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ABSTRACT 

Magnet filler–polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol 
composites have an interesting ability to undergo large strains in response to an external magnetic field. The 
potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading 
into the composite and also due to the increased interaction area at the interface of the nanoparticles and the 
composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol 
composites consisting of  magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were 
prepared.  The deformation characteristics of the actuator were determined. The morphing ability of the Magpol 
composite was studied under different magnetic fields and also with different filler loadings. All films exhibited 
large strain under the applied magnetic field. The maximum strain of the composite showed an exponential 
dependence on the Ms. The work output of Magpol was also calculated using the work loop method.  Work 
densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double 
the typical strain.  Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self 
healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain 
rate and quick response.  

Keywords: Magnet polymer composites, actuators, work loop, multifunctional, morphing 

1. INTRODUCTION 

Living organisms are able to sense and interact with their environment through movement or change in shape or 
structure on both macro and micro scale. Thus research in bio inspired shape changing materials and structures 
have attracted intense interest due to their attractive ability to morph and adapt to environmental conditions.1-2 
Current actuation technologies are based either on high modulus – low strain materials, such as piezoceramics 
and magnetostrictors, or on multi-component systems, such as hydraulic, pneumatic or electromagnetic 
devices.3 The former technologies are capable of working at high stresses but low strains, whereas the latter 
systems are capable of producing large strains or displacements but at comparatively low stresses. Considerable 
attention has also been directed at shape memory alloys (SMAs) that can deliver both high forces and large 
displacements. However, the response times and longevity of these materials has yet to be optimized to afford 
reliable actuator technologies.4 It is clear from an analysis of the performance indices of mechanical actuators 
that there is a gap between the high stress-low strain and the low-stress – high strain groups.4 This is the region 
where most current systems like EAPs and MagPol operate. The remote activation, high strain rate and quick 
response of Magpol make it an attractive alternative as an actuating material.5-6 

Magnet filler–polymer matrix composites (Magpol) are a class of materials that can be adapted to develop 
multifunctional composites;7 Other materials similar to Magpol are ferrogels, magnetorheological elastomers 
and magnetoactive polymers.8-11 The advantage of Magpol lies in the flexible choice of matrix materials, for 
example hydrogels, silicone, polyurethanes and rubber have been used as  matrices for the development of 
Magpol; A corresponding flexibility exists in the choice of magnetic filler. The filler material can be 
magnetically soft or hard. 12-13 Magpol has several advantages due to its unique composition and flexibility in 
choice of polymer and filler. The materials used in the synthesis of Magpol impart it with the ability for remote 
contactless actuation, actuation in various modes, high actuation strain, self-sensing and quick response. The 
ability of the composite to actuate in a magnetic field as well as to generate heat in an AC field makes this an 
ideal system to study multifunctionality.  
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The use of Magpol as actuators has been studied by various groups. It was determined that magnet polymer 
composites can be deformed by both uniform and non uniform magnetic fields.14 In a nonuniform magnetic 
field, forces act on the magnetic particles due to the magnetic gradient. Due to the magnetic interaction between 
the magnetic particles and the interactions between the particles and the polymer chains, changes in molecular 
conformation accumulate and eventually lead to shape changes. The final shape is established by the balance 
between magnetic forces acting on the particles and the elastic resistance of the polymer matrix. Different 
modes of shape change have been observed in Magpol materials including deflection, bending, elongation, 
contraction, or a combination of the above.15-16 

This study reports the synthesis and characterization of MnZnFe2O4/thermoplastic polyethylene vinyl acetate 
(EVA) nanocomposites capable of large deformation under applied magnetic fields. The dependence of 
actuation on the saturation magnetization of the filler as well as the loading of the filler was also studied. This 
paper also describes the work loop measurements conducted on Magpol films during deflection type of 
deformation.6 This scheme can potentially be extended to different magnetic fillers and polymer matrices with 
suitable choice of chemistry and optimization of properties.17 

2. MATERIALS AND EXPERIMENTAL METHODS 

2.1 Materials 

All materials were used as received without further purification. manganese(II) chloride tetrahydrate 
99%(MnCl2. 4H2O),  zinc chloride, anhydrous (98+%) (ZnCl2), iron (III) chloride hexahydrate, (FeCl3. 6H2O), 
sodium hydroxide (NaOH) were purchased from Alfa Aesar. Poly(ethylene-co-acrylic acid) 15wt% and 1,1,2,2 
tetrachloroethane were obtained from Sigma Aldrich. Polyethylene vinyl acetate brand Cosmothene EVA KA-
31 (28% VA content) was purchased from the Polyolefin Company (Singapore) Pvt. Ltd. MilliQ water was used 
for all experiments. 

2.2 Sample Preparation 

Synthesis of the nanoparticle was done via the hydrothermal method. Manganese (MnCl2), zinc (ZnCl2) and iron 
chloride salts (FeCl3) were dissolved in appropriate molar quantities in MilliQ water. The salt solutions were 
then added together and vigorously stirred while adding sodium hydroxide until the reaction mixture reached a 
pH of 12. The solution was placed into a hydrothermal vessel and heated in an oven for 4 hours at 190°C. The 
particles were then washed with DI water and ethanol and used for further experiments. 2sets of nanoparticles 
were synthesized with different Ms values by changing the Mn to Zn ratio. Mn0.7Zn0.3Fe2O4 and Mn0.8Zn0.2Fe2O4 
compositions were synthesized and will be referred to as Mn0.7 and Mn0.8 respectively. 

EVA-magnetic nanoparticle composites were synthesized by the solution casting method. EVA pellets were 
dissolved in 1,1,2,2 tetrachloroethane (TCE) on a hot plate at ~120°C. Nanoparticles were then added to the 
solution at the desired loading and the solution was immediately poured into petri dishes and heated at 120°C 
for 4 hours in an oven. Films were made with nanoparticle loadings of 10 wt%, 12 wt. % and 16 wt% and were 
~150 µm thick. 

2.3 Characterization 

The crystal structure of the Mn-Zn ferrites were studied using a Shimadzu 6000 X-ray Diffractometer (XRD) 
with CuKα radiation of wavelength 1.54056 Å, in the 2θ range of 20°–80° at a scan rate of 2° min-1. Phase 
identification was performed by matching peak positions and relative intensities to reference JCPDS files. The 
crystallite size was calculated using the Scherrer formula. The magnetic properties of the materials were 
determined using a Lakeshore 7404 Vibrating Sample Magnetometer (VSM) in an applied field range of 0–10 
kOe. The mechanical properties of the polymer were also studied using the Physica MCR501 rheometer. 
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samples by varying the magnetic field. Low loading samples show threshold behaviour, while the saturation 
magnetization of the samples influences the strain rate.  

The threshold deflection behaviour can be explained by the nature of the magnetic field and magnetic field 
gradient produced by the electromagnet.  Magnetic field measurements show that beyond a certain distance 
from the electromagnet, both the field and gradient are negligible. Both these quantities increase as the distance 
from the point of measurement to the magnet decreases, though the gradient changes at a much faster rate than 
the magnetic field strength. This drastic change in gradient accounts for the threshold behavior of the deflection 
of Magpol. 

 Figure 4 Magpol film displacement plotted against magnetic field for A] Mn0.7 filler and B] Mn0.8 filler with 
varying wt% loading 

The deflection behaviour of Magpol depends on the force acting on the volume of the material (V) and is 
proportional to the magnetic potential U. The force (F) can be calculated from the magnetic moment (M) and the 
field gradient. The magnetic moment in turn depends on the applied field (H0) and the susceptibility of the 
samples (χ).[17] ௗெሬሬԦௗுሬሬԦ = ߯	                                                             (1) ሬܷሬԦ = ׬ ሬሬԦு଴ܪሬሬԦ݀ܯ                                                                        (2) ሬܷሬԦ = ଵଶ Ԧܨ ଴                                                                            (3)ܪ߯ = −∇ഥ ሬܷሬԦ                                                                            (4) ܨ௬ = ௬ܯ ׬ ௗு೤ௗ௬௏଴ ܸ݀                                                              (5) 

As the field is increased the film gradually moves towards the magnet, eventually the film reaches a point where 
the magnetic force is greater than the weight of the film and this results in maximum deformation. As the 
equations suggest, higher loading samples have greater susceptibility and thus show displacement even at low 
fields. In the case of the Mn0.7 and Mn0.8 samples, the same loadings have different susceptibilities. Thus, 
Mn0.8 samples show higher displacement at lower fields and higher strain rates. However when the applied 
field and therefore the force becomes greater than that required for complete deformation, the maximum 
deflection for both Mn0.7 and Mn0.8 samples is the same. (Figure 5) 
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Figure 5 Maximum strain vs. nanoparticle loading 

3.5 Work Loop  

In addition to morphing ability, the actuation properties of MagPol were also studied in relation to work. The 
ability of Magpol to perform work was studied using the work loop method employed in artificial muscles 
studies. The work loop measurements are useful in designing sample dimensions, load, filler concentration etc. 
for Magpol based actuating devices. Figure 6 shows the work loops obtained for 20wt%, 40 wt% and 60 wt% 
samples of the Mn0.7 and Mn0.8. 

 

Figure 6 Work loops for Magpol films containing A] Mn0.7 and B] Mn0.8  fillers with 20, 40 and 60 wt% loading 
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Table 1 shows the maximum work output and stress generated by the composite. Increasing the loading results 
in larger force being generated. Unlike the strain, which shows saturation after a particular loading and applied 
magnetic field, no saturation behaviour is observed in the work output.  Higher saturation magnetization results 
in higher stress and greater work output. 

Table 1: Maximum Stress and work output obtained from Magpol composites through work loop method 

Loading wt% Mn0.7 Mn0.8 
Max. Stress (Pa) Work (µNm) Max. Stress (Pa) Work (µNm) 

20 34.62 324 66.8 675 
40 63.1 582 109.5 1139 
60 108.5 1135 167.7 1913 

 

While much larger stress and work output values have been obtained for other types of Magpol actuators using 
different fillers and matrix,6 the components of this particular composite have additional advantages in the 
development of a multifunctional composite. Further work is necessary to optimize the parameters needed to 
obtain the highest output.  

4. CONCLUSIONS 

We have presented a bioinspired composite capable of actuation using a magnet-polymer based system.  

• We synthesized magnetic MnxZn1-xFe2O4 nanoparticles with varying saturation magnetization using the 
hydrothermal method 

• The ferrite nanoparticles were then used as a filler in an EVA matrix to make Magpol films with 
different filler loadings and therefore different Ms values. 

• The ability of the composite to actuate under an external applied magnetic field was demonstrated. 
Higher deformation was observed for larger loadings but reached a saturation value at 20 wt%. It was 
observed that the morphing ability and strain rate of Magpol depended on the saturation magnetization 
of the nanoparticle filler. 

• The Work loop method was used to study the work output. As no saturation behaviour was observed in 
the magnetic field range used in this investigation, it can be concluded that larger applied fields will 
result in greater work output. Though large strains were obtained for the Magpol films, work output 
was relatively low.  

The advantage of this new class of actuator is the lack of a requirement for an integrated driving source. This 
may lead to a wide range of applications which require contactless, noninvasive control, such as human implants 
and aerospace devices7, 18-19. Thus Magpol is a promising new material which is ideally suited to the 
development of multifunctional smart structures. 
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