This document is downloaded from DR-NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Free-form surface representation and
approximation using T-splines

Wang, Yimin

2009

Wang, Y. M. (2009). Free-form surface representation and approximation using T-splines.
Doctoral thesis, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/19090

https://doi.org/10.32657/10356/19090

Downloaded on 09 Apr 2024 16:47:25 SGT



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

NANYANG TECHNOLOGICAL UNIVERSITY

FREE-FORM SURFACE REPRESENTATION AND

APPROXIMATION USING T-SPLINES

BY

WANG Y IMIN

A THESIS SUBMITTED TO THENANYANG TECHNOLOGICAL UNIVERSITY IN

FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF

DOCTOR OFPHILOSOPHY

SCHOOL OF COMPUTER ENGINEERING

2009



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Acknowledgements

At the first place, | would like to express my most heartfelt gratitude to my supervisor Dr.
Jianmin Zheng, for his constant guidance and unconditional help during the past few years
of my Ph.D. study. Without his patient and insightful instructions, | can hardly survive
this research program. In our numerous discussions, Dr. Zheng has graciously shared many
invaluable experiences, which benefit me both technically and philosophically. For all these
kindnesses | am forever thankful.

| want to thank Nanyang Technological University and the School of Computer Engi-
neering for granting me this study opportunity. Besides, my appreciation goes to the game-
LAB which provides me with the excellent working environment and the high performance
equipments.

| feel extremely fortunate to work with many excellent current and former members in
the Computational Arts Group. Especially, | would like to thank Dr. Kemao Qian and Dr.
Zhongke Wu for their help and concern. | also wish to thank my friends Qi Liu, Chen Chen,
Yu Yu, Xiaoyi Huang, Jie Qiu, Quan Chen, Xuexiang Xie, Xian Xiao, Hailing Zhou, Kai
Wang and Yuewen Ma, with whom | have shared some great time in Singapore.

Finally, I would like to take this opportunity to express my profound gratefulness to my
parents who taught me the value of hard work by their own experiences. Their longtime

encouragement and support mean a lot to me.



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Contents

Acknowledgements . . . . . . .. i
TableofContents . . . . . . . . . . .. I
Listof Figures . . . . . . . . o Vil
Abstract . . . . . . Xi
1 Introduction 1
1.1 Problem statement and motivation . . . ... ... ... ... ....... 1
1.2 Objectives and contributions . . . . . .. ... ... oL 4
1.3 Thesisorganization . . . .. . . . . . .. . . ... e 6
2 Background and Prior Work 9
2.1 OVEIVIEW . . . . . e e e e e 9
2.2 Triangularmeshes . . . . . . . . . . . . e 10
2.3 NURBS: Non-uniform rational B-splines . . . . . .. ... ........ 13
2.3.1 B-splinebasisfunctions . .. .. ... .. .. ........... 14
2.3.2 NURBScurves . .. .. . . . . . e 16
233 NURBSsurfaces . . ... .. .. ... ... .. .. ... ... 19
2.3.4 Hierarchical B-splinesurfaces . . . . ... ... .......... 21
24 T-splines. . . . . . 22
2.4.1 Knotvectorsandknotintervals . . ... ... ........... 22
2.4.2 T-splinesurfaceequation . . . ... ... ... ... ........ 24



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4.3 T-splineclassification. . . ... ... ... ... ... ....... 28
2.5 Surface approximation . . . . . . . . ... 28
2.5.1 Categorization of parametric surface approximation. . . . . .. .. 30
2.5.2 Griddeddatafitting . . . . . . ... ... .. o 32
2.5.3 Scattereddatafitting . . . .. ... ... ... ... .. ... ... 34
T-spline Control Point Removal 39
3.1 Introduction . . . . . . . . .. 39
3.2 T-splinelocal knotinsertion . . . ... ... ... ... .......... 41
3.2.1 Blending functionrefinement . .. ... ... ... ... ..... 41
3.2.2 Localknotinsertion . . ... ... .. .. ... .. ... 44
3.3 Removing one control point from a T-spline surface . . . . . .. ... ... 50
3.3.1 Reverse blending function transformation . . . . . ... ... ... 51
3.3.2 T-spline control point removal algorithm . . . . . . ... ... .. 52
3.3.3 \Validity of the algorithm . . . . . . .. ... .. ... ....... 56
3.3.4 DISCUSSION . . . . . . . 57
3.4 Removing more thanone controlpoint . . . . . ... ... ... ...... 58
3.5 Summary ... e 61
Curvature-Guided Adaptive T-spline Surface Fitting 63
4.1 Introduction . . . . . . . .. e 63
4.2 Overview of the algorithm . . . . . . . ... ... ... ... ... ... 65
4.3 Featuredetection . . . . . .. . . ... 68
4.4 Parametergeneration . . . . . . . . ... 71
4.4.1 Computing parameters for boundary vertices . . . . ... ... .. 73
4.4.2 Computing parameters for interior vertices . . . . ... .. .. .. 75
4.5 Initial T-spline structure placement . . . . . . . ... . ... ... ... .. 78
4.6 Leastsquares T-spline surface approximation . . . .. ... ... .. ... 81

iv



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.6.1 Fairnessfunctionals . . ... ... ... ... ... .. ... 83
4.7 Curvature guided surface qualitycheck . . . . . .. ... ... ... .. .. 87
4.8 T-spline structure refinement . . . . . . . . ... ... ... ... ... .. 89
4.9 Initial T-spline structure re-placement . . . . . . . . ... ... ... ... 91
4.10 Faithful re-parameterization . . . .. .. . . ... .. .. ... . ... .. 93
4.10.1 Computing initial parameter corrections . . . . . . . ... .. ... 94
4.10.2 Computing faithful parameter corrections . . . . . .. ... . ... 96
4.11 Experimentalresults . . . . .. ... ... . ... 99
4.12 SUMMATIY . . . . o e e e e e e e 110
5 Periodic T-spline Surface Representation and Approximation 111
5.1 Introduction . . . . . . . . . . . 111
5.2 Periodic T-spline surface representation . . . . . ... ... ........ 113
5.2.1 PeriodicB-splines . . . ... ... .. ... 113
5.2.2 Periodic T-splinesurfaces . . .. ... ... ... ......... 118
5.3 Parameterizing tubularmeshes . . . . .. ... .. ... .. ... 122
5.3.1 Overview of edge based parameterization . . . .. ... ... ... 125
5.3.2 Parameterizing boundaryedges . . ... ... .. ... .. ... 126
5.3.3 Computing internal edge parameters . . . . . . .. . ... ... .. 127
5.3.4 Inferring vertex parameterization. . . . . . .. .. ... ... ... 131
5.3.5 Performance of the algorithm . . . . . .. ... ... ... .... 132
5.4 Periodic T-spline surface fitting . . . . . . . . . .. ... .. ... ..... 135
5.4.1 Initialization . . ... ... ... 137
5.4.2 Optimizing the geometry of thesurface . . . ... ... ... ... 138
543 T-meshrefinement . . ... ... ... ... ... ... ... 140
5.4.4 Examplesanddiscussions . ... .. ... ... ... ... ..., 140
55 Summary . ... e e 143



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6 Conversion between T-splines and Hierarchical NURBS 145
6.1 Introduction . . . . . . . . ... 145
6.2 Hierarchical NURBS . . . . . . ... ... .. .. .. ... ..., 146
6.3 Algorithm for converting a hierarchical NURBS toa T-spline . . . . . . .. 148
6.3.1 Examples . . . . . . . .. 151
6.4 Algorithm for converting a T-spline to a hierarchical NURBS . . . . . . . . 154
6.4.1 ExtractingaB-spline . . . ... ... ... ... .. . ... ... 155
6.4.2 Determining higher leveloffsets . . . . . ... ... ... ..... 157
6.4.3 Processingalayer . .. ... .. ... ... ... . 158
6.4.4 lllustrations . . . . . . . . . ... 159
6.5 Summary . ... 161
7 Conclusions and Future Work 163
7.1 Conclusions . . . . . . .. e 163
7.2 Futurework . . . . .. 165
References 166
Author’s Publications 187

Vi



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Examples of triangularmeshes. . . . . . . . ... .. ... ... ... ...
Edge and vertexsharing. . . . . . .. ... ... ..o
The irregularities ina triangularmesh. . . . . . .. ... ... ... ....
Some B-spline basisfunctions. . . . . ... ... ... ... .. ...
A uniform B-spline curve and its basis functions. . . . .. ... ... ...
A non-uniform B-splinecurve. . . . . ... ... ... oL

ANURBS Surface. . . . . . . . . . .

Control point insertion fora NURBS surface. . . . . ... ... ......
A hierarchical B-spline surface. . . . .. ... ... ... .........
Knot vectors and knotintervals. . . . ... ... ... ... ... .....
The pre-image of a T-mesh (in black color). . . . . .. ... ... ... ..
Differenttypes of T-junctions. . . . . . . . ... ... .. ... ......

An example of a T-spline: the T-mesh, the pre-image, and the surface.

Basis function refinement. . . . . . . ... ... . . L.
Blending function refinement. . . . . .. . ... ... 0oL L.
Three possible violations during knot insertion and their solutions. . . . . .
Different situations of control pointinsertion. . . . . . . ... ... .. ..

An example of knotinsertion. . . . . .. ... ... ... ..

T-mesh structure change after removing control p8int. . . . . . . . .. 53

Another T-mesh structure changeexample.. . . . . .. .. ... ... ...

Vil

17

46



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14

4.15
4.16
4.17
4.18
4.19
4.20
421
4.22

Invoking the step of reverse blending function transformation. . . . .. .. 56
Extra control point insertion in the removal process. . . . . . ... ... .. 58
Example for identifying the removable control points. . . . . . . .. .. .. 59
An example of removing many control points. . . . . . ... ... ... .. 60
lllustration of the curvature guided T-spline surface fitting. . . . . . .. .. 66
Feature areason atriangularmesh. . . . .. ... ... .. ... ...... 69
The 1-ring neighborhood of vertex. . . . . .. ... .. ... ...... 70
Visualization of the mean curvatures on a triangularmesh. . . . . . .. .. 71
Flatten a triangular meshfroR¥Fto R2. . . . . . . . .. ... ... .... 72
Selection of the corner vertices based on different strategies. . . . . . . .. 74
Compute the mean value coordinatesdfor. . . . . . .. ... ... ... 77
Parameterization of some triangular meshes usingMVC. . . ... ... .. 80
The pre-image of aninitial T-mesh.. . . . . . .. ... .. ... ...... 81
Domain for the integral to compute;. . . . . . ... ... .. ...... 86
Visualization of the vertices that do not pass the checking. . . .. ... .. 88
Splitoffendingregions. . . . . . . . . ... L 90
Eliminate L-junctions. . . . . . . . . . . . ... 91

A new initial T-mesh structure and a T-spline surface defined from the new

SIrUCTUre. . . . . . e e 93
Modify the parameter foronevertex. . . . . . .. ... .. ... ... ... 95
Problem for updating the parameterization. . . .. ... ... ... .. .. 96
Various situations fof;(5). . . . . . . .. 99
The iterative procedure of fitting a T-spline surface to a triangular mesh. . . 102

Re-initialization, re-parameterization and their influence on surface fitting. . 104

The performance of Algorithm4.2. . . . . . . ... ... ... ... .... 106
The behavior of fairness factors. . . . . .. ... ... ... ........ 107
Surface fitting results with and without curvature guidance. . . . . . . . .. 108

viii



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4.23

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

6.1

More examples on T-spline surface fitting. . . . . . ... .. ... .. ... 109

The upper and lower boundaries of the cylinder are mapped to two bound-

ary loops of the tubular mesh and the interior of the cylinder is mapped to

the lateral surface of the tubularmesh [78]. . . . ... ... ... ..... 112
Some examples of tubularmeshes. . . . . .. .. ... o L L. 112

lllustration of a B-spline basis function and two periodic B-spline functions. 115

A cubic periodic B-splinecurve. . . . . .. ... . L oo 116
A T-mesh and its periodic T-spline surface. . . . . ... ... ... .... 118
An example pre-image for a periodic T-spline surface. . . . . . .. ... .. 119
Control point insertion for periodic T-spline surfaces. . . . . .. ... ... 122
The parameter domain for tubular meshes. . . . . . .. ... ... ... .. 123

A tubular triangular mesh (left), an expected parameterization (middle) and

a twisted parameterization (right). . . . . . ... ... .. ... ... ... 125
A flowchart of our parameterization approach. . . . . . . ... . ... ... 126
Building equations from face relation and vertex relation. . . . . . .. . .. 128
Alocal partof atriangularmesh. . . . . . . . ... ... oL 130
An example of the edge based parameterization approach. . . ... .. .. 133
Texture mapping with the checkboard pattern. . . . . . . . ... ... ... 133
Examples of edge based parameterization. . . . . . .. ... ... .. ... 134
Fitting a periodic T-spline surface to atubularmesh. . . . . . . . ... ... 136
The flowchart of periodic T-spline surface fitting. . . . . . .. ... .. .. 137
The pre-image of&x 4 periodic T-mesh. . . . . . ... ... ... .... 138
Fitingabumpymodel. . . . . . . . . . ... 141
Fittingthe Venusmodel. . . . . . . . .. .. ... . ... ... .. ... 143

A hierarchical B-spline surface consisting of a bicubic B-spline surface and

anoverlay. . . . ... e 147



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.2 The relation between the base mesh and an overlay mesh. . . . .. .. .. 148
6.3 lllustration of converting a hierarchical B-splineto a T-spline. . . . . . .. 151
6.4 A hierarchical B-splinesurface. . . ... ... ... ... ......... 152
6.5 The pre-image of the control meshes of a hierarchical B-spline surface. . . 152
6.6 CombininglevelOandlevel1. . . ... ... ... .. ... ........ 153
6.7 Combininglevel O, levellandlevel2. . . . . .. ... .. ... .. .... 153
6.8 Refined T-mesh for the hierarchical B-spline surface. . . . . ... ... .. 154
6.9 PreprocessagivenT-mesh. . . . . .. ... .. ... .. .. ... ..., 155
6.10 Computing B-spline control poift fromQ,;.. . . . . ... ... ... .. 156

6.11 Atopologicalillustration. . . . . . . .. ... ... ... ... ... ..., 160
6.12 Converting a T-spline to a hierarchical NURBS. . . . . ... ... .. ... 161



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Abstract

The problem of describing the surface information of a complex shaped object with a com-
puter is often encountered in the fields of computer aided design and computer graphics.
The surface of such an object could have arbitrary shape and is usually called the free-form
surface. T-splines are a recently developed generalization of non-uniform rational B-splines
(NURBS) technology enabling local refinement, which can overcome many drawbacks of
NURBS and offer a more flexible representation for free-form surfaces. T-splines have a
potential of becoming the next industry standard for free-form surfaces in high end ani-
mation and computer aided design industry. It is apparent that to permit this potential to
be fully realized, there must be developed solid mathematical theory and a comprehensive
set of supporting algorithms. The research of this thesis therefore aims to investigate some
fundamental algorithms of T-splines and to explore their use in surface approximation.
First, a very fundamental problem of T-splines, which is to remove control points from
a T-spline control grid while keeping the surface unchanged, is studied in the thesis. An
algorithm is presented to detect whether a specified control point can be removed and to
compute the new T-spline representation if the point is removable. The algorithm can be
viewed as a reverse process of the T-spline local knot insertion algorithm. The complexity
of removing more than one control pointis also analyzed and the extensions of the algorithm
to remove many points are discussed. Compared to the B-spline knot removal in which a
whole row or column of control points needs to be removed, the presented T-spline control
point removal algorithm usually causes only local change to the T-spline control grid.
Second, the use of T-splines in surface approximation is investigated. Triangular meshes
and spline surfaces are currently two main representations for free-form surfaces. There
is a need to convert triangular meshes into spline surfaces. However, such conversion is
never a simple task especially when the shape is complicated. This thesis introduces a
new framework for adaptive surface fitting which achieves the conversion from a triangular

mesh that is topologically homeomorphic to a plane region to a spline surface. The new

Xi
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framework improves the conventional least squares approximation method by incorporat-
ing several novel ideas and components such as the adopting of T-splines for fitting, the
use of curvature to guide fitting, the re-placement of initial T-spline structure and a faithful
re-parameterization. As a result, the reconstructed T-spline surface can well respect ge-
ometric features of the original input model and is thus more compact compared to that
created by the traditional B-spline methods. Many examples are provided to demonstrate
the effectiveness of the proposed framework and algorithm.

Third, to better handle tubular meshes that have the same topology as a cylinder, peri-
odic T-splines are proposed and a convenient representation for periodic T-splines is pre-
sented. To parameterize a tubular triangular mesh, an edge based method is proposed, in
which the edges rather than the vertices of the mesh are treated as the target for param-
eterization. This method improves conventional cutting-based algorithms, which cut the
mesh to make it a disk topologically, and overcomes the problems of cutting paths that are
the zigzag paths leading to suboptimal parameterizations and the difficulty in finding good
cutting paths. After that, an adaptive surface fitting algorithm using periodic T-splines is
developed, which can effectively approximate tubular triangular meshes.

Fourth, the conversion between T-splines and hierarchical NURBS is considered. Hi-
erarchical B-splines is another generalization of NURBS with local refinement. They are
especially suitable for multiresolution editing. In the thesis, the concept of hierarchical
B-splines is extended to hierarchical NURBS and then two algorithms are constructed, by
which a T-spline surface can be converted into a hierarchical NURBS surface, and vice
versa. These algorithms take the structure of the original surface into consideration and
yield compact representations. With these algorithms, the user can flatten a hierarchical
NURBS surface to create a T-spline for interactive sculpturing or extract hierarchies from a

T-spline surface for multiresolution analysis.

xii



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1

| ntroduction

1.1 Problem statement and motivation

The task of representing and constructing smooth surfaces is ubiquitous in geometric mod-
eling and computer graphics. However, how to efficiently describe, create and manipulate
complicated free-form surfaces even with advanced geometric modeling systems is still a
challenging work. T-splines [129, 128] are a recently developed surface modeling technol-
ogy which is a generalization of non-uniform rational B-splines (NURBS) by permitting
T-junction points in the control grid. T-splines permit truly local refinement—a very impor-
tant feature required by many theoretical and practical problems. The T-spline representa-
tion is fully compatible with NURBS, making it easier to use in conjunction with existing
commercial software systems such as ACIS modelers, Parasolid modelers, Rhino3D, and
Autodesk Maya. The T-spline representation also allows designers to focus on the regions
where more detail is called for and to model complicated shapes faster with fewer con-
trol points. All these features indicate that T-splines have a potential of becoming the next
industry standard for free-form surfaces in high end animation and computer aided design
(CAD) industry. Itis clear that to permit this potential to be fully realized, both solid mathe-

matical theory and a comprehensive set of supporting algorithms must be developed. Many

1
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Chapter 1. Introduction

researches on the use of T-splines have been studied, examples of which include NURBS
surface simplification [128], trimmed NURBS surfaces merging [130], free-form deforma-
tion [143] and 3D mesh morphing [160]. This thesis aims to investigate some fundamental
problems of T-splines and explore their use in representing and approximating free-form

surfaces. Specifically, the research focuses on the following three problems:

The first problem is T-spline knot removal. In NURBS theory, knot insertion and knot
removal are two of the fundamental algorithms that can be used as mathematical tools for
understanding and analyzing B-splines and also as practical tools for manipulating and
rendering B-spline curves and surfaces [50]. Many applications can be developed based on
them. For example, knot insertion provides tools for straightforward evaluation of points on
the curves or surfaces, base conversion, and adding extra degrees of freedom for shape mod-
ification. Knot removal provides tools for data reduction, shape fairing, base conversion,
and wavelet decomposition. There exists several algorithms for B-spline knot insertion and
knot removal. For T-splines, one important feature is the permission of local refinement.
A knot insertion algorithm was first proposed in [129] and later a more efficient algorithm
was developed in [128]. Compared to B-spline knot insertion, T-spline knot insertion is
much more sophisticated. As the inverse of knot insertion, T-spline knot removal, which is
a process of removing a knot from a given T-spline surface, is not known yet. Therefore
there is a need to develop T-spline knot removal algorithm to enrich T-spline theory. Just
as T-spline knot insertion, it is expected that T-spline knot removal would be much more

complicated than B-spline knot removal.

The second problem is surface approximation. Though advanced modeling systems
have provided many tools to model highly detailed models, it is still difficult with these sys-
tems to directly create such surfaces as human faces and car-body panels. The advance of
laser range scanners or other 3D data acquisition equipments offers a promising alternative
means for capturing those surfaces which are generally difficult to create. Laser range scan-

ners usually produce large collections of points or triangular meshes. While scattered data

2
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1.1. Problem statement and motivation

or triangular meshes are an adequate representation for some applications such as visualiza-
tion, animation and interactive computer games, splines are the major format in computer
aided design and manufacture industry. Spline surfaces have parametric equations, which
can be used to define differential structure for shape analysis, and have a more compact rep-
resentation, facilitating the application of surface manipulation. Therefore there is a need
to convert scattered data or triangular meshes into spline surfaces. The problem of convert-
ing scattered data or triangular meshes into spline surfaces is often referredudeae
approximation By today’s technology, this kind of approximation is time consuming and
computationally expensive. Especially for surfaces with complicated geometry or topol-
ogy, the conversion is very challenging. Since T-splines is a generalization of NURBS and
allows truly local refinement, it is believed that the flexibility of T-splines would facilitate

the surface approximation process.

The third problem is the conversion between T-splines and hierarchical B-splines. In
CAD industry, NURBS are the dominant mathematical technique for modeling free-form
surfaces, but NURBS surfaces do not support local knot insertion, which is important for
locally editing and modifying the fine scale details of the surfaces. T-splines are one gen-
eralization of NURBS. Another well established method supporting local refinement is hi-
erarchical B-splines [48] which consist of a collection of B-splines at different levels and
enable local refinement of a free-form surface by representing it in a hierarchy. Hierarchi-
cal B-splines have become a powerful multiresolution representation. The main difference
between hierarchical B-splines and T-splines is really between a hierarchy and T-junctions.
With hierarchical B-splines, one could have a hierarchy which can be desirable for some
applications, especially for multiresolution modeling. With T-splines, one could work on
a single layer mesh, which contains substantially fewer points compared to the B-spline
control mesh. Both hierarchical B-splines and T-splines have their own strength. Therefore
it is useful in practice to be able to convert one representation into another. In particular,

flattening a hierarchical B-spline surface into a T-spline surface can avoid forcing a hierar-

3
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Chapter 1. Introduction

chy on the designer and provide a more direct interface, enabling the designer to focus on
the regions where more detail is called for. On the other hand, extracting hierarchies from

a T-spline surface can allow the user to perform multiresolution analysis.

1.2 Objectives and contributions

T-splines have shown to be a powerful and flexible free-form surface representation that
offers unique computational advantages over NURBS. This research aims to investigate
some fundamental issues of T-splines in representing and approximating free-form surfaces
and to develop some efficient techniques to enrich T-spline technology.

The first objective of the research is to deliver some fundamental algorithms for T-
splines. Since the local knot insertion algorithm plays a very important role in T-spline
theory, we first examine the algorithm, aiming to gain insights. We expect that the insights
may shed light on developing other fundamental algorithms. In particular, we expect to
develop a T-spline knot removal algorithm and T-spline/hierarchical NURBS conversion
algorithms in the same fashion of T-spline knot insertion. These algorithms should consider
the local geometric characteristics of the surface and the tasks can be done locally, directly
and quickly.

The second objective of the research is to present algorithms for converting triangular
meshes into T-splines. This could be achieved by surface approximation. In particular,
we focus on developing efficient techniques that fit a single T-spline surface to a triangular
mesh that is homeomorphic to a plane region or that has the same topology as a cylin-
der. Solutions to the problem of fitting surfaces to an arbitrarily topological mesh are also
proposed. Indeed, the research effort reported in this thesis initially aimed at the fitting
problem for an arbitrarily topological model. However, it was soon realized that even the
situation of simple topology had many open questions, such as how to make the algorithm

well fit the geometric features, how to properly place initial T-spline surface structure, and

4
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1.2. Objectives and contributions

how to re-parameterize the mesh faithfully. The algorithms developed for the situation of
simple topology will also serve as a base for designing algorithms for the arbitrary topology
situation.

To achieve these objectives, thorough research has been conducted and several novel

techniques have been proposed and developed. Briefly, contributions of the thesis include:

¢ the presentation of an algorithm to detect whether or not a specified control point can
be removed and also to compute the new T-spline representation if the point is remov-
able. Several possible extensions of the algorithm to remove more than one control
point are given. These algorithms perform in the fashion of T-spline knot insertion
and usually cause only local change to the T-spline control grid. It is also found that

T-spline knot removal is much more complicated than B-spline knot removal.

¢ the introduction of a new framework for adaptive surface fitting which accomplishes
the conversion from a triangular mesh to a spline surface. The new framework in-
corporates several new ideas and components into the conventional least squares ap-
proximation method. The new ideas or components include: 1) T-splines are used
for adaptive fitting; 2) Geometric feature (i.e. curvature) is used to guide fitting to
improve the fitting results; 3) An approach is given to set the placement of initial
T-spline structure; and 4) A faithful re-parameterization is proposed. These compo-
nents are efficiently integrated, forming a curvature guided adaptive T-spline surface

fitting algorithm which achieves high performance for surface fitting.

¢ the introduction of the concept of periodic T-splines and the proposal of a convenient
representation for them, in order to better handle tubular models that have the same
topology as a cylinder. A geometrically intrinsic method is proposed to parameterize
a tubular triangular mesh. The method improves conventional cutting-based algo-
rithms and overcomes the problems of cutting paths that are the zigzag paths leading

to suboptimal parameterizations and the difficulty in finding good cutting paths. Also,

5
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Chapter 1. Introduction

an adaptive surface fitting algorithm using periodic T-splines is developed, which can

effectively approximate tubular triangular meshes.

¢ the extension of the concept of hierarchical B-splines to hierarchical NURBS and
the construction of two algorithms, by which a T-spline surface can be converted
into a hierarchical NURBS surface, and vice versa. The geometric characteristics
of the surfaces are considered in these algorithms and they generally yield compact

representations.

1.3 Thesis organization

The rest of the thesis is organized as follows:

e Chapter 2 reviews related background and the state-of-the-arts of freeform surface

representation and approximation with emphasis on adaptive surface approximation.

e Chapter 3 first re-examines T-spline local knot insertion algorithm and then presents
an algorithms for T-spline knot removal. The complexity of removing more than
one control point from a T-spline surface is analyzed and possible extensions of the

algorithm to remove more than one control point are suggested.

e Chapter 4 proposes to use T-splines for surface fitting. A new framework is intro-
duced to perform adaptive T-spline surface fitting that achieves the conversion from a
triangular mesh to a spline surface. The framework includes several novel contribu-
tions such as curvature-guided adaptive T-spline fitting, initial T-mesh re-placement,

and faithful re-parameterization.

e Chapter 5 first gives the definition and representation of periodic T-splines. Then an
edge-based parameterization algorithm is presented. Finally an adaptive algorithm is

proposed to construct periodic T-splines for tubular triangular meshes.

6
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e Chapter 6 extends the concept of hierarchical B-spline surfaces to hierarchical NURBS
surfaces and presents algorithms for the conversion between a T-spline surface and a

hierarchical NURBS surface.

e Chapter 7 concludes the thesis and proposes potential future work of this research.
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Chapter 2

Background and Prior Work

2.1 Overview

This chapter provides some backgrounds for surface representations and reviews the state-
of-the-art methods for surface approximation.

The problem of describing the surface information of an object within the computer
is often encountered in the fields of computer aided design (CAD) and computer graphics
(CG). Surfaces that have an arbitrary shape are usually called free-form surfaces. Free-
form surfaces have vast applications in different areas, including computer games, com-
puter graphic animations, special effects in movies, virtual reality, CAD/CAM, engineering
simulation, scientific visualization, medical visualization, geographic information system
(GIS) and digital art, etc. It is important to have a suitable representation for freeform
surfaces in a particular application.

There have existed several major representations for free-form surfaces [77], such as
polygonal meshes, parametric surfaces [39], subdivision surfaces [18, 35], point based
surfaces [4, 60] and implicit surfaces [12]. Each of these surface representations has its
own strengths and weaknesses. Basically, a polygonal mesh is defined by a collection

of polygon faces with shared edges and vertices. When all the faces in a polygon mesh
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are triangles, the mesh is called a triangular mesh. A parametric surface is defined by a
mapping fromR? to R3: each point? = (x,y, z) on the parametric surface is written as
(z,y,2) = (fi(u,v), fa(u,v), f3(u,v)), where(u, v) are the two parameters of the point. A
subdivision surface is defined by a coarse control mesh and a set of subdividing rules. The
rules are used to recursively refine the mesh and finally a smooth surface is obtained. Dif-
ferent rules give subdivision schemes with different properties [168]. A point based surface
is represented by a set of discrete points and the surface is defined by local approximations
of these points. An implicit surface is defined by the iso-surface (usually the zero set sur-
face) of an implicit functionf(z, y, z), or in another wordf (z, y, z) = ¢ for a constant.

It is easy to determine whether a point is inside , outside or on an implicit surface by its
function value.

This thesis focuses on a special parametric surface representation, called T-splines, and
the conversion from other representations such as triangular meshes to T-splines. There-
fore, in the rest of this chapter, we first discuss triangular meshes in Section 2.2. Next, in
Section 2.3 we explain non-uniform rational B-splines (NURBS), which is important for
understanding T-splines. Then, T-splines are reviewed in Section 2.4. Finally, a survey on

the related work of surface approximation is given in Section 2.5.

2.2 Triangular meshes

A triangular mesh consists of vertices, edges and faces. Each vertex is a pointif the
space. Each edge is a line segment with non-zero length that is bounded by two distinct
vertices. The two vertices connected by an edge are called neighbors. Each face is a triangle
comprising three distinct vertices and three edges connecting any two of them. The vertices
specify the geometric information (i.e., locations) of the triangular mesh, while the edges
and faces specify the topological information (i.e., how the vertices are connected). A

triangular mesh can be closed or have boundaries. An edge is a boundary edge if it belongs
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to only one face. The end points of a boundary edge are boundary vertices. Figure 2.1
shows a closed triangular mesh on the left and an open triangular mesh with boundary on

the right.

1 '.’_{"

(a) A closed triangular mesh (b) An open triangular mesh with
boundary

Figure 2.1: Examples of triangular meshes.

In a manifold triangular mesh, each edge is shared by two adjacent faces (see Fig-
ure 2.2(a)), except for any boundary edge that resides only in one face. Each vertex can be
shared by several faces and edges (see Figure 2.2(b)). The faces that share the same vertex

should form a closed loop, or a single fan for a vertex on the boundary.

7

(@) (b)

Figure 2.2: Edge and vertex sharing.

A triangular mesh may have some irregularities. For example, irregularities occur if a

mesh includes a degenerated face whose three vertices are collinear (see Figure 2.3(a)), a

11
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self intersecting part (see the highlighted face in Figure 2.3(b)), an isolated edge or vertex
(see edge; in Figure 2.3(c)), or a non-manifold structure where an edge is shared by more
than two faces (see edggin Figure 2.3(d)) or a loop is broken around a vertex (see vertex

d; in Figure 2.3(e)). These irregular structures often compromise the integrity of triangular
meshes, complicate the problem and bring unnecessary troubles. In this thesis we assume

that the triangular meshes we discuss are regular.

d,

(@) (b)

(d) (e)

Figure 2.3: The irregularities in a triangular mesh.

Triangular meshes are now one of the most frequently used surface representations.
They are flexible to represent a very complicated shape and are supported by graphics pro-
cessing units. Due to the advances in the 3D laser scanners [11], triangular meshes can be
conveniently obtained for real world objects. There are excellent online model reposito-
ries such as the AIM@SHAPE shape repository [1] where a large number of models are
provided. Because of their popularity, researches have been actively carried out regarding

various applications based on triangular meshes in recent years [16].
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However, triangular meshes have certain drawbacks. Quite often, hundreds of thousands
of triangles are required for a model in order to achieve a relatively accurate representation,
making it expensive in both data storage and transmission. Another problem is that a surface
represented by a triangular mesh is piecewise linear, giving@hlgontinuity among the
triangle faces. Thus it is inconvenient for a triangular mesh to represent a smooth shape
and to achieve high degrees of continuity, which are rather desirable in some industrial
applications where high precision is required.

There are several different approaches for storing and encoding a triangular mesh with
a computer. Among them, the simplest approach is the indexed-face list, in which the
coordinates of all the vertices are listed in a table and all the faces are listed in another
table. In the indexed-face list, the edge information is not explicitly included. Alternatively,
there are more advanced data structures to represent a triangular mesh, such as the winged-
edge [7], quad-edge [62] and widely adopted half-edge [155] data structures. In these data
structures, the edge information is explicitly maintained and therefore they are referred to as
edge based representations. A comparison for these edge based representations is available
in [85]. There are some open source Libraries in C++ that provide robust implementations
for the half-edge data structure such as CGAL [3] and OpenMesh [15], upon which the
user can build his/her own mesh processing algorithms. The choice of the data structure
really depends on the requirements of the application. For example, the indexed-face list
is efficient for the rendering of triangular meshes. If certain routines such as accessing the
neighboring edges or faces are frequently invoked, complex structures such as the half-edge

data structure would be preferred.

2.3 NURBS: Non-uniform rational B-splines

The term “spline” initially refers to a wooden batten which is used to draw smooth curves.

During the designing process, a spline can be bent at will and hold in place by several lead
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weights called ducks.

Adapting such concepts, Schoenberg first studied the mathematic theory of B-splines [127]
in 1940s and Riesenfeld introduced B-splines to geometric design community [120] in early
1970s. Later, Versprille discussed the rational B-splines for geometric modeling [152].
Since then, researches in B-splines have been actively carried out and by the 1990s, NURBS

had already become an industry standard for free-form curves and surfaces.

Unlike triangular meshes, NURBS are piecewise polynomials or rational functions
that offer great flexibility and precision for modeling applications and define truly smooth
shapes. Another strength of NURBS is that there exist many efficient and numerically sta-
ble algorithms and elegant theory for NURBS. For example, the de Boor algorithm can be
used for evaluating the NURBS at any parameter value. Polar forms or blossoming can
be used to explain or derive many operations of NURBS [117]. All these properties make
NURBS popular in the design and manufacturing industries where mathematically precise
equations are required. Thus NURBS are included in many industry standards, such as
IGES [80] and STEP [2]. Also, NURBS tools are incorporated into various commercial 3D

modeling softwares such as Maya and Rhino3D.

In the following we briefly review B-splines and NURBS with emphasis on the features

that are related to the research of this thesis.

2.3.1 B-spline basis functions

B-spline basis functions are important in B-spline theory and they are constructed from a
knot vector. A knot vector is a non-decreasing sequence of coordinates in the parameter
space, where each coordinate is callekhat and the interval bounded by two adjacent
coordinates is called lnot span To define B-spline basis functions of degneea knot
vectorT = {ty,ta, -+ ,tnipi1} is required. Denoted bW’ (¢) the i-th B-spline basis

function of degreé:, which can be defined using the Cox-de Boor recursive formula [25,
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29]:
1 ift €[t t;
0 otherwise
(2.1)
t—1; B t; —t _
NE(t) = I NE ) 4 D Nkl k=1

litp — L Livpr1 — tiya

In Figure 2.4, we show some B-spline basis functions from degjtealegrees.

+
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(a) Degree 0 (b) Degree 1 (c) Degree 2 (d) Degree 3

Figure 2.4: Some B-spline basis functions.

From the Cox-de Boor recursive formula, it is easy to derive some important properties

of the B-spline basis functions:

1.

Partition of unity : > NP(t)
i=1

Positivity: N/ (t) > 0if t € (¢, tiyps1)-

Compact support NP (t) =0if t & (i, tizpr1)-

Continuity : N’ (¢) is a piecewise polynomial of degreeand isC?~! continuous.

(provided that{t;, t;+1, - - - , tiyp41} IS strictly increasing.)

We can see that theth B-spline basis functio®V? (¢) just depends on knots ¢;1, - - - ,
ti+p+1- Thus to emphasize this dependence, the B-spline basis fun€fign is also de-

noted byN?[t; tiy1,- -+, tiyp+1](t) in the thesis.
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2.3.2 NURBS curves

Here we begin with a discussion on B-spline curves and then extend it to NURBS curves.
Though any degree B-spline curves can be defined, we restrict our discussion to cubic B-

splines or NURBS for simplicity.

Givenn points{ P,}'=" and a knot vectdF = {t,,t,, - - - ,t,.4}, a cubic B-spline curve
is defined as follows:

C(t) = Y PNHD. 1 fantu @)

whereP, = (z;,y;, ;) are called theontrol points The line segments connecting each two
adjacent control points form tle®ntrol polygon According to Equation (2.2), each control
point P; is associated with a B-spline basis functidvj. It is also understood that eaé¢h
corresponds to kndt, , and each line segmem P, ; (except the first and last ones) in the

control polygon corresponds to a segmen€df) in [¢; .o, ;1 3]

When all the knot spans are of the same length, the knot véctsrcalled a uniform
knot vector and the B-spline curve is callediaiform B-spline curve One example of
a uniform cubic B-spline curve defined by four control points, together with its control
polygon, is given in Figure 2.5(a). This curve has only one segment. The knot vector and
the associated basis functions of the control points are illustrated in Figure 2.5(b). The
parameter range for the curvelis, ¢5] as highlighted in green color, where all the four
basis functions have influence. Whehis not a uniform knot vector, a B-spline curve
defined over it is called aon-uniform B-spline curveFor example, if we have multiple
knots:ty = t; = ty = tg andt, 1 = t, 10 = tui3 = t,q INT, T is a non-uniform knot
vector. See Figure 2.6 for a non-uniform cubic B-spline curve defined over such a knot
vector?. Each curve segment and its corresponding line segment are shown in an different
color. Note that the B-spline curve interpolates the two end points due to the triple knots in

T.

B-spline curves have many important properties which are appreciated in free-form
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b
//\\
h P,

(@)

N (6) N;(6) N5 () Nj(0)

t, oty t, t, t; to t, tg
(b)

Figure 2.5: A uniform B-spline curve and its basis functions.

Figure 2.6: A non-uniform B-spline curve.
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surface modeling and design. For example,

¢ Local modification: Moving one control poin®; only affects the curve segments in

knot spant;, t; 4]

e Convex hull: The curve segment in knot spén ¢, 4] lies within the convex hull of

control pointsP,_3, P,_», P,_1, P,.

¢ Affine invariance: Applying an affine transformation to a B-spline curve is equiva-

lent to applying the same affine transformation to the control points.

e Continuity: The cubic B-spline curve i€ continuous provided thdf is strictly

increasing.

However, there are geometric entities that cannot be modeled exactly by piecewise poly-
nomials. Circles and hyperbolas are examples. This motivated the introduction of rational
curves. More generally, B-splines were extended to the non-uniform rational B-splines
(NURBS) [110, 122]. NURBS have better capability in shape representation and design
than polynomial B-splines. For example, we can use a NURBS curve to precisely define a

conic section. A cubic NURBS curve has the following equation:

> wiPiN7 (1)
1=1

R(t> = ) te [t47 thrl] (23)

> wiN3(1)

=1

wherew; is the control point weight and it controls the impact®fon the shape of the
curve. When all they; take the same valu®.(¢) degenerates to a polynomial B-spline
curve. LetQ; = (w;x;, wiy;, w;z;, w;) be the homogeneous coordinates for control points

P;, the NURBS curve of (2.3) can be concisely written in the homogeneous space:

RY() = 3 QN7 (1) (2:4)
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Figure 2.7: A NURBS Surface.

which is actually a polynomial B-spline curve in 4D space.

B-spline curves or NURBS curves allow an operation of knot insertion. The basic con-
cept of knot insertion for a NURBS curve is to add one or more knots into the current knot
vectorT, while keeping the curve unchanged. The increase of knots results in the increase
of control points and thus provides more degrees of freedom. In [14], Boehm presented an
algorithm for inserting the knots inté sequentially, one knot at a time. The new control
points are computed by the linear combination of those old control points. Knot insertion
can also be achieved by Oslo algorithm [23] which allows to insert more than one knot into

T simultaneously.

2.3.3 NURBS surfaces

The concept and construction of NURBS curves can be extended to NURBS surfaces.

Given a set of control point§P; }:=1"/5" arranged inn rows and: columns topologically,

and knot vector§/ = {uy, ug, -+, Umyat, V = {01,029, -+ , 044}, @ bicubic NURBS sur-

face is defined by

> wz‘jPz‘ij(U)N]g(v)
S(u,v) = Z mj:1n ;o (u,0) € Q= [ug, Ups1] X [va, Vp41] (2.5)
wii N7 ()N} (v)

J
1

m
=1

=17
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wherew;; is the weight for control poin®;;, N} (u) andN?(v) are the cubic B-spline basis
functions in parameterg andv defined over/ andV, respectively.() is the parameter
domain. Them x n control points are connected to forncantrol grid. Since the basis
functionsN;’ (u) N (v) are the product of two univariate B-spline bases, sometimes NURBS
surfaces are also called tensor-product surfaces. Figure 2.7 shows a NURBS surface with a

control grid of6 x 6 control points.

oO—0 oO—O0 oO—=0 Oo—O0
r—C —C —C —C
r—C —C —C —C
—C r—C oO—=C O

v v
o—=C p— O—O0 o—oO O O—oO
u u
(a) Before insertion (b) After insertion

Figure 2.8: Control point insertion for a NURBS surface.

NURBS surfaces have analogous properties and operations to NURBS curves. How-
ever, NURBS surfaces do not support local refinement which NURBS curves do. Refer to
Figure 2.8 for an example, where the control grid layout of a NURBS surface in the param-
eter domain is shown. Suppose we want to increase the control ability of the surface in the
highlighted areas in Figure 2.8(a). We add two new kno&gd v to the respective knot
vectors. This results in a refined control grid shown in Figure 2.8(b), where an entire row
and an entire column of control points are added. Note that among the newly added con-
trol points, only the ones in green color that reside inside of the highlighted areas are truly
required and those control points in red color are not really needed from an application’s
perspective and they are added just due to the need to maintain the tensor product structure

of the NURBS surface control grid. Usually, the more complicated the surface is, the more
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Figure 2.9: A hierarchical B-spline surface.

unnecessary control points are introduced during the knot insertion. This is quite annoying
for applications. Besides this, NURBS surfaces have deficiencies that gaps and overlaps at
intersections of surfaces cannot be avoided, which complicates mesh generation, and it is

difficult to represent most shapes using a single, watertight NURBS surface.

2.3.4 Hierarchical B-spline surfaces

As shown above, for a tensor-product B-spline (or NURBS) surface, knot insertion is not a
local process. This is because when a knot is inserted into a B-spline surface, new control
points must be added row-wise or column wise. To overcome this drawback, Forsey and
Bartels introduced the concept of hierarchical B-splines [48]. A hierarchical B-spline sur-
face represents the surface in a fashion of hierarchy and it is comprised of a series of levels,
each of which has a collection of B-spline patches. Figure 2.9 shows an example of a hi-
erarchical B-spline surface. It has 3 levels and uses only 37 control points. The hierarchy
provides the capability for local refinement of surfaces and multiresolution surface editing.
Hierarchical B-splines have been successfully used in Forsey'’s interactive modeller called
“Dragon” and facial animation. There is a gallery containing a number of models and ani-

mations created by hierarchical B-splines [144]. A modeler based on hierarchical B-spline

21



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Prior Work

surfaces [68] is implemented and the result can be outputted into POV-Ray for rendering.
Hierarchical B-splines have also been integrated into some modeling environments such as

Softimage 3D [142, 36].

2.4 T-splines

T-splines are a recently developed freeform surface technology [129, 128], which general-
izes NURBS to a more flexible control grid and corrects the deficiencies of NURBS. While
T-splines inherit most of the properties of NURBS, one important feature of T-splines is
that they support local refinement, which means adding a new control point into the T-mesh
usually would not cause the insertion of too many extra points. As a result, T-splines pro-
vide an more intuitive and natural way for users to design and edit the shape of a surface
by focusing on the areas where detailed are really needed. By using the T-spline represen-
tation, the number of control points needed for defining a surface is substantially reduced
compared to that of an equivalent NURBS surface. This makes the T-spline representation
more compact. In addition, a T-spline surface can be losslessly converted into a NURBS
surface, which makes T-splines fully compatible with the current CAD/CAM industry. In
the following some basic concepts of T-splines are reviewed. The review is restricted to

cubic T-splines although T-splines can be extended to any degree [40].

2.4.1 Knot vectors and knot intervals

In the definition of a NURBS surface, the knot information is given by two knot vectors in
theu— andv—directions. It can be understood that each control point is associated with
a pair of knot values. The pair of knot values comes from those two knot vectors. For
example, in Figure 2.10(a) where the pre-image ofitkel control grid of a B-spline patch

in the parameter domain is shown, the control pétgthas a knot paifus, vy).

For a T-spline surface, the structure of the control grid is much flexible. So it would be
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more convenient and also more intuitive to use knot intervals to convey the knot information
of the surface. A knot interval is a non-negative number assigned to each edge of the
T-mesh. The notion of knot intervals was initially introduced in [131] and expanded in
[132, 129]. For a cubic B-spline curve, the knot interval is simply the difference of two
consecutive knots in a knot vector and thus a parameter length of one of the curve segments
that comprise the B-spline curve. Thus the knot interval of a cubic B-spline curve segment
is attached as a label to its corresponding control polygon edge. In this way, knot intervals
provide a method of conveying knot information for a B-spline curve and knot interval

representation is independent of the knot origin in the parameter space.
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(a) Knot vectors representation (b) Knot interval representation

Figure 2.10: Knot vectors and knot intervals.

The relationship between knot vectors and knot intervals for a B-spline surface is il-
lustrated in Figure 2.10. In Figure 2.10(a), the knot information is given by knot vectors
and in Figure 2.10(b), the knot information is given by knot intervals. The knot intéyval
is for an edge that maps to a horizontal edge in the pre-image of the control grid and the

knot intervale; is for an edge that maps to a vertical edge in the pre-image. They can be

23



ATTENTION: The Singap:

of this document. Nanyang Technolo

>al University Library

Chapter 2. Background and Prior Work

| |
| |
\/___j )\ )\ ___\’-)
ol L] ]
5 d,
e m 12 -—=0
F,
e
4 le dll ) O----0
e
8
.y b F__ o
e
67:[ dg dg
e, B
>4 4 d, d, ds Lde (4
e ‘
2
or---0-1 O—O----0
e | | | | |
11 | | | | |
B L L L L L

\J \J \J

~
~
~

Figure 2.11: The pre-image of a T-mesh (in black color).

computed from the knot vectors:

di = Uit — Uit1
(2.6)
€i = Vit2 — Vi1
On the other hand, if the knot intervals are given and a knot origin is chosen, we can also

infer knot vectors from (2.6).

2.4.2 T-spline surface equation

A T-spline surface is defined by a control grid called T-mesh. The T-mesh is similar to a
NURBS control grid except that in a T-mesh a partial row or column of control points is
permitted. The permission of existence of partial rows or columns makes it possible to add
a single control point to a T-mesh without propagating an entire row or column of control
points and without altering the surface. The final control point(s) in a partial row or column
are calledT-junctions For example,P, and P; in the pre-image of a T-mesh shown in

Figure 2.11 are T-junctions.
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(d) I-junction (e) Isolated point

Figure 2.12: Different types of T-junctions.

A T-mesh may contain different types of T-junctions which can be distinguished ac-
cording to their connectivity: rigorous T-junctions which are connected to exactly three
edges (see Figure 2.12(a)), L-junctions which are connected to one horizontal edge and
one vertical edge (see Figure 2.12(b)), V-junction which are connected by two horizontal
edges or two vertical edges (see Figure 2.12(c)), I-junctions which are only connected to
one edge (see Figure 2.12(d)), and isolated points which are not connected to any edge (see
Figure 2.12(e)). If a T-mesh does not contain T-junctions, it is a tensor product mesh and
the T-spline surface degenerates to a NURBS surface.

The knot information of a T-spline is expressed using knot intervals indicating the dif-
ference between two knots and assigned to the edges of the T-mesh. The assignment of the

knot intervals to a T-mesh edge is subject to some constraints:

Rule 1: The sum of the knot intervals on opposing edges of any face must be equal.

Rule 2: If two T-junction on opposing edges of a face can be connected without violating

the previous rule, that edge must be included in the T-mesh.
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For example, in facd’ of Figure 2.11,ds + dy = dig + d1; ande; + eg = eg according
to Rule 1. Also, according to Rule 2, there should be an edge connegfiagd P, if
dsz = dis.

In order to derive an analytic equation for T-splines, a knot coordinates system should
be imposed and then the knot coordinates are inferred from the knot intervals. First, an
arbitrary point in the pre-image is designated to be the knot origin and is given coordinates
of (0,0). Then, we assign an knot value to each vertical edge in the pre-image of the
T-mesh and a knot value to each horizontal edge using the knot interval information.
Finally, each control point gets a pair of knot coordinates from the knot values of the vertical
and horizontal edges it lies on. For example in Figure 2.11, if we’jelbe (0,0), then
the coordinates foP, would be(ds + ds, e2 + e3) and the coordinates faP; would be

(dg + dg + d4, €y + €3 — 67).

Based on the T-mesh and its knot information, the equation for a T-spline surface is:

Zn: w; P;B;(u, v)
S(u,v) = == (2.7)
Z w; B;(u,v)

where theP; are control points and the; are control point weights. The T-spline blending

function corresponding to control poift is B;(u, v):

Bi(u,v) = N*[wi](w) N*[vi](v) (2.8)

whereN?3[u;](u), N3[v;](v) are the cubic B-spline basis functions associated with the local

knot qUintUplealZ‘ = [Uio, U1, Uio, Uiz, UZ‘4] andVZ' = [Ui07 Vi1, Vi2, U;3, Ui4] respectively. For
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example,
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(U — Uio)g
, Uin < U < Uy
(Uil - uiO)(uzB - Uio)(uﬂ - Uz‘o) 0 "
(u — wio)*(uiz — u) (uiz — u)(u — uio) (u — ui)

(UiQ - Uil)(uis - UiO)(uzQ - Uz'o) (UiQ - uz’l)(uiB - uz’l)(uiB - UiO)
(g — u)(u — u;p)?

(%‘2 - Uil)(um - Uil)(uz‘g - uil)’

N3w](u) = (u — wio) (uz — u)? (i — u)(usz — u)(u — us)

(%‘3 - uiZ)(uiB - Uil)(uz‘g - Uz‘o) (%‘3 - ui2)(ui4 - Uz‘l)(ui:s - uil)
(g — u)*(u — ug)

(Ui:«; - UiQ)(UM - UiQ)(UM - Ui1>,

(wig — u)?®

(%‘4 - ui3)(ui4 - UiQ)(UzA - Uu)’

+ Uil < U < Ujo

_|_

Ui < U < U3

Uiz < U < Ujg

0, u < Ujg OF U > Uiy
\

The knot quintuples; andv; that determine the blending functids(u, v) are extracted

from the T-mesh neighborhood &f according to the following rule:

Rule 3: Assum€gu;», v;2) is the knot coordinates af;,. By casting a rayR(t) = (u; +
t,v2), t > 0, us3, uyy are defined as the knot values of the first two vertical edges or
control points that intersect witR(¢). Other knots in1; andv; are found in a similar

manner.

For example, in Figure 2.11, the knot quintuples Baku, v) areuy, = [0, dz, ds + d3, ds +
ds+ds—dg, dy+ds+ds+dg] andvy = [eg, e3+e3—e€7, e2+e3, ea+€3+€4, e2+e3+es+es),
as visualized using orange color. Similarly, the knot quintuplesHgu, v) areus =
[dy + d3,ds + d3 + dy — dg, dy + d3 + dy, ds + d3 + dy + dg, dy + ds + dy + dg + ds] and
vy = [0, 62,65 + €3 — e7,e5 + €3 + €3, €2 + €3 + €4], @s visualized using blue color.

The T-spline equation can also be written in homogeneous form:

S™(u,v) = ZQ@Bi(va) (2.9)
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Figure 2.13: An example of a T-spline: the T-mesh, the pre-image, and the surface.

where theR); = (w; P;, w;) = (w;x;, wiy;, w;z;, w;) are homogeneous control points in the
4D space. Figure 2.13 shows an example of a T-spline surface: The left figure shows the
T-mesh; the middle one shows the pre-image of the T-mesh in the parameter domain; and

the right one is the T-spline surface.

2.4.3 T-spline classification

A T-spline surface would generally be rational except for a few special cases. A standard
T-spline surface is one for which all weighis = 1, then) """ | w;B;(u,v) = 1. A semi-
standard T-spline is one for whigh"_, w; B;(u,v) = 1 and not alkw; = 1. A non-standard
T-spline is one for which the condition’;_, w; B;(u, v) = 1 never holds. Both standard and
semi-standard T-splines define piecewise polynomial surfaces and non-standard T-splines
are rational. An important property of T-splines is that if we perform a local refinement
on a standard or semi-standard T-spline surface, the result will always be a standard or

semi-standard T-spline surface.

2.5 Surface approximation

Surface approximation, also known as surface fitting, has been widely studied and has appli-

cations in a number of fields. This term has different interpretations and here it is regarded

28



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.5. Surface approximation

as the process of converting the discrete data such as point clouds or triangular meshes into
some smooth surface representations. The problem of surface approximation is usually
more complicated, compared to its opposite process that is calculating sampling points or

generating a polygonal mesh from a smooth surface [96, 121, 137, 113, 139, 150, 166].

Many approximation methods have been developed to generate various surfaces. For ex-
ample, some early approach addresses the problem of reconstructing explicit surfaces [138],
some other approaches generate implicit surfaces [17, 162, 106, 136], and there are also
surface approximation approaches that use subdivision surfaces [66, 70, 94, 102, 93]. This
thesis focuses on parametric spline surface approximation that is to find a parametric sur-

face expressed in spline representation.

Parametric spline surface approximation is an important step in reverse engineering [116].
Contrary to the traditional forward engineering which is also known as computer-aided en-
gineering (CAE), reverse engineering is a process of converting an existing real world object
to a computer-aided design (CAD) model. Usually, this is done by first obtaining a prelim-
inary data representation of point clouds from the object. Especially with the advances in
data acquisition techniques [149], many acquisition devices and systems are available dur-
ing the last decade [11, 27, 86, 123, 164] and now it is possible to collect huge and high
resolution data sets from the objects of large scale [90, 8, 79, 58, 63]. Since the point clouds
lack sufficient geometrical and topological information, it is quite often to construct a tri-
angular mesh from the dense point clouds. Many methods have been developed to convert
unorganized data points into a triangular mesh [71, 147, 26, 141, 9] and sometimes further
processing on triangular meshes, such as mesh fairing, mesh repairing, mesh simplification
and re-meshing, is needed [61, 105, 83, 32, 41, 82, 51]. Finally, parametric spline sur-
face approximation is required to convert the triangular models into a parametric surface
representation, for example, NURBS which is the standard form in the CAD/CAM indus-
try. Some typical usages of reverse engineering include recovering the digital model from

a mechanical product where the original manuscript is lost or unavailable, shortening the
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production period for computer animated movies by creating a digital model from a clay
sculpture, and protecting the masterpieces of artists by generating a digital copy.
In general, when a surface approximation method is constructed, the following criteria

should be considered:

e Accuracy: The geometrical error between the reconstructed surface and the original
surface should be small. The features of the original surface should be faithfully

preserved.

e Continuity : The reconstructed surface should have a desirable order of continuity. In
general, the surface should achieve at least tangent plane continuity and quite often

have curvature continuity as well.
e Fairness The surface should be visually pleasing and avoid unnecessary fluctuations.

e ConcisenessThe result surface representation should be concise and free of redun-

dancy.

e Automation: The approach should be able to find an eligible surface automatically

or with few user intervention.

The rest of this section will briefly discuss various surface approximation methods.

2.5.1 Categorization of parametric surface approximation

There is a large body of literatures on the parametric surface approximation. From differ-
ent points of view, these approaches can be categorized in several ways. The first type of
categorization is based on the precision of the resultant surface. If an approach generates a
surface whose error compared to the original data are within a given tolerance, it is known
as surface approximation or surface fitting [33, 165, 112]. If the result surface is required to
exactly pass all the input data, the approach is known as surface interpolation [46, 97, 89].

It can be understood that surface interpolation is a special case of surface approximation
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with zero error tolerance. Interpolation approaches ensure the accuracy at the input data
points, but they usually result in complicated and redundant surfaces when the input model
is densely sampled. Approximation approaches generate surfaces with more efficient rep-

resentation and they also have better performance in handling the noises in the data.

The second type of categorization can be made based on the form of input data. Some
approaches deal with point clouds [140, 103, 100], while the others deal with polygonal
meshes [38, 53, 73]. In point clouds, the connectivity information is not specified and there
may exist some ambiguities in the data. This could complicate the surface approximation
problem. By contrast, the polygonal meshes contain connectivity relations among the data

points, which can be exploited in surface approximation.

Also, the approaches can be classified according to the topology of the input data.
Specifically, there are surface fitting approaches that deal with the input data of height
fields [46, 126, 89], of disc homeomorphic topology [33, 53, 72], or of arbitrary topol-
ogy [87, 38, 91]. To fit data of height fields, the scalar value spline functions can be used
and the parameterization of the data naturally exists. The data that is homeomorphic to
a 2D disc can be approximated by a single chart of spline surface defined on a rectan-
gle domain. The approximation has a lot of applications in CAD and computer graphics
and it has been extensively studied. It is also the base for the problem of fitting arbitrary
topology data, in which the input data are normally segmented at the first stage so that
each segment can be approximated by a spline surface. Segmentation of the data can be
carried out manually/ semi-automatically [87, 92], automatically [38], or be inferred from
the quad re-mesh techniques [34, 146, 84, 76]. When there are several segments, atten-
tion must be taken to make sure that the adjacent surfaces are smoothly merged at the
common edges and corners. Conventional methods for this include stitching the neigh-
boring surfaces [103, 87, 52, 92] and using some spline schemes for arbitrary topology
structure [109, 95, 57, 114, 119, 129, 161, 59, 153] that guarantee the continuity between

patches automatically.
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The surface approximation approaches can be distinguished by whether they lead to a
linear problem [89, 53] or a nonlinear problem [125]. The computational cost for solving
a linear problem is generally much lower than that for solving a nonlinear problem. The
nonlinear approaches, however, may describe the problem in a more accurate way, but the
optimization cost is in general not affordable.

The surface approximation methods can be divided into non-adaptive methods and
adaptive methods. In the non-adaptive methods [75, 112, 73], the surface fitting space
where the optimal approximate surface is selected from will be globally changed in the
surface approximation process. The adaptive methods [49, 38, 53], on the other hand, lo-
cally change the surface fitting space based on the previous approximation results. Adaptive
methods can generate more meaningful and economic results, which makes them attractive
in handling complex free-form models.

Finally, a classification can be made based on the arrangement of the input data. If the
data points are arranged in a grid structure in the 3D space, they are called the gridded data;
if the data points do not have such a structure and are arbitrarily distributed, they are called
the scattered data. The surface approximation approaches that deal with the former data
type are known as the gridded data fitting techniques [125, 49, 108, 28] and the approaches
for the latter data type are known as the scattered data fitting techniques [53, 157, 73]. These
two types of methods usually involve quite different techniques. Therefore, we give more

detailed discussions on these two types of methods below.

2.5.2 Gridded data fitting

This subsection looks into the problem of gridded data fitting [6]. The data set is said to
be gridded if the data points are arranged inMdnx N grid in the 3D space. Thus each
point D,; could be simply assigned to a parameter pajtv;) for: = 1,2,--- , M and

j =1,2,--- N by relatively simple parameterization schemes such as uniform, chordal

length or centripetal parameterization. For the other categories such as scattered data and
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triangular meshes, data points are not orderly arranged and their parameterization could not

be so straightforward.

In general, the problem of approximating a set of discrete data points can be converted
into a least squares problem, which turns out to solve a linear system. Usually when the
data set is huge, the size of the linear system would be large, leading to expensive compu-
tation. However, if the data is gridded, the situation could be simplified using the surface
construction technique known asirface skinningor surface lofting[159]. The original
idea of surface skinning is to construct a B-spline surface through a collection of section
curves. By applying such an idea to surface approximation for gridded data, the problem
can be decomposed to a series of curve fitting problems. We first fit a spline curve to each
column of gridded data. Such curves can be regarded as the iso-parametric curves on the
surface because all the data points in a column have the s@a@meter value. Then the
control points of the iso-parametric curves are treated as the gridded data points and we
perform further curve fittings on these points along thdirection. All the new control
points obtained from the above two steps form the control points for the B-spline surface.
Since the fitting processes for different columns or rows can be performed independently,
several parallel algorithms [19, 20, 21] were developed for surface skinning. When enough
processors were available, the method in [20, 21] can manage to reconstruct the surface in

a constant time.

The surface skinning technique can also be applied to a certain variant of gridded data,
which is called the row-wise data. That is, the data set is organized in rows except that the
number of points in each row may differ. Vlergeest [151] proposed a method for row-wise
data, which fits the data points of each row by as fewest control points as possible, then
resamples points on these curves uniformly and approximates the sampling points, and
finally constructs a surface through the re-approximated curves using the surface skinning
method. Piegl and Tiller [111, 112] construct the knot vectors more carefully and proposed

to interpolate theé-th row of data by adopting as many knots that were used iithd )-th
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curves as possible. In this way, the number of the control points in the final skinned surface
decreases significantly compared to that by the normal approach for row-wise data, which

just directly merges all the knots together.

2.5.3 Scattered data fitting

Comparing to fitting gridded data, fitting scattered data or triangular meshes using spline
surfaces is more challenging and there have been more research on this topic recently. As
pointed out in literature [75, 33, 72, 156, 157, 73], it is usually difficult to obtain a satis-
factory approximation result by only solving the least squares equations once. Instead, the
“approximation-checking-adjustment” cycle needs to be iteratively performed for a num-
ber of times before a satisfactory approximation result is obtained. The step “adjustment”
refers to parameter correction or control mesh refinement. Sometimes, to make the approx-
imation surface smoother, a surface fairness functional should be taken into account besides
the square distance between the surface and the data points. Moreover, if the data could not
be approximated by a single surface, segmentation is needed. After that, each segment is
approximated by a surface and care must be taken to make sure that the adjacent segments
are smoothly connected.

A basic requirement for surface fitting is that the distance from the data points to the
reconstructed surface should be within a given tolerance. The traditional methods using B-
splines are either to initiate the fitting process with a control mesh that is sufficiently dense
or to refine the control mesh globally when the approximation error is large. However, both
of these strategies often result in an over-refined control mesh. In fact, the refinement of the
control mesh is desired only in the areas where the fitting result is poor, but the B-spline
surfaces do not allow such local refinement due to their formulation.

To overcome this drawback, adaptive methods were proposed. Basically there are two
categories of adaptive methods. One is the hierarchical approach [49, 53, 89, 72, 165], and

the other is the patchwork approach [126, 10, 38]. Since these works are closely related to
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our research, below we examine them in details.

As the first category of adaptive approaches, Forsey and Bartels’ method [49] fitted a
hierarchical B-spline surface to the gridded data set. A B-spline surface with a coarse con-
trol mesh was first used to approximate the data set and it was treated as the base surface of
the hierarchy. If this surface already fitted the data set very well, the approximation process
stopped. Otherwise, the regions where the fitting error exceeded the tolerance were detected
and in each of these regions, the residue of the data points was re-approximated by an over-
lay with a finer control mesh. The construction of the overlays in higher levels continued
until the resulting hierarchical B-spline accurately fitted the data set. The limitation of this
method was that it was only applicable for gridded data. The idea of fitting a hierarchical B-
spline surface to gridded data was also adopted by Krishnamurthy and Levoy [87]. In their
approach to dealing with the complex triangular meshes, they first manually segmented the
mesh into several quadrilateral patches. By re-sampling of the mesh data in each patch into

a grid of points, the method in [49] was then applied.

The problem of adaptive surface fitting for scattered data was discussed by Lee et
al. [89], but the scattered data was restricted tosbalar. For scalar data, the param-
eterization problem becomes simple in that we can directly make the X-Y plane be the
parameter space. The scalar data approximation could be useful in the areas of geology,
oceanography and some experimental science, as shown in [64] and [10]. Its application
could also be seen in 3D object reconstruction and even image processing [89]. In [89], a
structure callednultilevel B-splinesvas defined, in which a hierarchy of control nets was
involved and the sum of the B-spline functions induced from these control nets determined
the final approximation function. The control net at lekelvas a refinement of the one
at levelk — 1 and all the control nets shared the same domain. The Multilevel B-spline
Approximation (MBA) algorithm began by fitting a B-spline surface with a coarse control
net to the data set, then it recursively approximated the residues of the data points left by

the last fitted surface with finer control net, until the hierarchy of the control net reached the
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predefined levels. For every control mesh in the hierarchy, only its non-zero control points
were stored in a linear array. Since there were many zero control points in the higher levels,
this adaptive approach saved a lot of storage. Based on the ideas in [89], Zhang et al. [165]
improved the method by performing the refinement of the control mesh only in the regions
where the approximation error was larger than the specified tolerance. This resulted in the
representation of the surface in hierarchical B-splines. Lin and Huang [81] made another
extension of Lee et al's method in which the non-uniform B-splines was adopted. In a re-
cent approach, Hjelle [69] provided the explicit expressions for control mesh refinement

which can result irC! or C? multilevel B-splines.

In [53] and [72], the approaches for adaptively approximating general scattered 3D data
were discussed, with the restriction that an underlying planar parametric surface existed.
To deal with such data, it was required to find a way to first assign parameter values to
the data points before the fitting process. After that, the methods followed a way similar
to [49] to construct a hierarchical B-spline surface. By using these methods, not only the
superfluous control points were eliminated, but the complexity of solving the corresponding

linear system for surface fitting was also reduced.

In the second category of adaptive methods, the patchwork surface usually consists of a
number of Bézier patches with their boundaries smoothly connected to each other. Schmitt
et al. [126] proposed an adaptive subdivision approach for surface fitting. In their method,
the gridded data set was fitted with a patchwork of Bézier patches which were smoothly
connected to achiev@' continuity. A patch would be further subdivided into four smaller
patches and the corresponding control points were recalculated if the approximation error
was not small enough. By this method, the total computational complexity was largely
decreased. However, a number of constraints should be imposed to guarantee continuity

between the Bézier patches.

Bertram et al. [10] presented a method to approximate a large number of scalar terrain

data. The size of data is usually too large to be handled globally. In their method, the data
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set was first organized in an initial cluster. After that, the data points in each partition of
the cluster was fitted locally by a Bézier patch and the combination of the Bézier patches
by means of knot removal becam&’a continuous B-spline surface which was treated as

the base surface of the hierarchical B-splines. Next, the cluster was refined based on the
guadtreestructure, i.e., each partition in the original cluster was further divided into four
equal regions. For those partitions in the new cluster whose approximation residue exceeded
the tolerance, further approximations were carried out to fit these residues. These patches
constituted the overlays of the parent surface. The process continued until a satisfactory

result was achieved.

Eck and Hoppe [38] proposed a method to fit arbitrarily topological triangular meshes.
They constructed a patchwork of quadrilateral faces from the triangular mesh by using the
harmonic maps [37]. Then they approximated the data points of each face by constrained
Bézier patches in Peters’ scheme [109]. Peters’'s scheme automatically assuféd the
continuity on the boundaries of the patches. The Bézier patches might be further combined
into a single B-spline patch which was more compact in representation. The adaptivity of
this method lies in that, when the resulting surface was not accurate enough, only selected

faces were chosen to be split and re-approximated.

Lietal. [91] also developed a method for fitting arbitrarily topological triangular meshes,
which was mainly based on their work of global periodical parameterization [118]. They
used T-NURCC as the surface scheme and achiéedontinuity at the extraordinary
points andC? continuity elsewhere. In their method, although the construction of the con-
trol mesh had certain adaptivity, the initial setting for the control mesh seemed to be over

refined and the control points in it were almost uniformly distributed.

Finally, it is worth pointing out that although the methods discussed above in both cat-
egories succeed in their specific applications, they are still not good and general enough.
They have some disadvantages. For example, the methods of the first category achieve only

partial optimization, which means that although the best solution is calculated at each level
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of the hierarchy, their sum does not necessarily give the best solution globally. The first cat-
egory maintains a hierarchy of control meshes which may not be so intuitive for interactive
applications. As for the second category, the cost for global optimization is expensive, if
all patches are re-approximated even though only a small part is not well fitted. In addition,
the disadvantages of the second category also includes the redundancy in the multiple knots

and the complication to maintain the continuity in the patchwork.
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T-spline Control Point Removal

3.1 Introduction

It is well known that B-spline basis functions can be refined by linear transformation and
this property enables the important operation of B-spline knot insertion [14, 23]. By knot
insertion, the number of the knots in a B-spline surface is increased and the shape of the
surface can thus be modeled at a finer detail level. A reverse process of B-spline knot
insertion is B-spline knot removal [67, 50], which aims to eliminate redundant knots from

a B-spline surface without altering its shape. Knot removal is a fundamental operation for
spline surfaces. It serves as an underlying tool for many applications such as representation
reduction, shape fairing, base conversion and wavelet decomposition. While knot insertion
can always be performed without introducing errors, removing a knot without changing the
surface is possible only under certain circumstances. In general, approximation algorithms
will be used for B-spline knot removal [99, 98]. Due to the restriction on the topology of
B-spline surfaces, B-spline surface knot insertion and knot removal have a drawback: knots
can only be added or removed in a row-wise or column-wise fashion in order to make the

B-spline control mesh a regular grid.

T-splines were proposed to overcome the inflexibility of B-splines. T-splines allow local
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refinement or local knot (and control point) insertion. In this chapter, we study the reverse
process of inserting control point(s) into a T-spline surface, i.e., T-spline knot removal or
control point removal. Two questions will to be tackled: the first one is to detect whether
a specified T-spline control point could be removed; and the second one is to compute the
updated T-mesh structure and geometry of the T-spline surface after a removable control
pointis removed. Compared to the B-spline knot removal in which a whole row (or column)
of control points needs to be removed, our control point removal for T-splines focuses on
the removal of a single control point, which usually causes only local change to the T-spline

control grid.

Previous work of T-spline control point removal was reported in [128] where the prob-
lem of T-spline surface simplification was considered. The method starts with a simple
B-spline surface defined by4ax 4 control grid, and then adaptively refines the grid until
the least squares T-spline surface defined over the refined grid approximates the original
T-spline surface within the given tolerance. If the tolerance is chosen to be zero, then the
control point removal can be achieved. The method is global in nature and is useful for
eliminating as many control points as possible. In this chapter, however, we seek local knot
removal and try to eliminate a single point or a few points which is/are specified by a user.
Compared to the approach in [128], our approach is more intuitive and user controllable.

Therefore, it is more required in interactive applications.

Note that the local refinement algorithm is one of the most fundamental algorithms in
T-spline theory and technology and it also plays an important role in the research of this
thesis. Therefore in Section 3.2 we first re-examine T-spline’s local refinement algorithm,
aiming to gain some insights, and provide a simple detailed implementation of it. Then
in Section 3.3, we present a T-spline control point removal algorithm which removes one
control point from a T-spline surface. The possible extension of the algorithm for removing

more than one control point is discussed in Section 3.4.
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3.2 T-spline local knot insertion

Consider a T-spline surface defined in the homogeneous form:
SH(u,v) = Z Q;B;(u,v) (3.1)
=1

where theQ, = (w;P,w;) = (w;z;, wy;, w;z;, w;) are control points in homogeneous
space, thev; are control point weights and thé are the control points in the 3D space.
The B;(u,v) are T-spline blending functions corresponding to control p&ntand are
defined by Equation (2.8). The knot quintuplkesandv; are extracted from the T-mesh
based on certain rules given in Chapter 2.

By local knot insertion, we mean to insert one or more control points into a T-mesh
without changing the shape of the T-spline surface and without affecting too many existing
control points. Generally, if a control point is simply inserted into a T-mesh without any
adjustment, the shape of the surface would be likely altered. This is because some T-
spline blending functions associated to the control points have been changed since their knot
quintuples inferred from the T-mesh are now different (Refer to some detailed examples in
Figure 3.3 and Figure 3.4). However, if certain equivalent transformation from the original
blending functions to those indicated by the new T-mesh could be found, the geometry of
the surface would be correctly preserved. In the following we first discuss the T-spline
blending function transformation and then explore T-spline surface’s local control point

insertion.

3.2.1 Blending function refinement

A T-spline blending function is the product of two univariate B-spline basis functions deter-

mined by two knot quintuples. If some knots are added into a knot quintuple, the blending
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function can be decomposed into a linear combination of a few new blending functions that
have finer knot quintuples. We call such a blending function transformation the blending

function refinement.

We now demonstrate how such blending function refinement is achieved. Consider the
direction B-spline basis function. Létbe a new knot to be inserted into the knot quintuple
u = [ug, u1, us, uz, us] of the basis functionV3[u](u). Depending on wher# is located,
we have the following result:

If Ug < k<, then

N3[u](u) = aN*[ug, k, uy, ug, us)(u) + N[k, uy, uy, us, uy) (u) (3.2)

If u; < k < ug, then

N3[u)(u) = aN*[ug, us, k, ug, uz)(u) + bN>[uy, k, ug, uz, us) (v (3.3)

If uy < k < ug, then

N3[u](u) = aN*[ug, uy, ug, k, uz)(u) + bN>[uy, ua, k, uz, us) (v (3.4)

If us < k < uy, then

N3[u)(u) = N*[ug, uy, ug, uz, k] (u) + bN>[uy, ug, uz, k, usg)(u) (3.5)

If k& < wugork > uy, N3[u](u) will not be refined.
In all the above cases, = (k — ug)/(us — uo) andb = (uy — k)/(ug — uy). Figure 3.1
illustrates these situations, where the original basis function is shown in black color and the

new basis functions are shown in red color.

If more than one knot are inserted, the refinement can be achieved by repeatedly ap-
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Figure 3.1: Basis function refinement.

plying the above equations. These results can also be applied todihection B-spline
basis functions. Therefore, from the transformation of both B-spline basis functions, we
can obtain the transformation equations for the T-spline blending functions. For example,
Figure 3.2(a) shows the knot quintuples of a blending funcBon, v). If two new knotsu

andv are insertedB(u, v) then becomes the combination of four new blending functions

as shown in Figure 3.2(b):

B(u,v) = e1Bi(u, v) + c2Ba(u, v) + ¢3Bs(u, v) + caBa(u, v) (3.6)

where the coefficients are calculated by Equations (3.2)-(3.5).
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<

<

(a) (b)

Figure 3.2: Blending function refinement.

3.2.2 Local knot insertion

In a T-spline surface, each knot corresponds to a control point. So the local knot insertion
is also known as the local control point insertion. The T-spline local control point insertion
algorithm was first proposed in [129] and the approach was improved in [128]. The local
refinement of T-splines means the capability of adding one or more control points into the
T-mesh without altering the surface. The surfaces before and after the refinement are thus

the same for any parameter values. That is,
SH<U7 U) = Z QZBZ(ua U) = Z @ZBZ(U7 U) = gH(ua U) (37)
=1 =1

WhereéH(u, v) is the T-spline surface after the control point insertion, ands, Bi(u, v)

are the new control points, the new control point number and the new blending functions.
The main idea of the T-spline control point insertion algorithm in [128] is that the orig-

inal T-spline surface equation can be reformulated by decomposing the basis functions and

recombining the control points afterwards if they correspond to the same basis function.

Eventually we have to maintain the validity of the T-mesh and to ensure that all the blend-

ing functions and the control points are properly associated while keeping the equivalence

between the new and original surface equations. During the processes of decomposition
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Table 3.1: Violations during T-spline control point insertion.

| Violation | Solution

1. | A blending function is missing a knatRefine the blending function at
inferred from the current T-mesh. | the missing knot.

2. | A blending function has a knot that |sinsert the knot into the T-mesh.
not indicated in the current T-mesh.
3. | A blending function has no associatednsert an extra control point cor-
control point in the current T-mesh. | responding to the central knots
of the blending function’s knot
quintuples.

and re-arrangement, temporary discordances between the blending functions and the T-
mesh may occur. These mismatches are called the violations. We resolve the violations
either by applying blending function refinement or by adding an extra control point at a
certain location.

There are three types of violations, as tabulated in Table 3.1. Violation 1 is illustrated in
Figure 3.3(a) wheré; is a newly inserted control point at coordinates, v3) andB; (u, v)
is an old T-spline blending function with knot quintupkes = [u;, us, us, u4, us) andv; =
[v1, v2, V3,4, v5]. Note that the knot quintupla; of B;(u,v) does not include knoty,
which is in the new T-mesh. We call such a situation violation 1. To resolve violation 1, we
split B; (u, v) using blending function refinement and obtain two new blending functions
By1(u,v) with knot quintuplesuy; = [ug, ug, us, uy, ug] @andvy; = [vq, vg, v3, vy4, v5] @nd
Bia(u, v) with knot quintuplesu;, = [ug, us, ug, uyg, us] @andvis = [vy, vg, V3, V4, V5], @S
shown in Figure 3.3(d)B1; (u, v) and Byz(u, v) are compatible to the new T-mesh.

Figure 3.3(b) explains violation 2. The blending functiBn(«, v) has knot quintuples
w = [ug, Ug, ug, Uy, us] ANA vy = [vg, vg, Uk, vy, vs5]. Bi(u,v) might be the result of the
blending function refinement operation of a nearby blending function. While the knot quin-
tupleu; contains the knoti,, the T-mesh has neither a corresponding control point nor a
corresponding vertical edge @t,, v;). This results in violation 2. Violation 2 can be re-

solved by adding an extra control poifit at (u, vx ), as shown in Figure 3.3(e). After that,
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Figure 3.3: Three possible violations during knot insertion and their solutions.

By (u, v) would be in accordance with the T-mesh.

Violation 3 is explained by Figure 3.3(c). The blending functiBn(u, v) has knot
quintuplesu; = [uq, ug, ug, ug, ug) ANdvy = [vy, va, vy, v3, v4] and is centered dtuy, vy),
but there is no corresponding control point in the T-meshAgfu, v). This violation is

resolved by inserting a control poif. at (uy, vy ), as shown in Figure 3.3(f).

In order to obtain the correct surface representation after the control point insertion, all
the violations between the blending functions and the T-mesh should be detected and fixed.
This can be done by examining all the blending functions associated to each control point
in the T-mesh. In general this is quite time consuming and inefficient especially when the
number of the control points is large. Due to the local support property of the blending
functions, actually only a few blending functions might be affected by the insertion of a
control point. Depending on where and how a new control point is inserted, it can be

estimated which blending functions might be affected. Thus it is sufficient to check only
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these blending functions for violations in actual implementation of the T-spline local knot

insertion algorithm.

Table 3.2: Situations on control point insertion.

| Situation | Possible influence region

1. | A control point is inserted onto The four immediate neighbor control
an existing edge in the T-mesh.| points of the inserted point in the same
parameter direction of the edge.

2. | A control point is inserted into a The four immediate neighbor control
face in the T-mesh. points of the inserted control point in
both parameter directions.

3. | The insertion of a control point All the control points in the parameter
causes an edge to be added integion that can be orthogonally pro-
the T-mesh. jected onto the edge.

We propose to consider the following three situations, as listed in Table 3.2. The first
situation is illustrated in Figure 3.4(a), where a new control pdinis being added into
a horizontal edge that conned and P;. In this case, violations might occur for those
blending functions associated to the four immediate neighbor poirs @vo from either
side) in theu—parameter direction, i.e. the control pois, P, P, P, in the figure. It
is possible that some of the suspect blending functions are not affected, such as the one

associated t@’;. Only the blending functions associatedi*g P, and P; actually contain

violations.
[o; o0———0 {1)8 [e; ‘
L &5 [ [ ] 1 %
O o
R B R B AR B B >
——C "1)6 l
: \
(a) Situation 1 (b) Situation 2 (c) Situation 3

Figure 3.4: Different situations of control point insertion.
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The second situation is illustrated in Figure 3.4(b), where a control gaing being
added in a face of the T-mesh. In this situation, we check the blending functions asso-
ciated to the four immediate neighbors Bf in both theu— andv—directions, namely
Py, Py, P3, PyandPs, Py, Pr, Fs.

The third situation is illustrated in Figure 3.4(c), where the insertion of control point
P, causes an edgeto be added into the T-mesh. In this situation, the blending functions
associated to all the control points that can be orthogonally projected onto the edge need to

be checked. The suspect area is highlighted in Figure 3.4(c).

Sometimes, the insertion of a knot can be categorized into more than one of these situa-
tions. In that case, we should check all the blending functions in the area indicated by each
matched situation.

Based on the above discussion, a detailed T-spline control point insertion algorithm is
described in Algorithm 3.1. The algorithm is quite self explanatory and we just make a few
more clarifications. A stack is used in the algorithm to store all the blending functions that
contain violations, together with the associated control points. We search for the violating
blending functions in partial regions of the T-mesh, determined by where the points are
inserted. We usé€); and B;(u, v) to denote the control points and blending functions in
the T-mesh and usB; and B;(u, v) to denote the control points and blending functions in
the stack. These blending functions and their associated control points are put back to the
T-mesh when the violations are resolved through the blending function refinement or the
insertion of extra control points. The algorithm terminates when the gtaslempty.

Since the procedure of the control point insertion does not change the values of the
surface equation and more specifically, we hayey; B; (u, v) = 3 w;B;(u, v), therefore a
standard/semi-standard T-spline surface would remain to be standard or semi-standard after
the control point insertion and a nonstandard T-spline surface remains to be nonstandard.

Also, the algorithm is guaranteed to terminate.

Finally, we use an example to demonstrate the T-spline control point insertion process.
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Algorithm 3.1 : T-spline knot insertion algorithm

Given: aT-spline surfac&™(u,v) and a set of new points that are to be added
Goal: a new T-spline representati®¥ (u, v) of the same surface
1. Create an empty stadk
2. Add new control points at the specified locations and add new edges when necessary
3. Based on different situations, decide the collectio®Bg{u, v) to be examined
4. for eachB;(u,v) in the collectiondo

5. if B;(u,v) violates the current T-meshen

6. LetR; = Qz andBi(u, U) = BZ‘(U,U)

7. Push the paifR;, B;(u,v)) into T

8. Update the control point in the T-mesh@s= (0, 0,0, 0)

9. Update the blending functioB;(u, v), making it compatible to the T-mesh
10. end if
11. end for

12. while T" is not emptydo R
13. Take the top elementi?;, B;(u, v)) out of T

14. Find B;(u, v) in the T-mesh that has the same center kndBas:, v)
15. if there is no sucti;(u, v) in the T-meshhen {Violation 3}
16. Push the paitR;, B;(u, v)) back intoT
17. Insert a control point into the T-mesh at the center knaBfu, v)
18. Add edges if necessary
19. Execute Line 3-11 to update the staland the T-mesh
20. else if B;(u, v) has a knot that refine8; (u, v) then {Violation 1}
21. Carry out a proper blending function refinement:
Bj(u,v) = c1Bj1(u,v) + caBja(u, v)
22. Push the pairéc, R;, B;1(u,v)) and(cyR;, Bja(u,v)) into T
23. else if B;(u, v) has a knot thaB; (u, v) does not havénen {Violation 2}
24, Push the paitR;, B;(u, v)) back intoT
25. Insert a control point into the T-mesh at that knot
26. Add edges if necessary
27. Execute Line 3-11 to update the staland the T-mesh
28. else{no violation: B;(u, v) has the same knot quintuplesBgu, v)}
29. Update the control point associated with(u, v) as:Q); = Q; + R;
30. end if
31. end while
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We begin with a T-spline surface whose T-mesh pre-image is shown in Figure 3.5(a). After
inserting a point?; into the T-mesh, a new T-spline surface is obtained, whose T-mesh
pre-image is shown in Figure 3.5(b). We further add a péininto the T-mesh and now

the T-mesh pre-image is the one shown in Figure 3.5(c). It can be seen that changes to the
T-mesh only take place in a local area, although a few extra control points are needed to be
added as well. The T-spline surfaces and the T-meshes for the pre-images in Figure 3.5(a)
to 3.5(c) are displayed in Figure 3.5(d) to 3.5(f), respectively. While the T-meshes are now

different, the T-spline surfaces are the same.

IS IS S 8

(@) (b)

(d) (e) (f)

Figure 3.5: An example of knot insertion.

3.3 Removing one control point from a T-spline surface

Now we present an algorithm for T-spline control point (knot) removal. The algorithm is

based on two fundamental operations. One is the blending function refinement that has
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already been explained in the preceding section. The other is the reverse blending function
transformation. In the following, we explain the reverse blending function transformation

first and then the T-spline control point removal algorithm.

3.3.1 Reverse blending function transformation

While the blending function refinement is used to split a basis function into two new ones
with finer knot quintuples, the reverse blending function transformation presented here

works in an opposite way.

Let u = [ug,us,us, us, us] denote a knot quintuple in which, is the center knot.
N3[u](u) = N3[ug, uy, ug, us, ug)(u) is the associated B-spline basis function defined.on
Now suppose that a new knot quintuplieis constructed fronu by eliminating a knotu;

(: = 0,1, 3 ,0or4) that is other than the center knotun inserting another knat,,; which
satisfiesu,qg < ug Or u.qq > ugq, and meanwhile keeping the center knotwbstill to be

uy. Let the B-spline basis function correspondingitdoe denoted ad/3[u’)(u). N3[u](u)

can be re-expressed in the form®F[u](u) plus another term. Since the knot spanbifs

larger than that ofi, such an operation is called the reverse basis function transformation
which is essentially derived from the equation of the basis function refinement. There are
four different types of reverse basis function transformation, depending on which kmot in

is replaced.

If Uogq < up @andu’ = [uggq, ur, ug, us, ugl, then

N3[u0,u1, U, U37U4](U) = CONg[Uadda ui, Uz, U3, U4] (U) + dONg[Uaddu Ug, U1, U2, U3](U)
(3.8)

wherecy = 1 andd, = “edi="0

U3—Ugdd
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If Uaga < uo ANAY = [Ugqq, 1o, Uz, U3, Ug), theN

N3[U0, Uy, Uz, U3, U4] (U) - CINB [uadda Up, U2, U3, U4] (U) + d1N3[uadda Ug, U1, U2, U3] (U)
(3.9)

wherec, = =% andd, = {ttag—u1)(us—uo)

(us—uqqda)(ua—u1) "

If waaq > ug @NAU = [ug, U1, Uz, Us, Uqdq), then

NB[“O, Uy, Uz, U3, U4] (U) - 02N3 [UO, Uy, U2, Uyg, uadd] (u) + dgNB[Ul, Ug, U3, Uy, uadd] (U)
(3.10)

wherec, = ”g w g g, = (Hada—us)(ua—uo)

(u1—uqdq)(us—uo) *

If waaq > ug @NAU = [ug, U1, Uz, Us, Uqdq), then

N3{ug, wy, ug, us, ug)(u) = csN>[ug, uy, Uz, 3, Ugaq](u) + dsN>[uy, us, Us, g, Ugaq] ()
(3.11)
wherec; = 1 andds; = %
The reverse blending function transformation for a T-spline blending fun@ianv)
can be easily derived from the above four equations. In general, if N6th](u) and

N3[v](v) are decomposed, we can rewrib¢u, v) b

B(u,v) = N°[u](u) N°[v](v) = ZCiN?’[ui](U) : ZCJ'NB[Vj](U> = mBi(u,0)
Z ’ ' (3.12)

3.3.2 T-spline control point removal algorithm

Now let us look at how to eliminate a specified control point from the T-mesh without
altering the surface. This process is also called T-spline knot removal due to the fact that
removing a control point causes the corresponding knot to be removed from the T-spline

pre-image in the parameter domain as well.
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i3
Pr
@ (b) (c)
(d) () (f)

Figure 3.6: T-mesh structure change after removing control pint

An immediate result of removing a control point is the change of the structure of the T-
mesh. Such change includes the disappearance of the control point, and possible removing
or adding of some edge(s) due to the removal of that point. Figure 3.6 shows three examples
of the structure change. Figure 3.6(d) to 3.6(f) are the results of remavirigpm the
T-mesh shown in Figure 3.6(a) to 3.6(c), respectively. Sometimes the structure for the
new T-mesh is not unique. Refer to Figure 3.7 for a more complicated example, where
Figure 3.6(b) and Figure 3.6(c) are two possible topological structures when the control
point P, is removed from the T-mesh shown in Figure 3.7(a). In such a case, both situations

could be checked or the user’'s recommendation may be needed.

Another important component of the T-spline knot removal algorithm is to update the
geometry of the control points so as to keep the shape of the T-spline surface unchanged.
Assume we want to eliminate the control poitwhich corresponds to knét.,., v,.). Our

approach begins with the given T-spline surface. The T-spline surface eq8&tionv) =
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(a) Original T-mesh (b) Removing vertical edges (c) Removing horizontal edges

Figure 3.7: Another T-mesh structure change example.

> i1 QiBi(u,v) is split into two parts:>_,, Q:Bi(u,v) andQ, B, (u, v) (Q, is the cor-
responding point ofP. in the homogeneous space). We call the second part a residue.
The first part defines a new T-spline surface whose control points one-to-one correspond
to those of the new T-mesh. However, the knot quintuples for the blending functions in
>_izr QiBi(u,v) do not necessarily match those derived from the new T-mesh. It is im-
portant to keep in mind that the blending functions and the T-mesh are tightly coupled
in a valid T-spline surface. Therefore the main process of our algorithm is to use the re-
verse blending function transformation and the blending function refinement to update both
> izr QiBi(u,v) and Q. B,(u,v) such that their blending functions gradually match the
new T-mesh except th&t, (u, v) has(u,, v,.) as its center knots in the knot quintuples. Dur-

ing this process, local knot insertion may also be required (see a discussion in the end of
this section). As aresul}"" | @, B;(u, v) will eventually be decomposed into a T-spline
surface defined over the new T-mesh and a residue term whose blending function has knot
quintuples centered dt:,.,v,). If the residue term becomes zero, a valid new T-spline
surface without the control poin®. has been found. Otherwise, the poft cannot be

removed.

The T-spline control point removal algorithm is thus given in Algorithm 3.2. Note that
this algorithm is in the similar fashion of the T-spline knot insertion algorithm proposed

in [128]. The main different step is step 3.2) which invokes the operation of reverse blend-
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Algorithm 3.2 : T-spline control point removal algorithm

Given: a T-spline surfaceS¥(u,v) and a control pointP, corresponding to the knots

(ur,vy)

Goal: If possible, find a new T-spline representatfﬁ)ﬂ(u, v) of the same surface which

1.

2.
3.

10.
11.
12.

13.

14.
15.
16.
17.
18.
19.
20.

does not contai®.

Set the current T-spline surface in the homogeneous form @:gg Q;B;(u,v) and
the residue to bé&),. B, (u, v)

repeat

if any B;(u, v) in the current T-spline surface has the same knot quintuples as the

residue’s blending functiothen
Move it to the residue
else ifany B;(u, v) in the current T-spline surface contains a kot v,.) such that
at least one ofi, anduv, is not the center in the respective knot quintugbien
Perform a proper reverse blending function transformation
else ifany B;(u, v) in the current T-spline surface is missing a knot inferred from
the current T-mesthen
Perform a proper blending function refinement
else ifany B;(u, v) in the current T-spline surface has a knot other thanv,),
which is not indicated in the current T-met$ten
Add an appropriate control point into the T-mesh
end if

if the blending function of the residue is missing a knot inferred from the current

T-meshthen

Perform a proper blending function refinement and move the new generated

term whose corresponding knot quintuples are not centergd at,) to the
current T-spline surface
end if
until there is no new operation
if the final residue equals to zetteen
The control pointP. is successfully removed
else
The control pointP. cannot be removed
end if
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ing function transformation. Here we use an example to illustrate this step topologically.
Suppose we intend to remove the poftshown in Figure 3.8(a) from the T-mesh. After
removing P,, the T-mesh pre-image becomes Figure 3.8(b). However, the knot quintu-
ples for the blending functiofs; (u, v) shown in Figure 3.8(a) are;, = [ug, u1, us, us, ty]

andv; = [vg, v1,v9,v3,v4]. It has a knot(us, v9) that corresponds to the removed con-

trol point P,. Therefore, according to step 3.2), a reverse blending function transformation
is performed and we obtain two new blending functiof; (u, v) with knot quintuples

uy; = [ug, Uy, ug, ug, us] @NAvyy = [vg, v1, Ve, v3, V4] @Nd Bya(u, v) With knot quintuples

Wi = [ug, Ug, ug, Ug, us] @ndvis = [vg, vy, V2, v3, v4]. @s shown in Figure 3.8(b) and Fig-

ure 3.8(c). The former conforms with the current T-mesh, and the latter has the same knot

qguintuple as the residue and thus is moved to the residue.

v, v, v,
V3 Vs V3
C e oz o B o TR
Vi 4 Y
Yo Yo Yo
U u U WU, U U u u U U Uy U U WU U
(@) (b) (c)

Figure 3.8: Invoking the step of reverse blending function transformation.

3.3.3 Validity of the algorithm

For an algorithm described in a recursive manner, it is important that the algorithm termi-
nates after a finite number of steps. We examine the two basic operations in this T-spline
control point removal algorithm. Since the knot values involved in this procedure are those
that initially exist in the T-mesh, the blending function refinement would be called for only
a limited number of times if such a process is needed [128]. For the reverse blending

function transformation, it can be seen that each of those four reverse blending function

56



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.3. Removing one control point from a T-spline surface

transformations replaces a blending function by two new functions. One of the new blend-
ing functions corresponds to the knot quintuples which do not contain the removed knot,
and the other one corresponds to the knot quintuples which are closer to the quintuples of
the removed control point. Once the center knot of the knot quintuples becomes the knot to
be removed, the reverse blending function transformation is completed. In this way, after a
finite number of steps of performing reverse blending function transformation and blending
function refinement, the T-spline surface is decomposed into a new T-spline surface which
is defined by the new T-mesh without the removed control point plus a residue term whose
blending function has knot quintuples centeredwat v,.). If the coefficient of the residue

term is zero, then the removal algorithm succeeds and the new T-spline surface is the result.
Otherwise, the algorithm returns that the specified point cannot be removed. Therefore, the

algorithm for T-spline control point removal is always guaranteed to terminate.

3.3.4 Discussion

In the process of removing a control point, sometimes the algorithm will introduce a few
new control points into the T-mesh. The insertion of these control points is to make the
blending functions be properly associated with the control points. Figure 3.9 illustrates
such a situation. If the poin?, shown in Figure 3.9(a) is removed from the T-mesh, then
a new control point?, will automatically be added into the T-mesh by our algorithm (see
Figure 3.9(b)), which ensures that the blending function correspondiRgitocompatible

with the T-mesh.

It should be pointed out that in the situation where a knot removal causes the insertion
of extra point(s), the total number of the control points will not be reduced, and thus the
user may choose not to do knot removal of that point for applications such as surface sim-
plification. However, if the user’'s concern is whether a specified point is removable and
how to remove it, our algorithm is attractive because the structure of the new T-mesh is

automatically determined by the algorithm. Some other possible approaches for knot re-
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(b)

Figure 3.9: Extra control point insertion in the removal process.

moval such as setting up a system of linear equation describing the relationship between
the blending functions (or control points) before the removal and after the removal need to

know the structure of the new T-mesh in advance.

3.4 Removing more than one control point

This section extends the algorithm developed in Section 3.3 to remove more than one con-
trol point.

If a user specifies control points in a T-mesh, we may extend the algorithm to detect
whether these control points can be removed simultaneously and to compute the new T-
mesh if they are removable. The possible modifications include:cbntrol points should
be removed in the new T-mesh; and 2) the residue should congideafns. However, the
structure of the resulting T-mesh after removing several control points could generally have
many possibilities. This increases the complexity of the algorithm. In addition, itis unlikely
that arbitrarily specified control points can be removed simultaneously. Therefore, if we
want to remove many control points (especially those generated by knot insertion), it is not
practical to identify them first and then to apply the extended algorithm.

An alternative approach could be based on the single control point removal algorithm.

An unsophisticated attempt is described as follows: for every control point in the current
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T-mesh, check its removability; if it is removable, remove it. This method is quite simple.
However, the following example shows that this method may fail to remove some control

points although they are generated by knot insertion.

I IS T
(@) (b) (c)

Figure 3.10: Example for identifying the removable control points.

Consider a T-mesh (pre-image) shown in Figure 3.10(b), which is the result of inserting
a pointP; into a T-mesh whose pre-image is shown in Figure 3.10(a). Firg a control
point automatically introduced by the knot insertion algorithm. Suppose no further geo-
metrical change is made to these control points. Obviouilynd P, are two redundant
control points in the T-mesh and should be removable. However, if we apply the single con-
trol point removal algorithm to poink, it is surprisingto find that?, cannot be removed
from the T-mesh by carefully checking the removal algorithm!

Fortunately, in the above situation, poiit can be removed by the single control point
removal algorithm, and furthermore after that, pathtbecomes removable for the single
control point removal algorithm (see Figure 3.10(c)).

The above example indicates that one control point may not be removed until some other
control points are removed. This observation motivates the following removal strategy for

removing as many control points in a T-mesh as possible:

1) Check each control point in the T-mesh. If it is removable, remove it and update the

T-mesh.

2) If at least one control point has been removed, execute step 1) again.
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(a) Initial T-mesh pre-image (b) Initial T-mesh (c) Initial T-spline surface

(d) First iteration (e) Second iteration (f) Third iteration

(g) Final T-mesh pre-image (h) Final T-mesh (i) Final T-spline surface

Figure 3.11: An example of removing many control points.

An example of removing many control points from a T-spline surface is provided here
in Figure 3.11. Figure 3.11(a) to Figure 3.11(c) are the pre-image, the T-mesh, and the
surface for the initial T-splines, respectively. The algorithm is then invoked to eliminate
the control points. Figure 3.11(d) is the pre-image of the resulting T-mesh after we apply
the single control point removal algorithm to all the points of the T-mesh once. We call
this process one iteration. We continue this process to the new T-mesh. Figure 3.11(e) and
Figure 3.11(f) are the pre-images of the T-mesh after the second and third iterations. It can
be seen that the number of control points in the T-spline surface is gradually reduced. The
final result is displayed in Figure 3.11(g) to Figure 3.11(i). During this removing process,

there are totally 37 control points that are removed. Thus the T-mesh is simplified while the
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T-spline surface remains the same.

3.5 Summary

This chapter investigates the problem of removing control points from a T-spline surface.
The T-spline knot removal is found to be much more complicated than the B-spline knot re-
moval, since the T-spline knot removal could lead to different result and sometimes the knot
removal could cause the insertion of extra control points. A single control point removal
algorithm is developed, which is in the style of the T-spline knot insertion algorithm [128].
The algorithm can be used to detect whether a user-specified control point can be removed
or not. If the control point is found to be removable, the algorithm returns the new T-mesh
with the control point removed. The algorithm can have applications in interactive editing.

The extension of the algorithm to remove more than one control point is also discussed
and several approaches are suggested. In many situations, the control points that are added
by knot insertion can be completely removed by these approaches. However, there still exist
some situations, in which some inserted control points cannot be removed. Therefore de-
veloping algorithms that are able to remove all those control points added by knot insertion
warrants further investigation.

Another direction for future work is to extend this algorithm to perform approximation
knot removal. In this case, the residue does not have to go to zero and can be controlled by
a given tolerance. Because usually in a complicated T-spline, it is unlikely to remove a lot
of control points exactly. By approximation knot removal, it is possible to remove a lot of

of control points, achieving the simplification purpose.
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Chapter 4

Curvature-Guided Adaptive T-spline

Surface Fitting

4.1 Introduction

This chapter studies the problem of fitting a T-spline surface to a triangular mesh that is
topologically homeomorphic to a plane set. Triangular meshes and splines are currently
two main representations for free-form surfaces. While triangular meshes are widely used
in visualization, animation and interactive computer games, splines are the major format in
CAD/CAM industry. Splines have parametric equations and have a more compact represen-
tation, facilitating many operations such as shape analysis and surface manipulation. There
is a need to convert triangular meshes into spline surface. The conversion can be achieved
by surface fitting. Since T-splines are a generalization of NURBS and the conversion from
a T-spline surface to a NURBS surface is straightforward, our surface fitting result would

be totally compatible to the current industry standards in CAD /CAM.

Basically, the problemis stated as follows: given a triangular mesh with a vertBx-=set

{d;,da2, -+ ,dm}, we look for a T-spline surfac®(u, v) such that the distance between the
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surface and each vertel is below a given error toleranee

dist(d;, S(u,v)) <e, i=1,2,---.m 4.1)

Many difficulties lie in this problem such as the enormous size of the data set and the
complexity of the underlying shape. Our objectives are to achieve the required fitting pre-
cision, to produce visually smooth T-spline surfaces, to preserve geometric features of the
input mesh and to output a concise and effective representation. Though some approaches
existed for tackling this problem, most of them only achieved the first two objectives and
usually resulted in surfaces with highly redundant representations. In this chapter, we pro-
pose a new fitting framework to accomplish these objectives. The framework is an iterative,
adaptive process that is an integration of several components such as feature detection,
parameterization, adaptive least squares surface approximation, initial surface structure re-

placement and mesh re-parameterization. The novelties in this framework include:

e We propose to use T-splines as the basic tool for surface approximation and to fit a
T-spline surface to the triangular mesh using an iterative procedure, where both the
topology and the geometry of T-spline surface are gradually improved. Due to the
power of the T-spline local refinement, T-splines can easily achieve adaptiveness in
that during each iteration step, the target surface is only refined locally at the areas
where the approximation error is higher than the tolerance. As a result, we are able
to obtain a more compact surface representation compared to those obtained by the
traditional methods. In addition, we use standard or semi-standard T-splines for the

fitting process and thus the computation cost is kept to be low.

e A good approximation should preserve the geometrical features of the model. This
means that the mesh and the surface need to have high resemblance in the feature ar-
eas. Feature areas usually refer to the regions where intense geometrical changes take

place and they are highly critical in that they reflect the major identities of a geomet-
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ric model. In geometry processing, features have become a concern recently. Some
approaches have been developed for detecting features on meshes [154, 107, 163].
Here we propose a scheme that examines the feature regions of the input triangular
mesh and gives the feature regions more emphases in surface fitting so as to guarantee
that the model is faithfully reconstructed. A feature sensitive method was also devel-
oped in [88] for surface fitting purpose. While the feature sensitive method considers

features in the parameterization phase, we deal with features in the fitting process.

e Since mesh parameterization and initial surface structure placement have important
influences on the final fitting surface, it is important to have a good parameterization
and initial surface structure placement. However, due to limited prior knowledge
about the reconstructed surface, it is difficult to find a very good parameterization and
initial surface structure placement at the beginning of the fitting process. Therefore,
in our framework, we propose a re-parameterization process and an initial surface
structure re-placement process, which use the knowledge obtained during the fitting

process to improve the parameterization and initial surface structure placement.

The rest of this chapter is organized as follows: Section 4.2 gives an overview of the
algorithm. Each step or component of the algorithm is explained in Sections 4.3-4.10. The

experimental results are provided in Section 4.11 and a summary is given in Section 4.12.

4.2 Overview of the algorithm

Given a triangular mesh and an error tolerance, an adaptive surface fitting generally works
in the following steps: 1). Parameterize the triangular mesh so that each vertex of the
mesh has a pair of parameter values; 2). Initialize the class of the surfaces, from which the
optimal surface is searched for; 3). Establish the objective function for the optimization
process, which usually combines the least squares distance and the fairness term with a

fairness factor, and then solve the optimization problem for the optimal surface; 4). Check

65



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. Curvature-Guided Adaptive T-spline Surface Fitting

the quality of the resulting surface. If the result is satisfactory, the process stops. Otherwise,

proceed to the next step; and 5). Enlarge the class of the surfaces and go back to step 3).

parameterization

mean curvature

()

[ Curvature guided T-spline surface fitting ]

T-spline surface / \ T-spline pre-image

. (]
S(w,.v) %)

Figure 4.1: lllustration of the curvature guided T-spline surface fitting.

It can be seen that the above fitting process is actually an iterative process. In our case,
we use T-splines to perform adaptive fitting. So some steps have to be customized. In step
2), to define the class of the T-spline surfaces, we have to specify the T-mesh topology (i.e.,
the T-mesh structure or the pre-image of the T-mesh) and the control point weights. This
step is usually referred to as the initial T-spline structure placement. In step 3), the least
squares objective function is eventually a function of the control point of the T-spline. To
simplify computations, we avoid using rational surfaces and thus let the class of the T-spline
surfaces be one that consists of polynomial T-splines. This can be implemented by initially
choosing standard or semi-standard T-spline structures. In step 5), the enlarging of the class
of the T-spline surfaces can be done using T-spline local refinement which produces a finer

T-mesh with a new set of control point weights. In this way, we have had an adaptive T-
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spline surface fitting method. It could produce a smooth T-spline surface that fits the input
mesh within the given tolerance. However, this approach does not reflect the geometric
features of the initial mesh. To overcome this deficiency, we propose to improve this method
by incorporating features. We modify step 4) and let the features guide the quality checking
such that in the feature areas a better approximation is needed. In this research, we use
discrete mean curvatures to measure features. Thus we get our first version of adaptive T-
spline surface fitting which we catlurvature guided adaptive T-spline surface fittiisge

Algorithm 4.1). An illustration of this approach is shown in Figure 4.1.

Algorithm 4.1 : Curvature guided adaptive T-spline surface fitting
Given: atriangular mesH, error tolerance, fairness factor, a parameterization, a set
of mean curvatures/
Goal: find a T-spline surface that is close to mésiwithin  deviation)
1. Initialize the T-mesh topology and control point weights

2. loop
3. Compute an optimal T-spline surface under current settings
4, Check the T-spline surface for approximation error
5. if not all the regions on the surface pass the chibehk
6. Refine the T-mesh by adding more control points and update the control point
weights
7. else{i.e., the surface is acceptable
8. Exit from the loop
9. end if
10. end loop

11. return the final T-spline surface

In general, the curvature guided adaptive T-spline surface fitting is able to locate more
T-spline control points to the areas that have more features and details. However, the per-
formance of the algorithm could be further improved. Notice that both the mesh parame-
terization and the initial T-spline structure placement have an impact on the fitting result.
In Algorithm 4.1, these two steps are done only once at the beginning of the fitting process.
At that time, we do not have much knowledge about the reconstructed surface and thus
it is difficult to give an optimal parameterization and initial T-spline structure placement.

Based on this analysis, this chapter proposes a new framework for adaptive T-spline fitting.
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Besides the curvature guidance, in this new framework we also have two new components
which are the initial T-spline structure re-placement and the re-parameterization. These
two new components are introduced to improve the initial parameterization and placement.
They are carried out after Algorithm 4.1 has finished and we have got a reasonable fitting
T-spline surface. This fitting T-spline surface is used to provide more knowledge for re-
parameterization and re-placement and the surface itself will be improved next. So the new
framework includes Algorithm 4.1 within a loop and the initial T-spline structure placement
and the mesh parameterization are progressively updated. This results in the second version
of our adaptive T-spline fitting which we call curvature guided adaptive T-spline fitting with

progressively improved initial settings (see Algorithm 4.2).

Algorithm 4.2 : Curvature guided adaptive T-spline surface fitting with progressively
improved initial settings
Given: atriangular meslT, error tolerance, fairness factor
Goal: find a T-spline surface that is close to méBifwithin £ deviation)
1. Compute mean curvaturé for all vertices of the triangular mesh
Compute a parameterizatiagn
Invoke Algorithm 4.1 and denote the resulting T-spline surfacg as
repeat
SO =
Re-parameterize the triangular mesh basedpmupdatey)
Re-initialize the T-mesh topology based nand set the control point weights
Invoke Algorithm 4.1 and denote the resulting T-spline surfacé as
until The approximation by is not improved compared to the approximationday
return the final T-spline surface

© XN ORr~ DN

=
©

4.3 Feature detection

A free-form model can be rich of geometrical features, which are irregularly distributed over
the model. These features include but are not limited to valleys, ridges, creases, corners,
spines, and some fine details. Essentially, a feature area can be understood as the region
on the model that undergoes more rapid geometrical change than its adjacent regions and

hence that draws more attentions than the areas that do not contain features. For example,
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on the Stegosaurus model shown in Figure 4.2, the parts of the its head, tail, legs and spikes

on the back can be considered as features. We mark these features with red boxes.

Figure 4.2: Feature areas on a triangular mesh.

For many tasks in geometry processing including surface fitting, the overall perfor-
mance is to some extent evaluated by the fact that whether the features are properly han-
dled. In order to take care of all the features on a model, it should be first figured out where

these features are located.

The curvatures describe the amount by which a model deviates from a plane and is one
of the geometrical measures that are closely related to surface features. Generally, a surface
region that contains geometrical features would have high curvature values while the one

that has a relatively smooth shape would have low curvature values.

At a point on a surface, an infinite number of curvatures in various directions can be
defined. The mean curvatuheat a given point is the average of the maximal curvatyre
and the minimal curvature, at that point, and can be expressed.as 3 (; + k2). Thus

the mean curvature can be a good representative of all the curvatures.

Traditionally, curvature is the concept for smooth and differentiable surfaces. In recent
years discrete differential geometry [13] was proposed for triangular meshes. In [32], Des-

brun et al. derived a formula for computing the mean curvature of a mesh at deusig
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the information of its 1-ring neighborhood:

val;
hi =|| v (cot aj + cot B;)(d; — d;) || (4.2)
j=1
whereA is the sum of the area of the triangle faces adjacedt,ta;, 3; are the two angles

opposite to the edge connectidgandd; as illustrated in Figure 4.3, and/; is the valence

of d;.

j+l

- d

J

Figure 4.3: The 1-ring neighborhood of verigx

It is noticed that the above method for computing the mean curvature is only applicable
to a vertex that has the complete 1-ring neighbors. For the boundary vertices of an open
triangular mesh, the method would not work. Our strategy for a boundary vertexis to simply

let its mean curvature equal to that at any one of its one interior neighboring vertices.

For a given mesh, we compute the mean curvature for each vertex. Then based on the
curvature values, we can detect feature areas. Figure 4.4 shows the color plot of mean
curvatures of the Stegosaurus model, where red color represents high curvature values and
blue color represents low curvature values. It can be seen that the feature areas of the
Stegosaurus model are identified by having significantly higher curvature values than the

non-feature areas.

It is then feasible to associate the features on a model with the corresponding curvature

values.
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Figure 4.4: Visualization of the mean curvatures on a triangular mesh.

4.4 Parameter generation

To perform parametric surface fitting to a triangular mesh, a process called parameteriza-
tion which associates each vertex in the triangular mesh with a pair of parameter values
is usually needed, especially when the parametric distance is used. In particulahdet

a triangular mesh iz? space with a set of verticdsl;,ds,--- ,d,} andQ) € R? be a
planar domain. A parameterizatian: Q2 — R?3 is a bijective mapping from the domain

to the surface of the triangular mesh. By the parameterization, each &roéxhe mesh

has a pair of parameter valugs, v;), which defines a point; = (u;, v;) in the parameter
space. The set of poinfai;, us, -+, uy, } forms a planar triangulatioR in the domain

by maintaining the same connectivity &s P can be regarded as an embeddin@'ah 2

and the parameterization can be regarded as a process of flattening a triangular mesh onto a
plane, as illustrated in Figure 4.5.

Parameterization is also an important processing in the area of digital geometry pro-
cessing. Many methods have been developed [43, 44, 135]. Different applications may
require different parameterization methods. Since parameterization is a mapping between
spaces of different dimensions, generally distortions are inevitably incurred during the pro-
cess. Therefore most parameterization methods adopt some optimization processes that

minimize the distortion in certain criteria which are based on various geometrical proper-
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Figure 4.5: Flatten a triangular mesh frai to 1.

ties. These geometrical properties include not only vertex information, but edge, angle or
face information as well. For example, some approaches try to preserve the area of tri-
angle faces after they are mapped to the parameter domain [30, 31] and some approaches
are angle-preserving [42, 45, 134] or edge length-preserving [101, 124]. There also exist
approaches that consider the optimization of two or more criteria at the same time [22].

In addition, no matter which criterion is chosen, one basic requirement for almost all the
parameterization methods is that in the parameter domain the triangulation should not self
intersect and no triangle face is degenerated (i.e., all the three vertices of a face should not

lie on a same line).

In the rest of this section, we describe a parameterization method that is basically a
variant of Floater's mean value coordinates based approach [42] and is expected to provide
a good parameterization for the triangular mesh. The obtained parameterization will be
used in T-spline surface fitting. The quality of the parameterization result substantially
influences surface fitting.

For any triangular mesh that is of an open disk topology, a closed boundary which is
comprised of a group of boundary edges can be identified. A boundary edge is characterized
by belonging to only one face. The vertices on the boundary are referred to as the boundary

vertices and the remaining vertices in the mesh are called interior vertices. Without loss
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of generality, in the vertex sdid;,ds, - - ,d,,} we assume the subsgd;,d,, - ,d;}
are the interior vertices and the subéét, , - - - ,d,,} are the boundary vertices. We also

assume that these boundary vertices are ordered clockwise.

With parameterization, the boundary vertices are mapped onto the boundary of the pa-
rameter domain and the interior vertices are mapped onto the interior region of the param-
eter domain. There are a few options for the shape of the parameter domain. It could be a
rectangle, a circle, or a free form polygon. A rectanglar parameter domain would be prefer-
able in our application because that is also the parameter domain of the T-spline surface
we are going to construct. More specifically, we define the parameter domain to be a unit
square, e.gl0, 1] x [0, 1]. This setting helps to avoid any extra timming operation for the

fitting surface.

Usually parameterizing an open triangular mesh is performed in two steps. First, the
parameters for the boundary vertices are decided; after that, the parameters for the interior

vertices are then calculated. In the following, we describe these two steps in detail.

4.4.1 Computing parameters for boundary vertices

It is understandable that the parameters of the boundary vertices influence the result of the
overall parameterization. Cursory assignment of the boundary vertex parameters would
lead to a big overall distortion. Therefore here we discuss how to devise a reasonable
parameterization for the mesh boundary. Since the rectanglar parameter domain is chosen
in our case, four corner verticek,;, dp2, dpz anddyy, Wherebl, b2,b3,64 € [l + 1, m),

should be first designated from the set of the boundary vertices. They are associated with
parameterg0, 0), (0,1), (1,1) and(1,0), respectively. Next, the other boundary vertices

can be parameterized by approaches that take the geometrical properties of the boundary
edges into account. For example, for a boundary vetjghat is between the two corners

dy; anddy,s, its parameters are:;, v;), whereu; = 0 andv; is decided using the chordal
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(a) (b)

Figure 4.6: Selection of the corner vertices based on different strategies.

length approach: .
o — S0 divy — di
Sz ldips — dif

Thus the remaining problem is how to carefully pick the four corner vertices so that a

(4.3)

good result can be generated. One possible approach is based on the idea that the accu-
mulated edge length between any two adjacent corner vertices should approximately be the
same. LetLy,, = > ", |[diy1 — di|| denote the sum of all the lengths of the boundary
edges. Firsthl is arbitrary selected to be a number that is the subscript of a boundary ver-
tex. For the simplicity of the presentation, we dt= [ + 1. Next, b2 is chosen to be the
number which satisfies

b2—1

1
Z HdiJrl - dl” ~ ZLsum (44)

i=bl
Similarly, b3 andb4 can also decided in such a way. Although it is widely adopted, some-

times the corner vertices picked by this approach can be undesirable (see the red circles in

Figure 4.6(a)).

The second approach is to pick the corner vertices by considering the geometrical fea-
ture of the boundary. In fact, many models such as the one shown in Figure 4.6(a) contain
some vertices on the boundary that naturally serve as corners. Therefore, we may make the

selections based on the angld; ;d;d;; for each boundary vertek; which is formed by
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the vertex and its two adjacent boundary vertices. Usually, a vertex with a sharper angle is
more suitable to be the corner vertex. Also, in order to reduce the influence caused by the
noises in the triangular mesh, the mesh boundary is smoothed first using the following filter
several times before the angles are measured:

1 2 1
d; « —dj_1 + zd; + =d; 4.5
= gdisnt gdit odin (4.5)

Finally, we choose the four vertices on the smoothed boundary that have the smallest angles
as corners. The corners picked using this approach are highlighted in Figure 4.6(b). This

time the result is more desirable.

In practice, both approaches can be attempted and the one that leads to better result can

be adopted. Besides, user intervention could also be considered as one option here.

4.4.2 Computing parameters for interior vertices

Denote the index set of all the 1-ring neighboring verticegl;oby ;. For the parame-
ter u; of an interior vertexd;, we let it be a convex combination of the parameters of its

neighboring vertices, which can be formulated as:
W= ) Ajuy, i=1,2,--- 1 (4.6)
JEN;
where);; are some non-negative weights. The choice of these weights would have consid-

erable influence on the parameterization result.

There ard such equations in total, one for each interior vertex. Some of the equations
do not involve any boundary vertex and some involve one or more boundary vertices. After

reorganizing the above equations by placing the boundary vertices and the interior vertices
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on the different sides, we have
u; + Z _/\ijuj = Z )\’ijuj7 Z = ]_, 2, s ,l (47)
JEN;,j<I JEN;,j>1

Combining all theseé equation arrives at a linear system:
AU = U, (4.8)

whereU = (uy,---,w)? is al x [ vector of the unknown interior vertices a§ =

(wo1,- -+ ,up1)’ isal xlconstantvectorwithig; = > \j;u;. Ais anl x ! coefficient
JEN:j>1
matrix consisting of

1, i=7
aij = —Nij, t#jandjeN; (4.9)
0, otherwise

By solving the linear system, the parametaisus, - - - , u; for the interior vertices can
then be determined and the whole triangular mesh is parameterized.
However, whether the linear system (4.8) has a unique and proper solution depends on

certain constraints. Consider the following three conditions:
1. \;; > 0, for anyz, j;

JEN;

3. Z )\ijdj:di,forizl---l.

JEN;
If all of these conditions are met, it is guaranteed that the linear system (4.8) is solvable.
Furthermore, there is no self-intersecting edgd,iprovided that the boundary is mapped
to a convex polygon. Also, it has the property tRatvould be identical tdl' if T is a planar

triangular mesh itself.
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di
dj
dy, X
(a) The 1-ring neighborhood of vertel (b) The corresponding planar star-shaped re-

gion

Figure 4.7: Compute the mean value coordinateslfor

To choose values fox;; to satisfy the above three conditions, we adopt the mean value
coordinates. The mean value coordinates (MVC), proposed by Floater [42], is a set of
weights that can be used to represent a vertex in a 2D triangular mesh by convexly combin-
ing its neighboring vertices. Mean value coordinates is appreciated for depending not only
continuously but also smoothly on the vertices of the mesh. Therefore, it preserves some
intrinsic geometric properties of a triangular mesh and has applications in many geometry

processes including parametrization.

Supposdd; is an interior vertex in the triangular mesh with/; neighboring vertices
(see Figure 4.7(a)). Without loss of generality, suppose the neighboring vertidesuef
dy,ds, - ,dva,. TOo compute the mean value coordinatesfor vertexd; with respect
to its neighboring vertex; (1 < j < wal;), a planar star-shaped region centeringat
is constructed by flattening the 1-ring neighborhood of vedgemto a plane, as shown
in Figure 4.7(b). In this flattened star-shaped region, the edges that connaatl its
neighbors remain the original length, i.gx; — x;|| = ||d; — di||. The anglesy;; between

two adjacent such edges are uniformly scaled so that the sum of these scaled angles equals
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2.
Zd;didjiq

val;

S Zdidsdics

k=1

2 (4.10)

Ctij =

Then we compute the initial weights; from these geometrical quantities as:

fan(%E) 1 tan( %=1
wi; = an(%y) + tan(75) (4.11)

%5 — xi

After that, the mean value coordinates can be calculated by normalizing, using the

sumy -, wi:
wij

_ (4.12)

LY val;

Z Wik
k=1

A

Itis apparent that;; > 0 and)_, \;, = 1. Also, it has been proved in [42] that, \;;dx =
d;.

Figure 4.8 shows parameterization using this approach for some triangular mesh mod-
els. The models are shown in the first column of the figure. In the second column, the
parameterization results onto the unit square domain are shown. For the models on which
the natural corners can be identified, we can always correctly pick those vertices to be the
corners of the parameter domain. In the third column, the results are further illustrated by
mapping the checkboard textures onto the triangular meshes. It can be seen that the check-
board patterns are in general evenly distributed over the models, which indicates the good

guality of the parameterization.

4.5 Initial T-spline structure placement

To set up the initial T-spline structure, we have to specify the parameter domain, the T-mesh

topology (i.e., structure), and the weights for points on the T-mesh.

The parameter domain of the T-spline surface to be reconstructed is set to be the domain
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Figure 4.8: Parameterization of some triangular meshes using MVC.

that the triangular mesh is parameterized to, whicfdjd] x [0,1]. Since our fitting is

an adaptive approach, we begin with a relatively simple T-mesh structure for simplicity.
For example, we can choose the initial surface to be a bicubic B-spline patchl with

4 control points. The knot vectors along the- and v— directions are both set to be
{—2p, —p,0,1,1 + pu, 1 + 2u}, wherep is a small positive value (for exampl@e,001).

In the parameter space the lines corresponding to these knots (except for the first and the
last one) form the pre-image of the control grid of the surface. Let us denote this structure
(or pre-image) byM. Figure 4.9 shows this initial pre-image. In the figure, the domain

of the surface is highlighted in yellow. The dash lines are phantom edges that provide

necessary information for the surface definition.

We also let all the control point weights be one. Denotdthe set of all weights
corresponding to the control points. Théh and/ define a class of T-splines that have
the same pre-imag&/ and the same weightd’. We denote this class by, ;. Note
that each surface 8, is a standard T-spline no matter where the control points are

geometrically located.
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1 4 1420

Figure 4.9: The pre-image of an initial T-mesh.

4.6 Least squares T-spline surface approximation

Once the T-mesh topology (i.e., the T-spline pre-image and the set of control point
weightsW are given, they define a class, ; of T-spline surfaces. The pre-imagé

and the weight sell” are the ones either set in the initialization or produced by the local
refinement of the initial/ and 1. In this class, all the T-spline surfaces have the same
T-mesh topology and weights; only their geometry is undecided. Here we seek to find the
geometrically optimal T-spline surface i, 1, which best fits the triangular mesh under a
certain criterion. Note that any T-spline surfaceSin v is standard or semi-standard due to

our special initial T-spline structure placement and the use of T-spline local knot insertion
for T-spline structure refinement (see Section 4.8). Therefore the optimal surface we intend

to find is actually a polynomial surface, which can be written as follows:
S(u,v) = > w;P,B;(u,v) (4.13)
=1

We thus try to find a surfac®(u, v) in the classS), - that makes the sum of the squared

parametric distances between the vertices of the mesh and the surface be minimized. This
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is a least squares problem. In general, to generate a fair surface, we also include a fairness
functionalJ,;,(f) into the approximation. We choose the thin plate energy as the fairness
functional. The details will be described in Section 4.6.1. The optimization problem hence

becomes to minimize the following objective function:
F(Py, Py Pa) = )11 S(ujv5) = dy P + 0 pair () (4.14)
j=1

whereo is a constant that balances the approximation accuracy and fairness. Adarger
will lead to a smoother surface and a smattewill give a more accurate approximation.
Note that the objective function is quadratic in control points. To solve the optimization
problem, we differentiate the objective function with respect to each control ppiand

. o oF .
let the partial derivative equal zer%:F = 0. Thisleads to
g

Zﬂ%ﬁ}M%%WN%W+mw)Rziﬁwﬁww) (4.15)
j=1 oy

=1

forg = 1,---,n, wherem,, come from the fairness functional and their computation is

given in Section 4.6.1.

If we introduce an x n matrix A = (ay;), twon x 1 vectorsB = (b,) andP = (P,)

with
ag’i g w,L(Z B,L<’U/]’ ’Uj)Bg<'U/j7 /U_]) _'_ Umig> (416)
j=1
and
bg = Z ijg(Uj, Uj) (417)
j=1

then the above linear equations can be written as

A-P=B (4.18)
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The solutionP = A~! . B of the linear system gives the control points that define the

T-spline surface.

The linear system can be solved by standard numerical methods such as the Gaussian
elimination if the system is relatively small. However, when the linear system is huge and
furthermore the system has a sparse coefficient matrix, simple methods like the Gaussian
elimination would be slow and even numerically unstable. Therefore alternative linear sys-
tem solvers should be used, for example, the preconditioned complex bi-conjugate gradient
(PCBCQG) solver [115], the bi-conjugate gradient stabilized (Bi-CGSTAB) solver [148] or
the sparse direct linear solvers for which an implementation is available in the open source
library TAUCS [145]. In general these methods take much less computational time for large

scale sparse linear systems and also have stable behaviors.

4.6.1 Fairness functionals

Fairness is an important factor in surface approximation. In order for the reconstructed sur-
face shape to be fair, certain fairness functionals should be incorporated into the optimiza-
tion. A fairness functional/;,;, (S) is a scalar-valued function of surfaces whose value is
the measure of fairness. Quite oftef,;.(S) is interpreted in a physical or geometric way,
e.g., describing the bending energy or the total curvature contained by a surface. Different
types of fairness functionals have been used in prior work [104, 158, 66, 65, 56, 55, 54].
What is in common is that almost all of these fairness functions involve integrating the
partial derivatives of the surface and the smaller the value of the fairness functional is, the

better the surface shape would be.

In our T-spline surface fitting, we choose the simple thin plate energy as the fairness
functional. Physically, thin plate energy represents the bending energy stored in a thin

sheet of metal that is being deformed to the shape of the surface. The simple thin plate
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energy is formulated as:

Jfair(S) = //Q (S2,(u,v) + 282 (u,v) + S2, (u,v))dudv (4.19)

The reason why we choose the simple thin plate energy is that it is a good approximation to
the measure of fairness of the surface in most cases and that it is quadratic in the T-spline

control points and thus can be efficiently computed.

Next, we describe how to computg,;,.(S) of (4.19). While it is possible to compute
Jrair (S) exactly, the computation is rather complicated. An alternative way of computing
Jrqir (S) is to approximate it by sampling the parameter donfaiwith a step, x step,

rectanglar grid, which leads to:

stepy, stepy

Traie(8) = D) (S0, (ta, vb) + 287, (ta, v5) + S, (tta, vb)) Atig A, (4.20)

a=1 b=1

whereu, anduv, are the sampled knot values at thh andb-th steps in, andw direction,
respectively, and\u, and Av, are the corresponding sampling intervals. However, this
approach has the drawback that to achieve a reasonable approximation accuracy, we need
the sampling stepsep, andstep, to be sufficiently small. This could severely increase the
computation time and lower down the overall efficiency of the approach especially when
the surface is a T-spline with many locally refined regions. On the other hand, the sampling
method may fail to reflect the considerable amount of energies that are contained at the
locations between the sampling points and thus may lead to loss of accurdey,,iind

step, are big.

To avoid the above problem, we present a discrete method to compute the fairness func-
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tional J;.;,-(S) for a T-spline surface. For a polynomial T-spline surface of (4.13), we have

& 82Bi<u7/0)
z 0?B;(u,v)
Sw(u ’U) = ZU}Z ZW (421)

n

0?B;(u,v)
Suo(u,v) = ZwiHT

Thus the simple thin plate enerdy,;,(S) of the T-spline surface can be written

2
wim1  c WiWmMi; cc WiWpMip Py
Jpair(S) = [ P B Py ] WiWIMEL -+ WWiMG5 - WiWnMip, P;
. ) 2 P
WnW1Mnp1 - WpW;iMpj e Wy, Mpn n
(4.22)

where

823 (u,v) 02B; (u,v 82 B; (u,v) 02B;(u,v 82B; (u,v) 02B;(u,v
fo ou? <9u(2 )_'_2 8u<(9v : 8u<(9v )_'_ 81)(2 : 8711(2 ))dUdU (423)

From Equation (4.23), it can be seen that the valuenfgr depends on the two B-
spline basis function®; (v, v) and B;(u, v). Assume the two knot quintuplds;(u, v) is
associated with are; = [w;o, w1, Wiz, Uiz, uis] @AV, = [V, Vi1, Via, Vi3, V4] Where the
knots in bothu; andv; are strictly increasing, and the two knot quintuples tBatu, v) is
associated with are; andv;. According to the compact support property of B-spline basis
functions, we have

>0 U0 < U < Uy and Vg < U < Uiy

Bi(u, v) (4.24)

=0 otherwise.
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Therefore, Equation (4.23) can be rewritten as

(u,v 02 Bj(u,v u,v) 02B;(u,v 82 B; (u,w) 0%2B;(u,v
fo 8u2 : 8u(2 )+2 But(%) Bz]u(ﬁ?v )+ ?91)(2 ) 8]11(2 ))dUdv (425)

where(;; is a rectanglar regiofi;;, ;] x [b;;, t;;] which is the intersection of the nonzero
regions ofB; (u, v) andB;(u, v), as shown in Figure 4.10(&),, 75, b;; andt;; are computed

from u;, Vi, u; andV]’:

lij = max(uio, Ujo)
ry = min(um, Uj4)
(4.26)
bij = HlaX(Uio, UjO)
tij = mln(vm, Uj4)
Via
Via
Via l"./ Vi t,./
Q,
b
Vio Z/ Vi,- Vio p b/l
Vy 1 v i
Vio i0
T T T T T T T T
Uy o Uy Uy Uy U, Uy u,
(a) The nonzero support aB;(u,v) and (b) The nonzero support oB;(u,v) and
B, (u,v) are overlapping B, (u,v) are separate

Figure 4.10: Domain for the integral to compuite;.

If 1;; > r;; orb;; > t;;, there is no intersection between the nonzero suppdst @f, v)
andB;(u, v) (Figure 4.10(b)). In that casey;; = 0. Otherwise, we approximately compute
m;; by sampling(2;; with aa x b grid. To our experience, a value of 5 to 10 is enough for
a andb, depending on the size 61;;. Thus, rather than uniformly sampling the whole
parameter domaif, eachm,; is computed by adaptively sampling in its own nonzero
domain2;;. Moreover, due to the symmetry of,;, we havem;; = m;;. Therefore, we

n(n+1)

only have to compute2— differentm;;.
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4.7 Curvature guided surface quality check

Once the surface is computed, it should be checked whether the result is satisfactory. A
simple way of quality checking is to test whether the parametric distances of each vertex of
the triangular mesh to the T-spline surface are below a given toleratt@wvever, using a

single (or global) error tolerance for all vertices has drawbacks. It is not easy to choose a
suitable global error tolerance for a model with a lot of geometrical features. For the task of
surface fitting, it is important for the resulting T-spline surface to include all the features of
the input mesh. Features actually reflect details on the model, which may be appropriately
approximated only when the error tolerance is considerably low. For non-feature areas, a
moderate error tolerance would be sufficient in order to get satisfactory fitting result. So if
we choose a small to capture features, the surface is likely to end up with a number of
unnecessary points in the non-feature areas even if the adaptive approach is used, which is
apparently inefficient for the representation. On the other hand, if aisighosen, though

the overall geometry of the original mesh can be reproduced, some surface features are

simply missed out.

The above discussion, therefore, suggests that different tolerances should be adopted at
different areas on the surface. Because it is more difficult to achieve good approximation in
feature areas than in non-feature areas, we should pay more attentions to the feature areas.
Thus for a feature area, a high fitting precision and accordingly a low error tolerance would
be required in order to guarantee faithful reconstruction. On the other hand, for a non-
feature area, a moderate fitting precision and accordingly a moderate error tolerance would
be enough. In Section 4.3, we identify the features of a model by mean curvature values.
Thus here we let mean curvatures serve as a guidance for the error tolerance and introduce

curvature-guided individual error tolerancefor vertexd;:
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wherek; is acurvature guidance factatetermined by the discrete mean curvature at vertex
d;:

ki = max(%, n) (4.28)
Hereh; = log(h; + 1) is the logarithm of the mean curvatukg the purpose of which is
to concentrate the curvature valués,,, andh,,;, are the maximum and minimum values
among all the; (j = 1,2, - -- ,m) which are used to normalize the mean curvature values
to the interval of]0, 1]. A small numbenm is used as a threshold to filter the curvatures
values that are too big. In our experiment, we chogse 0.05. By this adjustment, we

would have a smaller toleranegfor the vertex where the mean curvature is high.

So now whether a vertek; passes the test depends on wheth8(u;, v;) — d; ||< ¢;.

When all the vertices of the mesh pass the test, the T-spline surface is considered acceptable.

Otherwise, we have to proceed another iteration. Figure 4.11 shows the result of a checking

process. In the figure, the red points represent the vertices that are not passed. It can be

seen that most vertices that are not passed are concentrated at the regions with features.

Figure 4.11: Visualization of the vertices that do not pass the checking.

After the above checking process, we also perform other checking for adjusting some

parameters we use in the algorithm. We compute the maximum distance between the mesh

and the T-spline surface and compare it against the one obtained in the previous iteration. In

some situations, though the objective function gets a smaller value, the maximum distance
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does not decrease substantially due to the complicated distribution of data. If the value is
not decreased by a certain extent, we adjust the fairness fatiptuning down in order to
increase the influence of fitting accuracy in the objective function. Besides, if the maximum
distance between the mesh and the surface is already below the global error toletiaate
means the general goal for surface fitting is reached. Then, the thresfoolthe curvature

guidance factors might be slightly raisedX@ so as to speed up the fitting process.

4.8 T-spline structure refinement

So far we have described how to find the best approximate T-spline surface from a class
of surfacesS,, by geometrically optimizing the control points of the surface and how

to check the quality of the obtained surface. However, if the T-mesh structure of the cur-
rent T-spline surface class is not appropriate, even the best surface in the class could not
well represent the shape of the input triangular mesh. Therefore, here we describe how to
improve the T-mesh structure when the preset error tolerance is not met, by adding more

control points or edges into the current T-mesh structure.

Generally, we refine the structure of the T-mesh at the offending regions which contain
points that fail the previous checking. These points are called the violating points and the
regions are called the offending regions. The violating points could be inside a region or
on the border of a region. For offending regions, our strategy is to split them. While there
are different ways to split a region, we follow the principle that an offending region should,
in general, be split in half in the direction where the region has a larger knot difference.
Specifically, assume a region is a rectanglar box whose lower-left corner has coordinates
(Umin, Umin) @nd Whose upper-right corner has coordin@tes..., Vimaz )- If Umae — Wmin >
Umaz — Umin, then we split the region vertically at= (unaz + Umin) /2. If Unaz — Umin <
Umaz — Umin, then we split the region horizontally at= (v,,,4. + vmin) /2. In case both the

knot differences are the same, then either direction could be chosen for splitting. Figure 4.12
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illustrates the splitting. The offending regions are highlighted in yellow color in the figures.
For the offending region in Figure 4.12(a), we split it with a horizontal edge; analogously,

for the one in Figure 4.12(b), we split it with a vertical edge.

[ ] [
—C O
o——0
—C O
O O o—=0
(a) Horizontal split (b) Vertical split

Figure 4.12: Split offending regions.

The actual splitting of a region is accomplished by performing a local refinement in
which the two endpoints of the edge used to split the region are inserted into the T-mesh
using the T-spline local knot insertion algorithm. The knot insertion algorithm might in-
troduce a few extra points into the T-mesh. Sometimes this might result in L-junctions as
shown in Figure 4.13(a) and Figure 4.13(b), where pains a newly formed L-junction
after we insert a control poiri at the demonstrated spot. The L-junctions may irregularize
the T-mesh and complicate the problem. Therefore we propose to eliminate L-junctions by
extending either one of their two related edges to the nearest knot line. Through experi-
ments, we are inclined to extend them in the direction that will yield a shorter edge in the
pre-image, as shown in Figure 4.13(c). As a result, a new control poistadded at the
intersection of the knot line and the extended edge.

After the refinement is finished, a new T-mesh structlifeand the corresponding
weight setll are updated and thus a new class of T-spline surfaces is presented. The new
class of T-spline surfaces has more degrees of freedom than the old one. Also, since the new
T-mesh structure and weights are obtained by the T-spline local knot insertion algorithm,

the new class of T-spline surfaces still consists of standard or semi-standard surfaces. What
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O O O
(@) P is being added to the Tb) An L-junction Q is intro-(c) The L-junction is eliminated
spline duced by adding an extra poink

Figure 4.13: Eliminate L-junctions.

remains to define a T-spline surface is to find the control points and thus our approach con-
tinues to compute the control points by least squares T-spline surface approximation step

described in Section 4.6.

4.9 Initial T-spline structure re-placement

Note that when we start the adaptive T-spline surface fitting, we need to place an initial T-
mesh structure. Since there is limited prior knowledge for the surface at the beginning, we
simply use a regular control grid without special customization in Section 4.5. However, a
carefully designed initial T-spline structure would be expected to give a better approxima-
tion result.

In addition, it can be observed that, although we keep adding new control points in a
local manner, sometimes the insertion of the control points still spreads to peripheral areas
during the process. Especially when the T-spline pre-image is complicated, local refinement
at different areas might interact with each other and thus causes unnecessary control points.
One straightforward cure to this problem is to narrow the influence of one local refinement
operation. This goal can be achieved by having a more reasonable initial T-mesh placement.

In this section we present a method to construct a better initial T-mesh structure, based

on the pre-image of the T-mesh of the previously generated T-spline surface. First we try
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to construct a tensor-product structurg. Let M be the pre-image of the control grid of
T-spline surfaces(u, v) that approximates the input triangular mesh.Mn each vertical

edge corresponding to knot valugis examined. Let,, be the sum of parameter length

of all vertical edges in\/ with knot valueu,. If [, is larger than a certain threshold, say
80% of the total domain span in the vertical direction, we include the entire vertical line
corresponding ta; in M’. The same approach is carried out for horizontal edges. Thus,
we obtain a new T-spline pre-imagé’ that has a tensor product structure. At the same
time, all the control point weights correspondingf are set to one. In this way, both

M’ and the weights define a class of T-spline surfaces, which actually consists of standard

T-splines. Now)M’ is ready to be used as a new initial T-spline structure.

Second we further improv&!’ to better reflect those areas with details. We check all
vertices of the input triangular mesh and pick a few vertices ¢sagrtices) that have the
largest mean curvatures, wheres preferred to be a number betweknto 30, depending
on the scale of the mesh. Then, we insert thesertices into the initial T-mesh defined by
M’ at their parameter coordinates, using the T-spline local refinement algorithm to update
M’. In order to avoid the occurrence of two almost touching points or two almost touching
edges in the new initial T-mesh, we also make the following arrangements. Specify a small
thresholdv. If the distance between a selected vertex and a control point is belothe
pre-image, we choose not to insert that vertex. Also, if the distance between a selected ver-
tex and an edge i’ is belowr, we slightly change the position of knot insertion so that
the new point to be inserted resides on that edge. During this process, the corresponding
weights are also updated. The updaidtiand weights serve as the initial T-spline struc-
ture. In general, this approach gives a reasonable initial structure. Figure 4.14(a) shows
the pre-image of a new T-mesh. Just based on this initial T-mesh structure without any
further refinement, a pretty good T-spline surface can be reconstructed, which is shown on

Figure 4.14(b).
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Figure 4.14: A new initial T-mesh structure and a T-spline surface defined from the new
structure.

4.10 Faithful re-parameterization

The performance of the surface fitting algorithm is closely related to the parameters as-
signed to the triangular mesh. A good spline fitting surface usually relies on a decent
parameterization. However, due to the limited intrinsic information about the triangular
mesh, generally no parameterization method could provide a perfect solution no matter
how advanced the method might be, especially when the triangular mesh has complicated
geometry. To overcome this weakness, an alternative approach is to improve the initial
parameters at a later stage, usually with the help of an intermediate result of a spline sur-
face. This step is often referred to as parameterization improvement or re-parameterization.
The modified parameters can then be used in the process of re-approximating the triangular
mesh.

In this section, we present a parameterization improvement method, which is carried out
after the first qualified T-spline fitting surface is obtained. Based on the current parameteri-
zation and the current T-spline surface, we compute for each vertex of the triangular mesh
a parameter offset vector and use the offset vector to update the original parameters. In this
re-parameterization process, we should keep the new parameterization from having any self
intersection. So we call the methdaithful re-parameterizationThe method consists of

two steps: the first step is to compute initial parameter correction vectors, and the second
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step is to adjust the corrections to make sure that there is no self intersection.

4.10.1 Computing initial parameter corrections

SupposeS(u, v) is a current T-spline surface that approximates a triangular rileskor

each vertexd; in T, an error vector is defined as the directed edge fethno the cor-
responding poinS(u;, v;) on the T-spline surface, wherg = (u;,v;) is the associated
parameter pair fod;. For simplicity, we denotel; by P and the poinS(u;,v;) by S. We
examine whether the error vectds is orthogonal to the T-spline surface. If it is not the
case, it implies that the parameter Br(or d;) could be somehow improved. Generally,
there would be a point with parameter,, v;) on the T-spline surface such that the vector
from P to this point is orthogonal to the surface. It can be seen that the approximation error
at P can further be lowered down if we correct the parameteP b (u;, v}). However,
locating such a point usually involves a nonlinear computation problem. Thus we linearize
the problem and then compute the correction texm; = (Aw;, Av;) for parameteny;.

Hoschek [74] proposed a similar technique to re-parameterize curves.

LetS, andS, denote the partial derivatives of the T-spline surfacg.at’ is a point on
the tangent plane spanned 8y andS,, such thatP5’ is orthogonal to the tangent plane.
Then?& equalskn, wheren = S, x S, is the normal vector of the plane ahds a scalar

factor. From the trianglé\ PQ.S” shown in Figure 4.15(a), we have the following equation:
(PS + Au;Sy) - (nx Sy) =0 (4.29)

Solving the equation giveAu;:

(S(uj,v;) —d;) - (n x Sy)
Su-(nxSy)

Au; = — (4.30)
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kn

A
S,/
S AuS, QO s Aus, §'
(a) Interior situation (b) Boundary situation

Figure 4.15: Modify the parameter for one vertex.

Similarly, we have
S(ui,v;) —dj) - (n X Sy)

o
Avi = S, (nxSy)

(4.31)

If d; is on the boundary of the mesh, one parameter should be fixed and thus a special
treatment is needed. Suppose a boundary veliéras parametar; = (u;, v,) whereuv, is
fixed. We only need to correet;. This is to ensure that the corrected point is still on the
boundary. Refer to Figure 4.15(b). We fidd.; that makes?S’Lﬁ, which leads to the

following equation:

—
(PS4 Au;Sy) - Sy =0 (4.32)
Thus
Au, — (S(ui,vp) — d;) - Sy
Su - Su (4.33)
AUZ‘ =0

Analogously, if a boundary vertek has a parameter; = (u,, v;) whoseu,, is fixed,

Au; = (Au;, Av;) can be computed by:

S(up, v;) — d;) - Sy (4.34)

(
Ai:_
v S, - S,

OnceAu; is computed, we can then replace the parametef d; by u; = u; + Au;.
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(b)

Figure 4.16: Problem for updating the parameterization.

So far we have shown how to update the parameter of a single vertex in the triangular
mesh. However, simultaneously updating the parameters of all the vertices in the mesh
may cause a problem. Recall that when building up the original parameteriitibis
required that the connectivity relationshiplhshould be the same as that in the triangular
meshT. Thatis,P is a flattened 2D triangulation whose connectivity is exactly the same as
that of T. Now if we updatau; in P using the previously calculated correction tefou;, it
might happen that in the new parameterizaffosome areas no longer preserve the original
connectivity. For example, in Figure 4.16(a) the local region of the parameterization con-
taining verticesy;, u; anduy is shown, with three respective correction vectors also marked
on the figure. After applying these correction terms to the vertices (see Figure 4.16(b)), it
can be seen that new edgg undesirably goes across the two other edges. This is unac-
ceptable and we should avoid it. Otherwise, due to the self-intersection, it is hdPddor
continue to faithfully preserve the connectivity as before and it could bring distortions and

other unpredictable issues to the T-spline surface fitting if such parameterization is used.

4.10.2 Computing faithful parameter corrections

We have seen that the initial parameter correction terms may cause problems. It can be

understood that they give over-corrections and thus we may pull the parameter points back
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to avoid self-intersection. This suggests a approach described below to generate a faithful

new parameterizatioR.

We introduce a scalar factgk € [0, 1] for each vertexd; and let the parameter correc-
tion for vertexd; be

ﬁi — u; + ﬁiAui (435)

Here, the correction vectdu; is adjusted to bg; Au;. The purpose of introducing is to

adjust the over-estimated correction vectors. WHe#s 0, no correction is actually made

to the parameter for vertek andu; = u;. Since the original parameterization has no self
intersection, this implies that if all; are small enough, the updated parameterization would
be faithful. On the other hand, we want the correction vectors to keep the original magnitude
as much as possible in order to have the effect of re-parameterization. Therefore, our goal
is to find the largest possible values féyr, 5>, - - - , 5,, under the condition that there is no

self-intersection in the new generated parameteriz&titimrough Equation (4.35).

Let g; denote an arbitrary triangle face Ih whose vertices area;;, u;; andu;s. Let
g; be the corresponding face P, with verticesu;;, 02 andu;s. It can be seen that, the
occurrence of self intersection can be avoided if we make sure that for anyj,;fage=
1,2,--- 1) in the new parameterizatidR, each vertex irj; stays in the same side of the
opposing edge as it does y. This condition is equivalent to that the direction of the

normal vectors ofj; andg; are the same, which we can formulate as follows:

(uiluig X uiluig) . (flilﬁig X ﬁilflig) Z O, for i = 1,2, s ,l. (436)

whereujuy (or 4yuy) is the directional edge from; to uy (or from 4; to uk). Replacing

Uik by wix + BirAuik gives

(Uiluiz X ui1ui3) : ((uilui2 — BinAui + @‘QAlliz) X (ui1ui3 — BnAusy + 5¢3Aui3)) >0
(4.37)
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The left side of (4.37) has only three unknowss, 5;» and ;3 and we denote it by a
function f;(8:1, Bi2, Bi3), Which is typically a degree two polynomial j#);, 5;» and ;3. If
we solve all thed inequalitiesf;(5;1, Bi2, fi3) > 0, we can get the values fok, 5, - - - , G-
However, it is complicated to solve multi-variable quadratic inequalities. Thus we seek to
simplify the problem somehow. Rather than using an indepentjdat eachAu;, we use
a globalg for all the parameter correction terms. Thg(5;1, b2, 5i3) becomes a univariate
quadratic functiory;(53):

fi(B) =aB +b;B+c; >0 (4.38)

Now our task is to solvg; () > 0 for each triangle face and find the largest possible
that satisfies all the inequalities within the valid domairof.e., 5 € [0, 1]. The solution
to a quadratic inequality of (4.38) is determined by the coefficients, c;. Note that when
(£ = 0, no parameter correction is made and thus the direction of the normal vectors for all
the triangle faces would obviously not be changed. That meaits,is a positive value.

Based on the different values of, b;, ¢;, the parabola off;(3) would have different
shapes as illustrated in Figure 4.17. Sirfg®) > 0, the shapes in Figures 4.17(b), 4.17(d),
and 4.17(e) are impossible. To discuss the solution of (4.38\let 0? — 4a;c;, 1, =
% be the small root and, = % be the large root, provided > 0. The solution

of (4.38) could have the following possibilities:

1. A<O:
As shown in Figure 4.17(a) and 4.17(b)Af< 0, the whole parabola would be above
or below thes axis, depending on whethey > 0 or not. However, sincg;(0) > 0,
the situation in Figure 4.17(b) would not happen. Therefore, wher 0, f;(5)

would always be larger thah and can take any value betweérandl.

2. A> 0,7 €[0,1]:

This case is illustrated by Figure 4.17(c). In orderfgy3) > 0, we have) < 5 < ry.
3.A>0,7 €[0,1], 7, € [0,1]:
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Figure 4.17: Various situations fg(5).
This case is illustrated by Figure 4.17(f). In order fo5) > 0, we have) < 5 < r.

4. A >0,r Q [O, 1], 9 ¢ [O, 1]
This case is illustrated by Figure 4.17(g)-4.17(j). It is obvious that in such gase,

can take any value betweérand1.

After solving each inequality, we combine the results and obtain a final valug. for
Then we update the parameters using= u; + SAu;. With 5 being a factor for the
correction terms, there is now no need to concern about that the parameters would be over-
modified. The updated parameterizatBrwould continue to have the same connectivity

asP, without any self intersection.

4.11 Experimental results

In this section, we evaluate our surface fitting method with several practical examples. The
geometrical information of the input models is given in Table 4.1.

In our T-spline surface fitting algorithm, the steps of parameterization and least squares
T-splines surface approximation need to solve a linear system. These linear systems usu-

ally have a sparse matrix. Therefore, a fast and stable linear system solver is sought. In
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Table 4.1: The geometric information of the models used in Section 4.11.

Model Name Vertex number Face number

?}3 Cat 3533 6975

Stegosaurus 12409 24672

Face 24155 47976

-
82 Stamp 35852 71442
)| |

Max-Planck 25445 50801
Fandisk 5051 9926
& Bump 8181 16200

our implementation, we adopt the preconditioned complex bi-conjugate gradient (PCBCG)

solver [115].

Example 1

In Figure 4.18, a step by step illustration of the process of approximating the Stegosaurus
model is given. Figure 4.18(a) shows the input mesh. Using Algorithm 4.1, we begin with
a preliminary4 x 4 T-mesh topology and Figure 4.18(b) shows the T-mesh topology (or the
pre-image of the T-mesh) and the optimal surface fitting result under that T-mesh topology.
In the calculation of the least squares optimal surface, both the geometric error and the
fairness are considered. Unless explicitly specified, the fairness fadsoset to10~* in
this section. Once the optimal surface is found at each iteration, the surface is checked with
the curvature-guided individual error tolerance. For this model, the global error tolerance
e is set to bed.5% of the scale of the triangular mesh. Obviously, the surface shown in
Figure 4.18(b) is not satisfactory and many vertices in the mesh violate the error tolerance.
Therefore, the T-mesh is refined accordingly, followed by another iteration of calculating

the optimal surface.
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Figure 4.18(c) and Figure 4.18(d) show two of the subsequent intermediate results after
several fitting iterations. It can be observed that as the T-mesh is being gradually refined,
the optimal T-spline surface contains more and more geometrical details and gains more
resemblance to the input mesh. Some statistics for these T-spline surfaces are provided in
Table 4.2, which includes for each surface the number of elapsed iterations, the number
of control points, the number of knots in both parameter directions, the percentage of the
violating vertices, and the maximum and average approximation error. It can be seen that

the approximation error is gradually reduced while more control point are added to the

T-mesh.
Table 4.2: The statistics for the T-spline surfaces in Figure 4.18.
Initial | Intermediate 1 Intermediate 2 Final
#iterations 1 5 7 11
#control points 16 389 1094 2554
#knots (—direction) 4 26 55 174
#knots ¢—direction) 4 24 44 75
violating vertices | 90.41% 47.29% 35.15% 0%
Emaz 11.30% 4.35% 2.88% 0.37%
Eavg 1.62% 0.49% 0.31% 0.04%

Eventually, Figure 4.18(e) shows the final fitting T-spline surface, of which the maxi-
mum error is below).37%. Figures 4.18(f)-4.18(h) display its corresponding pre-images in
2D and 3D, and the T-mesh, respectively. The average approximation error is even lower,
which is just0.04%. The surface is obtained after 11 iterations and the T-mesh has 2544
control points. The geometry of the triangular mesh is appropriately represented by the
T-spline surface and it can be seen that more control points are located in the regions where

surface details are present.
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SRS

(a) The input mesh (b) The initial result (c) The intermediate result 1 (d) The intermediate result 2

(e) The final T-spline surface (f) The T-mesh pre-image (g) The mapping of the pre-image (h) The T-mesh
on the surface

Figure 4.18: The iterative procedure of fitting a T-spline surface to a triangular mesh.
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There are 174 and 75 knots in the two knot vectors respectively and any B-spline surface
defined by these knot vectors has to host x 75 = 13050 control points. The permit of the
existence of T-junctions has brought a lot of flexibility into the construction of the T-mesh

and enables the resulting T-spline surface to keep only a small set of control points.

Example 2

In Figure 4.19, the performance of the re-placement of the initial T-mesh structure and the
re-parameterization of the triangular mesh is investigated. Based on the T-spline surface
fitting result shown in Figure 4.18(e), a new initial T-mesh topology (see Figure 4.19(a)) and
a new parameterization of the mesh (see Figure 4.19(b)) are computed, using the approaches
described in Section 4.9 and Section 4.10, respectively. Since now the initial T-mesh and the
parameterization are computed with the knowledge of an approximation T-spline surface,
they are expected to bring better fitting results.

In order to evaluate their effectiveness, we try to use them as the initial settings in sur-
face fitting, both individually and simultaneously. Figure 4.19(c) shows the surface fitting
result which uses the T-mesh topology in Figure 4.19(a) as the initialization. From the left
to the right in Figure 4.19(c) are the resulting T-spline surface, the T-mesh pre-image, the
surface with mapped pre-image and the T-mesh. Similarly, Figure 4.19(d) is the surface
fitting result that adopts the parameterization in Figure 4.19(b). Finally, the T-spline sur-
face in Figure 4.19(e) is obtained by using both the new T-mesh initialization and the new
parameterization. The information of the number of control points and the approximation
errors for these surfaces are given in Table 4.3. While the approximation errors remain
roughly at the same level as the T-spline surface shown in Figure 4.18(e), all of the newly
obtained surfaces involve fewer control points. When both the new T-mesh initialization
and the new parameterization are used, a surface with fewest number of control points is
achieved. Since the quality of the surface is not compromised, the new resulting surface

can be regarded as having higher efficiency in representation.
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(a) The new initial T-mesh topol- (b) The re-parameterization of
ogy the triangular mesh

(e) The surface fitting result with both the new initial T-mesh and the new parameterization

Figure 4.19: Re-initialization, re-parameterization and their influence on surface fitting.
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Table 4.3: The statistics for the T-spline surfaces in Figure 4.19.

with re-initialization | with re-parameterization with both
#control points 2053 2314 1788
Emaz 0.36% 0.35% 0.35%
Eavg 0.04% 0.03% 0.04%
Example 3

Now we demonstrate the performance of Algorithm 4.2. Basically, Algorithm 4.2 is done
by iteratively carrying out Algorithm 4.1 and computing new initial T-mesh topology and
new parameterization between each two iterations. In this process, a number of qualified
T-spline surfaces are generated, which are here denotégl 8y, Ss, . . .. Specifically,Sy

is the result of directly applying Algorithm 4.1 arff] is the surface fitting result after the
initial T-mesh topology and the parameterization are re-computietes. Figure 4.20(b),
Figure 4.20(c) and Figure 4.20(d) show the surfdge.S; and .S, that approximate the
triangular mesh in Figure 4.20(a). The corresponding T-meshes for them are displayed in
Figure 4.20(e) to Figure 4.20(g). Table 4.4 gives the statistics for these surfaces, from which
it can be seen that the numbers of control points are being gradually reduced;ftom

S,. Moreover, it can be observed in Figure 4.20 that as the iterations go on, the distribution
of the control points in the T-mesh of the surface becomes more reasonable. In the T-mesh
for S5 (shown in Figure 4.20(g)), more control points are concentrated in the eye, nose and

mouth areas.

According to our experience, a good result can be obtained in 2-5 iterations of Algo-
rithm 4.2. Unlike Algorithm 4.1, the stop condition for Algorithm 4.2 is somehow differ-
ent. Here, we demand that the result from current iteration must show a improvement of
3% against the previous one. The improvement can be either in the approximation error or
the number of control points. When neither of these two targets are improved, we simply

terminate the whole algorithm.
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Yo Y

(b) SurfaceS, (c) SurfaceS; (d) SurfaceS;

(a) The input mesh

(e) T-mesh fors, (f) T-mesh forS; (g) T-mesh forS,

Figure 4.20: The performance of Algorithm 4.2.

Table 4.4: The statistics for the T-spline surfaces in Figure 4.20.

So Sh S

#control points| 1688 | 1603 | 1497
Emaz 0.14% | 0.17% | 0.10%
Eavg 0.01% | 0.01% | 0.01%

Example 4

In Figure 4.21, the influence of the value of the fairness factor is illustrated. The surfaces
shown in Figure 4.21(a), Figure 4.21(b) and Figure 4.21(c) are approximated with

104, 5 x 1072 and0, respectively. The T-mesh topologies of these surfaces are identical.

Figure 4.21(d) to Figure 4.21(f) show these surfaces in a different viewpoint. \When

10—*, the surface has a smooth look and the fitting quality is quite good. \Wheh x 1072,

the surface is smooth, but the shape is blurred. When), it means the fairness functional

is not involved during optimization. Unfortunately, the resulting surface does not have a

pleasing look and the surface quality is rather poor in the zoomed areas.
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(d) o = 1074, view 2 (€) o =5 x 1072, view 2 (f) o =0, view 2

Figure 4.21: The behavior of fairness factors.
Example 5

We analyze the effect of the curvature guidance in surface fitting. Suface Fig-

ure 4.22(a) is obtained with the curvature guidance switched on during the surface fitting
process and it has 1688 control point. Surf&gen Figure 4.22(b) is computed using the
same global error tolerance &g but the curvature guidance is switched off during surface
fitting. .S, has less control points, but the surface quality is quite low, especially in the eye
and mouth areas where details are lost. If one wants to achieve the similar surface quality
asS; without using the curvature guidance in surface fitting, the global error tolerance thus
has to be set to a very small value. This leads to surtgde Figure 4.22(c), which has
2024 control points that is 20% more than the control pointS;ofFrom Figure 4.22(f),

it can be seen that the distribution of the control pointsSprs quite uniform, placing as
many control points in the non-feature areas as in the feature areas. This would lower down

the efficiency of the surface representation which is quite undesirable.
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A

(c) Surface S3, without
curvature guidance, small

(a) Surfacesy, with curva-  (b) Surface S, without
ture guidance, moderate curvature guidance, mod-

1688 control points

erates, 798 control points ¢, 2024 control points

(f) S3 mapped with T-

(d) S; mapped with T- (e) S2 mapped with T-
spline pre-image

spline pre-image spline pre-image

Figure 4.22: Surface fitting results with and without curvature guidance.

More examples

Finally, more examples of fitting various models are presented in Figure 4.23. From the
left column to the right column are the input meshes, the resulting T-spline surfaces, the

pre-images and the T-meshes. The number of control points and the approximation errors

for these surfaces are given in Table 4.5.

Table 4.5: The statistics for the T-spline surfaces in Figure 4.23.

Stamp| Max-Planck| Bump | Fandisk

#control points| 2506 3510 1081 | 2093
0.45% 0.23% 0.30% | 0.57%

0.02% 0.04% 0.02% | 0.04%

5maw

Eavg
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(b)

(d)

Figure 4.23: More examples on T-spline surface fitting.
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4.12 Summary

In this chapter, a new framework for adaptively approximating a triangular mesh using a
T-spline surface is proposed, in which conventional surface fitting or adaptive surface fit-
ting methods are enhanced and new components are integrated. The conventional adaptive
surface fitting methods are enhanced by T-splines and geometric features. The new com-
ponents include initial T-spline structure re-placement and faithful re-parameterization. All
components or steps of the framework or algorithms are carefully designed to achieve the
best performance. In particular, by taking the advantage of the T-spline local refinement
property, the algorithm is able to output a surface that gives a good approximation to the tri-
angular mesh. Many examples have demonstrated the effectiveness of the proposed frame-

work and algorithms.
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Chapter 5

Periodic T-spline Surface Representation

and Approximation

5.1 Introduction

Among various types of triangular meshes, tubular meshes are a special one. A tubular
mesh is characterized by having two boundary loops and one lateral surface between them.
The lateral surface is open along one direction (the axial direction) and closed along the
other direction (the sectional direction). The tubular mesh can be viewed as a deformation
of a cylinder. The upper and lower boundaries of the cylinder correspond to the two loops
and the interior of the cylinder surface corresponds to the lateral surface (see Figure 5.1). In
mechanical engineering and medical engineering, tubular surfaces are quite common. For
example, pipes and blood vessels are tubular surfaces. Therefore tubular meshes are useful
to represent these shapes. Some examples of tubular meshes are shown in Figure 5.2.

To convert a tubular mesh into a spline surface, one approach is to use the method
developed in the preceding chapter. Due to the difference between cylinder topology and
disc topology, the traditional way is to perform a pre-process step which cuts the tubular

mesh into a disc-like mesh. However, this cutting introduces discontinuities and distortions
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Figure 5.1. The upper and lower boundaries of the cylinder are mapped to two boundary
loops of the tubular mesh and the interior of the cylinder is mapped to the lateral surface of
the tubular mesh [78].

i I |
7 { v

Figure 5.2: Some examples of tubular meshes.

into parameterization and surface fitting. Moreover, the topological structure and semantics
of the shape get lost by cutting. In this chapter, we investigate the techniques that directly
approximate tubular meshes without cutting. To this end, the following issues have to be
considered.

First, we have to choose an appropriate spline representation. Note that conventional
T-spline surfaces are defined over an rectanglar domain and tubular meshes have the same
topology as a cylinder. It might be more appropriate or natural to introduce periodic T-

splines to approximate tubular meshes. While T-splines are the generalization of NURBS,
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periodic T-splines generalize periodic NURBS by allowing existence of T-junction points.
This chapter presents the formulation for one type of periodic T-splines that are periodic in
one direction.

Second, we consider the problem of parameterizing tubular triangular meshes. Unlike
an open mesh that is of plane topological type, a tubular mesh gives rise to some special
issues in parameterization due to its mesh structure. In this chapter, we present an edge
based parameterization method, in which the edges rather than the vertices of the mesh
are treated as the target for parameterization. This approach improves conventional cutting-
based algorithms which cut the mesh to make it a disk topologically. The problem of cutting
paths is their zigzag shape that leads to suboptimal parameterizations and also finding good
cutting paths is very difficult. Our proposed method does not need cutting of the mesh. It
first parameterizes the edges on the two boundaries of the tubular mesh, then parameterizes
the internal edges based on the mean value coordinates, and finally computes the parameters
of the mesh vertices.

Third, we need to adapt our surface fitting method developed in the preceding chapter
to fit a periodic T-spline surface to a tubular mesh. The approach is designed in an adaptive

manner, which also takes into account the local features of the triangular mesh.

5.2 Periodic T-spline surface representation

5.2.1 Periodic B-splines

B-spline basis functions are piecewise polynomials with finite support. They are not pe-
riodic. To deal with closed shapes naturally and seamlessly, it is more appropriate to use
periodic functions. Therefore we begin by constructing periodic blending functions from
B-spline basis functions. For simplicity, we describe our construction for the degree three
case. The extension to any degree is straightforward.

Consider a cubic B-spline basis functiov[t;|(¢) associated with knot vectd;; =
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[tio,ti1,- ,tiya]. N3[t;](¢) is zero fort outside of intervalt; »,t;,2). Given a period
T, we define
Z N3t (t + 57T). (5.1)
j=—00

In the above formula, each?[t,](¢t + jT) is also a B-spline basis functia¥?[t; — ;T (¢)
associated with knot vect@t; o — 5T, t;_1 — jT,--- ,t; 1o — jT]. Obviously,N3[t;](¢) is a
periodic function with period”. WhenT > t;., — t;_,, N3[t;](t) coincides withN3[t; —
JT)(t) in [t;—e — jT,t;10 — 5T for any integer;. Refer to Figure 5.3 for an illustration.
N3[0,1,2,3,4](t) is the same ad/3[0, 1,2, 3, 4](t) with T" = 4 in [0,4]. However, when
T =3, N30,1,2,3,4](t) and N30, 1,2, 3, 4] () are different.

Periodic B-spline curves

With the periodic functionV3[t,](¢), it is easy to define periodic B-spline curves.

With reference to Figure 5.4p(+ 1) pointsF, Py, - - - , P, are given, forming a closed
control polygon. For each edd@F;1)modan+1)(? = 0,--- ,n) of the polygon, a knot in-
tervald; is assigned for the purpose of conveying knot information. Knot intefvel the
difference between two consecutive kngtandt;.; in the knot vector and thus the length
of parameter range of the curve segme(tt) corresponding to the eddeF; 1)mod(n+1) iN
cubic B-splines. Therefore, to generate a knot vector, we simpty ket0 without loss of
generality. Then we iteratively compute = t;+dimod(nt+1),¢ = 0,1,---, andt;_, = t;—
di—1mod(n+1)-J = 0,1,---. Asaresult, we getaknot sequer{ee- ,t_o,t_1,tp, t1,t3, -+ } =
{+,—=dy_1—dy,—dp,0,dy,do+ dy, - - - }, from which we can extract a local knot vector
t; = [tio, ti1, i, tir1, tiyo] for the B-spline functionV3[t;](¢) associated withP;. If we
define the period

T:tn+1_t0:d0+d1+"'+dn7
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(a) B-spline basis functio?[0, 1,2, 3, 4](¢)
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(b) Periodic B-splingV?[0, 1,2, 3, 4)(t) with periodT" = 4

-4 2 0 2 4 6 8
(c) Periodic B-splineV?|0, 1,2, 3, 4)(t) with periodT = 3

Figure 5.3: Illustration of a B-spline basis function and two periodic B-spline functions.
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Figure 5.4: A cubic periodic B-spline curve.

then a periodic B-spline curve is defined by

C(t) = iﬂ]\?g[ti](t), t € (—o0,+00).

Obviously, for anyt, C(t + T) = C(t). That s, the shape of the curve is completely
defined byC'(¢) within a finite parameter intervéd, « + 7") for any numbew. Therefore

we constrain ourselves to the dom@in ¢, 1] = [0, 7):

C(t) = En: PN3[t](t), tel0,T). (5.2)

It is worthwhile to point out that thougtV?[t;](¢) is a sum of a infinite number of
B-spline basis functions, no more than 3 terms do not vanish in dofddln. In fact,
let us considetV?3[t;](¢) corresponding to the control poift. When the number of the
control points is greater than 1 (i.e.,> 0), we havel; ., —t; < T andt; — t;_o < T for
t; = [tio, tio1,tis tiv1, tivo]. Then allN3[t; — 5T](t) and N3[t; + jT)(¢) vanish in[0, T']

for j > 1. Therefore we can writd/[t;](t) = N3[t; — T](t) + N3[t;](t) + N3[t; + T (¢).
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Periodic NURBS surfaces

Analogously, we can define periodic NURBS surfaces. For example, giverl) x (m +

1) pointsP,;, ¢ = 0,---,n andj = 0,---,m, serving as the control points, and their
corresponding weights;;, we connect adjacent points vertically and horizontally and also
connectP,; to F; for eachj. In this way, we form a control mesh which is close in the
horizontal direction. Next, a knot interva)] is assigned to each horizontal edggF;1);

for all 7 and a knot intervat; is assigned to each vertical edggF; ;1) for all .. Since the

mesh along the vertical direction is open, we need to assign extra knot interyasde,,,

past each of the two end control points. From the knot intervals, we can construct two knot

sequence$: - - ,u_s,u_1, Ug, Uy, Uz, - - } ANAd{v_1,v9, V1, -+ , VU, Uy} As follows:
uo =0; wjr1 = u; + dimod(nﬂ),’i =0,1,---; Uj—1 = Uj — u(jfl)mod(nJrl)aj =0,1,---

vg=10; v =v+e,1=0,---,m; V-1 ="y — €-1.

Letu; = [UZ‘_Q, Uji—1, Uy Ujt1, UH_Q] andv; = [UZ‘_Q, Vi—1, Vi, Viy1, UH_Q] and we define the
u-directional period

Tu:un+1—u0:do+d1+---+dn,
then a periodic NURBS surface is defined by

o 2o wii Py N3 [wi] (u) N3[v) (v)
S o 2o wig N3] (u) N3 [vs](v)

S(u,v) = u € (—00,400), v € [V, Upm_1].

Since the shape of the surface is completely definesl(byv) within a finite parameter
interval[a,a + T') X [v1,v,,—1] fOr any number, we can focus oi$(u, v) only in domain
[0, 7) x [v1, Unm_1] in practice. Within this domainy?[w;](u) = N3[u;—T(u)+N3[us] (t)+

N3[u; + T](u) as long as > 0.
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T-mesh Periodic T-spline surface

Figure 5.5: A T-mesh and its periodic T-spline surface.

5.2.2 Periodic T-spline surfaces

Now we are ready to describe the formulation of periodic T-spline surfaces. Although we
can define T-spline surfaces that are periodic in eithary parametric direction (univariate
periodic T-splines), or periodic in bothandv directions (bivariate periodic T-splines), in

this chapter we focus on discussion of univariate periodic T-splines which are periodic in
thewu direction. Such periodic T-spline surfaces are close initdgection and open in the

v direction. They are of the same topological type as a cylinder surface. In the remainder
of this chapter the term “periodic T-splines” just refers:tperiodic T-splines.

A periodic T-spline surface is defined by a set of control points forming a control grid
called a T-mesh. A T-mesh is a basically a topologically cylinder-like rectangle grid that
is similar to a periodic NURBS control grid discussed in the preceding sub-section, but
allows T-junctions. In a T-mesh, a row or column of control points is permitted to terminate
interiorly. The final control point in a partial row or column is a T-junction. An example
of a T-mesh and its periodic T-spline surface is shown in Figure 5.5. When a T-mesh does
not contain any T-junction, it degenerates to a periodic NURBS control grid and thus the
periodic T-spline surface becomes a periodic NURBS surface.

Knot information for T-splines is given by knot intervals assigned to each edge in the

T-mesh. Figure 5.6 shows the pre-image of a T-mesftuin) parameter space, with red
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Figure 5.6: An example pre-image for a periodic T-spline surface.

edges containing boundary-condition knot intervals fordlttrection. Since the T-mesh is
close in theu direction, we arbitrarily choose a column (for examplg,as a virtual border

and unfold the T-mesh along the virtual border. Columis a virtual duplicate of column

¢; and P, P/ actually refer to the same control point in the T-mesh. Batlandc, are

called the left and right virtual borderg; ande; denote the knot intervals. Note that in a
periodic NURBS control grid, all the edges between two columns of control points or two
rows of control points share a same knot interval due to the topologically tensor-product
structure of the mesh. In a periodic T-spline surface, the T-mesh generally does not have
such a structure and the assignment of knot intervals is more complicated. To specify an
unambiguous T-mesh for a periodic T-spline surface, some rules should be followed, such

as Rule 1 and Rule 2in [129, 128].

Thus according to Rule 1, for fadein Figure 5.6, + dg = dy andeg + e; = eg + €1p.
It can also be seen that the sum of the knot intervals inmoequals the sum of the knot
intervals in rowr,. This sum will be chosen as the peri@i for the » direction. Based
on Rule 2, for example, the edge betweenand P, should be included in the T-mesh.
Rule 2 is also applicable to the control point pairs on the leftmost and the rightmost sides

of Figure 5.6, which means that edges such as the one bettyden P/) and P, should be
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included in the T-mesh.

To introduce knots, we have to impose a knot coordinate system. This can be done
by arbitrarily designating the pre-image of a control point (8gyn Figure 5.6) to be the
knot origin with coordinate$0, 0) and then assigning@knot value to each vertical edge
and av value to each horizontal edge based on the knot interval information. After that,
each control point has knot coordinates. For exampleP, and P; have knot coordinates

(0,e1 + e2), (do + di + d7, €1 + e2) @and(do, e; + eg), respectively.

Now we define the period’, in the U parameter direction to be the difference of
the u knot at the right virtual border and theknot at the left virtual border. For each
control pointP;, we need to extract its two knot vectons = [u;o, u;1, uo, U3, w4 and
vi = [vio, Vi1, Vi2, Vi3, V4], Which are used to define the corresponding cubic B-spline basis
functionsN3[u;](u) and N3[v;](v) in thew andv directions, respectively. The Rule 3 used
in [129, 128] is adapted with modification for inferring these knot vectors in a periodic

T-mesh:

Rule 3 Assume(u;2, v;2) are the knot coordinates fdr,. To find ;3 andu;4, we cast a
ray from P; in the parameter domainR(t) = (u;. + t,v;2), t > 0. Thenu;; and
u;4 are defined as the coordinates of the first two vertical edges intersected by the
ray R(t). Note that when the ray crosses the right virtual border, it continues from
the left virtual border and then any knot obtained later should add the pEridche

other knots imy; andv; are found likewise.

Thus, theu andv knot vectors forP;, are[—(d; + ds), —ds, 0,ds, ds + dy4] and|0, e1, e; +
g, €1+ €3+ e3,e1 + e3 + e3 + e4]. Theuw andv knot vector forP; are|ds, ds + dg, do, do +

dy,do+ di + do] and[0, eq, €1 + es, e1 + e5,e1 + €5 + eg + e7).
Once the knot vectors for each control point are determined, the parametric equation of
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the periodic T-spline surface is written:

i w; P, B} (u,v)
S(u,v) = =2 (5.3)
> wiB}(u,v)

=0

whereP; = (z;,v;, z;) are the control points ifk* spaceaw; are the control point weights,

and B} (u, v) are the periodic T-spline blending functions which are defined by:
B (u,v) = N*[us)(u) - N°[vi](v).

Apparently, this T-spline surface is periodic in thedirection. Similar to periodic
NURBS curves or surfaces, if we are just interested in the shape, we can limit the range
of parameten to [0, 7,). Within this domain, mosiV3[u; + £T,|(u) vanish. Consider
N3 [u;](u) corresponding to the control poift. We haveu;; — u;s < 27T, andu;z — u;; <
2T, for uy = [, Uso, Uss, Usa, ugs). Thus allN3[w; — kT, ](u) and N3[u; + kT, ](u) vanish
in [0,T,) for £ > 2 and at most 5 terms do not vanish in dom@iri’,,). Therefore we can

write:

B! (u,v) = (Z N3] (v + kTu)> - N3[vi](v) = (Z N3[u; + kTu](u)) - N3[vi](v)
- e (5.4)

Control point insertion

One important feature of T-splines is local refinement or local knot insertion. This is due to
the existence of T-junctions in the T-mesh, which makes it possible to add a single control
point to a T-mesh without propagating an entire row or column of control points and without
altering the surface. Periodic T-spline surfaces are also able to do local knot insertion. The
main idea of the T-spline local refinement algorithm [128] is to maintain the validity of the

T-mesh and to ensure that the B-spline basis functions and the control points are properly
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(a) A periodic T-spline surface and its T-mesh (b) The same periodic T-spline surface and its new T-
mesh after local insertion of two points

Figure 5.7: Control point insertion for periodic T-spline surfaces.

associated. In the periodic T-spline case, each control point may correspond to several B-
spline basis functions. Therefore the original T-spline local refinement algorithm could be
adapted to ensure that each control point is properly associated to each corresponding B-
spline basis function. Figure 5.7 shows an example of local knot insertion. Figure 5.7(a)
is a periodic T-spline surface together with its T-mesh. Figure 5.7(b) is the same periodic

T-spline surface but the T-mesh changes due to the local insertion of two points.

5.3 Parameterizing tubular meshes

In this section, we consider the problem of parameterizing triangular meshes that have
tubular shapes. The obtained parameterization should be suitable for the process of pe-
riodic T-spline surface fitting. Denote a tubular triangular meshy, £) wherel =

{d;,ds, -+ ,dn} is a vertex list andZ = {e;, ez, - ,e,} is a directed edge list, and a
parameter domain b¥ corresponding to the lateral surface of a unit cylinder. Our goal is

to find a parameterization, which establishes a mapping between vedex (z;, y;, 2;)

and a parameter pafi;, v;) that forms a point; = (u;,v;) in D, i = 1,2,--- ,/m, and

thus a mapping between vertex and a point on the cylinder surface. The edged of

are correspondingly mapped as well. The mapping of the edges onto the cylinder surface
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Figure 5.8: The parameter domain for tubular meshes.

forms a curved triangular mesh on the surface. Here, we define the unit cylinder to be
a cylinder whose height and perimeter of the cross sectional circle arel bantld thus

D =0,1) x [0,1]. Thew direction is closed and thedirection is open, as illustrated on

the left of Figure 5.8. Figure 5.8 (right) shows a part of domaiabtained by unfolding the
cylinder to a plane. For the parameter gair, v;), it can be understood thaf corresponds

to the arc length along the rotational direction of the cylinder andorresponds to the
height value along the axial direction of the cylinder. Having two individual closed bound-
aries is one of the most salient characteristics that differentiate a cylinder domain from an
open disk domain. It is essential that the parameterization method should map the vertices
on the bottom boundary of the tubular mesh to the boundasy0 in D and the vertices

on the top boundary to the boundary= 1 in D. The rest vertices of the mesh should be
mapped to the remainder part bf namely[0, 1) x (0, 1).

To parameterize a tubular mesh, one possible solution could be first splitting the tubular
mesh along a path consisting of a set of vertices in the axial direction, making it home-
omorphic to a topological disk. The cutting path then becomes the boundary of the new
mesh. After that, the parameters for the new mesh could be obtained by applying one
of the existing parameterization techniques for open meshes. However, such an approach
would incur some inconveniences or troubles. The parameters for the vertices on the newly

formed boundary should be carefully chosen in order to avoid discontinuity of the param-
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eterization. The cutting path should also be properly selected, since some vertices might
be more suitable to be boundary vertices than the others. Cursory pick of the cutting path
would likely increase the distortion of the result parameterization. Furthermore, no matter
which cutting path is finally selected, it is usually mapped onto a straight line in the param-
eter domain. Given the fact that the cutting path on the mesh is usually in a zigzag shape,
it is likely to introduce undesirable effects when the cutting path is mapped to a straight
boundary of the parameter domain. There are a few works published for tubular mesh pa-
rameterization. Zockler et al. provide a parameterization method in [167], which involves
first cutting the mesh and then stitching it together after a parameterization is calculated.
Although the parameters are optimized again after the stitching step, the performance of the
method still largely depends on finding a good cutting path. Huysmans et al. report another
approch [78], in which no cutting of the mesh is required; however, in order to compute
the parameterization, a group of progressive meshes have to be constructed, from which the

parameters are gradually optimized.

In addition, to generate a parameterization with low distortion, the vertices on either
boundary of the tubular mesh should be assigned with reasonable parameters. There has
to be certain correspondence between the parameters for the two boundaries. Both bound-
aries should have a consistent direction for the parameters, either clockwise or counter-
clockwise. Moreover, two vertices on the opposite boundaries should be assigned with
similar v parameters if they are almost along the same axis on the tubular mesh. As an
example, for the verticed; andd; of the tubular mesh shown in the left of Figure 5.9, the
positions of their mapping andt; should generally be aligned in the parameter domain
shown in the middle of Figure 5.9. Otherwise, the result triangulation on the parameter do-
main would be twisted, as in the example given in the right of Figure 5.9. However, finding
correct correspondence between the two boundaries is not straightforward and the situation

could become quite complicated.
Another difficulty for tubular mesh parameterization, which the conventional open mesh
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Figure 5.9: A tubular triangular mesh (left), an expected parameterization (middle) and a
twisted parameterization (right).

parameterization does not have, is that when we construct equations for determining the
parameters of the vertices, the parametersy;) of some vertices should be replaced by

(u; + 1,v;) or (u; — 1,v;) to respect the continuity in a local area. Here 1 is the period for
theUU parameter direction. However, it is not easy to determine whéther,), (u; + 1, v;)

or (u; — 1, v;) should be used for constructing an equation.

5.3.1 Overview of edge based parameterization

To overcome the above-mentioned difficulties, we here propose a new parameterization
method. The main idea of our method is that the edges, rather than the vertices of a mesh,
are treated as the target for parameterization. Therefore we call our medigedbased
parameterization Since each edge is a vector that represents the location offset between
two vertices, the offset values are unique no matter where the origin is. Therefore the
messy problems such as finding correspondence of vertices on two boundaries and deciding
the suitable parameters from a number of possibilities could be avoided. An edge base
parameterization). maps each directed edgein E to a curve segment on the cylinder

and thus a 2D edge vectay(u;, v;) in the domainD, i = 1,2, - - - , n. Note that herey; and

v; are theu andv components of vectar;. Oncev), is constructed, the conventional vertex

parameterization, for the vertices in/ of the tubular mesh can be inferred by specifying

an arbitrary boundary vertex as the origin of thev) coordinate system.
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Figure 5.10: A flowchart of our parameterization approach.

A flowchart for our parameterization approach is given in Figure 5.10. The whole pa-
rameterization process is divided into three steps. The first step is to determine parameters
for the edges on the two boundaries of the mesh. The second step is to calculate param-
eters of the internal edges. This step involves establishing and solving a linear equation
system based on the geometry relations that the internal edges should satisfy. To generate
a smooth parameterization that depends on the edges and vertices of the mesh, mean value
coordinates [42] are adopted as the weights for the linear combination of adjacent edges.
Moreover, strategies are also proposed to reduce the dimension of the equation system to
alleviate the computation load. The third step is to convert edge parameterization to vertex

parameterization. The details of these steps are elaborated in the next three subsections.

5.3.2 Parameterizing boundary edges

Our method first assigns parameters to the edges on two boundaries of the tubular mesh,
i.e. the boundary edges. The edges that are not on any boundary or only have one ver-
tex on the boundary are defined as internal edges. For clarification, in the directed edge
list £/, we denoteey, e,, - - - , eq t0 be internal edges angy,1,eq.2, - - , e, t0 be bound-

ary edges without losing any generality. For each directed edge in the mesh, we have
two choices on its specific direction. An edggthat connectsl;; andd;, can originate

from eitherd;; or d;». For the internal edges, we let their direction be arbitrarily chosen.

For the boundary edges, we make some constraints such that edges belonging to the same
boundary have same direction, and edges belonging to different boundaries have opposite

directions. These constraints would simplify the description of our method. If certain mesh
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data structure such as half-edge [155] is adopted for representation, we can simply achieve
the above arrangements by letting the direction of the boundary edges conform with that of
the corresponding boundary half edges.

For the boundary edges, thecomponents would always be zero. We determine the
u components of the boundary edges using the chordal length approach. Because the rep-
resentations of vectors are invariant under translation, edge parameterization can be car-
ried out without specifying an origin for the coordinates system. Therefore, depending on
which boundary it belongs to, the boundary edgés parameterized as eithér/L;,0)
or (—l;/L,,0), wherel; is the length of the edgeL;, and L, are the sum of lengths of
the edges on the two respective boundaries and are used to normalize the parameters for
boundary edges. This makes the lengths of parameter range for both boundaries the same
and equal. Note that at the end of this stage, the parameters for either boundary have been

fixed but the relative position of the two boundaries is still undecided yet.

5.3.3 Computing internal edge parameters

We now describe how to compute the parameters for the internal edges - - - , eq.
We set up a system of linear equations that the edge parameters should satisfy. The edge
parameters are then obtained by solving the equations.
First, each triangle face in the tubular mesh corresponds to a triangle in the parameter
domain. Suppose;, u;, ui are the parameters for three directed edges that form a triangle
in the tubular mesh. Them;, u;, uy form a triangle in the parameter domain, as shown on
the left part of Figure 5.11. Thus, u;, uyx should satisfy the following equation, which we
call the face related equation:

s + [uy] + [y =0 (5.5)

Here, the operatdt] is introduced, which changes the direction of a vector to its opposite

when necessary, to make sure that after the adjustment, the edges corresponding to the three
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vectors have different starting vertices.

S

Figure 5.11: Building equations from face relation and vertex relation.

Second, for each internal vertex, we look at its 1-ring neighborhood. To generate a good
parameterization, we use mean values coordinates [42]. That is, we let the parameter of the
internal vertex be represented as a linear combination of the parameters of its surrounding
vertices in the 1-ring neighborhood (See Equation (4.6)). After a simple arrangement, this
turns out to be a constraint on the edges incident;t(see the right part of Figure 5.11),
which we call the vertex related equation:

k;

Z Aijlaig) =0 (5.6)

J=1

wherek; is the valence of the interval vertelx and)\;; is the mean value coordinatesdf
with respect to itg-th neighboring vertexl;. Again, hereu, ; is first passed into operator
[]in order to guarantee that the edge correspondirig; td emits fromd;.

So far we have established face related equations amd vertex related equations,
wheren; is the number of faces and is the number of internal vertices. These equations
containng unknowns, where; is the number of internal edges. A careful analysis using
Euler’'s formula shows that; + n, = n3, which means the number of the equations equals
the number of unknowns.

However, it can be found that the face related equations are linearly dependent. This is
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because the sums of the edge vectors of two boundaries have the same length but opposite
direction. To fix this problem, we select one internal edge, assign appropriate parameters to
it, and remove one equation derived from a face that contains the edge. To choose the edge,
we compute the angkebetween all the boundary edges and the edges adjacent to them and
pick the edge=* whose# is closest tol . The parameters fas* is set to becos 6, sin 6).

In this way, we will haven; — 1 equations withmz — 1 unknowns. Solving the equations

gives the parameters for all the edges.

Dimension reduction

In a triangular mesh, the number of edges is about three times of the number of vertices.
When the edges instead of the vertices become the unknown elements for parameterization,
the dimension of the optimization problem is inevitably increased. The scale of the equa-
tion system accordingly becomes three times larger and the computational cost is therefore
higher. Therefore we need a method that can be used to reduce the number of the equations
and the unknowns.

It is observed that the established equation system contains a number of equations,
each of which corresponds to a face and thus has at most three edges that have non-zero
coefficients. Suppose; is the parameter for an unknown edge in Equation (5.5). We can
always rearrange such a face related equatiomipte [u;] + [uy]. From this expression,

u; can be understood as dependingwnandu,. This expression makes it possible to
substitute the appearancewfin all the other equations of the equation systenijyand

[ux]. Whenever such an unknown is substituted, the size of the linear system is reduced by
one.

Thus, by utilizing all the face related equations for unknown edge substitution, we ex-
pect to eliminate some of the unknowns as well as the equations from the original equation
system. We tagy; (and its corresponding edge) as dependent if it is substituted by other

unknowns. Otherwisey; is tagged as independent. After that, we solve a new equation
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system which contains only the independent unknowns. Then, the remaining problem is
how to tag each unknown edge in a triangular mesh as either dependent or independent.
While pure algebraic approaches could be difficult due to the complicated connectivity of
the mesh, in the following we present a geometric based approach.

We start from an initial mesh, where the parameters for the boundary edges and one
preset edge* are given. All the unknown edges are untagged at this moment. Now we
examine all the triangle faces in the mesh. We search for any face that contains only one
untagged edge by priority. By reexpressing the face related equation, we tag such an edge
as a dependent edge that depends on the other two edges in the face. We establish a depen-
dency table in order to manage the relations among edges, in which we store for each edge
its tag and the edges it depends on. Whenever no more faces contain only one untagged
edge, we alternatively pick one face that contains two untagged edges. We set one of these
edges as independent, and the other edge as dependent. This process continues until each
unknown edge in the mesh is given a tag. We clarify this approach by an example given in
Figure 5.12, in which a part of a triangular mesh is shown. Supppse, ez are already
tagged or their parameters are already given. Using the above strategy, eg, er can
then be given a tag respectively as well. A possible dependency tahlg, fey, eg, e7 IS

given in Table 5.1.

Figure 5.12: A local part of a triangular mesh.

Sometimes, not all the face related equations are used during this process. It could
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Table 5.1: The dependency table for some edges in Figure 5.12.

edge tag dependency
ey dependent €1, es
es | independent -
€6 dependent ey, €5
ey dependent es, €g

happen that all the three edges of a face are already tagged before the face is examined.
If we leave such faces untreated, the number of independent edges and the number of the
equations would be different in the resulting equation system. In order to fix this problem,
we iteratively substitute all the dependent unknowns in this face related equation using the
dependency table, until the equation no longer contains any dependent unknown. Then, we
re-tag an arbitrary independent edge in this equation as dependent and update the depen-
dency table using this equation.

Finally, we remove the face related equations from the equation system and substitute
all the dependent edges using the dependency table. Thus we obtain a much smaller linear
equation system, whose size is the same as the number of internal vertices. When this
equation system is solved, we can then calculate the parameters for those dependent edges.

Therefore all the edges in the mesh are parameterized.

5.3.4 Inferring vertex parameterization

Once we have obtained the edge parameterizatidor a triangular mesh of tubular topo-
logical type, we can convert the edge parameterizatioto an equivalent vertex parame-
terizationy,,, where each verted; is associated with a pair of parameter values.

First we arbitrarily pick a vertex on either boundary of the mesh and assign to it pa-
rameterg0, 0). After that, parameters for the remaining vertices are obtained by traversing
the triangular mesh under the breadth-first search algorithm ([24]). We set the previously

picked vertex as the root vertex and put it into an empty queue structure. We then keep
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retrieving a vertex from the top of the queue and attempt to compute parameters for all of
its unattended neighboring vertices. From a vetigxthe parameter for its neighboring
vertexd; is computed by either adding or subtracting to the parametdy thfe parameter

of the edge that connectk andd;, depending on the direction of that edge. We require
that theu direction parameter for any vertex be in tilel) domain. Ifu; is outside[0, 1)

after being computed from its neighbor, we try to find an intégsuch that,; + & € [0, 1).

In that case, we use + k as theu direction parameter fad; instead.

We put all the newly parameterized vertices into the bottom of the queue and repeatedly
deal with the top vertex in the queue. A vertex goes out of the queue when attempts have
been made to parameterize all of its neighboring vertices. We continues this process until
the queue finally becomes empty, which means that all the vertices of the triangular mesh
have been given proper parameters. Finally, after the above procedure stops, we normalize
thev coordinates of all the vertices by a translation or/and a scaling to make the range be

[0,1]. This yields a vertex parameterization[in1) x [0, 1] for the tubular mesh.

5.3.5 Performance of the algorithm

We apply our algorithm to a tubular triangular mesh of the bimba model with two holes as
shown in Figure 5.13(a). The parameterization result is given in Figure 5.13(b). By textur-
ing the mesh with a checkboard pattern under the guidance of the resulting parameterization
(see Figure 5.14), we can see that the parameters are evenly distributed and have quite low
geometric distortion.

We have also tested models of different types to demonstrate the performance of the
edge based parameterization. The geometry information of the models is given in Table 5.2.
The experimental results are displayed in Figure 5.15. The first column of Figure 5.15
shows the surface view of the models. The second column shows the mesh view of the
models. All the triangular meshes used here have the same topological type as a cylinder

and there are two closed boundaries for each of these meshes.
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(a) A tubular mesh of the bimba (b) The parameterization result
model with two holes on a cylinder domain

Figure 5.13: An example of the edge based parameterization approach.

(a) Frontview (b) Back view

Figure 5.14: Texture mapping with the checkboard pattern.

We apply the edge based parameterization method to these models, and the results of
parameterization are shown in the third column of Figure 5.15. We project the parame-
terization onto the cylinder through a functiofz, v) — (€52 sin2ru 4) for a clearer
visualization. It can be seen that although we do not make any effort on aligning the pa-

rameters of the two boundaries, correct correspondence can be automatically obtained.

Another way of visualizing the result is provided in the fourth column of Figure. 5.15.
Here each parameterization is cut open along a path of vertices from one boundary to an-
other and then displayed in a plane. The edges shown in red lines connect a right-end vertex
to a left-end one. The edges shown in dash lines form the cutting path. Finally, in the fifth

column of Figure. 5.15, we demonstrate the effect of mapping a checkboard texture to the
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Surface Mesh On cylinder Unfolded Checkboard
view view parameterization parameterization pattern
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Figure 5.15: Examples of edge based parameterization.
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Table 5.2: Information of the models.

Model Vertex number Face number Edge numbet
bimba 8414 16705 25119
mannequin 680 1328 2008
screw driver 514 999 1513
knot 234 456 690
Venus 710 1389 2099
bumpy sphere 5610 11181 16791

tubular meshes, using the resulting parameterization. It can be seen that the distortion of

the parameterizations is very low.

5.4 Periodic T-spline surface fitting

In this section, we discuss how to automatically fit a periodic T-spline surface to a tubular
mesh. Since a tubular mesh is of the same topological type as a periodic T-spline surface
defined in Equation (5.3), it is more suitable to approximate the tubular mesh by a periodic
T-spline surface. Figure 5.16(a) shows a piecewise linear tubular mesh, comprised of a
number of triangle faces. We want to find a smooth surface defined by a periodic T-spline
as shown in Figure 5.16(b) together with its T-mesh, which approximates the tubular mesh.
Mathematically, this problem can be formulated as follows: given a tubular triangular mesh
T which has a vertex sét = {d;,d,, - - ,d,,}, we want to find a periodic T-spline surface
S(u,v) that approximates each vertex of the tubular mesh within an error toletanee
dist(d;, S(u,v)) <e,i=1,2,--- ;m.

Here we propose an algorithm to solve the above problem. The algorithm consists of
several steps (see Figure 5.17). First, in order to establish a relationship between the tubular
mesh and periodic T-spline surfaces, a parameterization step is required to map the tubu-
lar mesh to the parameter domain of the surface. Next, an initial T-mesh is constructed to
startup the adaptive surface fitting procedure. Then, the algorithm computes a geometri-

cally optimal T-spline surface that best approximates the tubular mesh under the topology
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(a) A tubular mesh (b) A periodic T-spline surface that
approximates the mesh

Figure 5.16: Fitting a periodic T-spline surface to a tubular mesh.

setting of the current T-mesh. After that, we check the quality of the obtained periodic T-
spline surface and further refine the T-mesh at the locations where the fitting quality is not
satisfactory. We keep improving the fitting result by iteratively carrying out the geometry
optimization and mesh structure refinement steps until the approximation error evaluated
at any vertex is not greater than the prescribed error tolerance. Once the error tolerance
is met, the whole process can be terminated at this stage, or we can optionally choose to
improve the previously calculated parameterization of the tubular mesh and start over the

fitting procedure again in order to probably achieve better periodic T-spline surface fitting.

In this proposed algorithm, we compute the parameterization for a tubular mesh using
the edge based parameterization method described in Section 5.3.1 and the reparameteriza-
tion using a technique described in Chapter 4. Therefore, in the remainder of this section,
we just describe the steps for surface initialization, geometry optimization and mesh refine-

ment. In addition, some examples are also provided at the end of the section.
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5.4. Periodic T-spline surface fitting

optimal T-spline

. - initial perindic
—Begin» parameterization 2> T-mesh construction » surface
computation

quality check /
. . End——>»
adaptive adjustment

A

reparameterization

Figure 5.17: The flowchart of periodic T-spline surface fitting.

5.4.1 Initialization

In this step, we construct an initial T-mesh which the adaptive surface fitting process can
begin with. First a suitable domain for the surface should be decided. Using the edge
based parameterization approach, a mapping is established from the given tubular mesh to
a parameter domain, 1) x [0, 1], which is also the domain of the periodic T-spline surface.
Each vertexd; corresponds to a parameter paif, v;) where0 < u; < 1,0 < wv; < 1.
Second, we let the pre-image of the T-mesh in the parameter domain be a degular
dim, grid at the first stage. The knot vectors along the andv—directions associated
with the T-mesh are both uniformly divided in the domain. That is,@Henot vector is
{0, =t» G -+ » =2} and thew knot vector is{—0.02, —0.01,0, z-t—, 72—,
,1,1.01,1.02}. For simplicity, the sizes of the control gridim,, anddim,, are often
set to a number between 4 and 10 depending on the complexity of the input tubular mesh.
An example of the pre-image of4ax 4 periodic T-mesh is shown in Figure 5.18. The
control points in the rightmost column are virtual duplicates of those in the leftmost column
and the domain of the surface is the region inside of the red bounding box.
Finally, we let the control point weight vect®W = (wq, wy, - - - ,w,)’ take the initial
setting of(1,1,--- ,1)T. The initial pre-image of the T-mesh and the weight vector together
define a class of periodic T-spline surfaces that have the same T-mesh topological structure
and the same weight vector. On the other hand, the geometric coordinates of the control

points are still unassigned at this moment and are left to be optimized in the next step.
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DGR ERE

Figure 5.18: The pre-image ofdax 4 periodic T-mesh.

5.4.2 Optimizing the geometry of the surface

When the T-mesh topology (i.e. the layout and the connectivity of the control points in the
pre-image) and the control point weigh¥® are determined, a class of periodic T-spline
surfaces is defined. Each individual surface in this class differs from the others only in
the geometry of the control points. Therefore the problem is now becoming how to find
the surface within the class that best approximates the tubular mesh. This can be done by

finding the control points using the least-squares approach.

Note that our initial setting for the T-mesh and the control point weights guarantees that
Zn: w; B} (u,v) = 1. In fact, a periodic T-spline surface with such setting is a standard T-
;:;;)Iine and thus a parametric polynomial surface. During the fitting process we constrain the
surfaces to remain polynomial via the T-spline knot insertion algorithm and thus the surface

representation in Equation (5.3) can be simplified in this situation:

S(u,v) = ZwiPiB;‘(u,v) (5.7)
i=0
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The following objective function is used as the target for optimization:
F(P0> ISPRRE an) = Z H S(ujﬁvj) - dj H2 + Ume-,«(S) (5.8)
=1

This function contains two parts. The first part controls the precision of the surface, which
is the squares of sum of the distances between the vertices of the mesh and the peri-
odic T-spline surface. We use the parametric distahc®(u;,v;) — d; || to represent
dist(d;, S(u,v)). The second part is an energy term that measures the shape fairness of the
surface. o is a factor that balances the two parts: precision and fairness. We choose the

simple thin plate energy a&.,;(S), which is expressed as:
J fair (S // (S2,(u,v) 4+ 282 (u,v) + S? (u,v))dudv (5.9)
whereS,,., S.., Sy, are the second order partial derivativesSof;, v).

Tofind Fy, Py, - - - , P, that minimize the objective function, we let all the partial deriva-

tives of the objective function with respective to each control point equal to zero:
— =0, g=0,1,---,n (5.10)

which leads to

Z: <UJ7UJ)B;<UJ7UJ')+
Zwi Bzuu(u U)Bguu(u7v)+ PZ
i=0 +o [ [ +2B5,, (U, v) Bl (u,v)+ | dudv (5.11)
+B;,, (4, 0) By, (u, v)

= Zlij;‘(Ujan)
]:

Combining these equations together forms a linear system whose solution gives the control
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points of the optimal T-spline surface.

5.4.3 T-mesh refinement

After a periodic T-spline surface is computed under the current setting, we need to check
whether the approximation meets the requirement. The approximation error, in term of the
parametric distance of each veridxof the mesh to the T-spline surfadés(u;, v;) — d;||,
is evaluated. If all the distances are below the tolerant®e T-spline surface is considered
gualified and the algorithm moves to the next step. Otherwise, the regions that contain one
or more violating vertices whose distances are greater than the tolerance need to be refined.

We refine the faces of the T-mesh, which correspond to the regions containing violating
vertices, by adding a new edge into that face and splitting the face into two halves of equal
size. To add an edge, we simply insert two end points of the edge into the T-mesh, using the
local refinement method for periodic T-spline surfaces. The edge could be either horizontal
or vertical, depending on whether the height or the width of the region is larger.

After the T-mesh is updated, we obtain a new setting for the T-mesh and the control point
weights, which define a new class of T-spline surfaces. Since the new T-mesh structure
and the control point weights are generated by the T-spline local refinement algorithm,
the resulting class of periodic T-spline surfaces remains to be standard or semi-standard.
Therefore, surfaces in this class are still polynomial. The control points of the optimal T-
spline in this class can be computed using the geometry optimization step described in the

preceding subsection.

5.4.4 Examples and discussions

This section presents two examples to demonstrate the proposed periodic T-spline surface

fitting algorithm. The first example is a bumpy model (see Figure 5.19(a)) which is a tubu-
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lar triangular mesh and whose basic information is listed in Table 5.3. When we use the
fitting algorithm to approximate the bumpy model, the error tolerance for approximation
is set to be0.5% of the size of the model and the fairness factor is set t@.0e001.

Figure 5.19(b) and Figure 5.19(c) show two periodic T-spline surfaces which are the inter-
mediate results after 3 and 6 iterations respectively, with the pre-images mapped onto the
surfaces. It can be seen that the structures of the T-meshes are not sufficiently sophisticated
to represent all the geometrical features of the original tubular mesh and the surfaces are
not well approximated. After 11 iterations, a satisfactory result is obtained, which is shown
in Figure 5.19(d) with the pre-image mapped onto the surface. In Figure 5.19(d), a window
is drawn to highlight three T-junction points, which are shown in red color, to illustrate the
existence of T-junctions. Figure 5.19(e) and Figure 5.19(f) show the final periodic T-spline
surface without and with the T-mesh. Refer to Table 5.3 for the detailed information about

the final periodic T-spline surface.

(e)

Figure 5.19: Fitting a bumpy model.
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Table 5.3: Statistics of the tubular mesh in Figure 5.19(a) and the final resulting periodic
T-spline surface.

Mesh Number of vertices 5610
Number of faces 11181
Total iterations for fitting 10
Periodic Number of knot in the,—direction| 33
T-spline surface Number of knot in thes—direction | 32
fitting Number of control points 570
Maximum approximation error | 0.44%
Average approximation error | 0.03%

The second example is to demonstrate the algorithm in approximating tubular meshes
that have relatively low quality (i.e., the number of vertices is insufficient compared to the
complexity of the geometry they represent). It can be seen that the algorithm is capable of
handling these meshes by choosing a smaller error tolerance. The model we use in the sec-
ond example is the Venus shown in Figure 5.20(a), which has 710 vertices and 1389 faces.
If we choose the error tolerance to 8% of the scale of the model, the fitting periodic T-
spline surface can be quickly obtained. However, the resulting surface (see Figure 5.20(b))
does not respect the geometrical features of the mesh very well although the error tolerance
is already met at all the vertices. This is because merely achieving the approximation error
at the vertices of the mesh does not guarantee the overall surface quality, especially when
the density of the vertices of the model is not high enough. The resulting surface (shown
Figure 5.20(c)) could get better if the error tolerance is changéd; of the scale of the
model, but it is still not good enough. Finally, if we adjust the error tolerance tb(2§%
of the scale of the model, this time we get a visually satisfactory result (see Figure 5.20(d)).
The final surface has 342 control points and is obtained in 10 iterations. Figure 5.20(e) and

Figure 5.20(f) show the surface with the mapped pre-image and the T-mesh, respectively.
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(d) (e)
Figure 5.20: Fitting the Venus model.

5.5 Summary

This chapter discusses the definitions of periodic B-splines and the representation of peri-
odic T-spline surfaces. Periodic T-spline surfaces are a good geometry representation for

defining a tubular-shaped object in a single domain.

We then present an edge based parameterization method that is especially suitable for
parameterizing tubular triangular meshes. Instead of parameterizing vertices directly, we
first compute the parameters of the edges. The mean value coordinates are used to param-
eterize the edges. After that, the parameterization for the vertices is derived. Since our
method is based on intrinsic geometry of the mesh, there is no need to perform cutting for
parameterization and a low distortion can be achieved. We demonstrated our approach by
several examples of different types. The effectiveness of the method suggests that the idea

of treating edges as the main target may also be applicable in other mesh related problems
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in geometry processing. From the parameterization, further applications such as texture
mapping and surface fitting of the tubular meshes could be developed.

Finally, we provide an algorithm to convert a tubular triangular mesh into a periodic
T-spline surface. In the algorithm, we parameterize the tubular mesh using the edge based
parameterization method and build the target periodic T-spline surface in an adaptive man-
ner. We start with an initial periodic T-spline of a simple mesh structure and iteratively
refine the T-mesh at locations where the T-spline approximation is poor and re-compute the
control points for the optimal T-spline surface. As a result, the output periodic T-spline

surface approximates the tubular mesh within the given error tolerance.
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Chapter 6

Conversion between T-splines and

Hierarchical NURBS

6.1 Introduction

This chapter discusses conversion between two parametric surface representations: T-splines
and hierarchical NURBS. T-splines and hierarchical NURBS are both the generalization of
NURBS and allow the surface to be refined locally. Hierarchical NURBS is desirable for
multiresolution modeling, and it is more intuitive to use T-splines for interactive designing.
Since each representation has its own strength, in practice it could be useful to be able to

convert one representation into another.

Note that it is always possible to convert a T-spline surface or a hierarchical NURBS
surface into a NURBS surface (called the underlying NURBS surface) with finer control
mesh. There are also algorithms to construct a hierarchical NURBS surface [47] or a T-
spline surface [128] to approximate a given NURBS surface. If we set the approximate
error to be zero, the approximate algorithms will lead to exact conversion from a NURBS
surface to a T-spline or hierarchical NURBS surface. Using these algorithms, one can

achieve the conversion between hierarchical NURBS and T-splines through the underlying
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NURBS surface. However, this is an indirect approach and lacks geometric insights. In
this chapter, we present direct conversion algorithms, which will take into consideration the
structure of the hierarchical NURBS or T-spline surface. The algorithms work in the same
fashion as the local knot insertion algorithm of T-splines.

Section 6.2 extends the concept of hierarchical B-splines to the rational case. The algo-
rithms for conversion back and forth of a surface between T-spline and hierarchical B-spline
representations are givenin Section 6.3 and Section 6.4. Section 6.5 summarizes the chapter

and provides some further discussions.

6.2 Hierarchical NURBS

A hierarchical B-spline surface consists of a series of levels, each of which has a collection
of B-spline patches. The level 0 has the lowest resolution describing the basic shape of
the surface, and its children are called overlays describing some details of the surface.
The overlays correspond to refined areas of the parent surface. An overlay at isvel
created by designating a patch on its parent at levell, executing a refinement step and
manipulating the control points of the refined patch. Therefore an overlay atAdwed
twice the resolution of its parent at level— 1. At the same level, the overlays do not
cross each other. Otherwise, they are made into a larger overlay. Figure 6.1(a) shows a
hierarchical B-spline surface consisting of a bicubic B-spline surface and an overlay. The
B-spline surface is defined bycax 6 control grid whose pre-image in the parameter space
is shown in Figure 6.1(b). The overlay ha% & 7 control grid whose pre-image is shown
in blue in Figure 6.1(c).

Note that to keef@? continuity between the overlay and its parent the manipulation of
the control points should be restricted to the central control points and the peripheral con-
trol points should be kept static. For a bicubic B-spline surface, an overlay has a mesh of

at least7 x 7 and the control points on the three outer rings must remain unchanged. In
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(@) (b)

Figure 6.1: A hierarchical B-spline surface consisting of a bicubic B-spline surface and an
overlay.

the hierarchical B-spline scheme, a convenient way to represent the overlay is to use the
reference-plus-offset form. That is, each control pdifit’ of an overlay at levek is rep-
resented in offset formP™®) = R®) 4+ O®) whereR™ is derived from the parent surface

at levelk — 1 by a (mid-point) refinement and®) is the offset vector. Any change to the
control points at levek is represented in the offset vectors. For those control points that
remain unchanged, the offset*) = 0. Offsets are responsible for the difference between
the shape of the surface at two levels of representation. In this way, any changes to the sur-
face at the lower level automatically propagate to the higher level and the editing movement
of O®) causes local change of the surface to a restricted region of the surface. Moreover,
the reference-plus-offset form improves the economy of the representation because we only
need to store the non-zero offsets. For example, an overlay of diménsidmas only one

non-zero offset.

Now we extend the concept of hierarchical B-splines into hierarchical NURBS. The
generalization is done in two aspects. First, the refinement in the hierarchical B-spline
formulation is not necessarily mid-point refinement. Instead, the refinement can be achieved
by allowing insertion of knots at general positions. As a result, a knot in the knot sequences
of an overlay could be an arbitrary convex combination of two adjacent knots in the parent

surface’s knot sequences. See Figure 6.2 for an illustration: the left is the pre-image of a
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6 x 6 control grid that defines a bicubic B-spline surface; the middle is the pre-image of
a7 x 7 control grid that defines an overlay; and the relation of the base and the overlay
is shown on the right. Apparently, this increases the ability of hierarchical B-splines for
representing the details. Second, the B-spline surfaces in the hierarchy should be allowed
to be rational. It is because that the T-spline surfaces are usually rational surfaces and thus
cannot be converted into hierarchical B-spline surfaces in the polynomial form. In this
case, we apply the idea of original hierarchical B-spline refinement to the homogeneous
representation of the rational B-splines. We still use the reference-plus-offset form for the
overlays. Thus the offset vectors are 4D vectors. To maintain the continuity between the
overlay and its parent, we restrict all the offset vectors corresponding to the three outermost

rings of control points of the overlay to be zero.

...........................................

R R N S )

Figure 6.2: The relation between the base mesh and an overlay mesh.

6.3 Algorithm for converting a hierarchical NURBS to a
T-spline

Given a hierarchical NURBS surface, one can flatten the hierarchical structure by creating
the underlying NURBS surface, which usually contains a number of superfluous control
points that serve no purpose other than to satisfy topological requirements of the tensor-
product NURBS surface formulation. The conversion of a hierarchical NURBS surface

into a T-spline surface is to combine all overlays into a single layer surface with only a few
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superfluous points and also to keep the resulting surface identical to the original one. Our
approach to such a transformation is to use a recursive way to generate the T-spline surface:
we begin with the level 0 NURBS surface and add all the first level overlay(s) to it to form a
T-spline surface; then we add the second level overlay(s) into the formed T-spline to create
a more complicated T-spline surface; and this process continues until there is no overlay
left. Obviously, the key ingredient in this approach is the algorithm that adds an overlay

into a T-spline surface. In the following we describe the algorithm.

Now suppose we have a T-spline surfd®g@:, v) and an overlayV (u,v). Assume
S(u,v) is defined by Equation (2.9) and it is the result of combining all the overlays that
have lower level thaiV (u, v) and some of the overlays that have the same lev¥l(asv)
into the level 0 B-spline surface. The overlsyu, v) is a bicubic rational B-spline surface,

whose equation in homogeneous form is

r+1 t+1

V(w,v)= > > ViN(u)N;(v) (6.1)
i=l—1 j=b—1
whereV;; are control points in 4D spacé;(v) and N,(v) are cubic B-spline basis func-
tions defined over knot sequendes o, u;_1, Uy, + -+, Uy, Upy1, Up i} @NA{Vp_o, Vy_1, Vs,
-, U, Vit1, Vo . The parameter range of the overlayig .| x [vy, v¢]. From the for-
mulation of the hierarchical B-spline;, .., v, andv; are also the knots & (u, v)'s parent

surface and thus correspond to certain edges in the T-me&u.of).

Based on the reference-plus-offset form, we only store the offset for the overlay. In fact,
each poinV,; of the overlay is the sum of reference pdidt; and offset vecto©,;. All the

reference pointR;; are specified from the parent surface. They form a sufRiee v) =

%1 HZl R;;N;(u)N;(v) which is an exact re-representation of the parent surface or the
ZT:-lsiSIjir:]leurfaCS(u, v) within domain[u;, u,| x [vy, v¢]. If we use all the offset vectors

to define a 4D surfac®(u,v) = %1 Hzl O;;Ni(u)N;(v), thenV (u,v) = R(u,v) +
O(u,v). Also note that whern <Zl::12j,:lz)'_1> r—2,7<b+2o0rj>t—-2 04 =0.
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Therefore the overlay (u, v) can be written

i=1 =142 j=b+2

If we treatO,; as a control point associated with kndis, v;), Equation (6.2) gives a
PB-spline description of the overlay [129]. To make the PB-spline be a T-spline, we may
need to perform the necessary knot insertions into the basis functions or add new control
points into the mesh to make the mesh be a valid T-mesh. The insertion of a control point
O,; means not only to insert the associated kfgtv;) into the T-mesh, but to add the
corresponding term dd;; V;(u) N;(v) into the T-spline as well. This leads to the following

algorithm @lgorithm 6.1) for composing an overlay into a T-spline.

Algorithm 6.1 : Composing an overlay into a T-spline surface
1. Insert point0;; (i =1 +2,---,r—2;j =b+2,---,t — 2) into the T-mesh at the
locations inferred by their associated knots;
2. repeat
3 if (any basis function has a knot that is not indicated in the current T-nttessin)
4 Add an appropriate point into the T-mesh,;
5. end if
6
7
8
9

if (any basis function is missing a knot inferred from the current T-misn)
Perform the necessary knot insertions into that basis function;

end if
. if (any basis function has no control point associated tihéh
10. Add an appropriate control point into the T-mesh;
11. end if

12. until (there is no new operation)
13. if (any point has only one edge incident totfign

14, Extend the edge and find the first intersection point of the edge and the T-mesh in
the pre-image space;
15. end if

16. Insert the intersection point and then go to step 2;

In Line 13-16, we perform knot insertion though the T-mesh is already valid. This is
to avoid the hanging edges and thus to preserve the geometrically pleasing shape of the

control mesh.
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6.3.1 Examples
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Figure 6.3: lllustration of converting a hierarchical B-spline to a T-spline.

We illustrate the algorithm with an example. Figure 6.3(a) shows the pre-image of a
6 x 6 control mesh (in dash lines) of a B-spline surface, imposed by the pre-image of a
refined7 x 7 mesh (in solid lines) that defines an overlay. We first insert the nonzero offset
point of the7 x 7 mesh (that is the central point) into the< 6 B-spline mesh, generating
a mesh shown in Figure 6.3(b). However, the basis function corresponding to this nonzero
offset point has knots that are not indicated in the current mesh. We have to add four

control points around the nonzero offset point (see Figure 6.3(c)). Now every basis function
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properly associates with a control point in the mesh. But we have four hanging edges in the
mesh. To avoid hanging edges, we finally perform Line 13-16 of Algorithm 6.1, inserting
another 4 points, to create the T-mesh as shown in Figure 6.3(d). It can be seen that the
result T-mesh is quite compact.

Now we present another example of a hierarchical B-spline with its geometry (see Fig-
ure 6.4). The hierarchical B-spline has three levels. The level 0 is a part of-theplane,
defined by a B-spline witl§ x 8 control grid (see Figure 6.5(a)). The level 1 consists of
3 B-spline patches (see Figure 6.5(b)): the red and green’avecontrol grid and only
the central point is nonzero; the blue as 8 control grid and the central 4 points are
non-zero. The level 2 is shown in yellow (see Figure 6.5(c)): itis a B-splineTwith grid

and the 2 central points are nonzero.

Figure 6.4: A hierarchical B-spline surface.

3—T—8 8
[e e >
8—3—=8 3
(a) Level0 (b) Levels 0+1 (c) Levels 0+1+2

Figure 6.5: The pre-image of the control meshes of a hierarchical B-spline surface.

After we apply our algorithm to combine the level 1 and level 0. We get a T-mesh.

The pre-image of the T-mesh is shown on Figure 6.6(a) and the surface is shown on Fig-
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ure 6.6(b). After we also combine the level 2 overlay, the pre-image becomes a new one

shown on Figure 6.7(a). The T-mesh and the final surface are shown on Figure 6.7(b).

(a) The pre-image of the T-meslib) The T-mesh and the surface

Figure 6.6: Combining level 0 and level 1.

Note that in Figure 6.7, some edges or vertices of the T-mesh coincide. This may cause
inconvenience for interactive editing. We can locally insert some vertices to eliminate such
coincidence. For example, after inserting some vertices into the T-mesh shown in Fig-
ure 6.7, we can get a new T-mesh which defines the same T-spline surface (see Figure 6.8).

This new T-mesh would be clearer than the previous one for interactive editing purpose.

gas

(a) The pre-image of the T-meslib) The T-mesh and the surface

Figure 6.7: Combining level 0, level 1 and level 2.

153



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6. Conversion between T-splines and Hierarchical NURBS

(a) The pre-image of the T-meslib) The T-mesh and the surface

Figure 6.8: Refined T-mesh for the hierarchical B-spline surface.

6.4 Algorithm for converting a T-spline to a hierarchical

NURBS

Compared to the transformation from a hierarchical NURBS surface to a T-spline surface,
the reverse transformation that converts a T-spline to a hierarchical NURBS is more chal-
lenging since we intend to create a hierarchy from a single layer T-mesh. The basic task
here is to generate a series of B-spline surfaces. These B-splines are organized in a hier-
archical manner. In the pre-image of the control grid in the parameter space, except for
the base B-spline, every B-spline is the refinement of another B-spline in the group. The
process for this task involves two aspects: the topological structure and the geometry. The
former identifies the control grid structure of the base B-spline surface and the overlays at
each level. The latter computes the coordinates of the control points for all the surfaces.

Our algorithm can roughly be described as follows in Algorithm 6.2:

The preprocess step is to use the T-spline local knot insertion algorithm to make the
three outmost rings of the T-mesh not contain any T-junction points. Refer to Figure 6.9
(left) for a given T-mesh. Figure 6.9 (right) shows the mesh after the preprocess step. The
next step just does some initialization. Now we present the details of the remaining steps

below.
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Algorithm 6.2 : Converting a T-spline to a hierarchical NURBS surface

1.

© e NGO ODN

el
N PO

Preprocess the given T-mesh;
Setk =0, current Mesh = the preprocessed T-mesh;
Extract a B-spline surface at levefrom thecurrentMesh;
Determine the offset surfaces for leveb = k + 1;
for (the mesh of each offset surface at leieel) do
Process the mesh;
if (the processed mesh is not a B-spline meisan
SetcurrentMesh = the processed mesh;
Setk = lev;
Recursively calAlgorithm 6.2 starting from step 3;
end if

. end for

Figure 6.9: Preprocess a given T-mesh.

6.4.1 Extracting a B-spline

While a T-mesh permits T-junctions so that lines of the T-mesh need not traverse the en-

tire control grid, a tensor-product B-spline mesh must be topologically a rectangular grid.

Therefore to extract a B-spline mesh from a T-mesh, we eliminate all partial rows and all

partial columns in the T-mesh. What remains after the removal of partial rows and columns

is anm x n mesh, which can be used as the topological specification of our B-spline control

mesh.

Once the topology of the B-spline mesh is specified, we have to compute the geometry

of the B-spline mesh. The formulae for the B-spline control points are derived based on

polar form of B-splines [117].

For each control poinP in the extracted B-spline mesh (see Figure 6.10(a)), we com-
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pute its polar labeP Lp. DenoteP Lp = (u_1, ug, u1) X (v_1, vy, v1). PointP corresponds

to a control point, sayQ, in the T-mesh. We also compu@’s polar labelPLq in the
T-mesh. IfPLp = PLq, then we just copyd’s coordinates td’s. Otherwise, we create a
temporary T-mesh by duplicating the existing T-mesh and use T-spline’s local knot insertion
algorithm to insert points in the temporary T-mesh, forming:a 5 grid centered around

Q. Thisb5 x 5 grid is part of the finest control mesh of the underlying B-spline surface.
We denote the points b§;;, (i,7 = —2,---,2) with Qg corresponding td). Refer to
Figure 6.10(b) for labels. ThelR can be computed by

1 1

P = Z Z Cideij

i=—1j=—1

where
c _ (a1 —u_q)(ar —uy)
o (a1 —a—2)(ar —a-1)
c (a1 —u_1)(ay —u)
' (ag —a_1)(a1 —ay)
Co = 1- C_1—C

andd; are similar tac; wherea; should be replaced by andw; should be replaced by;.

Vi

o o o
Voo ::P o)
v az a1 % ¥ I
-1o ol o)
U_l Uo Ul
@ (b)

Figure 6.10: Computing B-spline control poiRtfrom Q;;.
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6.4.2 Determining higher level offsets

When we have extracted a B-spline mesh from a T-mesh at ig\mth the B-spline mesh
and the T-mesh define two surfaces which are not necessarily the same. In this case, we

need higher level (offset) data to compensate the difference.

We first locate the regions for the higher level offset surfaces. For each Paimt
the pre-image of the T-mesh at leveln (u, v) parameter space, we define four numbers
u_min, v_min, u_max andv_max such thatu_min is theu coordinate of a new point which
is obtained by moving poinP left by two bays,u_max is theu coordinate of a point
which is obtained by movin# right by two bays, and_min, v_max are similarly defined.
For each partial row or column in the T-mesh, we define its b&x2;, vy, u,., v;) to be a
rectangle specified by the lower-left coriier, v,) and the upper-right cornéu,., v;) where
uy, vg are the minima ofi_min andv_min of all vertices lying on the partial row or column,
andu,, v, are the maxima ofi_max and v_max of all vertices lying on the partial row or
column. Now we compute box-2 for all partial rows and columns. If any two box-2’s
overlap, we merge them to form a large box bounding them. We also call the large box a
box-2. This large box is used to replace the original two small boxes. After this, each box-2

stands for a region of an overlay.

Once the region of an offset surface in the next layer is identified, we have to determine
topology and geometry of the offset surface. We extend each box-2 by adding one more
ring. The pre-image corresponds one-to-one with the T-mesh. We take the portion of the T-
mesh at levek, which corresponds with the extended box-2. It forms a temporary T-mesh
at levelk + 1 for the surface within the identified region. By the construction of box-2, it
can be verified that the levél+ 1 T-mesh has such characteristic that the three outermost

rings of the mesh do not contain T-junctions.
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The 4D surface defined by the T-mesh at levalithin the region is described by

S® (u, v) ZP(’“ (6.3)

whereP'") are the control points in the T-mesh at lekebr in the temporary T-mesh at
level £ + 1. In order to get the offset surface, we restrict the extracted B-spline surface

(from the T-mesh at leval) within the region and write its equation to be

r+1 t+1

=Y Y RYN(u)N;(v) (6.4)

i=l—1j=b—-1

Then the offset surface B*) (u,v) — R® (u,v). This gives the Algorithm 6.3 for deter-

mining the topology and geometry of the offset surface.

Algorithm 6.3 : Determining the topology and geometry of the offset surface
1. Insert points-R\ (i =1 —1,---,r+1;j = b—1,--- ,t + 1) into the temporary
T-mesh at the locations inferred Wyﬁf)’s associated knots;
. repeat
if (any basis function is missing a knot inferred from the current T-misn)

2
3
4, Perform the necessary knot insertions into that basis function;
5. end if
6
7
8
9

if (any basis function has a knot that is not indicated in the current T-nttessin)
Add an appropriate point into the T-mesh;
end if
. if (any basis function has no control point associated tihéh
10. Add an appropriate control point into the T-mesh;
11. end if
12. until there is no new operation
13. The output mesh is the required T-mesh at lével 1 which defines the offset surface;

6.4.3 Processing a layer

Now we have obtained the T-mesh at leke} 1 for the offset surface. If it happens to be a
B-spline mesh, itis a leaf node in the hierarchical B-spline representation aklevieand

we do not need to do further process. Otherwise, some further process is required. We can
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either extend all partial rows and columns all the way to create a B-spline or further extract
higher level of layers.

We take a strategy to balance the depth of the hierarchy and size of each offset. For each
partial row or column in the T-mesh at level- 1, we calculate a number, calleéficiency
which measures how many knots in the underlying B-spline this partial row or column
needs to go through to reach the border. If the deficiency is large, the row or column needs
to take a long way to reach the border, which might mean that it depicts details and thus
would be better to be put in the overlay of the current layer. For this reason, we compute
the average of the deficiencies of all partial rows and columns. If any partial row or column
has a deficiency less than the average deficiencyjplusually we seb = 3), we extend it
all the way to make it a complete row or column. Herés a user’s option. Smadl would
lead to more levels in the hierarchy, while laig@ould result in increased size of the offset
surfaces. If there is no T-junction after the extension, then a B-spline is formed and can be
treated as a leaf node attached to the parent surface. If there still exist T-junctions, then pass

the mesh for further decomposition in the next level.

6.4.4 lllustrations

We illustrate the algorithm topologically with an example. Figure 6.11(a) shows a T-mesh
which has four T-junctions. We wish to convert the T-spline to a hierarchical B-spline.
We first eliminate the partial row and column, yielding a B-spline mesh in Figure 6.11(b).
Of course, the geometry of the B-spline mesh should be computed carefully. Also from
the T-mesh, we construct two box-2’s for the partial row and column (see Figure 6.11(c)).
Combining the overlapped box-2's generates one box as displayed in Figure 6.11(d). This
box identifies the range of the next level overlay. Expanding the range bounded by the box
one more ring gives a temporary T-mesh. Insertingrtbgativeof the extracted B-spline

into this temporary T-mesh leads to a T-mesh for the offset, which topologically is the same

as the temporary mesh shown in Figure 6.11(e). Then we extend both partial row and partial
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column to the border, creatinglad x 10 mesh in Figure 6.11(f), which defines the offset of

the overlay. The final hierarchical B-spline consists of the level O B-spline surface shown
in Figure 6.11(b) and the level 1 offset shown in Figure 6.11(f). It can be seen that by this
conversion algorithm, we still achieve compactness in the hierarchical B-spline to some

extent. Although the size of the level 1 surfacéisx 10, the area of non-zero vectors that

needs to be stored is onlyx 4.

L Sy Sy Xy} Sy Sy ) L Sy Ny S Ay Ly S ) L Sy Ny S Ay Ly S )

14
[
14

R S -
-

Figure 6.11: A topological illustration.

Another example is given in Figure 6.12. A T-spline surface and its pre-image are shown
in Figure 6.12(a) and Figure 6.12(d), respectively. By using the algorithm, the surface can
be equivalently converted into a hierarchical NURBS surface. Figure 6.12(b) shows the
level O base surface of the result hierarchical NURBS, for which the control grid in the
parameter domain is displayed in Figure 6.12(e). Figure 6.12(c) is the level 0+1 hierarchical

NURBS, where the region of overlay is shown in red color. The red grid in Figure 6.12(f)

is the control grid for the overlay.
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A

@) (b)

(d) (e) ®
Figure 6.12: Converting a T-spline to a hierarchical NURBS.

6.5 Summary

We have described two algorithms for performing conversion from a hierarchical NURBS
surface to a T-spline surface and from a T-spline surface to a hierarchical NURBS surface.
The algorithms are intuitive and are directly based on local knot insertion. They can gen-
erate quite compact representations. In applications such as free-form shape modeling and
design, both hierarchical B-spline surfaces and T-spline surfaces are useful tools. When

one of them is available, our algorithms make the other easier to use.

In order to make the conversion algorithms universal, we extend the concept of the
hierarchical B-splines to the rational case and we also allow the knot vector for the overlays

to be nonuniform.

There are still some remaining problems for future work. For example, so far we just
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discussed the surface with simple knots. The conversion for more general cases needs to
be extended. In Subsection 6.4.3, we gave a heuristic criterion to decide whether a partial
row or column should be extended. Finding an optimal criterion would be an interesting
guestion. Moreover, the current work in this chapter only considers accurate conversion
between the two representations. Approximation conversion may be more interesting from

practice perspective.
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Conclusions and Future Work

7.1 Conclusions

The research in this thesis investigates the use of T-splines for free-form surface repre-
sentation and approximation, aiming to gain insights of T-spline theory and to present new
efficient algorithms for T-splines. Several fundamental problems have been studied. Novel

techniques have been successfully developed, which accomplishes the goal of the research.

First, we have presented an algorithm for T-spline local knot removal that is a very fun-
damental operation in T-spline theory. The algorithm is able to detect whether a specified
control point can be removed from a T-spline surface and to compute the new T-spline rep-
resentation if the point is removable. It works locally, in the fashion of T-spline local knot
insertion. The extension of the algorithm to remove more than one control point is possible
and several approaches have been suggested. However, our research has also shown that
the T-junction of the T-spline makes the T-spline knot removal problem much more compli-
cated than NURBS knot removal, especially in removing more than one control point from
a T-spline surface.

Second, we have studied the problem of surface fitting using T-splines deeply. We have

introduced a new framework for adaptive surface fitting which achieves the conversion
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from a triangular mesh that is topologically homeomorphic to a plane region to a spline
surface. The new framework is quite comprehensive and includes many new ideas and
algorithms. Extensive experiments have been conducted to evaluate the performance of the
new framework and algorithms. The examples have shown that the proposed adaptive T-
spline fitting does produce T-spline control meshes that exhibit a noticeable correspondence
between features and control point density. The algorithm is particularly suitable for fitting

those triangular meshes whose vertices are geometrically distributed unevenly in the space.

Third, we have presented several techniques for handling tubular models that have the
same topology as a cylinder. Periodic T-splines and their simple representations have been
proposed. A geometrically intrinsic method has been presented to parameterize tubular tri-
angular meshes. The algorithm overcomes some problems existing in conventional cutting-
based algorithms. An adaptive surface fitting algorithm using periodic T-splines has been

developed. These techniques can deal with tubular models very well.

Fourth, we have presented algorithms for conversion between a surface represented in
T-splines and hierarchical NURBS. These algorithms were well designed by considering
the characteristics of both representations. With these algorithms, the user can flatten a
hierarchical NURBS surface to create a T-spline which offers a more intuitive interface
for interactive sculpturing or extract hierarchies from a T-spline surface for multiresolution

analysis.

In summary, T-splines are relatively new and there are many problems that remain to
be solved. Our research has provided some new algorithms to the T-spline family. They
also demonstrate that T-splines are a flexible and powerful representation for free-form
surfaces. In particular, T-splines are an ideal surface representation for applications that

have unevenly distributed data or features and need some adaptive processing.
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7.2 Future work

The techniques in this research also contain some limitations, which bring some topics for

further studies:

e Some algorithms presented in the thesis (for example, the algorithms for the conver-
sion between T-splines and hierarchical NURBS) are heuristic. Although they might
not be the optimal solutions, the heuristic algorithms provide a good foundation for
future work in designing optimal algorithms that are of interest in both theoretical

and practical perspectives.

¢ We have shown the complexity of T-spline knot removal, especially in removing
more than one control point. However, the algorithm only considers exact removal
of control points and might not be efficient in handling complicated situations. An
interesting problem is to identify various situations and to give a neat solution to knot
removal. In addition, from the application’s viewpoint, it would be more interesting
to consider approximate knot removal. That is to remove the control point(s) such

that the surface is changed within a given tolerance.

e The surface fitting problem this thesis focused on is mainly for the models that have
relatively simple topology. In general, fitting arbitrarily topological triangular meshes
is more challenging, but it is more common in surface reconstruction. Our ultimate
goal is to develop techniques that can efficiently convert an arbitrarily topological
triangular mesh into spline surfaces. Obviously, the results produced in the thesis
provide a good base for the general situation. For example, to approximate a model
of arbitrary topology, we may first divide it into a number of disc homeomorphic parts
using segmentation [5, 133] techniques. Then, each of these parts can be individually
approximated using our proposed method under some continuity constraints on the
shared boundaries. Alternatively, we can join these parts together afterwards using

surface stitching techniques.
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