This document is downloaded from DR-NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore.

Developing a 2D in-vitro bone model for cancer metastasis

Sia, Ming Wei

2014

Sia, M. W. (2014, March). Developing a 2D in-vitro bone model for cancer metastasis. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/102445

© 2014 The Author(s).

Downloaded on 20 Mar 2024 19:10:47 SGT

URECA

Undergraduate Research Experience on CAmpus

Category: 6 Student: Sia Ming Wei Project ID: SCBE13042

School of Chemical and Biomedical Engineering

Developing a 2D in-vitro bone model for cancer metastasis

Introduction

Cancer metastasis is the spreading of cancer cells to a secondary site. Bone is often the target site for breast and prostate cancer metastasis, afflicting more than two-thirds of patients.

The process of metastasis is represented as follows:

Intravasation

Cancer cells enters lymphatic system from primary tumor site.

Circulation

Cancer cells circulate in blood stream

Cell arrest

Cancer cells stop moving at secondary site and exit the blood vessels into surrounding tissue.

Cancer cells form micro-metastases at secondary site

Complications arising from the disease include cancer recurrence, fractures and pain.

Problem

Cellular interactions in bone metastasis are poorly understood due to lack of adequate disease models.

Objective

Develop an in vitro model of vascularised bone tissue, osteogenic (bone-forming) mesenchymal stem cells (MSC) and vasculogenic (blood vesselforming) endothelial cells (EC). Prostate cancer cells will be added to these organotypic cultures to study metastatic proliferation

Method

Culture parameters were optimised to generate vascularised bone tissue. These include

- 1)Culture medium constituents
- 2)Cell seeding numbers and ratios

Prostate cancer cells were added to the cultures and subsequently monitored for (a) localisation (b) migration and (c)proliferation

Preliminary Findings

Effect of culture medium (i)

	Osteongenic medium		Vasculogenic medium	
	Brightfield	GFP (EC)	Brightfield	GFP (EC)
Day 4				No.
Day 8				

Observations

- Culture in osteogenic medium (i) yields mineralised bone tissue but (ii) does not support EC viability
- Culture in vasculogenic medium (i) yields robust networks but (ii) unable to generate bone
- >> Further optimisation required

Ongoing work

- •Generation of MSC-EC-PC3 (prostate cancer) triple cocultures (right)
- Evaluation of prostate cancer migration and proliferation

Triple co-cultures with fluorescent labels to facilitate monitoring of indivdual cell types

Green: EC

Red: PC3

(prostate

Project Title: Tissue Engineered Bone Models of Cancer Metastasis

Supervisor: Dr Chong Seow Khoon, Mark