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Abstract Networked distributed data storage systems are essential to deal
with the needs of storing massive volumes of data. Dependability of such a
system relies on its fault tolerance (data should be available in case of node
failures) as well as its maintainability (its ability to repair lost data to ensure
redundancy replenishment over time). Erasure codes provide a storage effi-
cient alternative to replication based redundancy in storage systems, ensuring
the same fault tolerance at a lower storage overhead cost. Traditional erasure
codes however have the drawback of entailing high communication overhead for
maintenance, when encoded fragments are lost due to storage device failures,
and need to be replenished in new nodes. We propose a new family of erasure
codes called self-repairing codes (SRC) taking into account the peculiarities
of distributed storage systems, specifically to improve its maintainability by
‘localizing’ the repairs. SRC have the property that encoded fragments can
be repaired directly from other small subsets of (typically 2 or 3) encoded
fragments. These code properties allow bandwidth efficient and fast recovery
even in the presence of multiple failures, in turn translating into better system
robustness. A concrete family of such locally repairable codes, namely, homo-
morphic self-repairing codes (HSRC) are proposed and various aspects and
properties of the same are studied in detail and compared - quantitatively or
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qualitatively (as may be suitable) with respect to other codes including tra-
ditional erasure codes as well as some recent representative codes designed
specifically for storage applications.

Keywords Erasure codes · Local Repair · Networked Storage

1 Introduction

Various genres of networked storage systems, such as decentralized peer-to-
peer storage systems or dedicated infrastructure based data-centers and stor-
age area networks, have gained prominence in recent years. Because of storage
node failures, or user attrition in a peer-to-peer system, redundancy is essen-
tial for fault tolerance in networked storage systems. This redundancy can be
achieved using either replication (replication of the same data within one sys-
tem, or using backups or remote mirroring [9]), or (erasure) coding techniques,
or a mix of the two. Erasure codes require an object to be split into k parts,
and mapped into n encoded fragments, such that any k encoded fragments
are adequate to reconstruct the original object. Such coding techniques play
a prominent role in providing storage efficient redundancy, and are particu-
larly effective for storing large data objects and for archival and data back-up
applications (e.g., CleverSafe [3], Wuala [13]).

Redundancy is lost over time because of various reasons such as node fail-
ures or attrition, and mechanisms to replenish redundancy are essential to the
system maintainability. While erasure codes are efficient in terms of storage
overhead, maintenance of lost redundancy entail huge overheads [25]. A naive
approach to replace a single missing fragment will require that k encoded frag-
ments are first fetched in order to create the original object, from which the
missing fragment is recreated and replenished. This essentially means that for
every lost fragment, k-fold more network traffic is incurred.

Engineering solutions can partly mitigate the high maintenance overheads.
A ‘hybrid’ strategy, where a full replica of the object is additionally maintained
[25], ensures that the amount of network traffic equals the amount of lost data.1

A spate of recent works [4,6] argue that the hybrid strategy adds storage ineffi-
ciency and system complexity, besides being a bottleneck. Another possibility
is to apply lazy maintenance [2,5], whereby maintenance is delayed in order to
amortize the maintenance of several missing fragments. Lazy strategies addi-
tionally avoid maintenance due to temporary failures. Procrastinating repairs
however may lead to a situation where the system becomes vulnerable, e.g.
to bursty/correlated failures, and thus may require a much larger amount of
redundancy to start with. Furthermore, the maintenance operations may lead
to spikes in network resource usage [11].

This motivates the question of the dependability of erasure coding based
distributed storage systems, keeping the reliability that erasure coding pro-

1 In this paper, we use the terms ‘fragment’ and ‘block’ interchangeably. Depending on
the context, the term ‘data’ is used to mean either fragment(s) or object(s).
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vides, while looking for better solutions to improve the maintainability. Net-
work storage has benefitted from the research done in coding for commu-
nication channels by using erasure codes as black boxes that provide efficient
distribution and reconstruction of the stored objects. It however involves differ-
ent challenges but also opportunities not addressed by classical erasure codes.
Recently, there has thus been a renewed interest [4,6,7,21,10,26,8,23,29] in
designing codes that are optimized to deal with the vagaries of networked
storage, particularly focusing on the maintainability issue, more precisely, on
mechanisms that allow new nodes to be provided with fragments of stored
data to compensate for the departure of nodes from the system, and replenish
the level of redundancy (in order to tolerate further faults in future). Security
in erasure coding based distributed storage systems is another crucial aspect,
see e.g. [1], but it is out of the scope of our current study in this paper. How
the local repairability property of the proposed codes may affect the security
aspects would indeed be an interesting new line of work for future. The goal
of this paper is to propose a new family of codes called self-repairing codes
(SRC), which are tailored to fit well the maintainability of typical networked
storage environments.

As any linear (n, k, d) erasure code over a q-ary alphabet, a SRC is formally
a linear map c : Fqk → Fqn , s 7→ c(s) which maps a k-dimensional vector
s to an n-dimensional vector c(s). The set C of codewords c(s), s ∈ Fqk ,
forms the code (or codebook). The quantity k/n is called the rate of the
code. The third parameter d refers to the minimum distance of the code:
d = minx 6=y∈C d(x,y) where the Hamming distance d(x,y) counts the number
of positions at which the coefficients of x and y differ. The minimum distance
describes how many erasures can be tolerated, which is known to be at most
n − k, achieved by maximum distance separable (MDS) codes. MDS codes
thus allow to recover any codeword out of k coefficients. Though SRCs are not
MDS codes, their definition mimics the MDS property in terms of repair: we
define self-repairing codes as (n, k) codes that encode k fragments of an object
into n encoded fragments to be stored at n nodes, with the properties that:
(a) encoded fragments can be repaired directly from other subsets of encoded
fragments by downloading less data than the size of the complete object. Based
on the analogy with the error correction capability of erasure codes, which is
of any n−k losses independently of which ones, (b) a fragment can be repaired
from a small fixed number (< k) of encoded fragments, depending only on how
many encoded blocks are missing, independently of which specific blocks are
missing. The term “self-repair” was chosen to emphasize the property of the
codes which enable repairs using a very small subset of the encoded pieces,
particularly, smaller in amount than the size of the complete data.

Since our early works on SRCs in 2010 [18,19], research on codes with
localized repairability (where the number of nodes contacted to carry out a
repair is less than k) has gained traction, and inspired by the term ‘locally
decodable codes’, have come to be known as ‘locally repairable codes’ (this
term was coined in [20] in 2012). The idea of localized repairability precedes
our work and was already present in [16], where the notion of local/global
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parities was introduced to deal with degraded reads. The idea that SRCs
added was the ability to carry out local repairs for all the encoded pieces,
and not only a specific subset. Broadly speaking, two flavors of research about
LRC have emerged over time, one looking at the code instances themselves
[20,28], or [14], which proposes a hybrid scheme mixing ideas from LRCs and
regenerating codes [21], and the other, looking theoretically at the fundamental
trade-offs involved in achieving local repairability vis-a-vis code rate or fault-
tolerance [12,15,17]. In this work, our approach is to pursue the former, i.e.,
design of the codes themselves, and analyze their performance. However, a
recent independent work [17] defines ‘optimality’ with respect to the repair
bandwidth v.s. the code’s storage overhead, and shows that the codes [18] we
propose are indeed optimal.

In order to achieve local repairability, SRCs (and LRCs in general) nat-
urally require more storage overhead than MDS erasure codes for equivalent
fault tolerance (static resilience). We will see more precisely later on that there
is a tradeoff between the ability to self-repair and this extra storage overhead:
SRC could be tuned to be MDS at the price of losing the self-repair property,
and conversely, the facility to self-repair can be adapted based on the amount
of extra redundancy introduced. Consequently, SRCs can recreate the whole
object with k fragments, though unlike for erasure codes, these are not ar-
bitrary k fragments, however, many such k combinations can be found (see
Section 4 for more details).

Note that even for traditional erasure codes, the property (a) may coinci-
dentally be satisfied, but in absence of a systematic mechanism this serendip-
ity cannot be leveraged. In that respect, hierarchical codes (HCs) [6] may be
viewed as a way to do so, and are thus the closest example of construction we
have found in the literature, though they do not give any guarantee on the
number of blocks needed to repair given the number of losses, i.e., property
(b) is not satisfied, and has no deterministic guarantee for achieving property
(a) either. We may say at a very high level that SRC design features mitigate
the drawbacks of HCs.

While motivated by the same problem as regenerating codes (RGC) and
HCs, that of efficient maintenance of lost redundancy in coding based dis-
tributed storage systems, the approach of self-repairing codes (SRC) tries to
do so at a somewhat different point of the design space. We try to minimize
the number of nodes necessary to reduce the reconstruction of a missing block,
which automatically translates into lower bandwidth consumption ([17] shows
independently that our codes are in fact optimal w.r.to repair cost given a
specific storage overhead), but also lower computational complexity of main-
tenance, as well as the possibility for faster and parallel replenishment of lost
redundancy. Thus SRCs allow light weight (in terms of communication and
computation overhead) and flexible (in terms of flexibility in the number of
options to carry out specific repairs, which in turn allow parallel and fast
repairs), that is, agile maintenance, of networked storage systems.

In this work, we make the following contributions:
(i) We propose a family of codes, self-repairing codes (SRC), designed specif-
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ically as an alternative to erasure codes (EC) for providing redundancy in
networked storage systems, which minimizes the number d of nodes contacted
during repair, in particular, we consider the case d < k.
(ii) We treat the design of non-MDS storage codes: like ECs, SRCs allow recov-
ery of the whole object using k encoded fragments, but unlike in ECs, these
are not any arbitrary k fragments, though numerous suitable combinations
exist.
(iii) We provide a deterministic code construction called Homomorphic Self-
Repairing Code (HSRC), that generalizes the HSRCs introduced in [18] by
extending the base field, thus allowing more flexibility in the code design.
(iv) HSRC self-repair operations are computationally efficient. It is done by
XORing encoded blocks, each of them containing information about all frag-
ments of the object. The encoding itself is however done through polynomial
evaluation (similar to popular ECs).
(v) We show that for an equivalent static resilience, marginally more storage
is needed than traditional ECs to achieve the self-repairing property (despite
sacrificing the MDS property), conciliating fault-tolerance and maintainabil-
ity. This generalizes the analysis of [18].
(vi) The need of few blocks to reconstruct a lost block naturally translates
to low overall bandwidth consumption for repair operations. SRCs allow for
both eager as well as lazy repair strategies for equivalent overall bandwidth
consumption for a wide range of practical system parameter choices. They
also outperform lazy repair with the use of traditional erasure codes for many
practical parameter choices.
(vii) We show that by allowing parallel and independent repair of different
encoded blocks (leveraging on the low value of d), SRCs facilitate fast replen-
ishment of lost redundancy, allowing a much quicker system recovery from a
vulnerable state than is possible with traditional codes. This also implies a
distribution of the repair related tasks across different nodes, thus avoiding
bottlenecks or overloading any specific node or part of the network.

2 Related work

In [4], Dimakis et al. propose regenerating codes (RGC) by using classical
erasure codes as a black box over a network which implements random linear
network coding and propose leveraging the properties of network coding to
improve the maintenance of the stored data. Network information flow based
analysis shows the possibility to replace a missing fragment using network
traffic equalling the volume of lost data, however only by communicating with
all the n − 1 remaining blocks. Consequently, to the best of our knowledge,
regenerating codes literature generally does not discuss how it compares with
engineering solutions like lazy repair, which amortizes the repair cost by initi-
ating repairs only when several fragments are lost. Furthermore, for RGCs to
work, even sub-optimally, it is essential to communicate with at least k other
nodes to reconstruct any missing fragment. Thus, while the volume of data-
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transfer for maintenance is lowered, RGCs are expected to have higher protocol
overheads, implementation and computational complexity. For instance, it is
noted in [7] that a randomized linear coding based realization of RGCs takes
an order of magnitude more computation time than standard erasure codes for
both encoding and decoding. Explicit codes constructions of RGCs are given
in [21,22]. Recently, collaborative RGC were introduced independently [10,
26], where it was shown that collaboration among new nodes joining the net-
work and participating to the repair process can improve on traditional RGC,
in terms of both (i) storage-bandwidth trade-off, that is the amount of data
that is stored at each node with respect to that which is downloaded by new
nodes during repair, and (ii) number of simultaneous failures tolerated. While
such analysis determines constraint on achievability, for classical as well as
collaborative RGC, code constructions for collaborative RGC are even sparser
[27].

In [6], the authors make the simple observation that encoding two bits
into three by XORing the two information bits has the property that any
two encoded bits can be used to recover the third one. They then propose an
iterative construction where, starting from small erasure codes, a bigger code,
called hierarchical code (HC), is built by XORing subblocks made by erasure
codes or combinations of them. Thus a subset of encoded blocks is typically
enough to regenerate a missing one. However, the size of this subset can vary,
from the minimal to the maximal number of encoded subblocks, determined
by not only the number of lost blocks, but also the specific lost blocks. So
given some lost encoded blocks, this strategy may need an arbitrary number
of other encoded blocks to repair. Pyramid codes [16] explore similar ideas.

Following our first works [18,19] from 2010-2011, there has been a tremen-
dous interest [17,20,28,12,15] both in designing codes with local repairability,
and determining the feasibility of specific code parameters. With respect to
these follow-up works, the main distinctions of the presented works include
the simultaneous achievement of the following desirable properties — code
optimality (proven independently in [17]), repair locality of both data as well
as parity blocks, the availability of multiple choices to carry out individual
repairs; and the novelties of the study includes a rigorous analysis of the fault-
tolerance (static resilience) of the proposed codes which contains the static
resilience analysis of [18] as a particular case, and exploration of other desir-
able system properties such as the parallelization of repairs to achieve fast
recovery from multiple simultaneous failures.

3 Homomorphic Self-Repairing Codes

In what follows, we denote finite fields by F, and finite fields without the zero
element by F∗. The cardinality of F is given by its index, that is, F2 is the
binary field with two elements, which is nothing else than the two bits 0 and
1, with addition and multiplication modulo 2, Fq is the finite field with q
elements, and FQ is the finite field with Q elements. If q = 2t, Q = qm = 2tm,
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F4 F8 F16

0 0 0 w7 = w3 + w + 1
1 1 1 w8 = w2 + 1
w w w w9 = w3 + w
w2 w2 w2 w10 = w2 + w + 1
= w3 = w + 1 w3 w11 = w3 + w2 + w
w + 1 w4 = w2 + w w4 = w + 1 w12 = w3 + w2 + w + 1

w5 = 1 + w2 + w w5 = w2 + w w13 = w3 + w2 + 1
w6 = w2 + 1 w6 = w3 + w2 w14 = w3 + 1

Table 1 The finite fields F4,F8 and F16, where w denotes the generator of their respective
multiplicative groups F∗

4, F∗
8 and F∗

16.

for some positive integers m and t, an element x ∈ FQ can be represented
by an m-dimensional vector x = (x1, . . . ,xm) where xi ∈ Fq, i = 1, . . . ,m,
by fixing an Fq-basis of FQ. Similarly, each coefficient xi can be written as
xi = (xi1, . . . , xit), xij ∈ F2, so that x may alternatively be seen as a tm-
dimensional binary vector x = (x11, . . . , x1t, . . . , xm1, . . . , xmt). We say that x
is a vector of size m to refer to m coefficients in Fq, so that q determines the
unit in which the size m is measured: for example, if q = 2, x is m bit long.
To do explicit computations in the finite field Fq, it is often convenient to use
a fixed generator of the multiplicative group F∗q , that we will denote by w. A
generator has the property that wq−1 = 1, and there is no smaller positive
power of w for which this is true. Examples of finite fields that will be used
later on are given in Table 1.

3.1 Encoding

Let o be an object of size M to be stored over a network of n nodes, that is
o ∈ FqM , and let k be a positive integer such that k divides M . We can write

o = (o1, . . . ,ok), oi ∈ FqM/k

which requires the use of a (n, k) code over FqM/k , that maps o to an Mn/k-
dimensional vector x, or equivalently, an n-dimensional vector

x = (x1, . . . ,xn), xi ∈ FqM/k ,

after which each xi is given to a node to be stored. The theory developed below
assumes this model, which can be adjusted to fit real scenarios as elaborated
later in Example 5.

Since the work of Reed and Solomon [24], it is known that linear coding can
be done via polynomial evaluation. In short, take an object o = (o1,o2, . . . ,ok)
of size M , with each oi in FqM/k , and create the polynomial

p(X) = o1 + o2X + . . .okX
k−1 ∈ FqM/k [X].

Now evaluate p(X) in n elements α1, . . . , αn ∈ F∗
qM/k , to get the codeword

(p(α1), . . . , p(αn)), k < n ≤ qM/k − 1.
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Example 1 Suppose that q = 2, so that the size of the object is measured in
bits. Take the 4 bit long object o = (o1, o2, o3, o4), and create k = 2 fragments:
o1 = (o1, o2) ∈ F4, o2 = (o3, o4) ∈ F4. We use a (3, 2) Reed-Solomon code
over F4, to store the file in 3 nodes. Recall that F4 = {(a0, a1), a0, a1 ∈ F2} =
{a0+a1w, a0, a1 ∈ F2} where w2 = w+1. Thus we can alternatively represent
each fragment as: o1 = o1 + o2w ∈ F4, o2 = o3 + o4w ∈ F4. The encoding is
done by first mapping the two fragments into a polynomial p(X) ∈ F4[X]:

p(X) = (o1 + o2w) + (o3 + o4w)X,

and then evaluating p(X) into the three non-zero elements of F4, to get a
codeword of length 3:

(p(1), p(w), p(w + 1))

where p(1) = o1 + o3 +w(o2 + o4), p(w) = o1 + o4 +w(o2 + o3 + o4), p(w2) =
o1+o3+o4+w(o2+o3), so that each node gets two bits to store: (o1+o3, o2+o4)
at node 1, (o1 + o4, o2 + o3 + o4) at node 2, (o1 + o3 + o4, o2 + o3) at node 3.

Definition 1 We call homomorphic self-repairing code, denoted by HSRC(n, k),
the code obtained by evaluating the polynomial

p(X) =

k−1∑
i=0

piX
qi ∈ FqM/k [X] (1)

in n non-zero values α1, . . . , αn of FqM/k to get an n-dimensional codeword

(p(α1), . . . , p(αn)),

where pi = oi+1, i = 0, . . . , k− 1 and each p(αi) is given to node i for storage.

This definition translates into a general methodology to construct storage
codes, similarly as for Reed-Solomon codes, since the coefficients of the poly-
nomial correspond to the object to be stored, and the choice of the points
α1, . . . , αn (including the choice of n) defines code parameters. The conse-
quences of the choice of n, k, and α1, . . . , αn are discussed in Subsection 3.2
below.

In particular, we need the code parameters (n, k) to satisfy

k < n ≤ qM/k − 1. (2)

The analysis that follows refers to this family of self-repairing codes.

3.2 Self-repair

Since we work over finite fields that contain F2, recall that all operations
are done in characteristic 2, that is, additions are performed modulo 2. Let
a, b ∈ Fqm , for some m ≥ 1 and q = 2t. Then we have that (a + b)2 =
a2 + 2ab + b2 = a2 + b2 since 2ab ≡ 0 mod 2, and consequently one can
iteratively compute

(a+ b)2
i

= [(a+ b)2]2
i−1

= [a2 + b2]2
i−1

= . . . = a2
i

+ b2
i

, i ≥ 1. (3)
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Definition 2 A linearized polynomial2 p(X) over FQ, Q = qm, has the form

p(X) =

k−1∑
i=0

piX
Qi

, pi ∈ FQ.

More generally, one can consider a polynomial p(X) over FQ, Q = qm, of the
form:

p(X) =

k−1∑
i=0

piX
si , pi ∈ FQ,

where s = ql, 1 ≤ l ≤ m (l = m makes p(X) a linearized polynomial). These
polynomials share the following useful property:

Lemma 1 Let a, b ∈ Fqm and let p(X) be the polynomial given by p(X) =∑k−1
i=0 piX

si , s = ql, m ≥ l ≥ 1. We have

p(ua+ vb) = up(a) + vp(b), u, v ∈ Fs.

Proof If we evaluate p(X) in ua+ vb, we get

p(ua+ vb) =
k−1∑
i=0

pi(ua+ vb)s
i

=

k−1∑
i=0

pi((ua)s
i

+ (vb)s
i

)

by (3), and

p(ua+ vb) =

k−1∑
i=0

pi(ua
si + vbs

i

) = u

k−1∑
i=0

pia
si + v

k−1∑
i=0

pib
si

using the property that us = u for u ∈ Fs.

We now define a weakly linearized polynomial as

Definition 3 A weakly linearized polynomial p(X) over FQ, Q = qm, has the
form

p(X) =

k−1∑
i=0

piX
qi , pi ∈ FQ.

We chose the name weakly linearized polynomial, since we only retain the
Fq-linearity, namely:

Corollary 1 Let a, b ∈ Fqm and let p(X) be a weakly linearized polynomial

given by p(X) =
∑k−1
i=0 piX

qi . We have

p(ua+ vb) = up(a) + vp(b), u, v ∈ Fq. (4)

In particular
p(a+ b) = p(a) + p(b). (5)

2 Linearized polynomials are also called additive polynomials.
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It is the choice of a weakly linearized polynomial in (1) that enables self-
repair.

Example 2 Consider the polynomial

p(X) = p0X + p1X
2 + p2X

4 ∈ F8[X].

We have (see Table 1 for F8 arithmetic)

p(w + 1) = p0(w + 1) + p1(w2 + 1) + p2(w4 + 1) = p(w) + p(1)

however
p(w2) 6= p(w)2

since p2i = pi if and only if pi ∈ F2.

A codeword from HSRC(n, k) is then of the form (p(α1), . . . , p(αn)), where
p(X) is a weakly linearized polynomial. Since FqM/k contains a Fq-basis B =
{b1, . . . , bM/k}, the αi, i = 1, . . . , n, can be expressed as Fq-linear combinations
of the basis elements, and we have from Lemma 1 that

αi =

M/k∑
j=1

αijbj , αij ∈ Fq ⇒ p(αi) =

M/k∑
j=1

αijp(bj).

In words, that means that if p is evaluated in the elements of the basis B
(p(b1), . . . , p(bM/k) are computed), or any other basis, then any encoded frag-
ment p(αi) can be obtained as an Fq-linear combination of other encoded
fragments.

Controlling the amount of redundancy. The amount of redundancy
allowing self-repair introduced in the coding scheme can be controlled through
two mechanisms:

1) Firstly, given k fragments, there are different values of n, and different
choices of {α1, . . . , αn} that can be chosen to define a self-repairing code. Let us
denote by nmax the maximum value that n can take, namely nmax = qM/k−1.
By choosing the set of αi to form a subspace of Fnmax+1, we can reduce the
redundancy while maintaining a particularly nice symmetric structure of the
code. In the extreme case where α1, . . . , αn are contained in B, the code has
no self-repairing property, and is in fact a MDS code. Thus SRC can be tuned
to provide the desired amount of redundancy, from MDS and no self-repair,
to the maximal amount of self-repair with nmax.

2) As seen in Lemma 1, the power s of Xsi in the weakly linearized poly-
nomial p(X) determines the Fs-linearity of p(X). Consequently, the bigger s,
the more redundancy since from (4)

p(ua+ vb) = up(a) + vp(b), u, v ∈ Fq,

meaning that the encoded fragment p(ua+ vb) can be repaired by contacting
two nodes p(a), p(b) in as many ways as there are ways for writing ua + vb,
namely (q − 1)2:

ua+ vb = u(u′)−1u′a+ v(v′)−1v′b, u′, v′ 6= 0, u′, v′ ∈ Fq.
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In the particular case where s = 2, we obtain from (5) an XOR-like structure

p(a+ b) = p(a) + p(b).

However, it is worth remarking that though the encoded fragments can be
thus obtained as XORs of each other, each fragment is actually containing
information about all the different fragments, which is very different than a
simple XOR of the data itself. In particular, HSRC is not a systematic code.
The implications of lack of systematic property will be discussed in Subsection
6.2.

Computational complexity of self-repair. In terms of computational
complexity, the case s = 2 implies that the cost of a block reconstruction is
that of some XORs (one in the most favorable case, when two terms are enough
to reconstruct a block, up to k−1 in the worst case), independently of q, since
if q = 2t, the addition in Fq is done by addition modulo 2 componentwise. The
cost increases if one would like to exploit the Fq-linearity. Indeed, repairing
through

p(ua+ vb) = up(a) + vp(b), u, v ∈ Fq,

further requires two multiplications in Fq.

3.3 Decoding

That decoding is possible is guaranteed by either Lagrange interpolation, or
by considering a system of linear equations, assuming that

k ≤M/k, (6)

as detailed below.

Lagrange interpolation. Given k fragments p(αi1), . . . , p(αik) such that
αi1 , . . . , αik are Fq-linearly independent, the node that wants to reconstruct
the file computes qk − 1 linear combinations of the k fragments, which gives,
thanks to the homomorphic property (4), qk−1 points in which p is evaluated.
Lagrange interpolation guarantees that it is enough to have qk−1 + 1 points
(which we have, since qk− 1 ≥ qk−1 + 1 for k ≥ 2) to reconstruct uniquely the
polynomial p and thus the object. This requires

qk−1 + 1 ≤ qM/k − 1,

namely there must be enough points in which to evaluate the polynomial,
which holds subject to (6):

qk ≤ qM/k ⇒ qk−1 + 1 ≤ qk − 1 ≤ qM/k − 1.
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Solving a system of linear equations. Alternatively, one can consider
decoding as solving a system of linear equations. Given k Fq-linearly indepen-
dent fragments, say p(αi1), . . . , p(αik), we can write

αi1 α
q
i1
αq

2

i1
. . . αq

k−1

i1

αi2 α
q
i2
αq

2

i2
. . . αq

k−1

i2
...

...

αik α
q
ik
αq

2

ik
. . . αq

k−1

ik



p0
p1
...

pk−1

 =


p(αi1)
p(αi2)

...
p(αik)

 ,

and the problem of recovering the object reduces to solving the above system
of linear equations. Note that since FqM/k is a vector space of dimension M/k
over Fq, condition (6) is needed to guarantee that there exist k Fq-linearly
independent fragments.

3.4 Worked out examples

Let us first illustrate the choices of the code parameters (n, k), before detailing
some code constructions.

We recall that the parameters (n, k) of an HSRC(n, k) code must satisfy
conditions (2) and (6):

k < n ≤ qM/k − 1, k ≤M/k.

Thus for any choice of k: (1) pick any M which is a multiple of k (zero padding
can be used to remove the constraint on the real size of the object), (2) define
nmax = qM/k − 1, (3) pick any n such that n ≥ qk − 1, n < nmax which is a
power of q minus 1 (this last condition is not completely necessary but ensures
symmetry as already mentioned above).

Some examples of small parameters (n, k) for q = 2 are (1) k = 2, M = 6,
nmax = 7, n = 3, (2) k = 2, M = 8, nmax = 15, n = 3 or n = 7, (3) k = 3,
M = 9, nmax = 7, (4) k = 3, M = 12, nmax = 15, n = 7.

Example 3 Take a data file o = (o1, . . . , o12) of M = 12 bits (q = 2), and
choose k = 3 fragments. We have that M/k = 4, which satisfies (6), that is
k = 3 ≤M/k = 4.

The file o is cut into 3 fragments o1 = (o1, . . . , o4), o2 = (o5, . . . , o8),
o3 = (o9, . . . , o12) ∈ F24 . Let w be a generator of the multiplicative group F∗24 ,
such that w4 = w + 1. The polynomial used for the encoding is

p(X) =

4∑
i=1

oiw
i−1X +

4∑
i=1

oi+4w
i−1X2 +

4∑
i=1

oi+8w
i−1X4.

The n-dimensional codeword is obtained by evaluating p(X) in n elements of
F24 , n ≤ 15 = nmax by (2).
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missing pairs to reconstruct missing fragment(s)
fragment(s)

p(1) (p(w), p(w4));(p(w2), p(w8));(p(w5), p(w10))
p(w) (p(1), p(w4));(p(w2), p(w5));(p(w8), p(w10))
p(w2) (p(1), p(w8));(p(w), p(w5));(p(w4), p(w10))
p(1) and (p(w2), p(w8)) or (p(w5), p(w10)) for p(1)
p(w) (p(w8), p(w10)) or (p(w2), p(w5)) for p(w)

p(1) and (p(w5), p(w10)) for p(1)
p(w) and (p(w8), p(w10)) for p(w)
p(w2) (p(w4), p(w10)) for p(w2)

Table 2 Ways of reconstructing missing fragment(s) in Example 3

For n = 4, if we evaluate p(X) in wi, i = 0, 1, 2, 3, then the 4 encoded
fragments p(1), p(w), p(w2), p(w3) are F2-linearly independent and there is no
self-repair possible.

Now for n = 7, and say, 1, w, w2, w4, w5, w8, w10, we get:

(p(1), p(w), p(w2), p(w4), p(w5), p(w8), p(w10)).

Suppose node 5 which stores p(w5) goes offline. A new comer can get p(w5)
by asking for p(w2) and p(w), since

p(w5) = p(w2 + w) = p(w2) + p(w).

Table 2 shows other examples of missing fragments and which pairs can re-
construct them, depending on if 1, 2, or 3 fragments are missing at the same
time.

As for decoding, since p(X) is of degree 4, a node that wants to recover the
data needs k = 3 F2-linearly independent fragments, say p(w), p(w2), p(w3),
out of which it can generate p(aw + bw2 + cw3), a, b, c ∈ {0, 1}. Out of the 7
non-zero coefficients, 5 of them are enough to recover p. Finally, if the rate of
this code is 3/7 ' 0.43.

Example 4 Take now a data file o = (o1, . . . , o16) with M = 16 and q = 8,
and choose k = 4 fragments. We have that M/k = 4, which satisfies (6), that
is k ≤M/k.

The file o is cut into 4 fragments o1 = (o1, . . . , o4), o2 = (o5, . . . , o8),
o3 = (o9, . . . , o12), o4 = (o13, . . . , o16) ∈ F84 . Let w be a generator of the
multiplicative group of F8, and ν be a generator of the multiplicative group of
F84/F8 such that ν4 = ν3 + w. The polynomial used for the encoding can be
either

p(X) =

3∑
j=0

3∑
i=0

oi+1+4jν
iX8j

or

p′(X) =

3∑
j=0

3∑
i=0

oi+1+4jν
iX2j .

The n-dimensional codeword is obtained by evaluating p(X) in n elements of
F84 , n ≤ 84 − 1 = nmax by (2).
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Now for n = 63, and say, {u+ νv, u, v ∈ F8, (u, v) 6= (0, 0)}, we get:

{p(u+ νv) : u, v ∈ F8, (u, v) 6= (0, 0)},

respectively

{p′(u+ νv) : u, v ∈ F8, (u, v) 6= (0, 0)}.

Let us give an example of repair in both cases. Let us start with p′(X). Suppose
the node which stores p′(w + ν) goes offline. A new comer can get p′(w + ν)
by asking for p′(w) and p′(ν), since

p′(w + ν) = p′(w) + p′(ν).

If we are instead using p(X), when the node which stores p(w+ν) goes offline,
then for any choice of u, v 6= 0, u, v ∈ F8, a new comer can ask p(uw) and
p(vν), and then compute

u−1p(uw) + v−1p(vν) = p(w) + p(ν).

Example 5 The HSRC codes described above implicitly assume a specific,
fixed input size, determined by the choices of n, k, q on which the coding is
to be performed. This is also the case for many other coding schemes such
as Reed-Solomon codes. In real life, data objects may however come in an
arbitrary size. Two heuristics deal with the consequent constraints - namely,
zero padding (for object which is too small), and slicing (for a large object).

For instance, consider as object o a file of 4MB. We can cut o into 4 pieces
of 1MB each, and directly use a (15, 4) code. Alternatively, we can cut o into
4 slices s1, . . . , s4, each of size 1MB. We now encode each si into a codeword
xi = (xi1, . . . , xi,15), using again the (15, 4) code. The jth node then stores
the jth encoded fragment xij j = 1, . . . , 15 for all the slices. To get a point of
comparison of the parameter values (n, k) used in this example, we note that
the erstwhile peer-to-peer realization of Wuala claimed the use of a (517,100)
code, which has a rate k/n of 100/517 ' 0.19, while the (15, 4) code has rate
4/15 ' 0.26. Such a range of rates (and corresponding storage overheads) is
typical in volatile environments as is characteristic of peer-to-peer systems.

A final observation we want to make here is that, in the following section,
when we analyse the static resilience of a code, it determines the availability
for one slice of the object, rather than the object itself. However, placing
the encoded fragments of all the slices in a common pool of storage nodes -
which is also practical in terms of managing meta-information - leads to the
same availability of the object, as for the individual slices. Hence we do not
distinguish the two in the rest of this paper, and consider that the code could
be applied on any object, independently of its size. It has to be noted here that
if the encoded fragments of different slices were to be placed among different
set of nodes, this would however not hold true. This however is an issue we will
not delve into any further, and is also not usually practiced due to practical
system design considerations.
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4 Static Resilience Analysis

The rest of the paper is dedicated to the analysis of the proposed homomorphic
self-repairing codes. Static resilience of a distributed storage system is defined
as the probability that an object, once stored in the system, will continue to
stay available without any further maintenance, even when a certain fraction
of individual member nodes of the distributed system become unavailable. We
start the evaluation of the proposed scheme with a static resilience analysis,
where we study how a stored object can be recovered using HSRCs, compared
with traditional erasure codes, prior to considering the maintenance process,
which will be done in Section 5.

Let pnode be the probability that any specific node is available. Then, under
the assumptions that node availability is i.i.d, and no two fragments of the
same object are placed on any same node, we can consider that the availability
of any fragment is also i.i.d with probability pnode.

4.1 A code representation

Recall that using the above coding strategy, an object o of length M is de-
composed into k fragments of length M/k:

o = (o1, . . . ,ok), oi ∈ FqM/k ,

which are further encoded into n fragments of same length:

x = (x1, . . . ,xn), xi ∈ FqM/k ,

each of the encoded fragment xi = p(αi) is given to a node to be stored. We
thus have n nodes each possessing a q-ary vector of length M/k, corresponding
to a system of n linear equations

α1 α
q
1 α

q2

1 . . . αq
k−1

1

α2 α
q
2 α

q2

2 . . . αq
k−1

2
...

...

αn α
q
n α

q2

n . . . αq
k−1

n



p0
p1
...

pk−1

 =


p(α1)
p(α2)

...
p(αn)

 .

If three rows are Fq-linearly dependent, say rows 1, 2 and 3, then

u(α1, α
q
1, α

q2

1 , . . . , α
qk−1

1 ) + v(α2, α
q
2, α

q2

2 , . . . , α
qk−1

2 )

= (α3, α
q
3, α

q2

3 , . . . , α
qk−1

3 ), u, v ∈ Fq,

which can be rewritten as

(uα1 + vα2, uα
q
1 + vαq2, uα

q2

1 + vαq
2

2 , . . . , uα
qk−1

1 + vαq
k−1

2 )

= (uα1 + vα2, (uα1 + vα2)q, (uα1 + vα2)q
2

, . . . , (uα1 + vα2)q
k−1

)
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= (α3, α
q
3, α

q2

3 , . . . , α
qk−1

3 ), u, v ∈ Fq ⇐⇒ uα1 + vα2 = α3.

Thus to understand the linear dependencies among the fragments owed by
each of the n nodes, one can associate to the ith node the value αi. Once all
the αi are written in a Fq-basis, they can be represented as an n×M/k q-ary
matrix

M =

 α1

...
αn

 =

 α1,1 . . . α1,M/k

...
...

αn,1 . . . αn,M/k

 (7)

with αi,j ∈ Fq.

Example 6 In Example 3, by fixing as F2-basis {1, w, w2, w3}, we have for
n = 4 that M = I4, the 4-dimensional identity matrix, since αi = wi, i =
0, . . . , 3, while for n = 7, it is

MT =


1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1
0 0 0 0 0 0 0

 ,

corresponding to 1, w, w2, w4, w5, w8, w10. Now in Example 4, by fixing as F8-
basis {1, ν, ν2, ν3}, we have

MT =


u
v
0
0

 , u, v ∈ F8, (u, v) 6= 0.

Thus unavailability of a random node is equivalent to losing one linear equa-
tion, or a random row of the matrix M. If multiple random nodes (say n− x)
become unavailable, then the remaining x nodes provide x encoded fragments,
which can be represented by an x×M/k sub-matrix Mx of M. For any given
combination of such x available encoded fragments, the original object can
still be reconstructed if we can obtain at least k linearly independent rows of
Mx. This is equivalent to say that the object can be reconstructed if the rank
of the matrix Mx is larger than or equal to k.

In the case the polynomial p(X) =
∑k−1
i=0 piX

2i , pi ∈ Fq is chosen for
encoding, the corresponding system of n linear equations is slightly different

α1 α
2
1 α

22

1 . . . α2k−1

1

α2 α
2
2 α

22

2 . . . α2k−1

2
...

...

αn α
2
n α

22

n . . . α2k−1

n



p0
p1
...

pk−1

 =


p(α1)
p(α2)

...
p(αn)

 ,

so that now, though it is still true that if three rows are Fq-linearly dependent,
say rows 1, 2 and 3, then

u(α1, α
2
1, α

22

1 , . . . , α
2k−1

1 ) + v(α2, α
2
2, α

22

2 , . . . , α
2k−1

2 )
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= (α3, α
2
3, α

22

3 , . . . , α
2k−1

3 ), u, v ∈ Fq,

it is not true anymore that

(uα1 + vα2, uα
2
1 + vα2

2, uα
22

1 + vα22

2 , . . . , uα
2k−1

1 + vα2k−1

2 )

= (uα1 + vα2, (uα1 + vα2)2, (uα1 + vα2)2
2

, . . . , (uα1 + vα2)2
k−1

)

since u2 = u, resp. v2 = v holds if and only if u, v ∈ F2. In this case, we have
to analyze the matrix 

α1 α
2
1 α

22

1 . . . α2k−1

1

α2 α
2
2 α

22

2 . . . α2k−1

2
...

...

αn α
2
n α

22

n . . . α2k−1

n

 (8)

directly.

Example 7 Consider again Example 4, and suppose the two polynomials p(X)
and p′(X) are both evaluated in α1 = 1, α2 = ν, and α3 = w+ν. Clearly wα1+
α2 = α3. Consequently, when evaluating the polynomial p(X) in α1, α2, α3, we
get as part of the system of linear equations the following 3 rows:

(1, 1, 1, 1), (ν, ν8, ν64, ν512)

and

(w + ν, (w + ν)8, (w + ν)64, (w + ν)512) =

(w + ν, w8 + ν8, w64 + ν64, w512 + ν512).

Clearly the three rows are F8-linearly dependent. If now instead the polynomial
p′(X) is similarly evaluated, we obtain

(1, 1, 1, 1), (ν, ν2, ν4, ν8)

and

(w + ν, (w + ν)2, (w + ν)4, (w + ν)8).

This time the dependencies disappear, since

w + ν2 6= (w + ν)2 = w2 + ν2.
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Fig. 1 Static resilience of homomorphic self-repairing codes (HSRC) for q = 2: Validation
of analysis, and comparison with MDS erasure codes (EC), where the y-axis is in logscale,
depicting the object unavailability (1 − pobj).

4.2 Probability of object retrieval

Consider a (qd− 1)× d q-ary matrix for some d > 1, with distinct rows, no all
zero row, and thus rank d. The case of interest for us is d = M/k, since M is an
(qM/k−1)×(M/k) matrix. If we remove some of the rows uniformly randomly
with some probability 1 − pnode, then we are left with a x × d sub-matrix -
where x is binomially distributed. We define R(x, d, r) as the number of x× d
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sub-matrices with rank r, voluntarily including all the possible permutations
of the rows in the counting.

Lemma 2 Let R(x, d, r) be the number of x× d sub-matrices with rank r of a
tall (qd − 1)× d matrix of rank d. We have that R(x, d, r) = 0 when (i) r = 0,
(ii) r > x, (iii) r = x, with x > d, or (iv) r < x but r > d. Then, counting
row permutations:

R(x, d, r) =

r−1∏
i=0

(qd − qi) if r = x, x ≤ d,

and for r < x with r ≤ d:

R(x, d, r) = R(x− 1, d, r − 1)(qd − qr−1) +R(x− 1, d, r)(qr − x).

Proof There are no non-trivial matrix with rank r = 0. When r > x, r = x
with x > d, or r < x but r > d, R(x, d, r) = 0 since the rank of a matrix
cannot be larger than the smallest of its dimensions.

For the case when r = x, with x ≤ d, we deduce R(x, d, r) as follows. To
build a matrix Mx of rank x = r, the first row can be chosen from any of the
qd−1 rows in M, and the second row should not be a multiple of the first row,
which gives qd − 2 choices. The third row needs to be Fq-linearly independent
from the first two rows. Since there are q2 linear combinations of the first two
rows, which includes the all zero vector which is discarded, we obtain qd − q2
choices. In general, the (i+ 1)st row can be chosen from qd − qi options that
are linearly independent from the i rows that have already been chosen. We
thus obtain R(x, d, r) =

∏r−1
i=0 (qd − qi) for r = x, x ≤ d.

For the case where r < x with r ≤ d, we observe that x × d matrices of
rank r can be inductively obtained by either (I) adding a linearly independent
row to a (x− 1)× d matrix of rank r − 1, or (II) adding a linearly dependent
row to a (x − 1) × d matrix of rank r. We use this observation to derive the
recursive relation

R(x, d, r) = R(x− 1, d, r − 1)(qd − qr−1) +R(x− 1, d, r)(qr − x),

where qd−1− (qr−1−1) counts the number of linearly independent rows that
can be added, and qr − 1 − (x − 1) is on the contrary the number of linearly
dependent rows.

We now remove the permutations that we counted in the above analysis by
introducing a suitable normalization.

Corollary 2 Let ρ(x, d, r) be the fraction of sub-matrices of dimension x× d
with rank r out of all possible sub-matrices of the same dimension. Then

ρ(x, d, r) =
R(x, d, r)∑d
j=0R(x, d, j)

=
R(x, d, r)

Cq
d−1
x x!

.
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In particular

ρx(d) =

d∑
r=k

ρ(x, d, r) (9)

is the conditional probability that the stored object can be retrieved by contact-
ing an arbitrary x out of the n storage nodes.

Proof It is enough to notice that there are Cq
d−1
x ways to choose x rows

out of the possible qd − 1 options. The chosen x rows can be ordered in x!
permutations.

In particular, when the rank is at least k, the object can be retrieved.

We now put together the above results to compute the probability pobj of
an object being recoverable when using an HSRC(n, k) code to store a length
M object made of k fragments encoded into n fragments each of length M/k.

Corollary 3 Using an HSRC(n, k), the probability pobj of recovering the ob-
ject is

pobj =

n∑
x=k

d∑
r=k

ρ(x, d, r)Cnx p
x
node(1− pnode)n−x,

where d = logq n+ 1.

Proof If n = nmax = qM/k − 1, we apply Lemma 2 and Corollary 2 with
d = M/k. If n = qi − 1, for some integer i ≤ M/k such that n ≥ qk − 1,
then M has M/k − i columns which are either all zeros or all ones vectors, as
shown on Example 6. Thus the number of its sub-matrices of rank r is given
by applying Lemma 2 on the matrix obtained by removing these redundant
columns.

We validate the analysis with simulations, and as can be observed from Figure
4.1, we obtain a precise match.

To conclude this analysis, let us get back to Example 4 and notice that the
static resilience analysis derived above holds for the encoding via the polyno-
mial p(X). It would not be the case if p′(X) were used, in which case only the
F2-linear dependencies should be kept.

4.3 Comparison with standard erasure codes

While there is marginal deterioration of static resilience using SRC with re-
spect to MDS codes (as compared in Fig. 1, and to be discussed soon after),
we first elaborate how SRC differs fundamentally from MDS codes by look-
ing at the conditional probability that the stored object can be retrieved by
contacting an arbitrary x out of the n storage nodes.

For (n, k) MDS erasure codes, ρx is a deterministic and binary value equal
to one for x ≥ k, and zero for smaller x. For self-repairing codes, the value is
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probabilistic. In Fig. 2 we show for our toy example HSRC(31, 5) the prob-
ability that the object can be retrieved by contacting arbitrary x nodes, i.e.,
ρx, where the values of ρx for x ≥ k were computed from (9).3 This can alter-
natively be interpreted as the probability that the object is retrievable despite
precisely n−x random failures, and only x random storage nodes are available.

In particular, if any five storage nodes are randomly picked, it is likely
that the object cannot be reconstructed with a probability 0.5096, while if any
seven random nodes are picked, this probability decreases to 0.0757, while, if
thirteen or more random nodes are picked, then the object can certainly be
reconstructed. In contrast, for MDS codes, the object will be retrievable from
the data available at any arbitrary five nodes.

Of-course, this rather marginal sacrifice (we will next compare HSRC’s
static resilience with MDS erasure codes to demonstrate the marginality) pro-
vides HSRC an incredible amount of self-repairing capability. Given that a
practical system will carry out repairs rather frequently, and HSRC in fact al-
lows very cheap repairs, a system using HSRC will be more easily and cheaply
maintained, and hence be reliable - particularly be avoiding multiple failures
to cumulate.

Likewise, for data access and reconstruction, in practice, storage nodes will
be accessed in a planned manner, rather than randomly. There are in fact Cnk ρk
(i.e., 83324 for HSRC(31, 5)) unique subsets of precisely k storage nodes that
allows reconstruction. Hence, in practice, object access overheads will not be
different than when using a MDS coding based scheme.

Let us now compare HSRC against standard MDS erasure codes in terms
of the effective static resilience. If we use a (n, k) MDS erasure code, then the
probability that the object is recoverable when each individual storage node
may fail i.i.d. with probability 1− pnode is:

pobj =

n∑
i=k

Cni p
i
node(1− pnode)n−i.

Note that MDS codes may not exist for specific arbitrary choice of n and k.
However, for the sake of fair comparison, this formula and the following plots
are provided as if they were to exist.

In Figures 4.1 and 4.1, we compare the static resilience achieved using the
proposed homomorphic SRC with that of MDS erasure codes.

In order to achieve the self-repairing property in SRC, it is obvious that it is
necessary to introduce extra ‘redundancy’ in its code structure, but we notice
from the comparisons that this overhead is in fact marginal. By marginal, we
mean that since most real-world systems typically operate with few (but not
many) faults at any given time, the conditional probability of retrieving a data
stored using SRC or a MDS code are the same for a range of typical number
of faults. Furthermore, for the same storage overhead n/k, the overall static
resilience of SRC is only slightly lower than that of EC, and for a fixed k,
as the value of n increases, SRC’s static resilience gets very close to that of

3 ρx is zero for x < k for HSRC also.
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EC. Finally, even for low storage overheads, with relatively high pnode, the
probability of object availability is indeed 1. In any storage system, there will
be a maintenance operation to replenish lost fragments (and hence, the system
will operate for high values of pnode).

We will further see in the next section that SRCs have low maintenance
overheads. These make SRCs a practical coding scheme for networked storage.

5 Communication overheads of self-repair

In the previous section we studied the probability of recovering an object if
it so happens that only pnode fraction of nodes which had originally stored
the encoded fragments continue to remain available, while lost redundancy
is yet to be replenished. Such a situation may arise either because a lazy
maintenance mechanism (such as, in [2]) is applied, which triggers repairs only
when redundancy is reduced to certain threshold, or else because of multiple
correlated failures before repair operations may be carried out. We will next
investigate the communication overheads in such scenarios, emphasizing on
those HSRC with an XOR-like structure (that is, retaining F2-linearity). Note
that this is really the regime in which we need an analysis, since in absence
of correlated failures, and assuming that an eager repair strategy is applied,
whenever one encoded block is detected to be unavailable, it is immediately
replenished. The proposed HSRC ensures that this one missing fragment can
be replenished by obtaining only two other (appropriate) encoded fragments,
thanks to the HSRC subspace structure.
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Definition 4 The diversity δ of SRC is defined as the number of mutually
exclusive pairs of fragments which can be used to recreate any specific fragment.

In other words, the notion of diversity captures the number of local re-
pairs that can be performed in the case of several (correlated) failures. This is
important for any system that needs to support local repairs of at least two
failures.

In Example 3, it can be seen easily that δ = 3. Let us assume that p(w)
is missing. Any of the three exclusive fragment pairs, namely ((p(1), p(w4));
(p(w2), p(w5)) or (p(w8), p(w10)) may be used to reconstruct p(w). See Table
2 for other examples. In Example 4 where the encoding is done using p′(X),
the diversity is δ = 31. Indeed, every encoded fragment is of the form p′(u +
νv), u, v ∈ F8, so that for every u′ + νv′, u′, v′ ∈ F8, we have that the pair
(p′(u′ + νv′), p′((u′ + u) + ν(v′ + v))) can be used to reconstruct p′(u + νv),
since p′(u′ + νv′) + p′((u′ + u) + ν(v′ + v)) = p′(u + νv), and the fragment
p′((u′ + u) + ν(v′ + v)) is indeed present in the network since u′, v′ ∈ F8 and
u, v run through every element in F8 but for the pair (0, 0).

Lemma 3 The diversity δ of a HSRC(n, k) is (n− 1)/2.

Proof We have that n = qd − 1 for some suitable d. The polynomial p(x) is

evaluated in α =
∑d−1
i=0 aiw

i, where ai ∈ Fq and (a0, ..., ad−1) takes all the
possible qd values, but for the whole zero one. Thus for every α, we can create
the pairs (α + β, β) where β takes qd − 2 possible values, that is all values
besides 0 and α. This gives qd − 2 (which is equal to n − 1) pairs, but since
pairs (α+ β, β) and (β, α+ β) are equivalent, we have (n− 1)/2 distinct such
pairs.

An interesting property of SRC can be inferred from its diversity.

Corollary 4 For a Homomorphic SRC, if at least (n + 1)/2 fragments are
available, then for any of the unavailable fragments, there exists some pair of
available fragments which is adequate to reconstruct the unavailable fragment.

Proof Consider any arbitrary missing fragment α. If up to (n−1)/2 fragments
were available, in the worst case, these could belong to the (n− 1)/2 exclusive
pairs. However, if an additional fragment is available, it will be paired with
one of these other fragments, and hence, there will be at least one available
pair with which α can be reconstructed.

5.1 Overheads of recreating one specific missing fragment

Recall that x is defined as the number of fragments of an object that are
available at a given time point. For any specific missing fragment, any one
of the corresponding mutually exclusive pairs is adequate to recreate the said
fragment. From Corollary 4 we know that if x ≥ (n+1)/2 then two downloads
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are enough. Otherwise, we need a probabilistic analysis. Both nodes of a spe-
cific pair are available with probability (x/n)2. The probability that only two
fragments are enough to recreate the missing fragment is p2 = 1−(1−(x/n)2)δ.

If two fragments are not enough to recreate a specific fragment, it may still
be possible to reconstruct it with larger number of fragments. A loose upper
bound can be estimated by considering that if 2 fragments are not adequate, k
fragments need to be downloaded to reconstruct a fragment,4 which happens
with a probability 1− p2 = (1− (x/n)2)δ.

Thus the expected number Dx of fragments that need to be downloaded to
recreate one fragment, when x out of the n encoded fragments are available,
can be determined as:

Dx = 2 if x ≥ (n+ 1)/2

Dx < 2p2 + k(1− p2) if x < (n+ 1)/2.

5.2 Overhead of recreating all missing fragments

Above, we studied the overheads to recreate one fragment. All the missing
fragments may be repaired, either in parallel (distributed in different parts of
the network) or in sequence. If all missing fragments are repaired in parallel,
then the total overhead Dprl of downloading necessary fragments is:

Dprl = (n− x)Dx.

If they are recreated sequentially, then the overhead Dseq of downloading
necessary fragments is:

Dseq =

n∑
i=x

Di.

In order to directly compare the overheads of repair for different repair
strategies - eager, or lazy parallelized and lazy sequential repairs using SRC,
as well as lazy repair with traditional erasure codes, consider that lazy repairs
are triggered when a threshold x = xth of available encoded fragments out
of n is reached. If eager repair were used for SRC encoded objects, download
overhead of

Degr = 2(n− xth)

is incurred. Note that, when SRC is applied, the aggregate bandwidth usage
for eager repair as well as both lazy repair strategies is the same, assuming
that the threshold for lazy repair xth ≥ (n+ 1)/2.

In the setting of traditional erasure codes, let us assume that one node
downloads enough (k) fragments to recreate the original object, and recreates

4 Note than in fact, often fewer than k fragments will be adequate to reconstruct a specific
fragment.
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one fragment to be stored locally, and also recreates the remaining n−xth− 1
fragments, and stores these at other nodes. This leads to a total network traffic:

DEClazy = k + n− xth − 1.

Eager strategy using traditional erasure codes will incur k downloads for each
repair, which is obviously worse than all the other scenarios, so we ignore it
in our comparison.

Note that if less than half of the fragments are unavailable, as observed
in Corollary 4, downloading two blocks is adequate to recreate any specific
missing fragment. When too many blocks are already missing, applying a repair
strategy analogous to traditional erasure codes, that of downloading k blocks
to recreate the whole object, and then recreate all the missing blocks is logical.
That is to say, the benefit of reduced maintenance bandwidth usage for SRC
(as also of other recent techniques like RGC) only makes sense under a regime
when not too many blocks are unavailable. Let us define xc as the critical value,
such that if the threshold for lazy repair in traditional erasure codes xth is less
than this critical value, then, the aggregate fragment transfer traffic to recreate
missing blocks will be less using the traditional technique (of downloading k
fragments to recreate whole object, and then replenish missing fragments)
than by using SRC. Recall that for x ≥ (n + 1)/2, Degr = Dprl = Dseq. One
can determine xc as follows. We need Degr ≤ DEClazy, implying that

2n− 2xc ≤ n− 1 + k − xc ⇒ xc = n+ 1− k.

Figure 3 shows the average amount of network traffic to transfer data from live
nodes per lost encoded fragment when the various lazy variants of repair are
used, namely parallel (γprl) and sequential (γseq) repairs with SRC, and (by
default, sequential) repair (γeclazy) when using EC. MSR RGCs are also shown
on this figure - see γMSRGC , where d is the number of live nodes contacted
during repair. We also note that MBR RGCs would incur less bandwidth per
repair than MSR RGCs. However, an individual MBR encoded piece itself has
some inherent redundancy, and does not carry the same amount of information
as a standard (Reed-Solomon) MDS erasure encoded piece or HSRC encoded
piece. Thus, we have restricted our comparison with only MSR RGCs.

The x-axis represents the threshold xth for lazy repair, such that repairs
are triggered only if the number of available blocks for an object is not more
than xth. Use of an eager approach with SRC incurs a constant overhead of
two fragments per lost block. Note that there are other messaging overheads
to disseminate necessary meta-information (e.g., which node stores which frag-
ment), but we ignore these in the figure, considering that the objects being
stored are large, and data transfer of object fragments dominates the network
traffic. This assumption is reasonable, since for small-objects, it is well known
that the meta-information storage overheads outweigh the benefits of using
erasure codes, and hence erasure coding is impractical for small objects.

There are several implications of the above observed behaviors. To start
with, we note that an engineering solution like lazy repair which advocates



26

8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7

8

9

10

x
th

re
p
a

ir
 t
ra

ff
ic

 p
e
r 

lo
s
t 
b

lo
c
k

n=31, k=8

γ
prl

γ
seq

γ
eclazy

γ
MSRGC

 (d=k+1)

γ
MSRGC

 (d=k+2)

Fig. 3 Average traffic normalized with M/k per lost block for various choices of xth.

waiting before repairs are triggered, amortizes the repair cost per lost fragment,
and is effective in reducing total bandwidth consumption and outperforms SRC
(in terms of total bandwidth consumption), provided the threshold of repair
xth is chosen to be lower than xc. This is in itself not surprising. However, for
many typical choices of (n, k) in deployed systems such as (16, 10) in Cleversafe
[3], or (517, 100) in Wuala [13], a scheme like SRC is practical. In the former
scenario, xc is too low, and waiting so long makes the system too vulnerable
to any further failures (i.e., poor system health). In the later scenario, that is,
waiting for hundred failures before triggering repairs seems both unnecessary,
and also, trying to repair 100 lost fragments simultaneously will lead to huge
bandwidth spikes.5

Using SRC allows for a flexible choice of either an eager or lazy (but with
much higher threshold xth) approaches to carry out repairs, where the repair
cost per lost block stays constant for a wide range of values (up till xth ≥
(n + 1)/2). Such a flexible choice makes it easier to also benefit from the
primary advantage of lazy repair in peer-to-peer systems, namely, to avoid
unnecessary repairs due to temporary churn, without the drawbacks of (i)
having to choose a threshold which leads to system vulnerability or (ii) choose
a much higher value of n in order to deal with such vulnerability, and (iii)
have spiky bandwidth usage.

5.3 Maximal distance separability & minimum storage point

To conclude the discussion on the cost of repair, this subsection gives some
points of comparison between the now well known RGC and the newly intro-
duced SRC. The theory underlying regenerating codes exposes an interesting

5 A storage system’s vulnerability to further failures, as well as spiky bandwidth usage
are known problems of lazy repair strategies [11].
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trade-off between the storage and repair bandwidth overheads for maximal
distance separable codes - where the data is encoded and stored over n nodes,
and encoded data stored at any arbitrary k of these storage nodes allows re-
construction of the whole object.

Suppose that each node has a storage capacity of α, i.e., the size of the
encoded data block stored at a node is of the size α. When one data block needs
to be regenerated, a new node contacts d live nodes, and downloads β amount
of data from each of the contacted nodes (referred to as the bandwidth capacity
of the connections between any node pair). By considering an information
flow from the source to the data collector, a trade-off between the nodes’
storage capacity and bandwidth is computed through a min-cut bound. This
analysis determines two interesting constraints. Firstly, regeneration of a lost
node is feasible only when at least k live nodes are contacted, i.e. d ≥ k.
Secondly, it determines a trade-off curve between the storage overhead per
node α and the bandwidth per regeneration dβ. One extreme of this trade-off
curve corresponds to the smallest feasible value of α, which is M/k (the other
one being the smallest feasible value of β, called the minimal bandwidth repair
point (MBR)). We note that this storage overhead corresponds to any optimal
encoding scheme which aims to reconstruct the object using no more than
k encoded blocks. This point on the trade-off curve is called the minimum
storage repair point (MSR), determining the minimal bandwidth requirement
for regeneration according the min-cut max-flow arguments of information flow
as follows:

(αMSR, βMSR) =

(
M

k
,

M

k(d− k + 1)

)
.

A similar minimum storage point, computed using the same type of arguments,
is available for collaborative RGCs, and takes the form

α =
M

k
, β = β′ =

M

k

1

d− k + t

where β′MSR denotes the bandwidth used for cooperation and t is the number
of new nodes regenerating together and in cooperation with each other (thus,
t could be interpreted as the number of failures triggering lazy, collaborative
repair).

Since encoded blocks in HSRC(n, k) codes are also of size M/k, a meaning-
ful comparison is possible corresponding to the minimal storage (MSR) point.
We note that firstly, HSRC achieves a d << k, which breaches the d ≥ k
constraint of RGCs. Furthermore, we notice from Figure 3 that HSRC can
carry out regenerations with less bandwidth per repair than RGCs, for certain
number of faults, and certain RGC parameter choices.

At first sight, this may seem counter-intuitive, given that the max-flow min-
cut analysis establishes hard achievability constraints. But recall that these
constraints were determined under the assumption of maximal distance sep-
arability of the resulting code. Thus to say, the repair advantage of HSRC is
obtained by relaxing the MDS constraint, which, as discussed in Section 4.3,
has marginal practical drawbacks or overheads.
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Finally, it is worth pointing out the significance of the choice of d. A typical
value of k as used in volatile environments like peer-to-peer systems is about
100 (a choice advocated in erstwhile Wuala system), this means that the num-
ber of nodes contacted for one repair is more than a hundred, whereas HSRC
in contrast can repair one node by communicating with only two nodes.

6 Other practical implications: A qualitative discussion

So far we have demonstrated that by embracing the self-repairing properties,
significant reduction in the aggregate bandwidth used for repairs is achieved.
This overhead reduction is with respect to not only traditional erasure codes,
but under certain regimes, also in comparison to other ‘optimal’ storage centric
codes such as regenerating codes. While repair bandwidth overhead reduction
was the explicit motivation for designing self-repairing codes, the code proper-
ties have another natural and desirable consequence - in presence of multiple
failures, SRC allows for fast and parallel repairs. We will elaborate this prop-
erty with an example in Subsection 6.1 below.

Apart the lack of maximum distance separability (MDS) property, another
possible critique of HSRC is that it is not a systematic code, that is, pieces of
the object are not present uncoded. We have already argued that the original
design goal of the self-repairing properties themselves are mutually exclusive
with the MDS property, but based on quantitative arguments (see Section
4.3), we concluded that this has marginal impact on the resilience or storage
overheads of the proposed code. We note that the systematic code property
is not necessarily and completely exclusive of the cardinal self-repairing code
properties. Indeed, a different construct of self-repairing code [19] based on
very different mathematical properties, that of projective geometry, has been
shown to have systematic-like features. We further comment the issue of sys-
tematic pieces in Subsection 6.2.

6.1 Fast & parallel repairs with HSRC

We observed in the previous section that while SRC is effective in significantly
reducing bandwidth usage to carry out maintenance of lost redundancy in
coding based distributed storage systems, depending on system parameter
choices, an engineering solution like lazy repair while using traditional EC
may (or not) outperform SRC in terms of total bandwidth usage, even though
using lazy repair with EC entails several other practical disadvantages.

A final advantage of SRC which we further showcase next is the possibility
to carry out repairs of different fragments independently and in parallel (and
hence, quickly). If repair is not fast, it is possible that further faults occur
during the repair operations, leading to both performance deterioration as
well as, potentially, loss of stored objects.

Consider the following scenario for ease of exposition: Assume that each
node in the storage network has an uplink/downlink capacity of 1 (coded)
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fragment suitable pairs to reconstruct
p(1) (p(w7), p(w9));(p(w11), p(w12))
p(w) (p(w7), p(w14));(p(w8), p(w10))
p(w2) (p(w7), p(w12));(p(w9), p(w11));(p(w12), p(w10))
p(w3) (p(w8), p(w13));(p(w10), p(w12))
p(w4) (p(w9), p(w14));(p(w11), p(w13))
p(w5) (p(w7), p(w13));(p(w12), p(w14))
p(w6) (p(w7), p(w10));(p(w8), p(w14))

Table 3 Scenario: Seven fragments p(1), . . . , p(w6) are missing

node p(w0) p(w1) p(w2) p(w3) p(w4) p(w5) p(w6)
Time 1 p(w7) p(w8) p(w9) p(w13) p(w11) p(w12) p(w10)
Time 2 p(w9) p(w10) p(w11) p(w8) p(w13) p(w14) p(w7)

fragment per unit time. Further assume that the network has relatively (much)
larger aggregate bandwidth. Such assumptions correspond reasonably with
various networked storage system environments.

Consider that for the Example 3, originally n was chosen to be nmax,
that is to say, a HSRC(15, 3) was used. Because of some reasons (e.g., lazy
repair or correlated failures), let us say that seven encoded fragments, namely
p(1), . . . , p(w6) are unavailable while fragments p(w7)...p(w15) are available.
Table 3 enumerates possible pairs to reconstruct each of the missing fragments.

A potential schedule to download the available blocks at different nodes to
recreate the missing fragments is as follows: In first time slot, p(w11), p(w10),
p(w12), nothing, p(w13), p(w7) and p(w8) are downloaded separately by seven
nodes trying to recreate each of p(1), . . . , p(w6) respectively. In second time slot
p(w12), p(w8), p(w7), p(w10), p(w11), p(w13) and p(w14) are downloaded. Note
that, besides p(w3), all the other missing blocks can now already be recreated.
In third time slot, p(w12) can be downloaded to recreate it. Thus, in this
example, six out of the seven missing blocks could be recreated within the time
taken to download two fragments, while the last block could be recreated in
the next time round, subject to the constraints that any node could download
or upload only one block in unit time.

Even if a full copy of the object (hybrid strategy [25]) were to be maintained
in the system, with which to replenish the seven missing blocks, it would have
taken seven time units. While, if no full copy was maintained, using traditional
erasure codes would have taken at least nine time units.

This example demonstrates that SRC allows for fast reconstruction of miss-
ing blocks. Orchestration of such distributed reconstruction to fully utilize this
potential in itself poses interesting algorithmic and systems research challenges
which we intend to pursue as part of future work.

6.2 On HSRC not being a systematic code

One can immediately read partial contents of the stored object from systematic
encoded blocks. The fact that HSRC is not a systematic code (every encoded
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fragment contains information about every piece of data) makes the object
retrieval more costly: this is basically decoding. However, unlike in a classical
communication scenario where decoding has to be done with whatever cor-
rupted data is available, the situation is slightly different in archival storage:
thanks to the repair property, it is possible to have a privileged set of encoded
fragments to be used for decoding, and if some are missing during object re-
trieval, they can be repaired first. The set of encoded fragments to decode
can be chosen for being closer to systematic blocks than random blocks, or
precomputed computations can be made available to ease the decoding. Op-
timizing the decoding process is one of the future directions of the presented
work. As a final note, we will like to mention that for deep archival (cold stor-
age) applications, read operations are extremely infrequent, but persistence of
the data is critical even in the presence of frequent failures, and significantly
cheap repairs is a reasonable trade-off.

7 Conclusion

We considered the problem of dependability in networked distributed storage
systems, focusing on fault-tolerance and maintainability. We propose a fam-
ily of locally repairable erasure codes, called self-repairing codes, which are
designed by taking into account specifically the characteristics of distributed
networked storage systems. Self-repairing codes achieve excellent properties
in terms of maintenance of lost redundancy in the storage system, most im-
portantly: (i) low-bandwidth consumption for repairs (with flexible/somewhat
independent choice of whether an eager or lazy repair strategy is employed),
(ii) parallel and independent (thus very fast) replenishment of lost redundancy.
When compared to MDS erasure codes, the self-repairing property is achieved
by marginally compromising on static resilience for same storage overhead, or
conversely, utilizing marginally more storage space to achieve equivalent static
resilience. This paper provides the theoretical foundations for SRCs, and shows
its potential benefits for distributed storage. There are several algorithmic and
systems research challenges in harnessing SRCs in distributed storage systems,
e.g., design of efficient decoding algorithms, or placement of encoded fragments
to leverage on network topology to carry out parallel repairs, which are part
of our ongoing and future work.
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