
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Analysis and characterization of probability
distribution and small‑scale spatial variability of
rainfall in Singapore using a dense gauge network

Mandapaka, Pradeep; Qin, Xiaosheng

2013

Mandapaka, P. V., & Qin, X. (2013). Analysis and Characterization of Probability Distribution
and Small‑Scale Spatial Variability of Rainfall in Singapore Using a Dense Gauge Network.
Journal of Applied Meteorology and Climatology, 52(12), 2781‑2796.

https://hdl.handle.net/10356/103925

https://doi.org/10.1175/JAMC‑D‑13‑0115.1

© 2013 American Meteorological Society.This paper was published in Journal of Applied
Meteorology and Climatology and is made available as an electronic reprint (preprint) with
permission of American Meteorological Society. The paper can be found at the following
official DOI: [http://dx.doi.org/10.1175/JAMC‑D‑13‑0115.1].  One print or electronic copy
may be made for personal use only. Systematic or multiple reproduction, distribution to
multiple locations via electronic or other means, duplication of any material in this paper
for a fee or for commercial purposes, or modification of the content of the paper is
prohibited and is subject to penalties under law.

Downloaded on 20 Mar 2024 19:23:22 SGT



Analysis and Characterization of Probability Distribution and Small-Scale Spatial
Variability of Rainfall in Singapore Using a Dense Gauge Network*

PRADEEP V. MANDAPAKA

Earth Observatory of Singapore, Nanyang Technological University, Singapore

XIAOSHENG QIN

Earth Observatory of Singapore, and School of Civil and Environmental Engineering, Nanyang Technological

University, Singapore

(Manuscript received 22 March 2013, in final form 3 June 2013)

ABSTRACT

Hourly rainfall measurements from a network of 49 rain gauges on the tropical island of Singapore are

analyzed to characterize variability of rainfall for temporal and spatial scales ranging from 1 to 24 h and from

1 to 45 km, respectively. First, the probability distributions of rain rates are characterized using the method of

L moments. The analysis showed that the Pearson type-3 (PE3) distribution best fitted the rain rates for all

time scales of concern. The parameters of the PE3 distribution are found to be related to the time scale

through simple power laws. Second, the spatial structure of rainfall is characterized using spatial correlations.

The decay of correlations with intergauge distance is parameterized using a powered-exponential function. In

general, the e-folding correlation distance (distance at which the correlation drops to 1/e) varied from 10km at

hourly scales to 33km at daily scales. The study also examined diurnal, seasonal, and anisotropic patterns in the

spatial correlation structure of rainfall. The rainfall patterns are smoothest in December and January and are

most variable in February, April, and October. Diurnal analysis of spatial correlations showed that the rainfall

patterns are smoothest in the early hours between 0100 and 0600 local time and are most variable during the

afternoon between 1500 and 1900 local time. The results also showed complex anisotropic patterns in spatial

correlations, with considerable dependence of rainfall orientation on spatial scale and the time of the year.

1. Introduction

Information about the finescale (from subhourly to

daily and from meters to 25 km) structure of rainfall is

required for a variety of applications such as spatial in-

terpolation of rainfall (e.g., kriging), optimal design of

rain gauge networks, stochastic downscaling, and eval-

uation of remotely sensed rainfall estimates. Better

characterization of the finescale variability of rainfall is

a step toward better prediction of the hydrologic response

of watersheds and urban areas. Quantifying rainfall

variability at very small scales is particularly important

for the ‘‘Maritime Continent,’’ where processes such as

land–sea breezes and mountain–valley winds lead to

complex spatial and temporal patterns in rainfall (e.g.,

Qian 2008). Several studies have investigated the spatial

and temporal behavior of rainfall on the Maritime

Continent, but a majority of them were carried out at

regional scales using either satellite rainfall estimates or

regional climate model simulations (e.g., Aldrian and

Susanto 2003; Mori et al. 2004; Zhou and Wang 2006;

Ichikawa and Yasunari 2006; Suhaila et al. 2010; Teo

et al. 2011; Varikoden et al. 2011).

Very few studies investigated the variability of rainfall

on the Maritime Continent at fine spatiotemporal scales

(e.g., Desa and Niemczynowicz 1996a,b; Bidin and

Chappell 2003, 2006). Desa and Niemczynowicz (1996a)

analyzed rainfall spatial gradients and correlations using

11 yr of data from six gauges covering approximately

300km2 in Kuala Lumpur, Malaysia. The rainfall iso-

hyetal maps suggested that the annual rainfall amount
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increased from southwest to northeast. The study further

reported that the spatial gradients and correlation pat-

terns in rainfall change significantly with season of the

year. For the same region, Desa and Niemczynowicz

(1996b) analyzed high-resolution data of eight storms

using 14 gauges distributed in an area of 23km2 and found

significant spatial variability in storm totals. Using a

dense network of 46 gauges in a small humid catch-

ment (area of ;4 km2) in Malaysian Borneo, Bidin

and Chappell (2003) studied the effects of aspect and

relief on small-scale spatial structure of rainfall. The

study reported ‘‘very large spatial variability or ‘local-

isation’’’ in annual and seasonal totals even for spatial

scales as small as 1–3 km. For the same region, Bidin and

Chappell (2006) examined the spatial variation in hourly

and daily rain incidence and in rain-event duration using

nine gauges distributed in an area of ;5 km2. The study

reported shorter-duration localized rainfall events that

occur particularly during midafternoon.

The aforementioned studies have improved our un-

derstanding of the small-scale rainfall variability on

the Maritime Continent, in particular for peninsular

Malaysia and Malaysian Borneo. The spatial and tem-

poral scales investigated and the conclusions reached

in these studies are influenced, however, by the gauge

network coverage, data resolution, and length of the

record. For example, Desa and Niemczynowicz (1996a)

were limited by the number of gauges to model the de-

creasing trend of spatial correlation with intergauge

distance. Furthermore, the spatial correlation analysis in

the study was limited to seasonal and annual totals. Desa

and Niemczynowicz (1996b), on the other hand, had

better network density and data resolution but had

limited length of the record. Although Bidin and

Chappell (2003) used a gauge network with very high

density, the study was limited to very small scales of

0.02–3.3 km and to seasonal and annual totals.

It can be said from the above discussion that the

Maritime Continental region lacks a thorough analysis

of rainfall variability at scales from hourly to daily and

from tens of meters to ;25 km. The aim of this study is

to bridge this gap by characterizing

1) probability density functions (PDFs) of rain rates for

time scales of 1–24 h,

2) spatial correlation structure for time scales of 1–24 h

and intergauge distances varying from 1 to 45 km,

3) seasonal and diurnal behavior in finescale spatial

correlations, and

4) anisotropy in finescale spatial patterns of rainfall.

We analyzed hourly data from a dense gauge network

in Singapore (Fig. 1). Section 2 provides a brief de-

scription of the study area, the gauge network, and the

data characteristics. Section 3 describes the analysis

tools used to characterize the PDFs and spatial structure

of rainfall. The results are discussed in section 4, fol-

lowed by a summary and concluding remarks in section 5.

2. Study area and data description

Singapore is a highly urbanized, densely populated

(population of;5million) tropical island nation extending

FIG. 1. Map of Singapore that shows the locations of rain gauges used in this study. There are 49

gauges distributed in an area of ;710 km2.
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from 1.168 to 1.488N and from 103.68 to 104.098E, with
an area of ;710 km2 (Fig. 1). There is no pronounced

variability in topography, with most of the island at

about 15m above sea level. The highest point is the

Bukit Timah hill at 164m above sea level near the center

of the island. Because of the maritime exposure and

proximity to the equator, the island is characterized by

equatorial climate with high humidity, heavy rainfall,

and uniformly warm temperatures throughout the year

(e.g., Fong 2012). The island experiences twomonsoons:

the southwest monsoon from June to September and the

northeast monsoon from late November to March. The

prevailing winds are from a south-southeastern direc-

tion during the southwest monsoon and from a north-

northeastern direction during the northeast monsoon.

Typical of equatorial regions, the island has a pronounced

diurnal cycle in rainfall, relative humidity, and surface

winds (e.g., Fong 2012).

The data analyzed in this study were collected using

a dense gauge network consisting of 49 gauges distrib-

uted in an area of ;710 km2 (Fig. 1). The nearest-

neighbor distance between gauges varies from 0.8 to

7.9 km, with an average value of 2.7 km. We obtained

31 yr (1980–2010) of hourly data from the National

Environmental Agency (NEA) of Singapore. Note that

the type of gauge used at some stations changed during

the study period. For example, all 49 stations in 1980

were equipped with recording-type gauges with rain

gauge charts attached. The precision of these gauges is

0.1mm. By 2010, 20 of 49 stations were equipped with

tipping-bucket gauges that record the number of 0.2-mm

tips every minute. The raw data were then converted by

NEA to hourly accumulations and delivered to us. The

data have quality-control flags to indicate time periods

with missing data. These time periods were not consid-

ered in the study.

The number of gauges available for each year of the

study period is shown in Fig. 2a. Except for the initial

years (1980–83), there are at least 45 gauges available for

the study. The spatial coverage, gauge density, and

length of the dataset are unique for this region and

provide us an opportunity to perform robust analysis of

rainfall structure. Note that the focus is on character-

ization of PDFs and spatial variability. Analysis of

temporal rainfall structure is limited to studying the

variation of PDFs and spatial patterns with time scale.

Furthermore, the spatial structure is also analyzed ac-

cording to time of day and month of the year.

The average number of rainy days (expressed as

a percentage) for each year of the study period is shown

in Fig. 2b. On average, it rained during 51%of days, with

1997 and 2000 recording the minimum and maximum

values of 43% and 58%, respectively. The average an-

nual rainfall during the study period is 2430mm, with

1997 and 2007 recording minimum and maximum rain-

fall, respectively (Fig. 2c). The monthly variation of the

FIG. 2. (a) Number of rain gauges available, (b) average number (%) of rainy days, and

(c) average areal annual rainfall for each year of the study period (1980–2010).
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percentage of rainy days and rainfall accumulation is

shown in Fig. 3. November with 66%occurrence of rainy

days is the most rainy month (Fig. 3a), and December

with an average rainfall of 282mm is the wettest month

in terms of rain amount (Fig. 3b). February recorded the

lowest percentage of rainy days (38%) and the lowest

rain amount (134mm).

3. Method

a. Probability density functions: L-moment analysis

We used the method of L moments to obtain the

probability density functions. The Lmoments are linear

combinations of the expectations of order statistics

(Hosking 1990). The L-moments approach has been

widely used in regional frequency analysis of rainfall and

floods. The theory of L moments and their advantages

over conventional moments are well documented in the

literature (e.g., Vogel and Fennessey 1993; Hosking and

Wallis 1997).

For a given rain gauge time series, we estimated the first

four L moments (l̂r, where r 5 1, 2, 3, and 4) using the

following expressions (e.g., Vogel and Fennessey 1993):

l̂15 b̂0 ,

l̂25 2b̂12 b̂0 ,

l̂35 6b̂22 6b̂11 b̂0, and

l̂4 5 20b̂32 30b̂2 1 12b̂12 b̂0 , (1)

where b̂r is the probability weighted moment, which can

be estimated from data as

b̂r 5
1

n

�
n2 1

r

�21

�
n

i5r11

�
i2 1

r

�
xi:n . (2)

In Eq. (2), n is the sample size and xi:n represents an

ordered sample such that x1:n # x2:n # xn:n. The deri-

vations for the above expressions are available in the

literature (Hosking 1990; Vogel and Fennessey 1993;

Hosking and Wallis 1997). From the L moments, we

estimated L kurtosis (t3 5 l̂3/l̂2) and L skewness

(t4 5 l̂4/l̂2), which are then compared with the values

of theoretical distributions in theL-moment ratio (t3 vs

t4) diagram to identify a suitable PDF. Once a suitable

PDF is identified, we estimated its parameters from L

moments using formulas given by Hosking and Wallis

(1997). The goodness-of-fit of the PDF is then quanti-

fied using a correlation coefficient between empirical

and modeled quantiles.

b. Spatial variability

Wequantify the spatial structure of the rainfall field in

terms of spatial correlations for all possible rain gauge

pairs and for time scales ranging from 1 to 24 h. The

correlation r̂(dij) between two rainfall time series Ri and

Rj measured at gauges i and j separated by distance dij
can be estimated using Pearson’s product-moment es-

timator as

FIG. 3. (a) Average number (%) of rainy days and (b) average areal monthly rainfall for the

study period (1980–2010).
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r̂(dij)5
hRiRji2 hRiihRji

(hR2
i i2 hRii2)0:5(hR2

j i2 hRji2)0:5
, (3)

where hi indicates the corresponding sample average.

Pearson’s product-moment estimator has been widely

used to quantify the spatial correlation structure of

rainfall (e.g., Ciach and Krajewski 2006; Moron et al.

2007; Villarini et al. 2008a; Mandapaka et al. 2009;

Pedersen et al. 2010; Tokay and €Ozt€urk 2012).

Habib et al. (2001) showed that Pearson’s correlation

estimates for non-Gaussian distributions are biased, and

they proposed a simulation-based method to reduce the

bias. Their approach is valid for data following a mixed

log-normal distribution and therefore is not used in the

current study. Some studies applied Box–Cox trans-

formation (log and square root are special cases) on the

data to reduce the effects of skewness on estimated

spatial statistics (e.g., Erdin et al. 2012). There are also

studies that used ‘‘uncentered’’ correlations, in which

the averages (e.g., hRiihRji and hRii2) are not subtracted
in the numerator and denominator of Eq. (3) (e.g.,

Zawadzki 1973; Germann and Zawadzki 2002). While

interpretation of correlations from transformed data is

not straightforward, uncentered correlation estimates

are often inflated, leading to difficulties in their param-

eterization for small areas such as Singapore. For these

reasons, all inferences regarding spatial structure in this

study were based on a classical Pearson’s estimator [Eq.

(3)]. General trends in Pearson’s correlation estimates

were checked against square root–transformed and

uncentered correlation estimates, however, wherever

possible.

4. Results and discussion

As mentioned in the introduction, the gauge data that

were available for this study were at hourly resolution.

The hourly data were integrated to different time scales

starting from 2 to 24 h, and the corresponding rain rates

in millimeters per hour were obtained. In total, we an-

alyzed PDF and spatial structure of rain rates for eight

time scales (1, 2, 3, 4, 6, 8, 12, and 24 h) in this study.

a. Probability distribution of rain rates

Figure 4 shows the exceedance probabilities (or sur-

vival functions) of nonzero rain rates for six of eight time

scales (hereinafter, the results for 3- and 6-h rain rates

are not displayed in the figures for the sake of clarity, but

they are presented in the tables). Note that theminimum

nonzero rain rate in the hourly data is 0.1mmh21. When

averaged to coarser time resolutions, the correspond-

ing rain-rate series would have values smaller than

0.1mmh21. To be specific, the minimum nonzero value

would be 0.05mmh21 for a 2-h time scale and 0.1/24 5
0.004 167mmh21 in a daily rain-rate series. Each curve

in Fig. 4 represents a survival function that was esti-

mated by using nonzero data from a single rain gauge.

1) L-MOMENT-BASED CHARACTERIZATION

To characterize the PDF of rain rates at each time

scale, we estimated theirL skewness t3 andL kurtosis t4
using the procedure described in section 3a. In Fig. 5, we

compare the empirical (t3, t4) values with theoretical

(t3, t4) curves of three-parameter lognormal (LN3),

generalized Pareto (GPA),Weibull (WEI), and Pearson

type-3 (PE3) distributions. These distributions were

selected as possible PDFs on the basis of the evidence

from the literature (e.g., Kedem and Chiu 1987;

Burgue~no et al. 1994; Hanson and Vogel 2008; Villarini

et al. 2008b). The selected theoretical distributions are

positively skewed with a finite lower bound and consist

of three parameters referred to as shape, scale, and lo-

cation parameters (Table 1). For time scales of 3–24 h,

the empirical L-moment ratios were found to be closer

to the PE3 L-moment ratio curve (Fig. 5). For hourly

and 2-hourly rain rates, the empirical L-moment ratios

were found to lie between the PE3 and WEI curves. On

the basis of Fig. 5, we selected PE3 distribution for 3–24-h

rain rates. For shorter time scales of 1 and 2 h, we tested

both PE3 and WEI distributions. The corresponding

parameters of the distributions were estimated using

FIG. 4. Probability of exceedance (survival functions) of nonzero

rain rates for six different time scales. Each curve represents the

survival function estimated using data from a single rain gauge.
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equations given in section A.9 of Hosking and Wallis

(1997).

Figure 6 shows the comparison of empirical and PE3

quantiles for six of eight time scales. Each curve in Fig. 6

represents a quantile–quantile (QQ) curve for a single

gauge. Although hourly and 2-hourly rain rates were

fitted with both PE3 and WEI distributions, we only

show PE3 quantiles in Fig. 6 for the sake of clarity. In

general, the quantiles of the fitted PE3 distribution

match very well with those of observations for all gauges

and time scales. However, the QQ curves deviate from

the one-to-one line at very low and very high intensities.

As the time scale increases, the bias at lower intensities

decreases quickly, but the bias at upper tails persists up

to 8 h. For shorter time scales (1 and 2 h), we also com-

pared the observed quantiles with those of a fitted WEI

distribution. The bias near the upper tail is higher for

the WEI quantiles when compared with the PE3 ones

(figure not shown).

We quantified the goodness of fit using the correlation

between empirical and theoretical quantiles for each of

the 49 rain gauges. The median value of correlation

(from 49 values) varied from 0.987 at hourly scale to 0.994

at daily scale. Note that the correlations were estimated

in linear space. When estimated in log-transformed scale

(as in Fig. 6), the correlations were even higher. From

Fig. 6 and high values of correlations, it can be con-

cluded that the PE3 distribution provides a satisfactory

fit to rain rates for all time scales that were considered in

this study. Table 2 lists the minimum, median, and

maximum values of parameters of the PE3 distribution

for each time scale.

We also tried to quantify the goodness of fit using

a Kolmogorov–Smirnov (KS) test, but the KS test re-

jected the null hypothesis of a PE3 distribution because

of the large sample sizes involved. When the sample size

is very large (20 000–25 000 for hourly scale in this

study), even small differences between empirical and

theoretical distributions would lead to rejection of the

null hypothesis. This sensitivity of the KS test to large

sample size has also been reported in other studies (e.g.,

Villarini et al. 2008b). To gain confidence in the results,

however, we conducted a simulation experiment and

generated an ensemble of 200 PE3 realizations for each

gauge using the parameters obtained above (Table 2).

Each realization of the ensemble was then fitted with the

PE3 distribution, and the corresponding QQ curve was

obtained. The ensembleQQ curves were then compared

with the empirical ones from Fig. 6 for each gauge and

time scale. The empirical QQ curve of each gauge was

found to lie within the narrow band formed by the en-

semble QQ curves (except for extreme values), re-

affirming that the PE3 distribution provides a good fit to

rain rates.

2) TEMPORAL AND SPATIAL VARIATION OF

PARAMETERS

The variation of the shape, scale, and location pa-

rameters of the fitted PE3 distribution with time scale is

shown in Fig. 7. The shape parameter increases with

time scale, whereas the scale and location parameters

decrease with it. It can be seen from Fig. 7 that the be-

havior of parameters with time scale can be parame-

terized in the form of simple power laws. Note that the

vertical bar for each parameter and each time scale in

Fig. 7 indicates gauge-to-gauge (or spatial) variability of

parameters of the fitted PE3 distribution. For instance,

the spatial variability in shape parameter increases with

an increase in time scale. On the other hand, the spatial

FIG. 5. Plot comparing the empirical L-moment ratios (L skew-

ness vsL kurtosis) of rain rates with the theoretical L-moment ratio

curves for six time scales. Each dot represents an L-moment ratio

estimated using data from a single gauge.

TABLE 1. List of three-parameter probability distributions,

with the shape parameter k, scale parameter a, and location

parameter j.

Distribution PDF

GPA f(x) 5 a21 exp[2(1 2 k)y],

where y 5 2k21 log[1 2 k(x 2 j)/a], k 6¼ 0

WEI f(x) 5 [ky(k21) exp(2yk)]/a,

where y 5 (x 2 j)/a

PE3 f(x) 5 y(k21) exp(2k)/[aG(k)],
where y 5 (x 2 j)/a

LN3 f(x) 5 exp(ky 2 y2/2)/[a(2p)1/2],

where y 5 2k21 log[1 2 k(x 2 j)/a], k 6¼ 0

2786 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



variability in scale and location parameters decreases

with an increase in time scale. We also investigated the

presence of any spatial trend in PE3 parameters by

plotting contours of parameter values for each time scale.

We did not notice significant spatial trends in parameter

values (see Figs. S1 and S2 in the supplemental-material

package at the Journals Online website: http://dx.doi.org/

10.1175/JAMC-D-13-0115.s1).

3) REMARKS ON ZERO-RAIN THRESHOLD

As mentioned in section 2, some of the gauges in our

network have a precision of 0.1mm and the remaining

ones have a precision of 0.2mm. The PDF analysis

carried out to this point was based on a zero-rain

threshold of 0.1mmh21 applied to hourly rain rates.

We repeated the PDF analysis for a new zero-rain

FIG. 6. Plot comparing quantiles of nonzero rain rates with those obtained from a fitted (Pearson type 3) distribution for each gauge and six

time scales.

TABLE 2. Minimum, median, and maximum values of k, a, and j parameters of the Pearson type-3 (see Table 1) distribution fitted to rain

rates for different time scales.

k a j

Time scale (h) Min Median Max Min Median Max Min Median Max

1 0.22 0.24 0.27 13.38 14.91 16.08 0.17 0.19 0.29

2 0.25 0.27 0.30 8.59 9.48 10.31 0.09 0.10 0.17

3 0.27 0.29 0.33 6.47 7.05 7.69 0.06 0.07 0.12

4 0.28 0.31 0.35 5.16 5.58 6.06 0.04 0.05 0.09

6 0.30 0.33 0.38 3.75 4.06 4.41 0.02 0.03 0.07

8 0.33 0.35 0.40 2.79 3.06 3.25 0.02 0.02 0.05

12 0.36 0.39 0.43 2.02 2.19 2.37 0.01 0.01 0.04

24 0.42 0.47 0.54 1.04 1.16 1.23 0.00 0.00 0.02
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threshold of 0.2mmh21. All of the hourly time steps at

which rain rates are ,0.2mmh21 were set to zero. The

hourly data were then integrated to obtain rain rates at

other time scales (2–24 h). The new minimum possible

rain rate at 2-h scale is 0.2/25 0.1mmh21, and for daily

scale it is 0.2/24 5 0.008 33mmh21. The PE3 distribu-

tion was found to be the best fit for the gauge series with

a nonzero threshold of 0.2mmh21. The parameters

were slightly different when compared with those ob-

tained for a threshold of 0.1mmh21, however. The ef-

fect of the zero-rain threshold was noticed mainly in the

location parameter and for shorter time scales (1–2 h).

The effect of the zero-rain threshold on the PDF char-

acterization was not significant for coarser resolutions.

b. Spatial correlations

The spatial structure of annual, seasonal, and monthly

rainfall totals in Singapore in the form of isohyetal

curves has been well documented by many studies

(Watts 1955; Chia and Foong 1991; Fong 2012). In this

study, we describe the spatial structure of rainfall at

short time scales (i.e., 1–24 h) using intergauge correla-

tions. The rain gauge network consists of 49 gauges in an

area of;710 km2 and covers a wide range of intergauge

distances, varying from 0.8 to 46 km with an average

value of 14.1 km (Figs. 1 and 8). The network has a suf-

ficient number of gauge pairs at smaller and larger in-

tergauge distances to robustly characterize the decreasing

trend of correlations with distance. For instance, there

are more than 150 gauge pairs in the distance group

2–6 km and about 50 pairs with distances between 26 and

FIG. 7. Parameters (location, scale, and shape) of the Pearson

type-3 distribution fitted to nonzero rates at different time reso-

lutions. The vertical bars represent intergauge variability in pa-

rameters. The power laws shown in each panel were fitted to the

median values of parameters.

FIG. 8. Distribution of intergauge distances for the gauge network

shown in Fig. 1.
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30 km (Fig. 8). First, we analyze spatial structure as-

suming isotropy (correlations dependent only on the

intergauge distance and not on the direction) and tem-

poral stationarity (correlations independent of time

of the day or year). We refer to this analysis as un-

conditional isotropic analysis. We then stratify the data

according to month of the year, time of the day, and

gauge-pair orientation to investigate monthly, diurnal,

and directional dependence (anisotropy) of spatial cor-

relation structure.

1) UNCONDITIONAL ISOTROPIC ANALYSIS

This section presents correlations (estimated from the

entire data) as a function of only the intergauge distance.

Figure 9 shows the variation of Pearson’s correlation

estimates with the intergauge distance for time scales

ranging from 1 to 24 h. Consistent with other studies

carried out elsewhere in the world (e.g., Huff and Shipp

1969; Stol 1972; Berndtsson 1988; Bidin and Chappell

2003; Krajewski et al. 2003; Villarini et al. 2008a), the

correlations decreased with increasing intergauge dis-

tance and increased with increasing time scale. We pa-

rameterized the decreasing trend of correlations for

each time scale using a powered-exponential function of

the following form:

r̂(dij)5 exp

"
2

 
dij

dc

!s#
dc . 0, 0 # s # 2, (4)

where dij is the distance between two gauges i and j, dc is

the e-folding correlation distance defined as the distance

at which the correlation drops to 1/e (;0.367), and ex-

ponent s characterizes the rate of decrease of correlation

with intergauge distance. Equation (4) is a variant of the

three-parameter (correlation distance, exponent, and

nugget parameter) exponential function that was used

by several studies to model the spatial correlation

structure of rainfall (e.g., Krajewski et al. 2003; Ciach

and Krajewski 2006; Villarini et al. 2008a; Mandapaka

et al. 2009; Tokay and €Ozt€urk 2012). The nugget para-

meter quantifies the gauge measurement error and mi-

croscale variability of the process. We did not include

the nugget parameter in Eq. (4) because the gauge net-

work is not dense enough for its estimation.

The parameter dc characterizes the smoothness of the

field and can take any positive value. A smaller value of

dc implies a more spatially variable process. The expo-

nent s can only take values between 0 and 2. Equation (4)

simplifies to an exponential function for s equal to 1 and

to a Gaussian function for s equal to 2. A smaller value

FIG. 9. Spatial correlations [Eq. (3)] for each gauge pair plotted against the corresponding intergauge distance. The solid gray line

represents the two-parameter exponential function [Eq. (4)] fitted to the correlations. The parameters (correlation distance and exponent)

of the fitted function are shown in each panel.
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of s indicates rapid decay at intergauge distances smaller

than dc and slow decay at larger scales. The fitted cor-

relation functions for each time scale are shown in Fig. 9.

It can be seen that the decreasing pattern of correlations

with intergauge distance can be described well by the

powered-exponential function. The parameters of the

fitted correlation functions for all time scales of concern

are listed in Table 3. The value of dc varies from 10.1 km

at hourly scale to 32.6 km at daily scale.

The spatial correlation structure is influenced by the

local climatic regime. For instance, Ha et al. (2007) re-

ported summertime dc values ranging from 47 to 102 km

for hourly accumulations in the Korean Peninsula.

Villarini et al. (2008a) reported dc of ;40 km at hourly

scale and 145 km at daily scale in the southwestern

United Kingdom. Mandapaka et al. (2009) found the dc
value to be 40km for warm-season hourly accumulations

in Oklahoma. Relative to values in such midlatitude re-

gions, the values of dc obtained in the current study are

much smaller, indicating the high spatial variability and

localized nature of rainfall in Singapore. On the other

hand, the correlation functions from the current study are

comparable to those shown in Krajewski et al. (2003) for

the tropical regions of Florida and Brazil.

The rapid increase in dc up to a time scale of;6 h and

the slow rise thereafter (Fig. 10) show that the effect of

temporal integration on smoothness of rainfall patterns

is larger at shorter time scales. The temporal variation of

s (from 0.62 at hourly scale to 0.55 at daily scale) is not as

smooth as the correlation distance (see Table 3). Similar

temporal trends were observed in dc and s obtained from

square root–transformed data and uncentered correla-

tions; the absolute values were higher relative to those in

Table 3, however. As in section 4a(3), we also analyzed

the effect of zero-rain threshold on spatial correlations.

The dc obtained for the gauge data with a zero-rain

threshold of 0.2mmh21 varied from 10.09 km at hourly

scale to 32.49km for daily scale. On comparing these

values with those in Table 3, we can say that the effect

of zero-rain threshold on the correlation analysis is neg-

ligible. This result is expected because the correlation

analysis was performed for the full series (including zeros)

whereas PDF analysis was limited to nonzero rain rates.

2) MONTHLY AND DIURNAL VARIATION OF

SPATIAL CORRELATIONS

To understand monthly variation in spatial structure,

we estimated spatial correlations for each month sepa-

rately. Note that the emphasis was still on short-term

(1–24 h) rain rates, but they were stratified according to

each month. Similar to unconditional analysis, we pa-

rameterized the decreasing trend of spatial correlations

using Eq. (4). Figure 11 shows the monthly variation of

dc for five different time scales (see Table 4 for the other

three time scales). On some occasions (e.g., in January

for time scale . 6 h), the estimated dc value exceeds

50 km. These values must be taken with caution because

the fitted correlation functions might be affected by

decreasing sample sizes at longer intergauge distances.

The monthly signal of dc displays three distinct peaks:

a primary peak during December–January and two

secondary peaks in March and June–July (Fig. 11 and

Table 4). In a similar way, three troughs can be seen

in the monthly pattern of dc: a primary minimum dur-

ing April and two secondary minima in February and

September–October. From the monthly signal of dc, it

can be inferred that the rainfall patterns are widespread

during December–January and are most variable during

April. The results are in agreement with Bidin and

Chappell (2003), who reported larger spatial correla-

tions during the northeast monsoon than during the

TABLE 3. Parameters of the powered-exponential function [Eq.

(4)] fitted to the correlation estimates for different time scales.

Time scale (h) Correlation distance (km) Exponent

1 10.10 0.62

2 14.70 0.62

3 18.27 0.60

4 20.68 0.58

6 24.88 0.57

8 25.68 0.56

12 29.47 0.57

24 32.61 0.55

FIG. 10. Variation of correlation distance with the integration

time scale.
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southwest monsoon, although for seasonal rainfall to-

tals. The second parameter in Eq. (4) (the exponent s)

did not display a strong monthly pattern: its values

ranged from 0.58 to 0.67 for hourly scale and from 0.53

to 0.67 for daily scale.

The monthly variation observed in Fig. 11 can be

better described using synoptic-scale weather patterns.

Larger values of dc during December–January are a re-

flection of widespread moderate- to high-intensity rain-

fall caused by synoptic-scale disturbances such as cold

surges and associated strong northeasterly winds during

the first half (December and January) of the northeast

monsoon (e.g., Chang et al. 2005; Tangang et al. 2008;

Fong 2012). The number of cold surges is significantly

lower in the second half of the northeast monsoon (e.g.,

Chang et al. 2005), thus decreasing the amount of rain-

fall as well as the spatial smoothness, as seen in the

sudden drop of dc in February (Fig. 11). During the in-

termonsoon months of April and October, the upper-

level winds are weak and variable and the convection is

at its greatest, often leading to afternoon showers (e.g.,

Watts 1955; Chia and Foong 1991; Fong 2012). This

characteristic can be observed in the form of low values

of dc during April and October (Fig. 11).

To understand the diurnal variation in spatial patterns

of rainfall, we stratified hourly rain rates according to

the time of the day and estimated spatial correlations.

The correlations were then fitted using the powered-

exponential function [Eq. (4)]. Figure 12 shows diurnal

variation in the e-folding correlation distance dc. The

value of dc varies from 7.7 km at 1900 local time to

22.5 km at 0200 local time. Higher values of dc between

0100 and 0600 and lower values between 1500 and 1900

indicate that the rainfall patterns are smoothest during

the predawn hours and most variable in the afternoon.

It is also interesting to note that the unconditional

(pooled in) dc value of 10.1 km is closer to the afternoon

dc values, which shows that unconditional spatial cor-

relations are mainly defined by the afternoon rainfall

patterns. We also analyzed monthly variation in the di-

urnal cycle of spatial correlations. Separating the data into

eachmonth and hour reduced the sample size available for

estimating correlations and led to noisy estimates, in par-

ticular during the morning hours of some months. The

FIG. 11. Monthly variation of the e-folding correlation distance for the time scales of 1, 2, 4, 8,

and 24 h. The e-folding distance obtained by pooling all months is shown by the dashed lines.

TABLE 4. Monthly variation of the e-folding correlation distance

(km) obtained by fitting a powered-exponential function [Eq. (4)]

to correlation estimates at different time scales.

Time scale (h)

Month 1 2 3 4 6 8 12 24

Jan 13.66 21.92 28.76 34.48 47.04 54.51 66.23 101.46

Feb 8.70 12.08 15.60 16.14 21.89 19.56 26.47 25.96

Mar 9.29 13.87 16.76 19.94 25.44 24.46 31.37 33.01

Apr 7.36 9.92 11.91 12.41 13.52 12.64 13.74 11.20

May 8.73 12.11 15.15 15.93 19.01 18.39 20.12 18.84

Jun 11.87 17.31 19.61 24.41 28.16 30.52 28.19 31.06

Jul 11.35 16.80 19.97 24.29 26.84 29.74 29.28 34.53

Aug 10.98 15.82 19.28 21.24 24.37 27.96 26.32 30.74

Sep 10.03 14.19 17.73 19.78 22.50 23.42 24.41 24.24

Oct 9.97 14.31 18.06 19.48 22.47 24.17 25.39 23.32

Nov 10.28 15.37 19.06 21.77 26.38 25.11 29.29 27.89

Dec 12.07 18.00 23.13 26.87 32.40 34.99 44.60 53.98
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general pattern of the diurnal cycle (predawn maximum

and an afternoon minimum) remained the same during

all months (figure not shown), however, except for the

differences in the magnitude of dc.

3) CHARACTERIZING ANISOTROPY

To this point, the analysis of spatial structure was based

on the assumption that correlation structure is isotropic.

To understand the directional dependence of the spatial

correlations, we mapped them in a two-dimensional

space of intergauge distances. To be specific, each r̂(dij)

was assigned a location in a polar map of intergauge

distances on the basis of dij and its orientation with north.

Since r̂(dij)5 r̂(dji), the above polarmapof correlations is

symmetric about its origin. Many studies have used such

two-dimensional correlation maps to quantify anisotropy

in rainfall (e.g., Sharon 1978; Berndtsson 1988; Sumner

and Bonell 1988; Velasco-Forero et al. 2009). Figure 13

shows contours obtained from the correlation estimates

embedded in a two-dimensional space. Note that only

the intergauge distances up to 35 km are shown in Fig. 13

instead of themaximumpossible distance of 46 km that is

shown in Fig. 8. This is because of noise in the correlation

contours at longer separation distances.

For all time scales, the spatial gradients in correlations

were found to be dependent on the direction of the

FIG. 12. Diurnal variation of the e-folding correlation distance.

The e-folding distance obtained by pooling all hours is shown by

the dashed line.

FIG. 13. Contours representing isocorrelation lines in the two-dimensional space of intergauge distances for six time scales. The distance

is considered positive in the west–east and south–north directions and negative otherwise. The thick gray line represents the 0.367 (1/e)

correlation contour.
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gauge pair, suggesting pronounced anisotropy (Fig. 13).

The contours are elliptical in shape, except for lower

correlations, when they are approximately rectangular.

We quantified anisotropy by fitting ellipse to the corre-

lation contours. The parameterization in the form of

ellipse was done only when the contours are enclosed

within the domain of [225, 25] km in the north–south

and east–west directions. The 25-km condition was

necessary to avoid fitting an ellipse to nonelliptical shapes

(e.g., the 0.367 contour in the bottom-left panel of

Fig. 13). From the fitted ellipse, we obtained the lengths

of the semimajor axis a and the semiminor axis b, the

orientation u of the major axis with the north, and the

eccentricity, defined as e 5 [1 2 (b/a)2]0.5.

First, we compare a and b values of the 0.367 contour

with dc of section 4a(1). In the presence of aniso-

tropy, a and b values of the 0.367 contour are such

that b , dc , a. For the hourly scale, the dc value of

10.1 km lies between b and a values of 8.6 and

10.8 km, respectively. In a similar way, b (517.1 km) ,
dc (520.7 km) , a (522.8 km) for 4-h rain rates. Note,

however, that a comparison of a and bwith dc is possible

only for time scales for which the 0.367 contour was

fitted with an ellipse. For example, 0.367 contours of

longer (.4 h) time scales were not fitted with an ellipse

because they did not satisfy the 25-km condition dis-

cussed in the previous paragraph. Therefore, the focus

hereinafter will be on the orientation and eccentricity of

multiple correlation (0.2–0.6) contours that were fitted

with an ellipse. On average, the orientation of the fitted

ellipse was found to be 998 relative to north, with an

eccentricity of 0.64. The results showed considerable

dependence of u on the spatial scale, however. The value

of u ranged from 85.78 to 96.48 for smaller spatial scales

(a , 10 km), and from 101.28 to 106.58 for larger scales
(a . 20 km). The scale dependence in e was not as

pronounced as in u; e was found to be in the range of

0.61–0.65 for a , 10 km, and 0.59–0.71 for a . 20 km.

To gain further insight into the temporal variability of

anisotropy, we partitioned the data according to the

month of the year and obtained correlation contours.

Figure 14 shows the monthly variation of correlation

contours for hourly rain rates. The spatial gradients in

correlations and the orientation of contours changed

considerably from month to month. To better quantify

the monthly variation, we fitted an ellipse to each con-

tour enclosed within the [225, 25] box and obtained a, b,

u, and e. As expected, a and b displayed monthly vari-

ation similar to that of dc (Fig. 11), as discussed in section

4b(2). In Fig. 15, we showmonthly behavior of u for four

different correlation contours. The average value of u

varies from;558 in August to;1308 in February. From

Fig. 15, it can be concluded that the rainfall patterns are

aligned in a west-northwest (WNW) to east-southeast

(ESE) direction (1008 , u , 1308) from November to

March and in a west-southwest (WSW) to east-northeast

(ENE) direction (558 , u, 808) from June to September.

During the intermonsoon months of April, May, and

October, the rainfall patterns were found to be approx-

imately east–west oriented (u ; 908). The values of e

were lower (0.57–0.59) during the months of January

and July, and higher (0.71–0.77) during February and

October. Themonthly variation of anisotropy was found

to be similar for other time scales (2–24 h).

A thorough understanding of the physical mecha-

nisms behind observedmonthly, diurnal, and directional

patterns in spatial correlation structure requires a rig-

orous quantitative analysis linking rainfall structure to

synoptic (e.g., cold surges) and subsynoptic (e.g., land–

sea breezes) patterns. Furthermore, a storm-scale in-

vestigation is necessary to understand the physical

mechanisms responsible for the scale dependence of

rainfall anisotropy. Such analyses are beyond the scope

of this study.

5. Concluding remarks

We analyzed data from a dense rain gauge network in

Singapore to characterize various statistical features of

equatorial rainfall. The rain-rate distributions for time

scales varying from 1 to 24 h were identified using the

L-moment approach. The spatial coherence was quan-

tified using intergauge correlations. The spatial corre-

lation structure was analyzed first by using an isotropic

(directional independence) assumption. The monthly

and diurnal patterns of isotropic correlations were quan-

tified using the variation of correlation distance. The

isotropy assumption was then relaxed to study the de-

pendence of spatial correlations on gauge-pair orienta-

tion. The main conclusions of this study are as follow:

1) The Pearson type-3 distribution proved to be the best

fit for rain rates at all time scales of concern. The

parameters of the fitted PE3 distribution displayed

power-law behavior with time scale.

2) The isotropic spatial correlation analysis showed that

the correlation distance varied from 10 km at the

hourly scale to 33 km at the daily scale. Significant

monthly and diurnal variability was observed in dc.

The rainfall patterns were found to be smoothest

during the first half (December–January) of the

northeast monsoon and most variable during the

intermonsoon months of April and October. In

addition, the rainfall patterns were most variable in

the afternoon hours (1500–1900), with a dc value

around 8 km, and smoothest for the early hours (0100

and 0600), with a dc value between 17 and 23 km.
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FIG. 14. As in Fig. 13, but for each month and limited to hourly time scale.
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3) The anisotropic spatial correlation analysis showed that

correlation contours were elliptical in shape with an

average eccentricity of 0.64 and an orientation of 998
relative to true north. The orientation and eccentricity

of the contours showed considerable dependence on

spatial scale. The orientation ranged from 868 to 968 for
smaller spatial scales (,10km) and from 1018 to 1068
for larger scales (.20km). In a similar way, average

eccentricity was found to be in the range of 0.61–0.65

for smaller scales and 0.59–0.71 for larger scales.

4) The eccentricity and orientation of the contours

showed significant monthly variability. The average

eccentricity of contours was found to be the lowest

(0.57) during January and the highest (0.77) during

October. The orientation varied from 558 to 808 (i.e.,
WSW–ENE direction) during the southwest mon-

soon months of June–September and from 1008 to
1308 (i.e., WNW–ESE direction) during the north-

east monsoon months of November–March.

This study is a step toward bridging the scale gap in

characterizing rainfall structure in Singapore and the

surrounding Maritime Continental region. The results

would be valuable for evaluating remotely sensed ob-

servations from weather radars and satellites and also

for quantifying the performance of rainfall downscaling

techniques. For example, information about the spatial

correlation structure of rainfall is necessary to quantify

the areal representativeness error of the gauge network

while evaluating remotely sensed observations (e.g.,

Ciach and Krajewski 1999; Mandapaka et al. 2009). The

parametric forms proposed for probability distributions

and spatial correlation structure would be useful in gen-

erating spatial rainfall ensembles for hydrologic model-

ing. In addition, the results from this study would serve as

a key input to stochastic multisite rainfall generators that

take intersite correlations into account (e.g., Brissette

et al. 2007; Khalili et al. 2007). To our knowledge, this is

the first study in the Maritime Continental region quan-

tifying small-scale (1–45km) spatial structure of rainfall

and its dependence on time of day, season, and direction

for short temporal scales of 1–24h.
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