sk,l(q).

2. PROOF OF THEOREM 1.1 AND THEOREM 1.4

In this section, we apply Theorem 1.3 to prove Theorem 1.1 and Theorem 1.4.
First, we prove Theorem 1.1.

Proof of Theorem 1.1. By [1, Eq (4.12.7)], we know that, as x → ∞ (which hold
for any index ν),

Iν(x) =
ex√
2πx

+O

(
ex

x
3
2

)
.

Replacing x by π
√

2N
3 , the above equation gives

Iν

(
π

√
2N

3

)
=

31/4N−1/4e2π
√

N
6

23/4π
+O

(
N−3/4e2π

√
N
6

)
(as N →∞). (2.1)

Substituting the above equation into (1.7), we find that

N k(l, N) =
1

8
√

3N
e2π
√

N
6 +O

(
N−3/2e2π

√
N
6

)
.

Recalling the famous asymptotic formula for p(N) by G. H. Hardy and S. Ramanu-
jan [20]:

p(N) ∼ 1

4
√

3N
e2π
√

N
6 (as N →∞),

we complete the proof of (1.5).
Next, we prove (1.6). Applying Theorem 1.3, we find that

N k(l, N)−N k+1(l, N) = (ξk+1,l − ξk,l)
π3

√
2

(
1√
6

)7/2

N−7/4I−7/2

(
π

√
2N

3

)
+O

(
N−5/2e2π

√
N
6

)
.
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Noting that

ξk+1,l − ξk,l =
2l − 1

16

and

N−7/4I−7/2

(
π

√
2N

3

)
=

31/4N−2e2π
√

N
6

23/4π
+O

(
N−5/2e2π

√
N
6

)
,

we have

N k(l, N)−N k+1(l, N) =
(2l − 1)π2

384
√

3N2
e2π
√

N
6 +O

(
N−5/2e2π

√
N
6

)
.

This completes the proof of (1.6). �

Now, we prove Theorem 1.4.

Proof of Theorem 1.4. Since Nk(l, N) = N k(l, N)−N k(l+ 1, N), by Theorem 1.3
and equation (2.1), we have

Nk(l, N) =
π2

4
√

2

(
1√
6

)5/2

N−5/4I−5/2

(
π

√
2N

3

)
+O

(
N−2e2π

√
N
6

)
=

π

48
√

2N3/2
e2π
√

N
6 +O

(
N−2e2π

√
N
6

)
.

Thus equation (1.10) follows.
Next, we prove (1.11). We have

Nk(l, N)−Nk+1(l, N) =
{
N k(l, N)−N k(l + 1, N)

}
−
{
N k+1(l, N)−N k+1(l + 1, N)

}
=
{
N k(l, N)−N k+1(l, N)

}
−
{
N k(l + 1, N)−N k+1(l + 1, N)

}
∼ (2l − 1)π2

384
√

3N2
e2π
√

N
6 − (2l + 1)π2

384
√

3N2
e2π
√

N
6 (by equation (1.6))

= − π2

192
√

3N2
e2π
√

N
6 .

This completes the proof of Theorem 1.4. �

3. ASYMPTOTIC BEHAVIOR OF GENERATING FUNCTIONS

In this section, we study the asymptotic behavior of the generating function
Fk,l(q) when q is near its essential singularities on the unit circle. We set q = e2πiτ ,
where τ = x+ iy and y > 0. Since the asymptotic behavior is largely controlled by
the exponential singularities of (q; q)−1∞ , our dominant pole is at q = 1. The main
task is to understand the asymptotic behavior of the partial theta function Sk,l(q)
near this point.
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3.1. Asymptotic behavior of Fk,l(q) near the dominant pole. First, we need
the following lemma on the asymptotic behavior of Sk,l(q) near q = 1.

Proposition 3.1. For y = 1
2
√
6N

and |x| ≤ y, as N →∞, we have

Sk,l(q) =
1

2
+

2l − 1

4
(πiτ)− (2l − 1)(2k − 1)

8
(πiτ)2 + ζ∗τ3 +O

(
N−7/4

)
, (3.1)

where ζ∗ is a constant (depend on k and l).

We will prove the above proposition in Appendix A. where a more general result
on asymptotic expansions of partial theta functions will be discussed. The constant
ζ∗ can be replaced by an explicit formula with k and l. We do not do this because
the asymptotic contribution of the term containing ζ∗ will be absorbed into the
error term. However, we emphasize that, for convenience, in the rest of this article,
we will repeatedly use ζ∗ to denote constants even though it represents different
values in different equations.

Corollary 3.2. For y = 1
2
√
6N

and |x| ≤ y, as N →∞, we have

Fk,l(q) =
1

2
√

2π
(−2πiτ)1/2e

πi
12τ − 1√

2π

(
2l − 1

8
+

1

48

)
(−2πiτ)3/2e

πi
12τ

− ξk,l√
2π

(−2πiτ)5/2e
πi
12τ + ζ∗(−2πiτ)7/2e

πi
12τ +O

(
N−2eπ

√
N
6

)
, (3.2)

where ξk,l = (2l−1)(2k−1)
32 − l

96 + 11
2304 and we take the principal branches of

√
τ .

Proof. By the transformation formula of η(τ), η(− 1
τ ) =

√
−iτη(τ), or following

directly from [9, Eq. (3.8)], as N →∞, we have

1

(q; q)∞
=
q

1
24

√
−iτ

η(− 1
τ )

=
√
−iτe 2πi

24 (τ+1/τ)
(

1 +O
(
e−2π

√
6N
))

(3.3)

=
√
−iτe πi

12τ

(
1 +

2πiτ

24
+

(2πiτ)2

1152
+

(2πiτ)3

3!243
+O

(
N−2

))
.

Multiplying the above equation on both sides of (3.1), we find that

Fk,l(q) =

{√
−iτe πi

12τ

(
1 +

2πiτ

24
+

(2πiτ)2

1152
+

(2πiτ)3

3!243
+O

(
N−2

))}
×
{

1

2
+

2l − 1

4
(πiτ)− (2l − 1)(2k − 1)

8
(πiτ)2 + ζ∗τ3 +O

(
N−7/4

)}
.

Expanding the above equation and noting that
√
−iτe πi

12τ = O(N−1/4eπ
√

N
6 ), we

get (3.2). �

3.2. Bounds away from the dominant pole. First, we consider the asymptotic
behavior of Sk,l(q) when q is not near 1.

Proposition 3.3. If y = 1
2
√
6N

, then, as N →∞, we have |Sk,l(q)| = O
(√

N
)

.
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Proof. For q = e2πiτ , where τ = x+ 1
2
√
6N
i, as N →∞, we have

|Sk,l(q)| = |
∞∑
n=1

(−1)n−1qn((2k−1)n−1)/2+ln|

≤
∞∑
n=1

|qn((2k−1)n−1)/2+ln|

≤
∞∑
n=1

|qn| ≤ 1

1− |q|
=

1

1− e−
π√
6N

= O
(√

N
)
.

�

By the above proposition, we get a bound for Fk,l(q) in the region away from 1.
This bound is exponentially smaller than the asymptotic discussed in Section 3.1.

Corollary 3.4. If y = 1
2
√
6N

and y ≤ |x| ≤ 1
2 , then, as N →∞, we have

|Fk,l(q)| = O
(√

Ne
π
2

√
N
6

)
. (3.4)

Proof. By equation (3.3), as N →∞, we have∣∣∣∣ 1

(q; q)∞

∣∣∣∣ ∼√|τ | ∣∣∣e 2πi
24τ

∣∣∣ ≤ e πy

12(x2+y2) ≤ e
π

24y = e
π
2

√
N
6 . (3.5)

This together with Proposition 3.3 implies (3.4). �

4. THE CIRCLE METHOD

In this section, by an argument analogous to that in [9, Section 4], we apply the
Circle Method to complete the proof of Theorem 1.3. By Cauchy’s residue theorem,
we have the following representation of the coefficients of Fk,l(q).

N k(l, N) =
1

2πi

∫
C

Fk,l(q)

qN+1
dq =

∫ 1
2

− 1
2

Fk,l

(
e
− π√

6N
+2πix

)
eπ
√

N
6 −2πiNxdx, (4.1)

where the contour is the counterclockwise traversal of the circle C :=
{
|q| = e

− π√
6N

}
.

We separate the integral in (4.1) into two ranges, writing N k(l, N) = I ′ + I ′′, with

I ′ :=

∫
|x|≤ 1

2
√

6N

Fk,l

(
e
− π√

6N
+2πix

)
eπ
√

N
6 −2πiNxdx

and

I ′′ :=

∫
|x|≤ 1

2
√

6N
≤ 1

2

Fk,l

(
e
− π√

6N
+2πix

)
eπ
√

N
6 −2πiNxdx.

We will show later that the main term in the asymptotic expansion of N k(l, N) in
Theorem 1.3 comes only from I ′, however, the integral I ′′ will be absorbed into the
error term.
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4.1. Main arc. We introduce the auxiliary function Ps which is originally due to
Wright before examining the integral I ′ . For s ∈ R, we define

Ps :=
1

2πi

∫ 1+i

1−i
vseπ
√

N
6 (v+ 1

v )dv.

Then, by [9, Lemma 4.2], as N →∞, we have

Ps − I−s−1

(
π

√
2N

3

)
= O

(
e

3π
2

√
N
6

)
.

We evaluate I ′ by the modified Bessel functions up to an allowable error.

Proposition 4.1. As N →∞, we have

I ′ =
π

2
√

2
×
(

1√
6

)3/2

N−3/4I−3/2

(
π

√
2N

3

)

− π2

√
2

(
2l − 1

8
+

1

48

)
×
(

1√
6

)5/2

N−5/4I−5/2

(
π

√
2N

3

)

− π3ξk,l√
2

(
1√
6

)7/2

N−7/4I−7/2

(
π

√
2N

3

)
+O

(
N−5/2e2π

√
N
6

)
.

Proof. First, writing τ = 1
2
√
6N

(u+ i), i.e., replacing x by u
2
√
6N

we find that

I ′ =

∫
|x|≤ 1

2
√

6N

Fk,l

(
e
− π√

6N
+2πix

)
eπ
√

N
6 −2πiNxdx

=
1

2
√

6N

∫ 1

−1
Fk,l

(
e

π√
6N

(−1+iu)
)
eπ
√

N
6 (1−iu)du. (4.2)

Next, replacing τ by 1
2
√
6N

(u + i) in (3.2) and noting that −2πiτ = π(1−iu)√
6N

and

e
πi
12τ = eπ

√
N
6 ( 1

1−iu ), we have

Fk,l

(
e

π√
6N

(−1+iu)
)

=
1

2
√

2π

(
π(1− iu)√

6N

)1/2

eπ
√

N
6 ( 1

1−iu ) − 1√
2π

(
2l − 1

8
+

1

48

)(
π(1− iu)√

6N

)3/2

× eπ
√

N
6 ( 1

1−iu ) − ξk,l√
2π

(
π(1− iu)√

6N

)5/2

eπ
√

N
6 ( 1

1−iu )

+ ζ∗
(
π(1− iu)√

6N

)7/2

eπ
√

N
6 ( 1

1−iu ) +O
(
N−2eπ

√
N
6

)
(as N →∞).

(4.3)
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Substituting (4.3) into (4.2), we get

I ′ =
1

2
√

2π
× 1

2
√

6N

∫ 1

−1

(
π(1− iu)√

6N

)1/2

eπ
√

N
6 ( 1

1−iu+(1−iu))du

− 1√
2π

(
2l − 1

8
+

1

48

)
× 1

2
√

6N

∫ 1

−1

(
π(1− iu)√

6N

)3/2

eπ
√

N
6 ( 1

1−iu+(1−iu))du

− ξk,l√
2π

1

2
√

6N

∫ 1

−1

(
π(1− iu)√

6N

)5/2

eπ
√

N
6 ( 1

1−iu+(1−iu))du

+ ζ∗
1

2
√

6N

∫ 1

−1

(
π(1− iu)√

6N

)7/2

eπ
√

N
6 ( 1

1−iu+(1−iu))du

+
1

2
√

6N

∫ 1

−1
O
(
N−2eπ

√
N
6

)
eπ
√

N
6 (1−iu)du (as N →∞).

Making the change of variables u = i(v − 1), we find that

1

2
√

6N

∫ 1

−1

(
π(1− iu)√

6N

)s
eπ
√

N
6 ( 1

1−iu+(1−iu))du

=
i

2
√

6N

∫ 1−i

1+i

(
πv√
6N

)s
eπ
√

N
6 (v+ 1

v )dv

=
−i

2
√

6N

(
π√
6N

)s ∫ 1+i

1−i
vseπ
√

N
6 (v+ 1

v )dv

=

(
π√
6N

)s+1

Ps

=

(
π√
6N

)s+1

I−s−1

(
π

√
2N

3

)
+O

(
e

3π
2

√
N
6

)
(as N →∞).

From this, we see that

I ′ =
1

2
√

2π
×
(

π√
6N

)3/2

I−3/2

(
π

√
2N

3

)

− 1√
2π

(
2l − 1

8
+

1

48

)
×
(

π√
6N

)5/2

I−5/2

(
π

√
2N

3

)

− ξk,l√
2π

(
π√
6N

)7/2

I−7/2

(
π

√
2N

3

)

+ ζ∗
(

π√
6N

)9/2

I−9/2

(
π

√
2N

3

)
+O

(
N−5/2e2π

√
N
6

)
(as N →∞).

(4.4)

Recall equation (2.1):

Iν

(
π

√
2N

3

)
=

31/4N−1/4e2π
√

N
6

23/4π
+O

(
N−3/4e2π

√
N
6

)
(as N →∞), (4.5)
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setting ν = −9/2, we find that

ζ∗
(

π√
6N

)9/2

I−9/2

(
π

√
2N

3

)
= O

(
N−5/2e2π

√
N
6

)
(as N →∞).

Substituting the above equation into (4.4) and simplifying, we complete our proof
of the proposition. �

4.2. Error arc. We give a bound for I ′′ which is exponentially smaller than the
error term of I ′.

Proposition 4.2. As N →∞,

I ′′ = O
(√

Ne
3π
2

√
N
6

)
.

Proof. By Corollary 3.4, as N →∞, we have

|I ′′| =

∣∣∣∣∣
∫
|x|≤ 1

2
√

6N
≤ 1

2

Fk,l

(
e
− π√

6N
+2πix

)
eπ
√

N
6 −2πiNxdx

∣∣∣∣∣
≤
√
Ne

π
2

√
N
6

∣∣∣∣∣
∫
|x|≤ 1

2
√

6N
≤ 1

2

eπ
√

N
6 −2πiNxdx

∣∣∣∣∣
= O

(√
Ne

3π
2

√
N
6

)
.

�

4.3. Proof of Theorem 1.3. Invoking Proposition 4.1 and 4.2 in equation (4.1),
we find that, as N →∞,

N k(l, N) = I ′ + I ′′

=
π

2
√

2
×
(

1√
6

)3/2

N−3/4I−3/2

(
π

√
2N

3

)

− π2

√
2

(
l

4
− 5

48

)
×
(

1√
6

)5/2

N−5/4I−5/2

(
π

√
2N

3

)

− π3ξk,l√
2

(
1√
6

)7/2

N−7/4I−7/2

(
π

√
2N

3

)
+O

(
N−5/2e2π

√
N
6

)
.

This completes the proof of Theorem 1.3.

Appendix A. ASYMPTOTIC EXPANSIONS OF PARTIAL THETA
FUNCTION

In this section, we establish an asymptotic expansion of a class of partial theta
functions which generalizes a result in [8]. As its application, we will prove Propo-
sition 3.1.

First, we recall an asymptotic expansion by S. Ramanujan [7, p. 545],

2

∞∑
n=0

(−1)n
(

1− t
1 + t

)n2+n

∼ 1 + t+ t2 + 2t3 + 5t5 + ..,
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where t → 0+. Recently, this result was generalized by B. C. Berndt and B. Kim
in [8]. For real numbers b, β and γ > 0, we define

F1(θ) := 2

∞∑
n=0

(−1)ne−(n
2+bn)θ, (A.1)

where θ = γ + βi. Note that we abandon the notation “F1(q)” in [8, Eq. (2.4)]
to avoid misunderstanding. Then, by [8, Theorem 1.1] or [8, Eq. (2.9)], for any
non-negative integer M and β = 0, i.e., θ > 0, as θ → 0+, we have

F1(θ) =e(2b−1)θ/4
M∑
n=0

E2nθ
n

22n(2n)!
H2n

(
(b− 1)

√
θ

2

)
+O(θM+1/2), (A.2)

where En, n ≥ 0, is the n-th Euler number, and Hn(x), n ≥ 0, is the n-th Hermite
polynomial.

By an argument analogous to that in [8], we prove a generalization of (A.2).

Theorem A.1. For θ = γ+βi satisfying |β| ≤ γ and any non-negative integer M ,
as γ → 0+, we have

F1(θ) = e(2b−1)θ/4
M∑
n=0

E2nθ
n

22n(2n)!
H2n

(
(b− 1)

√
θ

2

)
+O(|θ|M+1/2), (A.3)

where we take the principal branches of
√
θ.

To prove Theorem A.1, we need two lemmas.

Lemma A.2. Let γ > 0 and β, a, b be real. If Hn(x), n ≥ 0, denotes the n-th
Hermite polynomial, then, for θ = γ + βi satisfying |β| ≤ γ, we have

1√
πθ

∫ ∞+ai

−∞+ai

z2nebize−z
2/θdz =

(−1)nθn

22n
e−b

2θ/4H2n

(
b
√
θ

2

)
, (A.4)

where we take the principal branches of
√
θ and

√
πθ.

Proof. Let D := {θ ∈ C| θ = γ + βi with γ > 0 and |β| ≤ γ}. First, we
examine the integral on the left side of (A.4) with a = 0 and θ ∈ D. Let T be any
non-negative real number. Since 1

θ = (γ − βi)/|θ|2, we have∣∣∣∣∣
∫
|z|≥T

z2nebize−z
2/θdz

∣∣∣∣∣
≤
∫
|z|≥T

z2n
∣∣∣e−z2/θ∣∣∣ dz

=

∫
|z|≥T

z2n
∣∣∣e−z2(γ−βi)/|θ|2 ∣∣∣ dz

=

∫
|z|≥T

z2ne−z
2γ/|θ|2dz

=

(
|θ|
√
γ

)2n+1 ∫
|u|≥

√
γT

|θ|

u2ne−u
2

du

(
u =

√
γz

|θ|

)
. (A.5)
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By |β| ≤ γ, we know that, for all θ ∈ D, |θ|2 ≤ 2γ2. Hence, we have |θ|√γ ≤ 2
1
4

√
|θ|.

This together with (A.5) implies∣∣∣∣∣
∫
|z|≥T

z2nebize−z
2/θdz

∣∣∣∣∣ ≤ 2
2n+1

4 |θ|n+1/2

∫
|u|≥

√
γT

|θ|

u2ne−u
2

du. (A.6)

Since γ > 0 and
∫∞
−∞ u2ne−u

2

du converges for all non-negative integer n, ∀ ε > 0,
there exists a positive number T0, such that, for all T ≥ T0,∫

|u|≥
√
γT

|θ|

u2ne−u
2

du ≤ ε

2
2n+1

4 Cn+1/2
,

where C is any fixed positive real number. By (A.6), ∀ θ ∈ D with |θ| ≤ C and
T ≥ T0, we have∣∣∣∣∣

∫
|z|≥T

z2nebize−z
2/θdz

∣∣∣∣∣ ≤ 2
2n+1

4 |θ|n+1/2

∫
|u|≥

√
γT

|θ|

u2ne−u
2

du

≤ 2
2n+1

4 |θ|n+1/2 ε

2
2n+1

4 Cn+1/2

≤ ε.

Now, we see that
∫∞
−∞ z2nebize−z

2/θdz converges uniformly for all θ in any compact
subset of D, thus defines a function of θ which is continuous on D and analytic at
all of its interior points.

Next, we show that the integral on the left side of (A.4) is independent of the
parameter a. For L ≥ |a|, we consider now

IL =

∫
CL
z2nebize−z

2/θdz,

where the contour CL is the positive oriented rectangle with vertices±L and±L+ai.
Since the integrand is an analytic function of z on the whole complex plane, by
Cauchy integral theorem, we have IL = 0. For the integral on the two vertical
edges of CL, we have the following estimate,∣∣∣∣∫ a

0

(±L+ yi)2nebi(±L+yi)e−(±L+yi)
2/θdy

∣∣∣∣
≤
∫ |a|
0

∣∣∣(±L+ yi)2nebi(±L+yi)e−(±L+yi)
2/θ
∣∣∣ dy

≤eb|a|
∫ |a|
0

(L2 + y2)n
∣∣∣e−(±L+yi)2(γ−βi)/|θ|2 ∣∣∣ dy

≤eb|a|−L
2γ/|θ|2

∫ |a|
0

(L2 + y2)ne(y
2γ+2Ly|β|)/|θ|2dy

≤(L2 + |a|2)neb|a|+(|a|2−L2)γ/|θ|2
∫ |a|
0

e2Ly/|θ|dy (by |β| ≤ |θ|)

≤(L2 + |a|2)neb|a|+(|a|2−L2)γ/|θ|2 |a|e2|a|L/|θ|

≤2neb|a|+|a|
2γ/|θ|2L2n+1e2|a|L/|θ|−L

2γ/|θ|2 (by |a| ≤ L) . (A.7)
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Since γ > 0, we have L2n+1e2|a|L/|θ|−L
2γ/|θ|2 = O(e−L), as L→∞. Hence, we see

that, as L→∞, equation (A.7) together with IL = 0 implies that∫ ∞+ai

−∞+ai

z2nebize−z
2/θdz =

∫ ∞
−∞

z2nebize−z
2/θdz,

for any real number a.
From the above proof, we know that the integral on the left side of (A.4) defines

a function of θ which is continuous on D and analytic at all of its interior points.
Since 1√

πθ
is analytic on D, the function on the left side of (A.4) has the same

analytic property as the integral. On the other hand, it is clear that the function
on the right side of (A.4) is analytic on the complex plane. Thus, by analytic
continuation, it suffices to show that (A.4) is true for all real positive θ which is
stated in [8, Lemma 2.2]. �

Lemma A.3. Let γ > 0 and β, a, b be real. Then, for θ = γ+βi satisfying |β| ≤ γ,
we have

1√
πθ

∫ ∞+ai

−∞+ai

e−z
2/θ+(2n+b)izdz = e−(n+b/2)

2θ (A.8)

where we take the principal branches of
√
θ and

√
πθ.

Proof. By an argument analogous to that in the proof of Lemma A.2, we can show
that the function (independent of a) on the left side of (A.8) is continuous at any

θ in D and analytic at all of its interior points. Clearly, e−(n+b/2)
2θ is analytic on

the whole complex plane. Then, by analytic continuation, it suffices to show that
(A.8) is true for all real positive θ which is stated in [8, Lemma 2.4]. �

Now we are in a position to prove Theorem A.1. We follow the steps in the proof
[8, Theorem 1.1] except the estimate of the error term RM .

Proof of Theorem A.1. Write

F1(θ) = 2

∞∑
n=0

(−1)ne−(n
2+bn)θ = 2eb

2θ/4
∞∑
n=0

(−1)ne−(n+b/2)
2θ (A.9)

and let G1(θ) := 2
∑∞
n=0(−1)ne−(n+b/2)

2θ. By (A.8) (we require a > 0), we have

e−(n+b/2)
2θ =

1√
πθ

∫ ∞+ai

−∞+ai

e−z
2/θ+(2n+b)izdz.

Multiply both sides of the above equation by 2(−1)n and sum on n, 0 ≤ n < ∞,
to obtain

G1(θ) =
2√
πθ

∫ ∞+ai

−∞+ai

e−z
2/θ

∞∑
n=0

(−1)ne(2n+b)izdz

=
1√
πθ

∫ ∞+ai

−∞+ai

e−z
2/θ+(b−1)iz 1

cos z
dz, (A.10)

where we interchanged the order of summation and integration by using the absolute
and uniform convergence of the series on the path of integration, as a > 0. Using
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the generating function

1

cosx
= secx =

∞∑
n=0

(−1)nE2n

(2n)!
x2n, |x| < π/2,

for the Euler numbers E2n, by (A.10), we write

G1(θ) =
1√
πθ

M∑
n=0

(−1)nE2n

(2n)!

∫ ∞+ai

−∞+ai

e−z
2/θ+(b−1)izz2ndz +RM , (A.11)

where

RM =
1√
πθ

∫ ∞+ai

−∞+ai

e−z
2/θ+(b−1)iz

(
sec z −

M∑
n=0

(−1)nE2n

(2n)!
z2n

)
dz. (A.12)

Multiplying by eb
2θ/4 on both sides and invoking equation (A.4), equation (A.11)

gives

F1(θ) = e(2b−1)θ/4
M∑
n=0

E2nθ
n

22n(2n)!
H2n

(
(b− 1)

√
θ

2

)
+RM .

We need to examine the error term RM . If 0 < a ≤ 1, for all points z on the
contour (−∞ + ai,∞ + ai), by [7, Eq. (16.3)], there exists a positive constant C2

which is dependent only on N but not on z or a, such that∣∣∣∣∣ a

z2M+2

(
sec z −

M∑
n=0

(−1)nE2n

(2n)!
z2n

)∣∣∣∣∣ ≤ C2.

Substituting the above inequality into (A.12), we find that

|RM | =

∣∣∣∣∣ 1√
πθ

∫ ∞+ai

−∞+ai

e−z
2/θ+(b−1)iz

(
sec z −

M∑
n=0

(−1)nE2n

(2n)!
z2n

)
dz

∣∣∣∣∣
≤
∣∣∣∣ C2

a
√
πθ

∣∣∣∣ ∫ ∞+ai

−∞+ai

∣∣∣e−z2/θz2M+2
∣∣∣ dz

≤
∣∣∣∣ C2

a
√
πθ

∣∣∣∣ ∫ ∞
−∞

∣∣∣e−(x+ai)2/θ(x+ ai)2M+2
∣∣∣ dx

≤
∣∣∣∣ C2

a
√
πθ

∣∣∣∣ ∫ ∞
−∞

∣∣∣e−(x2−a2+2axi)/θ
∣∣∣ (x2 + a2)M+1dx

≤
∣∣∣∣ C2

a
√
πθ

∣∣∣∣ ∫ ∞
0

∣∣∣e−(x2−a2+2axi)/θ
∣∣∣ (x2 + a2)M+1dx

+

∣∣∣∣ C2

a
√
πθ

∣∣∣∣ ∫ 0

−∞

∣∣∣e−(x2−a2+2axi)/θ
∣∣∣ (x2 + a2)M+1dx. (A.13)

We denote the first (resp. second) integral in the last inequality above by I1 (resp.

I2). Substituting θ = γ + βi into I1 and noting that 1
θ = γ−βi

|θ|2 , we find that

I1 =

∫ ∞
0

∣∣∣e−(x2−a2+2axi)/θ
∣∣∣ (x2 + a2)M+1dx

= eγa
2/|θ|2

∫ ∞
0

e−(γx
2+2axβ)/|θ|2(x2 + a2)M+1dx. (A.14)
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Since |β| ≤ γ (by assumption), a > 0 and x > 0, we have x2 + a2 ≤ (x + a)2

and e−(γx
2+2axβ)/|θ|2 ≤ e−(γx

2−2axγ)/|θ|2 . Substituting these two inequalities into
(A.14), we find that

I1 ≤ eγa
2/|θ|2

∫ ∞
0

e−(γx
2−2axγ)/|θ|2(x+ a)2M+2dx

= e2γa
2/|θ|2

∫ ∞
0

e−γ(x−a)
2/|θ|2(x+ a)2M+2dx

=
|θ|
√
γ
e2γa

2/|θ|2
∫ ∞
− a
√
γ

|θ|

e−u
2

(
|θ|
√
γ
u+ 2a

)2M+2

du

(
u =

√
γ(x− a)

|θ|

)
.

(A.15)

Since |θ|2 = γ2 + β2 ≤ 2γ2, we have |θ|
γ
√
2
≤ 1 which implies |θ|√

2γ
≤ √γ � 1, as

γ → 0+. This allow us to set a = |θ|√
2γ

in (A.15). Hence, we arrive at

I1 ≤
|θ|
√
γ
e

∫ ∞
−
√

2
2

e−u
2

(
|θ|
√
γ
u+

√
2|θ|
√
γ

)2M+2

du

= e

(
|θ|
√
γ

)2M+3 ∫ ∞
−
√

2
2

e−u
2

(u+
√

2)2M+2du

≤ eγM+3/22M+3/2

∫ ∞
−
√

2
2

e−u
2

(u+
√

2)2M+2du

≤ e|θ|M+3/22M+3/2

∫ ∞
−
√

2
2

e−u
2

(u+
√

2)2M+2du.

The convergence of
∫∞
−
√

2
2
e−u

2

(u +
√

2)2M+2du (for any non-negative integer M)

implies I1 = O(|θ|M+3/2), as |θ| → 0+. Similarly, we can prove that, for any non-
negative integer M , I2 = O(|θ|M+3/2), as |θ| → 0+. Substituting these bounds into

(A.13) with a replacing by |θ|√
2γ

and noting that
∣∣∣ C2

a
√
πθ

∣∣∣ =
∣∣∣C2
√
2γ

|θ|
√
πθ

∣∣∣ = O(|θ|−1), as

|θ| → 0+, we find that RM = O(|θ|M+1/2), as |θ| → 0+, or γ → 0+. This completes
the proof of Theorem A.1. �

Now we prove Proposition 3.1 with a special case of Theorem A.1. Setting M = 3
in (A.3) and noting that E0 = 1, E2 = −1, E4 = 5, H0 = 1, H2(x) = 4x2 − 2 and
H4(x) = 16x4 − 48x2 + 12, we find that, for θ = γ + βi with γ > 0 and |β| ≤ γ,

F1(θ) = e(2b−1)θ/4
3∑

n=0

E2nθ
n

22n(2n)!
H2n

(
(b− 1)

√
θ

2

)
+O(|θ|7/2)

=

(
3∑

n=0

(2b− 1)nθn

4nn!
+O(|θ|4)

)
3∑

n=0

E2nθ
n

22n(2n)!
H2n

(
(b− 1)

√
θ

2

)
+O(|θ|7/2)

= 1 +
bθ

2
+
bθ2

4
+ ζ∗θ3 +O(|θ|7/2), (A.16)

as γ → 0+.
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Proof of Proposition 3.1. Since q = e2πiτ , where τ = x+ yi, we have

2(Sk,l(q)− 1) = 2

∞∑
n=0

(−1)n−1qn((2k−1)n−1)/2+ln

= −2

∞∑
n=0

(−1)n
(
q

2k−1
2

)n2+( 2l
2k−1−

1
2k−1 )n

= −2

∞∑
n=0

(−1)n
(
eπiτ(2k−1)

)n2+( 2l
2k−1−

1
2k−1 )n

.

Next, let θ = −πiτ(2k − 1) = (2k − 1)πy − (2k − 1)πxi. By assumption, we have
y > 0 and |x| ≤ y which imply (2k − 1)πy > 0 and |(2k − 1)πx| < (2k − 1)πy.
Hence, applying (A.16) with θ and b replaced by −πiτ(2k − 1) and 2l

2k−1 −
1

2k−1 ,

respectively, we find that, as |τ | → 0+,

−2(Sk,l(q)− 1) = 1− (2l − 1)πi

2
τ − (2l − 1)(2k − 1)π2

4
τ2 + ζ∗τ3 +O(|τ |7/2).

(A.17)

Since τ = x + yi with |x| ≤ y and y = 1
2
√
6N

, we have |τ |2 ≤ 1
12N . This together

with (A.17) implies

Sk,l(q) =
1

2
+

(2l − 1)πi

4
τ +

(2l − 1)(2k − 1)π2

8
τ2 + ζ∗τ3 +O(N−7/4).

This completes the proof of Proposition 3.1. �
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