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The long-wave behaviour of perfectly conducting liquid films flowing down a vertical
fibre in a radial electric field was investigated by an asymptotic model. The validity
of the asymptotic model was verified by the fully linearized problem, which showed
that results were in good agreement in the long-wave region. The linear stability
analysis indicated that, when the ratio (the radius of the outer cylindrical electrode
over the radius of the liquid film) β < e, the electric field enhanced the long-wave
instability; when β > e, the electric field impeded the long-wave instability; when
β = e, the electric field did not affect the long-wave instability. The nonlinear
evolution study of the asymptotic model compared well with the linear theory when
β < e. However, when β = e, the nonlinear evolution study showed that the electric
field enhanced the instability which may cause the interface to become singular. When
β > e, the nonlinear evolution studies showed that the influence of the electric field
on the nonlinear behaviour of the interface was complex. The electric field either
enhanced or impeded the interfacial instability. In addition, an interesting phenomenon
was observed by the nonlinear evolution study that the electric field may cause an
oscillation in the amplitude of permanent waves when β > e. Further study on steady
travelling waves was conducted to reveal the influence of electric field on the wave
speed. Results showed that the electric field either increased or decreased the wave
speed as well as the wave amplitude and flow rate. In some situations, the wave
speed may increase/decrease while its amplitude decreased/increased as the strength
of the external electric field increased.

Key words: interfacial flows (free surface), MHD and electrohydrodynamics, nonlinear instability

1. Introduction

The study of thin liquid films falling down a vertical cylinder is of great importance
in industrial applications, such as in coating flows, oil recovery and biological flows.
The coating of fibres has received much attention, particularly in connection with the
drawing of fibres from liquid baths (Quéré 1999). Experimental studies have shown
that, the flow of a thin liquid film down a vertical cylinder is not stable. The surface-
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tension-driven flow modulated by gravity may lead the film to breakup or evolve
to finite-amplitude permanent waves (Quéré 1990; De Ryck & Quéré 1996; Zuccher
2008; Duprat, Ruyer-Quil & Giorgiutti-Dauphiné 2009).

The pioneering work of theoretical modelling of a liquid layer resting on the
exterior of a cylinder was established by Goren (1962), who investigated the influences
of surface tension and the ratio between liquid thickness and the radius of the solid
substrate on the capillary instability via a standard linear stability analysis. Lin &
Liu (1975) followed the work of Goren (1962) and studied the instability of a thin
liquid film falling down the outer or inner surface of a vertical cylinder under the
influence of gravity. Their results indicated that the surface tension was essentially
destabilizing (Lin & Liu 1975).

In previous studies, most of the modelling work of an annular film flow has
mainly focused on the use of a lubrication approximation wherein the fibre radius
is considered to be much larger than the film thickness. In general, we classify
these models into two groups: a Benney-type model and a two-equation model. The
Benney-type model is a single asymptotic equation describing the motion of the
liquid interface; while the two-equation model solves two coupling equations of the
interfacial kinematic condition with one more equation governing the local flow rate.
The Benney-type model was used by Frenkel (1992) to investigate an ultra thin
liquid film driven by gravity down a vertical cylinder. Lister et al. (2006) used the
Benney-type model and investigated the drainage of a liquid film on a horizontal
cylinder, in which the influence of gravity was neglected. They found that it took an
infinitely long time for the liquid film to rupture (Lister et al. 2006).

However, the Benney-type model is only valid for small flow rate problems. For a
liquid film flowing down an inclined plate, it usually blows up and gives non-physical
solutions when the flow rate is high (Pumir, Manneville & Pomeau 1983). The
two-equation model was developed to address the drawback of the Benney-type
model. Trifonov (1992) employed an integral boundary-layer model and investigated
steady travelling waves in the annular viscous liquid film flow. Trifonov (1992)
applied the bifurcation theory and investigated different kinds of wave families in
such a flow system. Sisoev et al. (2006) revisited the linear and nonlinear stability of
the problem (Trifonov 1992) via the integral boundary-layer model. Direct simulation
of the integral boundary-layer model was performed so as to simulate the evolution
of interfacial waves from the upstream to downstream (Sisoev et al. 2006). Later,
the integral boundary-layer model was used by Shkadov, Beloglazkin & Gerasimov
(2008) to investigate the solitary wave families. Notably, the integral boundary model
was more accurate than the Benney-type model in predicting the linear stability
when the Reynolds number was high (Sisoev et al. 2006), yet it fails to predict the
critical Reynolds number of a thin liquid film falling down a moderately tilted plane.
Ruyer-Quil & Manneville (1998) were motivated to develop a weighted-residual model
which overcomes the inaccuracy of the integral boundary-layer model successfully.
Ruyer-Quil et al. (2008) utilized the weighted-residual model to investigate the
dynamics of thin liquid films flowing down a vertical cylinder. Recently, Ruyer-Quil
& Kalliadasis (2012) extended their study (Ruyer-Quil et al. 2008) to investigate
nonlinear waves in the viscous annular film.

Unlike these studies (Frenkel 1992; Trifonov 1992; Lister et al. 2006; Sisoev et al.
2006; Ruyer-Quil et al. 2008; Shkadov et al. 2008; Ruyer-Quil & Kalliadasis 2012),
in which the film thickness were assumed to be much smaller than the cylinder radius,
Kliakhandler, Davis & Bankhoff (2001) considered a relatively thicker liquid film
down a thin vertical fibre. Three typical flow regimes (regimes ‘a’, ‘b’ and ‘c’) were



68 Z. Ding, J. Xie, T. N. Wong and R. Liu

observed by Kliakhandler et al. (2001) in experiments (see figure 1 in Kliakhandler
et al.’s paper). Kliakhandler et al. (2001) proposed a model equation to describe the
motion of the liquid interface. Hereafter, we call the model of Kliakhandler et al.
(2001) the KDB model. The KDB model retains the full curvature of the interface
under the consideration of large deformation of the interface. The linear stability
analysis of the KDB model compares well with the fully linearized Navier–Stokes
equations, demonstrating that the model is reasonable. Nevertheless, their model
failed to find the solution similar to that of flow regime ‘a’ (Kliakhandler et al.
2001). Craster & Matar (2006) revisited the problem (Kliakhandler et al. 2001) and
used an asymptotic model. Although the linear stability analysis did not agree well
with the results of the fully linearized Stokes flow when the radius of the fibre was
very small, the non-trivial travelling wave solutions of the asymptotic model was in
excellent agreement with the experimental observation (Craster & Matar 2006). In
particular, the travelling wave solution (Craster & Matar 2006) compares quite well
with the experimental observation of flow regime ‘a’. The most distinct difference
between the KDB model and Craster and Matar’s model is that Craster & Matar
(2006) simplified the interfacial curvature asymptotically and introduced an additional
parameter in the Benney-type equation which was identified with the Bond number.

When a perfectly conducting liquid film falls down a vertical cylinder in the
presence of an external electric field, how it responses when its interface is perturbed
is in question. In fact, in previous studies, researchers focused on the electric field’s
influence on the dynamics of liquid jets. The breakup of an electrified liquid jet
is of particular interest in academic study and industrial applications, such as ink
jetting and drug delivery. The study of electric field’s influence on the breakup
of charged liquid jets was firstly investigated by Basset (1894). However, Basset’s
analysis did not agree with experimental observation. Taylor (1969) corrected the
error in the analysis of Basset (1894). Saville (1971) revisited the linear stability
of charged viscous cylinders by considering non-axisymmetric disturbances. He
concluded that the non-axisymmetric unstable mode dominated the instability when
the electric field’s strength was strong. This conclusion was verified experimentally
by Son & Ohba (1998). Collins, Harris & Basaran (2007) revisited the problem
(Saville 1971) and investigated the nonlinear dynamics of the liquid jet. Instead of
considering the non-axisymmetric problem, they considered the axisymmetric case
and derived a one-dimensional model to study the linear stability and nonlinear
breakup of the conducting jet. Perfectly conducting liquid jets and threads surrounded
by dielectric gases or dielectric liquids in the presence of a radial electric field
were investigated by Wang et al. (Wang, Mählmann & Papageorgiou 2009; Wang
& Papageorgiou 2011). They proposed an asymptotic model under the long-wave
approximation and investigated the electrostatic pressure’s effect on the linear and
nonlinear behaviour of the liquid jet/thread (Wang et al. 2009; Wang & Papageorgiou
2011). To capture the breakup of the liquid jet/thread in the vicinity of the singular
event, they conducted a study by searching for self-similar solutions (Wang et al.
2009; Wang & Papageorgiou 2011). In these previous studies (Basset 1894; Taylor
1969; Saville 1971; Son & Ohba 1998; Collins et al. 2007; Wang et al. 2009; Wang &
Papageorgiou 2011), the electrostatics was considered. Conroy et al. (2011) examined
the influence of an AC electric field on the linear and nonlinear dynamics of a
perfectly conducting liquid thread. However, the study was restricted in the framework
of electrostatics provided that the frequency of the AC field was not too high. Some
other researchers investigated poorly conducting liquid jets in radial electric fields.
The interfacial charge transport was found to affect the linear and nonlinear dynamics
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FIGURE 1. (Colour online) Geometry of the system.

of the jet profoundly (López-Herrera, Riesco-Chueca & Gañón-Calvo 2005; Wang
2012). Recently, Wray, Matar & Papageorgiou (2012) investigated a dielectric liquid
film flowing down a vertical cylinder surrounded by a dielectric gas. A Benney-type
model was derived so as to reveal the electric field’s influence on the interfacial
instability and nonlinear evolution (Wray et al. 2012). In their paper, it was reported
that the normal Maxwell stresses destabilized the flow, whereas the tangential stresses
can be either stabilizing or destabilizing.

In this paper, the influence of an electrostatic field on the dynamics of a perfectly
conducting liquid film flowing down a vertical metal fibre is investigated. The rest of
this paper is organized as follows. In § 2, the mathematical formulation is established.
Scalings and modelling of an asymptotic model are presented in § 3. Section 4
provides the linear stability analysis of the flow and the influence of the electric
field is discussed. Transient simulation of the asymptotic model is presented in § 5.
The influence of the electric field on steady travelling waves are investigated in § 6.
Conclusions are marked in § 7.

2. Mathematical formulation
A perfectly conducting Newtonian liquid film flowing down a vertical fibre is shown

in figure 1. The annular flow system is enclosed in a coaxial cylindrical electrode.
A high voltage is applied at the outer electrode, while the metal fibre is grounded.
Liquids that flow down the fibre under gravity are surrounded by a dielectric gas. The
radii of the fibre and electrode are r= a and r= b, respectively.

In this paper, the axisymmetric problem is considered. The cylindrical coordinates
(r, z) are chosen. The motion of liquids is governed by the continuity equation and
the momentum equation:

∇ · u= 0, (2.1)

ρ
Du
Dt
=−∇p+µ∇2u+ ρg, (2.2)
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where u = uer + wez is the velocity. Here D/Dt = ∂/∂t + u(∂/∂r) + w(∂/∂z) is the
material derivative operator. Here ρ is the density of the liquid and µ is the dynamical
viscosity. Here g denotes the gravitational acceleration. The surrounding dielectric gas
is assumed to be inviscid whose dynamics is neglected in this paper.

Since we are considering the electrostatics, the electrical potential φ in the dielectric
gas follows the solution of Laplace’s equation:

∇2φ = 0. (2.3)

On the surface of the fibre r= a, there are no-slip and no-penetration conditions,

u=w= 0. (2.4)

Since the electrical potential at the interface r = a + h(z, t) is equipotential under
the assumption of perfectly conducting liquids, therefore

φ = 0. (2.5)

A high electrical potential is imposed at the outer electrode,

φ = φ0. (2.6)

At the liquid ring’s interface r= a+ h(z, t), the stress balance condition is expressed
as

(T l − T g) · n=−γ (∇ · n)n, (2.7)

where T l or T g is the stress tensor in the liquid phase and gas phase respectively, and
T i=−piI +T v

i +T M
i (i= l, g). Here pi (i= l, g) represents the pressure in the liquid or

gas phase. Here T v =µ[∇u+ (∇u)T] is the Newtonian stress tensor which is zero in
the gas phase. In the liquid phase, the Maxwell stress is absent under the assumption
of a perfectly conducting liquid film. In the gas phase, because the electrostatics is
considered, the Maxwell stress T M = ε[EE − (1/2)(E · E)I]. Here I is the identity
tensor and ε is the electrical permittivity of the gas. Here γ represents the surface
tension. Here n denotes the surface normal.

Finally, the system is closed by the kinematic condition of interface,

ht +whz = u. (2.8)

3. Scaling and the asymptotic model
The aim is to solve the above (2.1)–(2.8) in the long-wavelength limit. We assume

that the radius of the fluid ring R= a+ h0 (h0 is the initial thickness of the liquid) is
much smaller than its characteristic length L in the axial direction. Craster & Matar
(2006) took the length scale L to be related to the capillary length: L = γ /ρgR,
so that the dimensionless equations would not rely on the fluid thickness being small
relative to the fibre radius, but small relative to a dynamic length scale. Equations
(2.1)–(2.8) are non-dimensionalized by adopting the following scales: r=Rr′, z=L z′,
p− pg = ρgL p′, φ = φ0, w=Ww′, u= εWu′, t =L /Wt′ where W = ρR2g/µ is the
velocity scale and ε =R/L .

After dropping the primes of the dimensionless variables, the dimensionless forms
of the governing equations (2.1)–(2.3) become

r−1(ru)r +wz = 0, (3.1)
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ε4Re
Du
Dt
=−pr + ε2

(
urr + ε2uzz + 1

r
ur − u

r2

)
, (3.2)

ε2Re
Dw
Dt
= 1− pz +

(
wrr + ε2wzz + 1

r
wr

)
, (3.3)

φrr + 1
r
φr + ε2φzz = 0, (3.4)

where Re= (ρWL )/µ is the Reynolds number. Here, we follow the work of Wang
et al. (2009) and assume that the gap between the liquid interface and the outer
electrode is much smaller than the characteristic length L .

The dimensionless boundary conditions at r= α are

u=w= 0. (3.5)

The dimensionless radius is α = a/R < 1. When α is small, the liquid layer is
relatively thicker than the fibre. When a→ 1, the liquid film is thin compared with
the fibre radius.

At the interface r= α + h(z, t), the dimensionless stress balance conditions are

(ε2uz +wr)(1− ε2h2
z )+ 2ε2hz(ur −wz)= 0, (3.6)

−p− 2ε2[(wr + ε2uz)hz − ur − ε2wzh2
z ]

1+ ε2h2
z

− εE
[

1
2(φ

2
r − ε2φ2

z )(1− ε2h2
z )− 2ε2φrφzhz

]
1+ ε2h2

z

= ε(2HS ), (3.7)

in which

2H =− 1
(h+ α)(1+ ε2h2

z )
1/2
+ ε2hzz

(1+ ε2h2
z )

3/2
(3.8)

is the curvature. Here E = ε(φ0)
2/ρgR3 is the electrical Weber number. Here S =

γ /ρgR2 is the dimensionless surface tension. Here E is assumed to have an order
of O(ε−1). The dimensionless surface tension number S can be connected to a Bond
number Bo= 1/S = ρgR2/γ . The Bond number Bo=R/L = ε naturally measures
the ratio of length scales. In experiments, Bo is typically small (∼0.3 or so) (Craster &
Matar 2006). We follow the work of Craster & Matar (2006) and fix the dimensionless
surface tension at S = ε−1 in the following discussions.

For the electric field, the boundary conditions are

φ|r=α+h(z,t) = 0, φ|r=β = 1. (3.9a,b)

The dimensionless radius β = b/R> 1. When β� 1, the outer electrode is moved far
way from the liquid film.

The dimensionless kinetic condition of the free interface is written in the
conservative form,

ht + 1
α + h

(∫ α+h

α

rw dr
)

z

= 0. (3.10)

For the leading-order problem of ε, the flow profile is described by

1− pz +wrr + 1
r

wr = 0, (3.11)

w|r=α = 0, wr|r=α+h(z,t) = 0. (3.12a,b)
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Therefore, the velocity profile yields

w= pz − 1
4
[(r2 − α2)− 2(α + h)2 ln(r/α)]. (3.13)

Moreover, the normal stress balance condition is reduced as

p=−Eb

2
φ2

r +
1

α + h
− ε2hzz, (3.14)

where ε is absorbed into Eb, i.e. Eb= εE . Now, the modified dimensionless electrical
Weber number Eb is assumed to be O(1). The simplification of the curvature in (3.14)
is suggested by Craster & Matar (2006). Inclusion of the term hzz is reflected by the
linear stability analysis which is vital to ensure the correct high-wavenumber cutoff
occurs (Craster & Matar 2006; Lister et al. 2006).

The leading-order governing equation of the electrical potential φ writes

φrr + 1
r
φr = 0. (3.15)

The solution of the leading-order approximation of the electrical potential is obtained:

φ = 1− ln(r/β)
ln[(α + h)/β] . (3.16)

Therefore, in (3.14), the electrostatic force is given by F = φ2
r = (α + h)−2[ln((α +

h)/β)]−2. This electrostatic force F describes the attraction between the liquid
interface and the outer electrode.

Substituting the velocity w into the kinematic equation (3.10), we obtain the
evolution equation of the interfacial shape h(z, t),

ht + (α + h)−1qz = 0, (3.17)

with

q=−pz − 1
4

[
(α + h)4 ln

(
α + h
α

)
− h(2α + h)(2α2 + 6αh+ 3h2)

4

]
. (3.18)

The pressure gradient pz can be calculated by differentiating equation (3.14) with
respect to z. Turning off the electric field, we recover the evolution equation of
Craster & Matar (2006).

4. Linear stability analysis
The initial unperturbed state of the system (3.17) is

h̄= 1− α, q̄= 1
4

[
− ln(α)− (1− α

2)(3− α2)

4

]
. (4.1a,b)

The linear stability analysis is implemented by perturbing the base state (4.1) with
an infinitesimal harmonic disturbance

h= 1− α + ĥeikz+λt, (4.2)

where ĥ is the amplitude of the disturbance, k the wavenumber, λ = λr + iλi the
complex temporal growth rate.
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After linearizing, we obtain the dispersive relation:

λr = k2

16

[
Eb(1− ln β)
(ln β)3

+ (1− ε2k2)

]
[−4 ln α − (1− α2)(3− α2)], (4.3)

λi = k
2
(2 ln α + 1− α2). (4.4)

The dispersive relation is identical to that obtained by Craster & Matar (2006) when
the electric field is turned off, i.e. Eb = 0. The imaginary part of the eigenvalue, λi,
is independent of the electric field. Therefore, the electric field has no influence on
the linear wave speed, but it is questionable as to whether the electric field affects the
nonlinear wave speed. A detailed discussion will be presented in § 6. The eigenvalue
λ can be connected to ω by ω= ελ and the wavenumber k can be connected to κ by
κ = εk (Craster & Matar 2006). Here, ω and κ are the eigenvalue and wavenumber
defined in the appendix. Recall that E = Eb/ε, S = 1/ε. We eliminate ε from (4.3)
and rewrite the dispersive relation as

ωr = κ
2

16

[
E (1− ln β)
(ln β)3

+S (1− κ2)

]
[−4 ln α − (1− α2)(3− α2)], (4.5)

ωi = κ2 (2 ln α + 1− α2). (4.6)

It is interesting to see that the electric field’s influence on the linear stability
is dependent on the dimensionless radius β. When κ is very small, i.e. in the
long-wave range, if β < e, the electric field is destabilizing. When β > e, the electric
field is stabilizing. In addition, when β = e, the electric field has no influence on
the long-wave stability. The same conclusion can be obtained from (A 13) in the
appendix. In order to explain the physical mechanism clearly, let us refer to figure 2.
The perturbed electrical force Ēqs

′ is responsible for the interfacial instability. Here
qs
′=−ε(1− ln(β))/(ln(β)2)H+O(H2) is the perturbed surface charge density, where

H measures the deformation of the interface. The linear stability analysis assumes
that H is small such that the terms of order O(H2) and higher can be neglected.
Here Ē is the electric strength at the basic state. Note that the base electric field’s
always acts in the opposite direction of r. When β < e, in the elevated region of
the interface qs

′ < 0; while qs
′ > 0 in the depressed region of the interface. Hence,

the electrical force will enhance the deformation of the interface. For β > e, in the
elevated region of the interface qs

′ > 0; while qs
′ < 0 in the depressed region of the

interface. Hence, the electrical force will impede the deformation of the interface. For
β = e, however, the perturbed charge density qs

′ = 0. Thereby, the electric field has a
negligible influence on the linear stability of the interface.

The numerical results of the fully linearized problem and the dispersive relation
(4.5) are shown in figure 3. In the calculation of the fully linearized problem, the
Reynolds number is set to be very small so as to study the instability of the Stokes
flow (Kliakhandler et al. 2001). Two different values of the fibre radius α and three
typical values of the outer electrode radius β are investigated. The influence of α
is clear when we compare figure 3(a–c) with 3(d–f ) that a smaller α is describing
a larger real growth rate ωr. This phenomenon is due to the surface tension’s effect
as explained in the work of Ding et al. (Ding & Liu 2011; Ding et al. 2013) who
reported the stability of a liquid film falling down a porous cylinder and indicated that
the smaller radius of the cylinder was the more unstable system. Results in figure 3
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FIGURE 2. (Colour online) The physical mechanism of interfacial instability. Plus/minus
symbols stand for positive/negative disturbance charges: (a) β < e; (b) β > e.

0 0.5 1.0 1.5 0 0.5 1.0 1.5 0 0.5 1.0 1.5

0 0.5 1.0 1.5 0 0.5 1.0 1.5

0.1

0.1
0.2

0.2

0.1

0.2
0.3

0.4

0.005

0.010

0.015

0.004

0.008

(a) (b) (c)

(e)(d )

0 0.5 1.0 1.5

0.005

0.010

0.015
( f )

FIGURE 3. (Colour online) The real growth rate ωr versus the wavenumber κ . Solid lines
are obtained by the asymptotic model. Dashed lines are obtained by the fully linearized
problem. (a–c) The dependent parameters are α = 0.25, ε = 0.2, β = 2, e, 5. (d–f ) The
dependent parameters are α = 0.75, ε = 0.2, β = 2, e, 5.

show that the asymptotic model does not compare well with the fully linearized
problem when α is small. However, in the long-wave range, inspection of the plot
reveals that the prediction of asymptotic model agrees well with the fully linearized
problem. Craster & Matar (2006) reported that the linear stability result of their
asymptotic model compared well with the result of the Stokes flow when α > 0.4;
while the agreement deteriorated when α was small. Here, we observe that, when
α > 0.4, results of the asymptotic model agree well with that of the fully linearized
problem when Eb = 0. The agreement, however, deteriorates for large Eb values as
shown in figure 3(c,f ). This is due to the asymptotic deduction of the Laplace’s
equation (3.4). In addition, when β = e, the results by the fully linearized problem
show that the electrical field has a negligible influence on the long-wave mode,
but destabilizes the short-wave mode. When β = 5 > e, the electric field tends to
stabilize the long-wave mode, while it destabilizes the short-wave mode as shown in
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figure 3(c,f ). Therefore, we conclude that, the asymptotic model is valid in the long
wave range.

From (4.5), it is found that if

S (1− κ2)+ [E (1− ln β)]/[(ln β)]3 6 0, (4.7)

the long-wave instability can be completely impeded by the electric field. A sufficient
condition that the system is stable in the long-wave range can be defined as

S + [E (1− ln β)]/[(ln β)]3 6 0. (4.8)

We define the maximum real growth rate ωm of the real growth rate ωr in (4.5) as

ωm = [S + E (1− ln β)/(ln β)3]2
64S

[−4 ln α − (1− α2)(3− α2)], (4.9)

which occurs at κm =
√

1+ [E (1− ln β)]/[S (ln β)3]/√2 and κm is defined as the
wavenumber of the most unstable mode (Craster & Matar 2006).

The cut-off wavenumber κc corresponding to zero real growth rate is obtained as

κc =
√

1+ [E (1− ln β)]/[S (ln β)3]. (4.10)

It is obvious that the cut-off wavenumber varies with the strength of electric field.
Both the wavenumbers, κm and κc are short waves and strictly lie outside the range
of validity of the long-wave model. Note that, the wavenumber κm and κc should be
positive and real, which requires S + [E (1− ln β)]/[(ln β)]3 > 0. When S + [E (1−
ln β)]/[(ln β)]3 6 0, the maximum real growth rate ωm = 0 occurs at κ = 0 and there
is no cut-off wavenumber.

When the outer electrode is very close to the liquid interface, i.e. β → 1, the
maximum real growth rate becomes very large as shown in figure 4(a). It indicates
that, when β → 1, no matter how small the electrical potential difference is, the
interfacial instability is enhanced due to the strong attraction between the outer
cylinder and the liquid interface. When β→∞, the electric field E=−∇φ vanishes,
therefore, the electric field has no influence when β is sufficiently large. This
conclusion is useful to explain that a larger β is a more stable system. Our analysis
agrees with that of a perfectly conducting liquid jet by Wang et al. (2009), which
implies that the solid fibre does not change the influence of the electric field on the
linear stability of the interface.

From (4.8), we can find a critical electrical Weber number Eb = (ln β)3/(ln β − 1)
as shown in figure 4(b). Above the value of the critical electrical Weber number, the
long-wave instability can be completely impeded. In addition, the smallest value of
the critical electrical Weber number min (Eb) = 27/4 occurring at β = e3/2 is found,
which is the most economic when we are using an external electric field to impede
the long-wave interfacial instability.

5. Nonlinear evolution
This section presents the study of the interface subject to a finite-amplitude

harmonic disturbance so as to examine the effect of the electric field on the
nonlinear behaviour of the liquid film. We rewrite the evolution equation (3.17)
in the conservative form as

st + (2q)z = 0, (5.1)
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FIGURE 4. (a) Plot of Ω = εωm versus the radius β predicted by the asymptotic model.
(b) The electrical Weber number Eb versus the dimensionless radius β predicted by the
asymptotic model.

with

q=−pz − 1
4

[
s2

(
1
2

ln s− ln α
)
− α

4 − 4α2s+ 3s2

4

]
, (5.2)

where s = (α + h)2 is proportional to the area of a cross-section. The pressure p is
modified as

p=−Eb

2
s−1

[
1
2

ln s− ln β
]−2

+ 1√
s
− ε2(

√
s)zz. (5.3)

The following initial condition is considered that a single harmonic wave is imposed
on the interface,

s(z, 0)=
(

1+ 0.01 cos
(

2πz
L

))2

. (5.4)

Periodical boundary conditions are considered to simulate the nonlinear evolution of
the interface. The computational domain is z = [0, L], where L is the length of the
domain. The wavenumber k = 2π/L. In § 4, we have indicated that the asymptotic
model is valid in the long-wave range, therefore κ = εk should be small, i.e. L/ε
should be large. Craster & Matar (2006) proposed that, in spite of the poor agreement
in the linear stability analysis between the asymptotic model and the Stokes flow when
α is small, the asymptotic model can still be used to study long-wave dynamics
of the film. Their numerical study was in excellent agreement with experimental
observations (Craster & Matar 2006). In this section, we follow the work of Craster
& Matar (2006), and investigate three typical values of α = 0.26, 0.28, 0.32 and
ε = 0.29, 0.23, 0.178 which are close to the experimental values of α and ε by
Kliakhandler et al. (2001).

Before we perform the numerical study, the value of
√

s should be bounded in
(α, β). When the interface touches the surface of the fibre or the outer electrode, we
terminate the computation.
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FIGURE 5. (Colour online) (a–d) The periodically extended interfacial shape at instant
time t = 100. (e) The periodic extended interfacial shape at instant time t = 9.10. The
other dependent parameters are α = 0.28, β = e0.9, ε = 0.23 and L= 1.64.

The solution is approximated by the Fourier series:

s(z, t)=
N/2∑
−N/2

ŝn(t) exp(2inπ/Lz)+ c.c, (5.5)

where ŝn is the time-dependent coefficient and N is the number of Fourier modes. In
the present study, 128–512 Fourier modes are enough to provide sufficient accuracy.
An implicit Gear’s method in time is implemented and the relative error is set less
than 10−6.

Figure 5 displays the interfacial shape of the liquid film at instant time for β = e0.9.
According to the linear stability analysis, the electrical field is destabilizing in this
case. The values of ε and α are fixed at ε = 0.23 and α = 0.28. The computational
length is chosen to be at L = 1.64, and thus the wavenumber κ ≈ 0.88. The
wavenumber strictly lies outside the range of validity of the long-wave model.
However, the flow pattern in figure 5(a) is similar to the flow regime ‘b’ in the
experimental observation by Kliakhandler et al. (2001). Craster & Matar (2006) used
the asymptotic model to investigate the dynamics of such close-spacing droplets and
found that this was not in agreement with the experimental observation. However,
they still used the asymptotic model to examine the dynamics of such a flow pattern
in order to give a complete study of the asymptotic model (Craster & Matar 2006).
Similarly, in this paper, it is informative to show how the electric field affects the
solution of closely spaced droplets. The results here are also given for completeness,
because we are interested in the influence of the electric field on the three typical
flow regimes. It is observed that the liquid droplet becomes steeper as Eb increases.
When electrical Weber is increased to Eb = 2, the liquid interface becomes singular
and touches the outer electrode at t ≈ 9.10 as shown in figure 5(e). The maximum
value of the radius of liquid film, rmax, is plotted against the evolution time t in
figure 6(a). It is observed that the system can evolve to a steady state after a long
time when Eb is less than a certain value. Moreover, the height of the liquid film is
promoted by the electric field as shown in figure 6(a). In addition, the growth rate
of rmax is larger for a larger Eb which demonstrates that the instability is enhanced
by the electric field. In order to search for the critical value of Eb whereas the liquid
film finally touches the outer electrode rather than evolves to a steady state, the
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FIGURE 6. (Colour online) (a) The maximum radius rmax versus the evolution time t.
(b) The maximum radius rmax versus the electrical Weber number. The other dependent
parameters are α = 0.28 and β = e0.9. Here ε = 0.23 and L= 1.64.

numerical simulation is utilized. Here rmax is plotted against Eb in figure 6(b), in
which the critical value of Eb is indicated by Ecr ≈ 1.81. Figure 6(b) also shows that
the height of the liquid film increases as Eb increases, indicating the electric field is
destabilizing. Results in figures 5 and 6 demonstrate that the nonlinear study agrees
well with the linear stability analysis that the electric field enhances the instability
when β < e.

The nonlinear behaviour of the liquid film for β = e is of particular interest since
the linear stability analysis indicates that the electric field has no influence on the
long-wave instability. In fact, the liquid film is unstable due to the Plateau–Rayleigh
mechanism even when the electric field is switched off. When the liquid film evolves
to a new saturated state due to the capillary instability, the gap between the crest of
the film and the electrode should be smaller than e. Therefore, in the presence of an
electric field, the nonlinear behaviour of the interface should be affected significantly.
To study the problem, the conditions α = 0.26, ε = 0.29 and L = 5.8 are chosen. It
should be noted that the numerical simulation result relies on the initial condition and
we cannot obtain a similar result as Kliakhandler et al. (2001) observed in the flow
regime ‘b’. However, the study in this section can provide insights to explain the
effect of the electric field on the nonlinear dynamics of the liquid film. Figure 7(a)
illustrates the interfacial shape for Eb = 0. The influence of the electric field on the
interfacial shape is shown in figure 7(b–e). An interesting phenomenon observed
is that the amplitude of the liquid film starts to oscillate when the electric field is
increased to a certain value, for instance Eb = 2. In figure 7(f ), the evolution of rmax

with time t is shown. It shows that, when the liquid film evolves to a saturated state,
the wave amplitude can be either time-independent or time-dependent. The oscillation
in the wave amplitude indicates that the state of the film is not steady. To illustrate
this phenomenon, we plot the interface shape at different times in figure 7(g). The
comparison of interfacial wave shape shows that, at the two different times, the
distance between the wave crests l1, l2 as well as the heights of the wave crests are
different. A further increase in the strength of the electric field will cause the liquid
film to touch the outer electrode, for instance Eb = 2.5, 4.

It is observed that when Eb = 2.5, the liquid film touches the outer electrode at
t≈ 64.717. The simulation of this process is presented in figure 8(a–c). To ensure the
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FIGURE 7. (Colour online) (a–e) The interfacial shape: (a–d) are plotted at t= 500; (e) is
plotted at t= 64.60. The other dependent parameters are α= 0.26, β= e, ε= 0.29, L= 5.8
and κ ≈ 0.31. (f ) The maximum radius of the liquid ring rmax versus the evolution time
t. (g) The comparison of the interfacial shapes for Eb = 2 at different instants of time.

numerical accuracy, we have utilized 512 Fourier modes and the time accuracy for the
Gear’s method is set less than 10−8. It is observed that the interface becomes singular
in a quite short time as seen in figure 8(a–c). The electrostatic force is shown in
figure 8(d). The attraction between the electrode and the liquid interface becomes very
large at the crest of the lower droplet, which squeezes the droplet into the singular
shape. This phenomenon could also be observed in an electrified jet or thread (Wang
et al. 2009; Wang & Papageorgiou 2011). Results in figures 7 and 8 indicate that the
electric field is destabilizing in the nonlinear regime, but it does not contradict with
the linear theory. In figure 7(f ), the electric field has almost no effect on the evolution
of rmax in a short time, which implies that the growth rate of the harmonic wave is
almost the same. It indicates that, when the deformation of the interface is small, the
prediction of linear stability analysis is correct.

When the radius β is increased to e1.1, and other parameters used in figure 7
are fixed, the influence of the electric field on the nonlinear behaviour of the
interface becomes more complex. The linear stability analysis indicates that the
electric field plays a stabilizing role when β > e. When the nonlinear mechanism
becomes important, the electric field can enhance the instability. Clearly, figure 9(a–e)
shows the flow pattern can be changed by the electrical field. Figure 9(f ) shows
that, when Eb is slightly increased, rmax decreases and the liquid film evolves to a
steady state. Here rmax starts to oscillate when Eb is further increased, for instance
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FIGURE 8. (Colour online) (a–c) The interfacial shape at different instant time for
Eb = 2.5. (d) The distribution of electrostatic force F at the liquid interface. The other
dependent parameters are from figure 7.

Eb = 1, 2, 3.7. The transient simulation shows that when Eb < 3.719, rmax becomes
smaller with increasing the value of Eb. However, the oscillation in the amplitude
is promoted by the electric field. As the liquid film is not steady, the coalescence
event may happen when Eb is further increased. The maximum height of the film
will increase due to the coalescence of the droplets. As a result, the gap between the
wave crest and the electrode becomes smaller. Thereby, the electrode may attract the
interface to its surface. This mechanism can be understood by referring to figure 9(g),
in which the coalescence of droplets is shown. Numerical simulation have found
out that, when 3.719 < Eb < 11.125, the electric field can attract the liquid film to
the outer electrode due to the droplet coalescence. When Eb > 11.125, no rupture
phenomenon is observed by numerical study and the wave becomes steady after
quite a long time (t > 104). This is due to the electrostatic force which suppresses
the deformation of the interface. The wave amplitude is so small that the electric
field could not attract the interface to the outer electrode. The liquid film becomes
completely stable when Eb > (ln β)3(1− κ2)/(ln β − 1) ≈ 12, which agrees with the
linear stability analysis. Aside from that, in figure 9(f ), it is clear that the growth
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FIGURE 9. (Colour online) (a–e) The interfacial shape: (a) Eb = 0.5, t= 500; (b) Eb = 2,
t= 500; (c) Eb = 3.72, t= 61.83; (d) Eb = 11, t= 423.28; (e) Eb = 11.5, t= 500. (f ) The
maximum radius of the liquid ring rmax versus the evolution time t. (g) The comparison
of the interfacial shapes for Eb = 3.72 at different instants of time. The other dependent
parameters are α = 0.26, β = e1.1, ε = 0.29, L= 5.8 and κ ≈ 0.31.

rate of rmax is smaller for a larger Eb for short-time behaviour, which agrees with the
linear stability analysis.

Now, we are interested in the case: β = e3/2. For the chosen value of β, the electric
field is stabilizing according to the linear stability analysis. In this case, the values
α = 0.32, ε = 0.178 and L = 5 are chosen. A study from Craster & Matar (2006)
suggests that a similar flow pattern to flow regime ‘c’ in the literature (Kliakhandler
et al. 2001) may be found by transient simulation for a very small ε. Meanwhile, the
initial condition of the transient simulation was chosen by a travelling wave solution
perturbed by pseudo-random noise (Craster & Matar 2006). Moreover, 1024 Fourier
modes were used for the numerical simulation (Craster & Matar 2006) which was
time-consuming. In this section, we are focusing on the influence of electric field on
the stability of the annular liquid film. For convenience, we choose L = 5 and use
the initial condition (5.4) to explain the influence of electric field. The interfacial
shape without the external electric field is shown in figure 10(a). When we turn
on the electric field, the interfacial wave pattern changes as Eb increases as seen in
figure 10(b–e). Figure 10(g) shows the comparison of the shape of steady wave for
Eb = 5, 5.5. A clearer figure is shown in figure 10(f ) that rmax becomes smaller as
Eb increases. This phenomenon indicates that the electric field is stabilizing. When
the electric field is turned on, the permanent wave can also be time-dependent (for
instance Eb = 4) or time-independent (for instance Eb = 5). In this study: β = e3/2,
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FIGURE 10. (Colour online) (a–e) The interfacial shape at t= 500. The other dependent
parameters are α=0.32, β= e3/2, ε=0.178, L=5 and κ≈0.226. (f ) The maximum radius
of the liquid ring rmax versus the evolution time t. (g) The comparison of the interfacial
shapes for Eb = 5, 5.5.

we do not observe the singular phenomenon for any electrical Weber number Eb > 0,
which indicates that moving the electrode further from the liquid ring can avoid the
singular event that may occur in the system.

Finally, we investigate the transient simulation with a large L = 20 so as to
understand the complex dynamics of the film. This study is carried out to investigate
the response of the liquid film subject to the finite-amplitude wave in a long
computational domain. To simulate the problem, we have utilized 512 Fourier modes.
The radius of the electrode is fixed at β = e1.5. We observe that, the film evolves to a
steady state for Eb = 1 as shown in figure 11(a) while it does not become steady for
Eb = 2.5 as shown in figure 11(b). (Note that here the spatial axis is z/ε rather than
z.) In fact, for Eb= 2.5, no steady state was observed for quite a long time, t= 5000.
The film is oscillating due to the competition between coalescence of droplet and
transition to smaller scales (Craster & Matar 2006). To illustrate the phenomenon, the
space–time diagram of the liquid film is shown in figure 11(b) where the crossing of
lines indicate the coalescence of droplets.

6. Travelling wave solution
In § 5, the direct simulation of the asymptotic model has been implemented to

study the electric field’s influence on the nonlinear behaviour of the liquid film.
However, the study could not answer the question: how does the electric field
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FIGURE 11. Space–time diagram illustrating the dynamics of liquid film, in which the
light and dark shading indicate elevated and depressed regions, respectively: (a) Eb=1, (b)
Eb= 2.5. The dependent parameters are α= 0.6, ε= 0.2, β = e1.5, L= 20 and κ ≈ 0.0628.

influence the travelling speed of the steady waves? In this section, we seek travelling
wave solutions, i.e. stationary solutions of (5.1) in a frame of reference moving
downstream at constant speed c. We introduce the following transformation:

ζ = z− ct. (6.1)

Equation (5.1) is then transformed into

− csζ + (2q)ζ = 0. (6.2)

The unknown variable is set to s = s(ζ ). For a given L (the computational length
as defined in § 5), this is a nonlinear eigenvalue problem where s and c are to
be determined. The computational length L also corresponds to the droplet–droplet
spacing for a single-droplet solution.

Here, we define the flow rate m in the moving frame as

m=−
∫ α+h(ζ )

α

r[w(ζ )− c] dr. (6.3)

The solution of s can be approximated by the Fourier series,

s(ζ )=
N/2∑
−N/2

ŝe2inπ/Lζ + c.c. (6.4)

Since the wave speed c as well as s are unknown, one more condition is needed to
fix c. We follow Craster and Matar’s work and apply the following condition as a
constraint on the fluid mass (Craster & Matar 2006)

1
L

∫ L

0
s dζ = 1. (6.5)

We begin with a reasonable guess for the wave speed and profile, which via Newton
iterations rapidly converges to the solution. A continuation method is used to track
the solution branch as parameter changes.
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FIGURE 12. (Colour online) (a) The wave speed c versus the length L. (b) The interfacial
shape for a single droplet. Here c = 1.37, L = 8.185. (c) The interfacial shape for two
droplets. Here c = 1.04, L = 8.185, α = 0.3262, ε = 0.178. ‘Single/double’ means there
is(are) one/two droplet(s) in the computational domain.

It should be indicated that the travelling wave transformation (6.1) is only valid
when a travelling wave solution exists. The numerical simulation has indicated that
the liquid film may become singular in the presence of an electric field. Therefore, in
this situation, there is no steady travelling wave and the solution cannot be found.

First, we revisit the case α= 0.3262, ε= 0.178, L= 8.185 in the work of Craster &
Matar (2006). The solution is tracked by the length L. Clearly, a larger L describes a
larger wave speed. Figure 12 demonstrates that the asymptotic equation (6.2) exhibits
non-uniqueness of solutions. For a given spatial interval, there could have one or two
droplets as seen in figure 12(b,c). Our numerical study gives the wave speed c= 1.37
at L = 8.185 for a single bead which compares well with the result of Craster and
Matar (c = 1.36 at L = 8.185 for a single bead; see Craster & Matar 2006). This
agreement confirms the validity of our numerical method.

Second, we investigate the influence of electric field on these kinds of solutions in
figure 12(b,c). The electrical Weber number is fixed at Eb = 0.1 while the radius of
the electrode β is varied. Results are shown in figure 13. When β < e, for instance
β = e0.9, e0.95, the travelling wave solution is not found when L exceeds a critical
value. When β > e, the solution does exist. We note that, when β < e, the electric
field promotes the wave speed. When β > e, the wave speed becomes smaller as β
increases.

The influence of the electric field on the travelling waves for α = 0.28, ε = 0.23,
L= 1.64 is examined by the asymptotic model. The result of numerical simulation in
figure 5(a) without periodical extension (a single droplet in the computational domain)
is chosen as the initial guess of the wave profile. The results are shown in figure 14.
The solution agrees with the numerical simulation as seen in figure 14(b). The critical
electrical Weber number Ecr, above which there is no steady travelling waves, Ecr ≈
1.81 is re-obtained by the travelling wave study. It is interesting to note that although
the height of the wave always increases as Eb increases, the wave speed c starts to
decrease at Eb≈ 1.78 as observed in figure 14(a). The physical mechanism underlying
this phenomenon should be the electric field’s enhancement on the circulation flow in
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FIGURE 14. (Colour online) (a) The wave speed c versus Eb. (b) The maximum height
rmax versus Eb, in which ‘TW’ stands for travelling wave. (c) The flow rate m in the
moving frame versus Eb. (d–f ) Streamlines in the moving frame with constant speed c,
in which Eb= 0, 1.78, 1.81, respectively. The dependent parameters are α= 0.28, β = e0.9,
ε = 0.23 and L= 1.64.

the wave crest (see figure 14d–f ). The flow rate m increases as Eb increases until
Eb ≈ 1.78, indicating that the electric field enhances the flow, therefore, a larger c.
However, the circulation in the wave crest may retard the flow as Eb> 1.78, therefore
causing the flow rate m to become smaller. Thereby, the wave speed may become
smaller due to the decrease of flow rate.
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FIGURE 15. (Colour online) (a) The wave profile for Eb= 0. (b) The wave speed c versus
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parameters are α = 0.2551, ε = 0.2915 and L= 5.81.

The influence of the electrical field on the travelling waves for α = 0.2551,
ε = 0.2915 and L = 5.81 (α, ε and L are the experimental values of flow regime
‘a’; see Kliakhandler et al. 2001) is investigated here. For non-zero Eb, the solution
is tracked by the parameter Eb. The wave speed for Eb = 0 is c = 1.21, which
agrees well with Craster and Matar’s study (Craster & Matar (2006) gave c= 1.195).
Influences of the electric field on the wave speed c and the maximum height rmax
as well as the flow rate m are shown in figure 15(b–d). Numerical results indicate
that (c, rmax, m) increase with Eb when ln β < 1.1. When ln β = 1.15, we observe
an interesting phenomenon that, although rmax decreases with Eb, c and m reach to
their maximum values after that they start to decrease. This phenomenon implies
that the electric field enhances the flow and promotes the wave speed. When
ln β > 1.2, c and rmax are observed to decrease as Eb increases. It is found that,
for ln β = 1.15, 1.25, 1.5, rmax → 1, c → 0.8986, m → 0.25 as Eb increases to
Eb ≈ 9.1, 7, 6, respectively. The constant value c = 0.8986 is nothing but the linear
wave speed cl =−(ωi/κ)=−(2 ln α+ 1− α2)/2. The flow rate m= 0.25 is the basic
flow rate in the moving frame with the constant speed cl: m = cl(1 − α2) − q̄. The
critical electrical Weber number Eb= (ln β)3(1− κ2)/(ln β − 1) predicted by the linear
stability theory gives Eb ≈ 9.13, 7.03, 6.07 for the three cases: ln β = 1.15, 1.25, 1.5,
which agrees with the study of the travelling waves.

7. Conclusion
In this paper, we have investigated the long-wave dynamics of perfectly conducting

viscous liquid films on a vertical fibre in the presence of a radial electric field. An
asymptotic model was derived to study the linear and nonlinear dynamics of the film.
The validity of the asymptotic model was verified by the fully linearized Navier–
Stokes equations.

Linear stability analysis of the asymptotic model indicated that, when the ratio
between radius of the outer electrode and the initial radius of the liquid film β < e,
the linear instability was enhanced by the electric field; when β = e, the electric
field had a negligible influence on the linear instability; when β > e, the electric
field impeded the linear instability. Nonlinear simulation of the asymptotic model
was studied. When β < e, the electric field promoted the wave height, which can
cause the film to be singular. When β = e, the nonlinear simulation showed that
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the electric field enhanced the deformation of the interface. When β > e, the study
showed that the permanent wave may be time-dependent or time-independent which
was dependent on the strength of the electric field. For instance, when β = e1.1, the
electric field can lead to the droplet coalescence and therefore cause the liquid film
to be singular. In the study of the case β = e1.5, we did not observe the singular
phenomenon for all electrical Weber number, and the maximum height of the wave
decreased as the electrical Weber number increased. Investigation on steady travelling
waves was further conducted to discuss the influence of electric field on the wave
speed. It was found that the wave speed and the wave amplitude can be promoted
or decreased by the electric field. In particular, in some situations, the wave speed
may increase/decrease while its amplitude decreased/increased as the strength of the
external electric field increased.
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Appendix A. The fully linearized problem
Here, the fully linearized system is carried out so as to verify the validity of the

asymptotic model (3.17). The system is non-dimensionalized by using the length scale
R = a+ h0, and pressure scale ρgR, velocity scale ρR2g/µ, time scale µ/ρRg and
electrical potential scale φ =1φ = φ0.

The velocity field u, pressure p, the electrical potential φ as well as the interface
h are perturbed by infinitesimal harmonic disturbances as

[u,w, p, φ, h] = [ū, w̄, p̄, φ̄, h̄] + [û, ŵ, p̂, φ̂, ĥ] exp(iκz+ωt), (A 1)

where ū, w̄, p̄, φ̄, h̄ refer to the base state and û, ŵ, p̂, φ̂, ĥ are the Fourier amplitudes
of the disturbances. Here κ is the disturbance wavenumber, and ω is the complex
temporal growth rate.

The governing equations of the perturbed system are

Dû+ û
r
+ iκŵ= 0, (A 2)

ωRû=−Dp̂+
(
D2 + D

r
− κ2

)
û− û

r2
− iκRw̄û, (A 3)

ωRŵ=−iκ p̂+
(
D2 + D

r
− κ2

)
ŵ−R(iκw̄ŵ+ w̄rû), (A 4)(

D2 + D
r
− κ2

)
φ̂ = 0, (A 5)

in which D = d/dr. Here R = ρ2gR3/µ2 can be connected to the Reynolds number
by R= εRe.

The linearized boundary conditions at r= α are

û= ŵ= 0. (A 6)
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At the liquid interface, the boundary conditions are projected to r = 1 by Taylor’s
expansion,

iκ û+ Dŵ+ D2w̄ĥ= 0, (A 7)

p̂+ 2(iκDw̄ĥ− Dû)+ E Dφ̄(D2φ̄ĥ+ Dφ̂)=S (κ2 − 1)ĥ, (A 8)

φ̂ + Dφ̄ĥ= 0, (A 9)

ωĥ+ iκw̄ĥ= û. (A 10)

Here, the electrical Weber number E and dimensionless surface tension S can be
connected to the modified dimensionless parameters by E = Eb/ε, S = 1/ε.

At the outer electrode r = β, the boundary condition for the perturbed electrical
potential is

φ̂ = 0. (A 11)

The perturbed electrical potential is obtained as follows

φ̂ = ĥ
ln β

I0(κr)K0(kβ)− I0(κβ)K0(κr)
I0(κβ)K0(κ)− I0(κ)K0(κβ)

, (A 12)

where I0 and K0 are the zero-order modified Bessel functions.
In the linearized normal stress balance condition (A 8), the electrical force term

reads
E

(ln β)2

[
−1+ κ I1(κ)K0(κβ)+ I0(κβ)K1(κ)

I0(κβ)K0(κ)− I0(κ)K0(κβ)

]
ĥ, (A 13)

where I1 and K1 are the first-order modified Bessel functions. In the long-wave range,
κ→ 0, the asymptotic electrical force term can be written

E (1− ln β)
(ln β)3

ĥ+O(κ2). (A 14)

The above fully linearized problem is solved by a Chebyshev collocation method.
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