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Abstract

In order to make use of the vast amount of multimedia data, efficient and effective

techniques to analyze and retrieve multimedia information based on its content need to

be developed. In this thesis, we investigate three issues related to image retrieval and

classification based on MPEG-7 descriptors.

Firstly, we propose a new similarity measure for one MPEG-7 color descriptor based

on Earth Mover’s Distance (EMD). To reduce the computation time, M-tree index and

lower bound of EMD are discussed, which can prune the images far from the query image.

To combine two or more different MPEG-7 descriptors to improve the retrieval perfor-

mance, a descriptor-weighting scheme for combining multiple MPEG-7 visual descriptors

is discussed. An optimization model is built to find a set of optimal weights for a set

of corresponding descriptors. Explicit solutions can be derived by Lagrange multipliers,

which are optimal and easy to calculate.

Secondly, in order to minimize the semantic gap, an object category classification

model based on regions is proposed. This model can learn and classify objects by train-

ing the model with various objects within the same category. Each object category

is represented by a constellation of representative parts, i.e., the regions. During the

learning procedure, the similarity distance between any two regions is calculated and ac-

cumulated as a frequency measure. Then the regions with small frequency of appearance

are removed from the image model iteratively. At last, a small set of representative re-

gions with suitable weights are kept as the image model. When this image model is used

for classification of object category, the similarity distance based on appearance of single

region and the geometric distortion between a pair of regions are both computed. Fur-

thermore, a graph matching algorithm is applied to use the nested relationships between

the regions to improve the performance.
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Finally, to handle multimedia applications where data size is usually very large, we

propose an EASIER sampling algorithm and verify it with various applications. The pro-

posed EASIER is a new and efficient method for sampling of large and noisy multimedia

data. It compares the histograms of the sample set and the whole set to estimate the

representativeness of the sample. EASIER deals with noise in an elegant manner, which

simple random sampling (SRS) and other methods are not able to deal with. We exper-

iment on image and audio datasets. Comparison with SRS and other sampling methods

shows that EASIER is vastly superior in terms of sample representativeness particularly

for small sample sizes, although time-wise it is comparable to SRS, the least expensive

method in computation time.
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Chapter 1

Introduction

Over the last a few years, with the huge amount increase of digital multimedia data,

there is a need for more efficient ways to manage and retrieve multimedia data, based on

their content. Although some techniques are presented to meet the requirements, such as

content-based image retrieval (CBIR), these techniques are still difficult for the typical

end users, especially for those without basic image knowledge. The main difficulties

include:

• Lack of standard and powerful description. Identifying and managing the multi-

media data efficiently is becoming more difficult. ,

• Lack of semantic object description. It is still hard to depict the object clearly and

precisely based on low-level features.

• Lack of efficient management for huge multimedia data. It is difficult to handle

large amount of multimedia data for various applications.

The new MPEG-7 standard, formally named “Multimedia Content Description In-

terface”, has been developed to address the issue of audiovisual information description.

MPEG-7 standard can improve current multimedia applications and enable new exciting

ones such as efficient organization, management, and retrieval of multimedia content. It

1
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Chapter 1. Introduction

Figure 1.1: The MPEG-7 Multimedia Description Schemes.

provides a rich set of standard description tools to describe multimedia content, such as

the description of image content - visual descriptors, and Multimedia Description Schemes

(MDS). Figure 1.1 illustrates the structure of MPEG-7 MDS. However, methods of using

these description tools to achieve efficient and effective content-based retrieval still need

to be further investigated. For image retrieval based on low-level descriptors such as

color, texture and shape, similarity measures between images are important and MPEG-

7 does not standardize the measures. More advanced search approaches, such as search

based on multi-feature, multi-region or the combination need further research.

One of the major issues in content-based image retrieval is the so-called semantic gap

- the mismatch between the capabilities of current CBIR systems and the conceptual

needs of users, as well as using low-level features to correspond to high-level abstractions

[7]. MPEG-7 provides various tools to annotate the images at the semantic level, and

it will be helpful to bridge this gap. But the extraction of high-level semantics from

low-level features, or the extraction of high level descriptors from low-level descriptors is

still a research challenge.

2
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Chapter 1. Introduction

1.1 Objectives

The purpose of our work is to put forward some approaches to increase the effect of image

retrieval and classification based on MPEG-7 descriptors, and minimize the semantic gap.

Summarizing the issues above, we have the following objectives.

1. Propose and implement an image retrieval system based on MPEG-7 descriptors.

Briefly speaking, we want to create a MPEG-7 compliance CBIR system with multiple

functions. It is a distributed image retrieval system, which can search based on regions

or whole images. Multiple descriptors are used to get the retrieval results. During

this procedure, some algorithms about multiple descriptors retrieval and region-based

retrieval will be investigated.

2. Try to minimize the semantic gap between low-level features and semantic require-

ments, such as the object-based image retrieval and classification. Besides the retrieval

of whole image based on low-level features, we also want to identify the objects in the

images. Currently research works attempt to obtain and use the semantics of image

to perform better retrieval. Towards this goal, segmentation of an image into regions

has been used in recent years, since local properties of regions can help the matching of

objects between images, and thereby contribute towards a more effective CBIR system.

Despite the effort of researchers over a number of decades, this objective has remained

unsolved for the most part. Although reasonably successful attempts have been made for

certain classes of objects, such as human faces, no satisfactory methods exist that work

with any category of object. Our goal is to be able to identify object, especially object

categories within images. Then user can put semantic labels to the object categories. It

may be useful for semantic approach. As regions can represent the objects and MPEG-7

can be applied to the region of images, we will build a region-based object model to

represent the objects and the object categories.

3
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3. Efficient management issues related to multimedia content, such as sampling for

large and noisy dataset. As the amount of multimedia data is increasing day-by-day,

thanks to less expensive storage devices and increasing numbers of information sources,

many multimedia applications, such as machine learning algorithms, are faced with large-

sized and noisy datasets. Fortunately, the use of a good sampling set can represent the

data properly. But using a simple random sample may not obtain satisfactory results,

because such a sample may not adequately represent the large and noisy dataset, due

to its blind approach in selecting samples. The difficulty is particularly apparent for

huge datasets where, due to memory constraints, only very small sample sizes can be

used. This is typically the case for multimedia applications, where data size is usually

very large. A new and effective method to sample of large and noisy multimedia data is

important for various multimedia applications.

1.2 Main contributions

In this thesis, an overall system of image related management and retrieval is proposed

and implemented. Figure 1.2 describes the overview structure of the work. The main

contributions of the thesis are summarized as follows:

1. Investigate image retrieval based on MPEG-7 descriptors. At the beginning, a bet-

ter distance measure is applied to a visual descriptor, Dominant Color Descriptor (DCD),

with suitable index method. To apply two or more different descriptors to improve the

results, a descriptor-weighting scheme for combining multiple MPEG-7 visual descriptors

is discussed. An optimization model is built to find a set of optimal weights for a set of

descriptors. Explicit solutions can be derived by Lagrange multipliers, which are optimal

and easy to calculate. The calculation procedure is fully automatic and no manual work

is needed. Experiments show that better retrieval results can be achieved compared with

4
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using single descriptor only. The results are also better than simple average combination

of descriptors.

2. Region-based image retrieval and classification. An object category classification

model based on regions is proposed in this thesis. The region-based model can learn and

classify objects, by training the model with different objects within the same category.

Each object category is represented by a constellation of representative parts, i.e., the

regions. These regions are detected by salient region detector over suitable scales. The

standard conjunction rule is applied to construct the image model. During the learning

procedure, the similarity distance between any two regions is calculated and accumulated

as a frequency measure. This measure is inversely proportional to the probability of a

match. The regions with small frequency of appearance are removed from the image

model iteratively. After clustering, a small set of representative regions are kept as the

image model. Each representative region in the model has a representation weight, which

is normalized based on the number of regions in corresponding clusters. When this image

model is used for object classification, the similarity distance based on appearance of

single region and the geometric distortion between a pair of regions are both considered.

In order to make use of the nested spatial relationships between the regions, we further

introduce a graph-based matching algorithm to find the corresponding regions in the

image model and images in the database. Experimental results show that the image

model based on representative regions is easy to calculate and can obtain efficient results.

3. Propose an EASIER sampling algorithm and verify it with various applications.

The proposed EASIER algorithm is used for sampling of large and noisy multimedia

data. It compares the histograms of the sample set and the whole set to estimate the

representativeness of the sample. EASIER deals with noise in an elegant manner which

simple random sampling (SRS) and other methods are not able to deal with. We exper-

iment on image and audio datasets. Comparison with SRS and other sampling methods

5
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Figure 1.2: The basic structure of whole image retrieval and classification system.

shows that the proposed EASIER is vastly superior in terms of sample representative-

ness, particularly for small sample sizes although time-wise it is comparable to SRS, the

least expensive method in computation time.

1.3 Organization of the thesis

The structure of the thesis is as follows. In Chapter 2, some background knowledge and

related techniques in image retrieval and management are reviewed. The overview of

MPEG-7 standard and visual descriptors is also presented in this chapter. Chapter 3

introduces several approaches of image retrieval based on MPEG-7 descriptors, includ-

ing single and combination of multiple descriptors. In Chapter 4, we investigate scale

invariant points, features and their applications. A constellation model based on salient

regions is proposed for classification of object categories. We describe how the constel-

lation model is trained and applied for classification in detail. In Chapter 5, a sampling

algorithm EASIER is proposed to efficiently select representative samples from the large

and noisy dataset. The performance of EASIER is evaluated using various applications.

Finally, in Chapter 6, we draw conclusions about the approaches related to image retrieval

and management and discuss the future work.

6
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Chapter 2

Literature review

In this chapter, literatures related to image retrieval and organization methods are re-

viewed for three specific areas, including image description and retrieval, object repre-

sentation and classification, and efficient sampling for multimedia database.

2.1 Content-based image retrieval

With the huge amount of digital images, how to effectively index and retrieve the images

becomes a problem. Traditional text-based index methods can be used to retrieve images

which are annotated with descriptive text. Although there are some tools for automatic

image annotation [8, 9], mostly they only provided simple classes labels. The simple

annotations are insufficient to capture all the image content, and cannot be described

in a standard way. Creating detail text annotations for the images is usually manual

and very time consuming These text-based index methods are not practical for visual

information indexing.

As a result, content-based image retrieval (CBIR) systems attempt to overcome these

problems of text-based searching. CBIR is the attempt to search for visual content

in media databases by deriving meaningful features and measuring the dissimilarity of

visual objects based on distance functions [10]. In [11], almost 300 key theoretical and

7

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2. Literature review

empirical contributions in the current decade related to image retrieval and automatic

image annotation are analyzed.

CBIR provides powerful tools to automatically extract and compare the visual fea-

tures, and have the capability to retrieve images. Users can specify visual features of im-

ages in more direct and natural ways than the text specifications for traditional databases.

One powerful approach is to let the users express the query terms with images rather

than words.

For content based image retrieval, users can use different methods to specify a visual

query, such as query by example, query by sketch, and query by keywords etc. Query

by example (QBE) is to search for images based on an existing image [12]. The system

automatically compares the query image to those in the database and retrieves the most

similar ones. This image-based query is very intuitive and widely used in many image

retrieval systems. Another method is known as query by sketch [12]. It uses some alter-

nate specifications to represent a query image (the most natural method is by sketching).

Query by sketch has the advantage that no initial image is required to perform a query.

These approaches can be used independently or integrated with text-based methods.

In principle, similarity queries have two basic types:

1. Range query: Given a query image, get all images within a given maximum search

distance (threshold) to the query image.

2. K-Nearest-Neighborhood (KNN) query: Given a query image and an integer K >

1, get the top K nearest neighbors in distance to the query image.

CBIR has two main steps: feature extraction and similarity measurement. Firstly,

CBIR system must be able to analyze an image to extract key visual features such as

shape, color and texture. Then the system requires similarity measures to determine

the similarity between two images. In addition, to improve the retrieval efficiency, the

system can build indices based on the extracted features. Currently there are many CBIR

8
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systems, such as the famous QBIC (IBM) [13], ImageScape [14], and imgSeek [15]. They

provide different methods to query, including query by image, query by sketch, query

by region, and query by combination of several features. These systems retrieve images

only by similarity of appearance, using low level visual features such as color, texture or

shape. They use their own feature vectors rather than MPEG-7 descriptors. With the

MPEG-7 standardization, we are starting to see a few prototypes of MPEG-7 compliant

image retrieval systems, such as “MPEG-7 Homogeneous Texture Descriptor Demo” [16],

“PicSom” (content-based image retrieval with self-organizing maps) [17].

2.2 MPEG-7 standard

In this section, we briefly introduce the MPEG-7 standard, especially the visual descrip-

tors in MPEG-7.

2.2.1 Overview of MPEG-7 standard

The tremendous growth of multimedia content is driving the need for more effective and

efficient methods for storing, filtering and retrieving audiovisual data. MPEG-7 is a

multimedia standard, which can further improve content-based retrieval by providing a

rich set of standardized descriptors and description schemas for describing multimedia

content. The scope of MPEG-7 is shown in Figure 2.1. The normative part of MPEG-7

includes Descriptors and Descriptor Schemas, while how to extract (produce) and use

these descriptions for further processing (e.g. retrieval systems) are not standardized. It

gives maximum flexibility to various applications. Both automatic systems and human

users, which process audiovisual information, are within the scope of MPEG-7 [18].

MPEG-7 provides a comprehensive set of standardized tools to describe multimedia

content, such as Descriptors (Ds), Descriptor Schemas (DSs), and Description Defini-

tion Language (DDL). Figure 2.2 shows the relationships among Ds, DSs and DDL.

9
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Figure 2.1: The scope of MPEG-7 standard.

Figure 2.2: The relationship among the MPEG-7 elements.

Descriptors are defined primarily to describe low-level features, and shall be extracted

automatically in most applications. They can be represented in textual format (XML),

in binary format (BiM, Binary format for Multimedia description streams), or a mixture

of the two formats, according to different applications.

2.2.2 Visual descriptors in MPEG-7 standard

In this section, we give a brief introduction for MPEG-7 visual descriptors. The MPEG-

7 visual descriptors define a rich set of image and video features, which can describe

various aspects of visual content in a compact style. All visual descriptors and basic

10
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Figure 2.3: An overview of MPEG-7 visual descriptors.

structures in MPEG-7 are shown in Figure 2.3. These low-level descriptors include color,

texture, shape, and motion descriptors, which describe different features of visual content,

and a face-recognition descriptor, which is application-dependent. More details of these

descriptors can be found in the MPEG-7 visual standard [2].

2.2.2.1 Color descriptors

As shown in Figure 2.3, currently MPEG-7 color descriptors include color supporting

tools and color feature descriptors.
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Color supporting tools include Color Space Descriptor and Color Quantization De-

scriptor. Color Space Descriptor specifies the selection of a color space to be used in other

color descriptors. The color spaces used in MPEG-7 include RGB, YCbCr, HSV (hue-

saturation-value), HMMD (Hue-Max-Min-Difference), Monochrome and Linear transfor-

mation matrix with reference to RGB. Among them HMMD is a new color space defined

for MPEG-7. Color Space Descriptor uses continuous value to define the color com-

ponents and quantization is necessary to form the discrete representation. The Color

Quantization Descriptor specifies the number of quantization levels for each color com-

ponent in the color space. It is assumed that each of the color components in a given

color space uses uniform quantization.

Besides the color supporting tools, color descriptors consist of a Dominant Color

Descriptor (DCD), a Color Layout Descriptor (CLD), and some color histogram descrip-

tors, including Scalable Color Descriptor (SCD), Group of Frames/Picture Descriptor

(GoF/GoP) and Color Structure Descriptor (CSD). These descriptors represent many

different aspects of the color feature, including spatial layout and structure of color and

color distribution. Figure 2.4 gives an example of color structure representation.

DCD describes the dominant colors of an image. It can specify a small number of

dominant color values and their statistical properties including percentage and variance.

DCD provides an effective, compact and intuitive description of the representative colors

in an image or region. CSD is identical in form to a color histogram but is semantically

different. Both the color distribution of the image (like a color histogram) and the local

spatial structure of the color are represented by CSD. CSD can be used to distinguish

the images with same color histogram because of the additional spatial information of

colors.

CLD captures the spatial layout of the dominant colors on a grid superimposed on

the region of interest [18]. It is a very compact descriptor that is effective in high-speed

12
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Figure 2.4: Color structure histogram accumulation for CSD, which represents the infor-
mation of color structure [2].

browsing and search applications. SCD is derived from a color histogram with fixed color

space quantization in the HSV color space. A novel Haar transform coefficient is used to

encode the color histogram. GoF/GoP descriptor is an extension of SCD to be used for

a collection of pictures or a group of frames from a video. It specifies several different

ways to construct the color histogram.

2.2.2.2 Texture descriptors

Texture, is a powerful low-level feature for image search and retrieval applications. The

texture descriptors in MPEG-7 can be used to browse and retrieve image and video

databases. Currently Homogenous Texture Descriptor (HTD), Texture Browsing De-

scriptor (TBD) and Edge Histogram Descriptor (EHD) are included in MPEG-7. HTD

quantitatively characterizes the homogeneous texture regions for similarity retrieval.

TBD provides the characterization of perceptual attributes such as directionality, regular-

ity, and coarseness of a texture. It is based on computation of the local spatial-frequency

statistics of the texture. EHD is used for the region which is not homogeneous in texture
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properties [19]. These three descriptors are suitable for similarity matching and retrieval,

of both homogenous (HTD and TBD) and non-homogenous texture (EHD).

2.2.2.3 Shape descriptors

MPEG-7 provides three shape descriptors both for 2-D and 3-D objects, including Con-

tour Shape Descriptor, Region Shape Descriptor and 3-D Shape Descriptor. Contour

Shape Descriptor can efficiently describe objects whose contours represent their charac-

teristic shape features. Region Shape Descriptor expresses pixel distribution within an

object or region. They are both used for 2-D objects. 3-D Shape Descriptor expresses

characteristic features of objects represented as discrete polygonal meshes.

2.2.2.4 Other visual descriptors

1. Motion descriptors

All the color, texture and shape descriptor in MPEG-7 can be used to retrieve or

index images of video sequences. Besides these visual descriptors described above, four

motion descriptors are specially developed to capture and describe essential motion char-

acteristics in MPEG-7. They are Motion Activity Descriptor, Camera Motion Descriptor,

Motion Trajectory Descriptor and Parametric Motion Descriptor.

2. Face Recognition Descriptor

Here is also an application-dependent visual descriptor, Face Recognition Descriptor.

The Face Recognition descriptor is not associated with any particular visual feature.

It can be used to describe a human face for applications requiring the matching and

retrieval of face images [2]. This descriptor is based on the Principal Component Analysis

(PCA) technique. The Face Recognition Descriptor is in fact a 48-element vector which

represents the projection of a face vector onto a set of 48 basis vectors (face patterns).

These basis vectors are extracted from eigenvectors of a set of normalized training face

images.
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2.3 Image retrieval based on multiple features

Since its advent, content-based image retrieval (CBIR) has attracted great research

attention. Early research of CBIR has focused on just one low-level visual feature. As

features extracted from different techniques emphasize image attributes in different do-

mains, it would be more accurate to use not only one feature, but also the combination

of multiple features. Combination of multiple features within a single model has been

investigated as a promising technique to increase the retrieval efficiency. In image re-

trieval, queries can use several features such as color, shape, texture or text. In such a

case, the accuracy and efficiency of retrieval depend much on how a multi-features query

is decoupled into search of each individual feature.

The simple and easy way is average combination. In [20] the color, texture and other

features are combined directly using specified weights to obtain a better result as in

Eq. 2.1, where fi is the ith feature and wfi
is the corresponding weigh for fi. dist(fi) is

the distance calculated based on fi only. One optimization challenge is to guarantee the

correct retrieval of the k top-ranked results efficiently, when combining multi-features

result lists. Previously significant work in this area is in [21]. The search involves a

sorted access phase and a random access phase over multiple features. In sorted access

phase, the result lists ordered by ascending distance are collected based on each feature

separately (each query is called an atomic query). In next random access phase, the

distances of objects based on other features are computed. After these two phases, all

candidate objects can get a combined distance based on some combination functions and

its distance of each feature. The combination function is based on fuzzy mathematic.

This algorithm is asymptotically optimal in terms of database size with arbitrarily high

probability, however only for uniform score distributions — which very rarely occur in
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practice.

distance =
∑

i

wfi
dist(fi) (Eq. 2.1)

In [22] Quick-Combine algorithm is proposed for combining multi-feature result lists.

Compared with Fagin’s algorithm [21] an improved termination condition is developed in

combination with a heuristic control flow adapting itself narrowly to the particular score

distribution. Top-ranked results can be computed and output incrementally.

It can be seen that the previous methods focus on how to efficiently terminate the

combination procedure, i.e., obtain the retrieval results. The weights of different features

are based on fuzzy mathematic and cannot adjust. As in linear combination, feature

weighting is an important issue, there are various techniques applied to dynamically

adjust the weights of different features. In [23], a neural network model for merging

heterogeneous features is presented. This model can be used to determine nonlinear

relationship between features. In [24], a vigorous optimization formulation is presented

to effectively learn from the users when there are multiple visual features in the retrieval

system. Lagrange multipliers are applied to derive explicit solutions, which are both

optimal and fast to compute. In [25], a weighted cascading algorithm is applied to

optimize the search time when multiple features are used to retrieve. The basic procedure

is that each feature is compared in sequence and has a relative importance. The rank

created by one feature determines the weight of next feature. The features with lower

weight use a subset of the total database determined by the higher weight features. In

[26], instead of giving every feature a weight explicitly, the importance of a feature is

regulated implicitly by learning a user’s perception based on Bayesian Learning. Then

the process of feature combination is adaptive. In [27], the weight of every feature is

determined gradually according to user’s retrieval goal. Overall, it can be seen that

16

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2. Literature review

different weights for features represent the corresponding importance. The self-adaptive

weights can approximate to a user’s perception better.

2.4 Region-based image retrieval and object classifi-

cation

Recently, region and object based image retrieval has attracted significant research at-

tention. Users usually focus on part of the image, which can be represented as the

Region-Of-Interest (ROI). The difficulty in object-based image retrieval is the identifica-

tion of an object under different viewing conditions. In this case, the query might contain

objects at a different scale and orientation from those present in the database. Hence,

for object recognition, this factor should also be considered in addition to the common

visual features, such as color, texture and shape.

2.4.1 Points focus on local features

Representing an image by local interest points allows efficient retrieval of images, as only

local information is required to be stored. Different point detectors have been proposed

and applied for image matching, such as Harris points [28], extreme in the normalized

scale-space of the Laplacian of the image [29] and Harris-Laplacian, a combination of

both [6]. An overview of different interest points is provided in [30]. Besides the classic

corner detectors, wavelet-based detector is also widely used for point detection. In [31],

a detector based on wavelet transform to detect global variations as well as local ones is

presented. The salient point detector can extract points where variations occur in the

image, whether they are corner-like or not. In [32] the interest points are estimated with

significant luminance variations. A small region around the interest point is located as

an image patch. In [33] and [34], the color information is involved in the detection of

interest points.
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After the detection of scale-space extreme points, corresponding features can be ex-

tracted at the points to represent the objects. These scale and orientation invariant

features which represent the images are used in image retrieval. In [6] the scale-invariant

points are detected by the Harris-Laplacian detector in a multiple scale representation of

image, which is built by the convolution with a series Gaussian kernel. The correspond-

ing derivatives at the scale-invariant points are calculated as orientation-invariant feature

vectors. Rotation invariance is obtained by selecting the derivatives in the gradient di-

rection. In [35] key points are identified by finding peaks of a Difference-of-Gaussian

(DOG) function convolved with different scales of an image. The SIFT (Scale Invariant

Feature Transform) keys are created by representing blurred image gradients in multiple

orientation planes and at multiple scales.

To evaluate the similarity between images based on the points, the distance between

the set of points can be calculate using different methods. The distance can be directly

used for comparison, or some alternative measures based on the distance can be evaluated.

In [6] a voting algorithm is used to select the most similar images in the database. The

distance between two matched points is evaluated by a vote, with the image getting the

highest number of votes being the most similar results. In [36] the points are sampled

from contours on the shape of objects. To reduce the details of the local points, geometric

blur is applied as the features. The matching points are determined by a complex Binary

Quadratic Optimization model. The results demonstrate that using one image as training

can obtain acceptable results. In [37], sparse feature-based approach is proposed for

comparing hierarchical object models to multi-scale features extracted from image data.

This measure is applied for evaluating the likelihood of object models. Furthermore, the

notion of feature likelihood maps based on dense filter is developed to avoid an explicit

feature extraction step and to evaluate models using a function defined directly from the

image data.
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As the target is to find the identical points by the suitable distance of point matching,

these points and their features focus on the local characteristics of the specific part. For

example Lowe’s SIFT descriptor [35] has been shown in various studies to perform very

well particularly at tasks where one is looking for identical points in different images.

These methods are difficult to apply for the classification of object category, as the

objects in different images may not be the same object.

2.4.2 Recognition of object categories

Recognizing categories of objects in ordinary color images is a challenging problem. Im-

ages may contain many different objects, from different viewpoints, and in different ar-

rangements. There are several appearance-based approaches for object class recognition.

Previously these methods mostly characterize the object based on the whole image. They

are not robust enough to object occlusion or variation. To overcome these problems, ob-

ject recognition based on some local features are proposed. In these methods the objects

are represented by a number of key points or regions.

The collection of representative regions is a powerful representation of object category.

In [38], the salient regions over both location and scale are used to model the objects.

Shape, appearance, occlusion and relative scale are all represented with a probabilistic

model. An entropy-based feature detector is used to select regions and their scale within

the image. The expectation-maximization in a maximum-likelihood setting is used to

estimated the parameters of the model and Bayesian model is used to classify the images.

In [39] the prior knowledge of unrelated categories are incorporated to reduce the number

of training images. However, the high computation costs of the joined estimation limits

their methods to a small number of object parts. In [40], a class of distinguished regions

based on detecting the most salient convex local arrangements of contours in the image is

introduced. The regions capture shape which are invariant to scale changes and rotations,

and robust against clutter, occlusions and spurious edge detections.
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The spatial relationship between the regions is an effective feature for the classification

of object categories. As attributed relational graph (ARG) can represent and compare

entities and relationships as parts of a global structure that captures mutual dependen-

cies, the representation of object category can be a kind of ARG. So that the ARG

matching algorithm naturally follows as the key procedure for the similarity matching of

the model of object category. In [41] the random attributed relational graph (RARG)

based on the traditional ARG is developed for the detection of part-based static concept

(object and scene). The model attaches the ARG with random variables, which are used

to capture the statistics of part appearance features and part relational features. RARG

can be learned from the training images in an unsupervised way.

Regarding learning of image similarity, there has been much work on similarity learn-

ing based on graph-based presentation. The definition of similarity between two graphs

mainly includes two types of approaches. One is transformation based similarity defini-

tion. Most of the prior work is based on computing the cost of transformation. Typical

examples include string or graph edit distance, Earth Mover’s Distance (EMD) [3], etc.

In [42], EMD is modified as nested EMD (nEMD) to measure the similarity between two

graphs. This distance is applied to a MPEG-7 shape descriptor, Perceptual 3D Shape

descriptor [43].

The other is probabilistic method for matching the vertices of ARGs. For example,

Bayesian methods have been proposed and extended for matching structural or labeled

graphs in [41]. The similarity between graphs is defined as the probability ratio (also

known as odds) of whether or not one ARG is transformed from the other. The relation-

ships between the nodes of model and images form an association graph. The association

graph is used to define an undirected graphical model - Markov Random Field (MRF)

- for the computing of the probability ratio. As proved in the paper, the probability

ratio is related to the partition function of MRF. Then the partition function or its

approximation is calculated to obtain the ratio.
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In summary, all these approaches rely on appearance or spatial information of the

objects. As we cannot manually describe different object classes with reliable criterion,

we have to learn the corresponding characteristic from image data.

2.5 Handling large multimedia database

With the availability of the Internet and the reduction in price of digital cameras and

camcorders, we are experiencing a high increase in the amount of multimedia information.

The need to efficiently analyze and manage the multimedia data becomes essential. In

order to make use of the vast amount of multimedia data, efficient techniques to analyze

and organize multimedia information based on its content need to be developed for various

related applications. Here we focus on the machine learning area. Usually, machine

learning approaches are suitable for the modest-sized datasets. Larger-sized datasets can

result in new problems and difficulties.

2.5.1 Multimedia data sampling

There are various algorithms for data sampling, such as the most simple method, simple

random sampling (SRS) [44, 45]. SRS is fast and easy to implement. The use of a simple,

random sample may, however, lead to unsatisfactory results. The problem is that such

a sample may not adequately represent the entire dataset due to random fluctuations in

the sampling process. This difficulty is particularly apparent when small sample sizes

are needed [1].

Theoretical analysis and practical experience have shown that a classifier can often

be built from fewer instances if the learning algorithm is allowed to build some artificial

instances to help the learning. Membership queries to be labeled by domain expert,

are also helpful [46, 47]. A membership query returns some information: whether the

queried element is a member of the unknown set. For example, kernel classifiers such
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as support vector machines or Bayesian kernel classifiers classify data using the most

informative data instances (support vectors). This makes them natural candidates for

instance selection procedures. However, like most machine learning algorithms, they

are generally trained with a randomly selected classified training set that is classified

in advance. Active selection of instances can significantly improve the generalization

performance of a training algorithm.

Active learning identifies a subset of the input data used in the learning modelling,

as the learning algorithm assumes some control over the training subset of the data [48],

that is, an algorithm for choosing which instances to request for subsequent training. It

has been proposed in various algorithms [49, 50, 51]. In many settings, pool-based active

learning [52] is used. Instead of using a randomly selected training set, the learner has

access to a pool of unlabeled instances and can request the labels for some of them. In

[53] an algorithm based on “version space” for performing active learning with support

vector machines is introduced. Uncertainty sampling [54, 55] is another approach for

active learning. This iteratively requests class labels for training instances whose classes

are uncertain, despite the previous labeled instances. In [56], an active learning method

that uses adaptive resampling in a natural way to significantly reduce the size of required

labeled set is proposed.

The learning-curve sampling method [57] is an approach for applying machine learn-

ing algorithms to large datasets. This method is based on the observation that the

computational cost for training a model increases when the sample size of training data

is increased, whereas the accuracy of the model does not improve so much. Therefore,

this method tries to find the trade off between training cost and accuracy. It monitors

the increasing cost and performance when larger and larger amounts of data are used for

training. When future cost outweighs future benefit, the training is terminated.

Distributed and/or parallel learning has also been used to efficiently handle very large

datasets. There has been extensive research on clustering and it has been applied to many
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domains. Previous work mainly focuses on how to divide the dataset and organize the

results of subsets efficiently. Bagging [58] is a technique that uses repeated random

samples of dataset, therefore the sum of cardinalities of subsets is greater than the total

size of the initial dataset. In addition, in [59] a more intelligent way of partitioning

into disjoint subsets using clustering is proposed. After that, bagging technology is used

to combine the results. Clustering technique groups similar data together instead of

choosing elements randomly. This approach attempts to choose “similar” elements for a

partition.

In [1] EASE (Epsilon Approximation Sampling Enabled) is proposed to output a

sample set from the original dataset. It starts with a relatively large simple random

sample of transactions and iteratively halves this sample to create a final subsample

whose “distance” from the complete database is as small as possible. For computational

efficiency, it defines the subsample as close to the original database if the high-level

aggregates of the subsample normalized by the total number of data points are close

to the normalized aggregates in the database. These normalized aggregates typically

correspond to 1-itemset or 2-itemset supports in the association-rule setting, or, in the

setting of a contingency table, to relative marginal or cell frequencies. The key innovation

of EASE lies in the method by which the final subsample is obtained. Unlike FAST [60],

which obtains the final subsample by trimming away outliers in a process of quasigreedy

descent, EASE uses an approximation method to obtain the final subsample by a process

of repeated halving. EASE provides a guaranteed upper bound on the distance between

the initial sample and final subsample. In addition, EASE can process transactions on-

the-fly, that is, a transaction is examined only once to determine whether it belongs

to the final subsample. Moreover, the average time needed to process a transaction is

proportional to the number of items in that transaction. EASE leads to much better

estimation of frequencies than SRS. Experiments in the context of both association-rule
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mining and classical contingency-table analysis indicate that EASE outperforms both

FAST and SRS.

2.5.2 Noise in multimedia database

In machine learning, the problem of noise cleansing has attracted much attention. For a

noisy database, SRS cannot effectively remove noise, as it can only randomly select some

samples. The percentage of noise in the sample set remains the same as in the original

set. These problems also exist in other traditional sampling algorithms. For example,

in stratified sampling, the original dataset is divided into mutually disjoint parts called

strata. A stratified sample is obtained by applying SRS over each stratum. So, the

problems that existed with SRS also remain for stratified sampling. Similarly, another

example is cluster sampling. In cluster sampling, the original dataset is grouped into

mutually disjoint clusters. Then SRS is applied to each cluster. Considering that these

clusters are created based on some database features (e.g., each page in the database is

considered a cluster and SRS is applied over each page to get a sample), the problems

that existed with SRS continue to remain in the cluster samples.

Many inductive learning algorithms have a mechanism to handle noise in the training

samples [61]. For a noise elimination algorithm, there are normally two opposite ap-

proaches to achieve the noise cleansing procedure: selecting “good” examples or deleting

“bad” examples. To distinguish “bad” instances from normal cases, various strategies

have been designed. Among them, the most general techniques are motivated by pruning

the decision tree to remove the mislabeled samples. Pruning on a decision tree is designed

to reduce the chances that the tree is overfitting to noise. To efficiently remove some

noisy data, some outlier preprocessing schemes are employed. To handle class noise from

large and distributed datasets, a partitioning filter (PF) was proposed in [62], where noise

classifiers learned from small subsets are integrated together to identify noisy examples.
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These sampling approaches are usually used for text classification mainly and not

applied in multimedia area, to the best of our knowledge. Besides, the procedure of

training set selection is dependent on the process of classification. In our work, we focus

on how to apply sampling algorithm for efficient training set selection which is separated

from the classification process.

2.6 Summary

In this chapter, some image retrieval and object classification related issues are re-

viewed. MPEG-7 standard offers rich set of descriptors and enables the needed efficient

and effective access (search, filtering and browsing) to multimedia content. MPEG-7

visual descriptors are outlined in this chapter, including color, texture, shape and some

other descriptors. CBIR system should also involve more rich and efficient image de-

scriptions relating to semantics, scene properties and object recognition. It is related to

the development of technologies about image indexing, browsing and classification. The

local properties such as points and regions are powerful tools for the object based image

retrieval and classification. To deal with the large multimedia database, sampling is an

effective method to help find the representative sample set.
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Image retrieval based on MPEG-7
visual descriptors

As MPEG-7 provides a rich set of description tools to describe the image content, image

retrieval based on MPEG-7 visual descriptors is a promising approach to obtain better

retrieval performance. MPEG-7 standard also gives maximum flexibility to various ap-

plications, as the extraction and application of these descriptions are not standardized.

In this chapter, we address the issue on how to improve the CBIR efficiency based on

MPEG-7 visual descriptors, which are extracted from whole images. Firstly, we propose

the use of Earth Mover’s Distance (EMD) as the distance measure of Dominant Color

Descriptor (DCD), and compare the relative advantages and disadvantages of two index

approaches, EMD lower bound and M-tree. After that, an optimization model of im-

age retrieval based on multiple descriptors is introduced. It combines several descriptors

using optimal weights sum function to obtain combination results.

3.1 The application of EMD for the distance com-

putation of DCD

In this section, a new distance measure to calculate the similarity of Dominant Color

Descriptor is discussed. Using EMD, better retrieval results can be obtained, compared

with those obtained from the original MPEG-7 reference software - eXperiment Model

26

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3. Image retrieval based on MPEG-7 visual descriptors

(XM) [4]. XM software is the simulation platform for the MPEG-7 descriptors, descrip-

tion schemes, coding schemes and description definition language. In addition to the

normative components, the simulation platform has also some non-normative compo-

nents, essentially to execute some procedural code to be executed on the data structures.

The data structures and the procedural codes together form the applications, i.e., the

extraction and comparison of descriptors.

3.1.1 Dominant Color Descriptor and its distance computation

Dominant Color Descriptor is a color descriptor that describes the dominant colors of

whole image or any arbitrary shaped region. It provides an effective, compact and in-

tuitive description of the dominant colors in an image or region [18]. It can specify

a small number of representative color values and their statistical properties including

percentage and variance. Based on single or several dominant color values, users can

efficiently browse image database or retrieve similar images. DCD consists of the Color

Index (ci), Percentage (pi), Color Variance (vi), and Spatial Coherency (SC, s). The last

two parameters are optional. Then the DCD is defined by:

DCD = {(ci, pi, vi), s}, i = 1, ..., N (Eq. 3.1)

where N is the number of the colors and
∑N

i=1 pi = 1. The maximum N is eight. There

is one overall Spatial Coherency (s) value for the whole image, and several groups of

(ci, pi, vi) for the corresponding dominant colors, which can be used to compute the

visual difference between images based on color.

In [4], some informative examples that illustrate the extraction of descriptions from

multimedia content are provided, which are non-normative and optional in MPEG-7.

For DCD, these representative colors are normally obtained by clustering colors into a

small number of representative colors. After that, color quantization is applied to obtain
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color values. Unlike the traditional histogram based descriptors, the representative colors

of DCD are computed from each image instead of being fixed in the color space, thus

allowing the color representation to be accurate and compact.

As described in [4], the dominant colors are extracted as a result of successive divi-

sions of the color clusters with the generalized Lloyd algorithm (GLA) algorithm in each

division and then merging of the color clusters. The details of clustering procedure is

as follows. At the beginning, the cluster is initialized with one cluster consisting of all

pixels, and one representative color computed as the centroid (center of cluster) of the

cluster. After that, a sequence of centroid calculation and clustering steps are repeated,

until a stopping criterion (minimum distortion or maximum number of iterations) is

reached. The cluster with highest distortion is split by adding perturbation vectors to

the centroid, until the maximum distortion reduces below a predefined threshold, or the

maximum number of clusters is generated. The percentage of pixels in each cluster of

the image is then quantized to five bits as the percentage value in descriptor.

Consider the two DCDs, F1 = {(c1i, p1i, v1i), s1}, i = 1, ..., N1 and F2 = {(c2j, p2j, v2j), s2},
j = 1, ..., N2. The distance between the two images with respect to DCDs in MPEG-7

XM software is defined by [4]:

Dist = W1 ∗ SC Diff ∗ DC Diff + W2 ∗ DC Diff
W1 + W2 = 1

(Eq. 3.2)

where DC Diff is the difference between two set of dominant colors (calculated by ci

and pi as in Eq. 3.3) and SC Diff = abs(s1 − s2). W1 and W2 are fixed weights with

recommended settings of 0.3 and 0.7, respectively. Set W1 to 0 if Spatial Coherency is

not available. Note that this distance function is non-normative part in MPEG-7, i.e., a

suggestion only.
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DC Diff can be computed by the following distance function (ignoring optional

Color Variance vi):

DC Diff 2(F1, F2) =

N1∑
i=1

p2
1i +

N2∑
j=1

p2
2j −

N1∑
i=1

N2∑
j=1

2a1i,2jp1ip2j (Eq. 3.3)

where

ak,l =

{
1 − dk,l/dmax dk,l ≤ Td

0 dk,l > Td

dk,l = ||ck − cl|| (Eq. 3.4)

Here ak,l is the similarity coefficient between two colors ck and cl. Td is the maximum

distance for two colors which are considered similar, and dmax = αTd. In CIE-LUV color

space Td is usually between 10 to 20 and α is usually from 1.0 to 1.5. Each ci has three

elements ci,0, ci,1 and ci,2.

If Color Variance is present, the following distance can be used as the similarity

measure.

D2
V (F1, F2) =

N1∑
i=1

N2∑
j=1

p1ip1jf1i1j +

N1∑
i=1

N2∑
j=1

p2ip2jf2i2j −
N1∑
i=1

N2∑
j=1

2p1ip2jf1i2j (Eq. 3.5)

where

fxiyj =
1

2π
√

vxiyjlvxiyjuvxiyjv

exp

[
−

(
cxiyjl

vxiyjl

+
cxiyju

vxiyjv

+
cxiyjv

vxiyjv

)
/2

]
(Eq. 3.6)

and

cxiyjl = (cxil − cyjl)
2, vxiyjl = (vxil + vyjl) (Eq. 3.7)

In the above equations, cxil and vxil are dominant color values and corresponding

color variances, respectively.

3.1.2 EMD’s computation and application

The Earth Mover’s Distance is a perceptual flexible similarity measure between two

weighted multi-dimensional distributions. EMD is defined as the minimum work needed

to transform from one distribution to the other. The computing of EMD is based on a
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3.1a: L1 distance
∑

i |xi − yi| 3.1b: EMD

Figure 3.1: Examples where the L1 distance (as a representative of bin-by-bin dissimi-
larity measures) do not match perceptual dissimilarity and the desired correspondences
(EMD) [3].

solution to the well-known transportation problem [63]. EMD is shown to be a better

similarity measure than many other similarity measures for two distributions of mass

in a space that is itself endowed with a ground distance. EMD lifts the distance from

individual features to full distributions [3]. Figure 3.1 demonstrates the characteristic of

EMD. It can be seen that the two histograms h1 and k1 are almost the same except for

a shift by one bin, but their L1 distance between them is larger than between the h2 and

k2. As EMD is a perceptual metric, it will calculate the distance of corresponding bins.

So the EMD between h1 and k1 is less than EMD between h2 and k2.

Formally, let P = {(p1, ωp1), . . . , (pm, ωpm)} be the first distribution with m feature

vectors, where pi is the values of features and ωpi
is the weights of the corresponding pi;

Q = {(q1, ωq1), . . . , (qn, ωqn)} is the second distribution with n feature vectors, where qj

is the values of features and ωqj
is the weights of the corresponding qj; and D = [dij] is

the ground distance matrix, where dij = d(pi, qj) is the distance between pi and qj. The

EMD between distributions P and Q is then defined as:

EMD(P,Q) =

m∑
i=1

n∑
j=1

d(pi, qj)fij

m∑
i=1

n∑
j=1

fij

(Eq. 3.8)

where F = [fij] with fij > 0 is the flow between pi and qj. It is the optimal admissible flow
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from P to Q that minimizes numerator of Eq. 3.8 subject to the following constraints:

m∑
i=1

fij < ωpi
, 1 ≤ i ≤ m

n∑
j=1

fij < ωqj
, 1 ≤ j ≤ n

n∑
i=1

m∑
j=1

fij = min(
n∑

i=1

ωpi
,

m∑
j=1

ωqj
)

(Eq. 3.9)

fij can be solved efficiently by Simplex method as the transportation problem. Its initial

basic feasible solution is computed by Russell’s method. For EMD, more details can be

found in [3].

3.1.3 Applying EMD to DCD

As described in section 2.2, MPEG-7 standard does not standardized the approach of

similarity matching of the descriptors. Therefore, in this section, we apply a new similar-

ity measure, the Earth Mover’s Distance, to the Dominant Color Descriptor to improve

the performance of similarity comparison.

Since the EMD can be used to calculate the distance between two multi-dimensional

distributions where each distribution is represented by sets of weighted features, it is

appropriate to use the EMD to determine the similarity between two DCDs, where the

basic elements are the dominant colors and their corresponding percentages. Applying

EMD to DCD, the EMD distance between two DCDs F1 = {(c1i, p1i)}, i = 1, ..., N1 and

F2 = {(c2j, p2j)}, j = 1, ..., N2 is shown in Eq. 3.10. Here we omit the optional Color

Variance vi and Spatial Coherency s.

DC Diff(EMD) =

N1∑
i=1

N2∑
j=1

d(c1i, c2j)fij

N1∑
i=1

N2∑
j=1

fij

(Eq. 3.10)
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where d(c1i, c2j) is the ground distance between c1i and c2j. In this work, the Euclidean

distance in the CIE-LUV color space was used as the metric to compute the ground

distance in EMD. F = [fij] with fij > 0 is the flow between c1i and c2j. It is the optimal

admissible flow from P to Q that minimizes numerator of Eq. 3.10 subject to the same

constraints as in 3.1.2.

N1∑
i=1

fij < p1i, 1 ≤ i ≤ N1

N2∑
j=1

fij < p2j, 1 ≤ j ≤ N2

N1∑
i=1

N2∑
j=1

fij = min(

N1∑
i=1

p1i,

N2∑
j=1

p2j)

(Eq. 3.11)

fij can be solved efficiently by Simplex method as the transportation problem and its

initial basic feasible solution is computed by Russell’s method.

When the Color Variance parameters are used, EMD cannot be used directly. This is

because Color Variance presents some other visual information unlike color index value

and needs specific similarity measures. How to use color variance for EMD may be future

work.

3.1.4 Analysis of retrieval complexity

EMD is accurate as a similarity measure, but its computation is still complex. The

computation time for random distributions as a function of the number of feature vectors

in the distribution is shown in [3]. Here we propose two methods for speeding up the

retrieval process, one based on the lower bound of the EMD and the other based on

M-tree index.
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Figure 3.2: The concept of query radius. For a top 2 query, r(Q) is the initial query
radius, which contains object O1 and O2. r(Q)′ is the new query radius after object O3

coming. r(Q)′ < r(Q).

3.1.4.1 Lower bound

For EMD, with equal total weights for distributions and the ground distance is induced

by a norm, it has an easy-to-compute lower bound. When an image from database is

coming, firstly the lower bound between the new image and query image is calculated.

If the lower bound is larger than the current query radius, the true EMD need not to

be calculated. These bounds can significantly reduce the number of EMDs that actually

calculated by pre-filtering the database and ignoring images which are too far from the

query image. The lower bound is the distance between the centroid of distributions.

Figure 3.2 shows the concept of query radius. The whole retrieval procedure with lower

bound is shown in Figure 3.3.

The computation of lower bound is as follows. It is defined as the distance between

their centroid [3]. Given the two distributions P = (Pi, ωpi
) and Q = (Qj, ωqj

), where

ωpi
and ωqj

are the percentages of each feature; Pi and Qj are the corresponding feature

value. Then the corresponding lower bound can be calculated as follows:

EMD(P,Q) ≥ ‖P − Q‖ (Eq. 3.12)

P =

m∑
i=1

ωpi
Pi

m∑
i=1

ωpi

, Q =

n∑
j=1

ωqj
Qj

n∑
j=1

ωqj

(Eq. 3.13)
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Figure 3.3: The procedure of retrieval with lower bound.
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3.1.4.2 Introduction of M-tree

M-tree was proposed as a paged dynamic structure based on metric space [64]. It is used

to index multimedia databases where objects have complex features which, consequently,

result in time-consuming distance computations. Users can define arbitrary metric dis-

tances to compare the objects. This is more general than those based on vector spaces,

such as R-tree and R*-tree. A space A is called a metric space if for any of its two ele-

ments x and y, there is a function d(x, y), called the distance that satisfies the following

properties: [64]

d(x, y) ≥ 0 (Non-negativity)

d(x, y) = 0 if and only if x = y (identity)

d(x, y) = d(y, x) (Symmetry)

d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

When building up the M-tree, both the I/O access cost and the distance computation

cost are considered [64]. When the features of similarity queries are multi-dimensional,

the distance function can be very complex. The computational cost of distance function

is not trivial in the real application and cannot be ignored. M-tree is suitable as an index

for database with complex distance calculation. It can improve similarity queries by

efficiently pruning the data space which needs to be searched, and at same time guarantee

that the query results are exact [65]. This is because the actual distance function is used

without any approximation although M-tree saves the distance calculation cost.

The M-tree partitions a given data search space based on relative distances between

objects. Each node of a M-tree is fixed-size and stores an object covering corresponding

region of the metric space (as shown in Figure 3.4). The distance function of M-tree is

fully parametric as a black box and can be any type of metric distance. It need not fit

into a vector space nor must use a Lp metric. Hence M-tree considerably extends the

possible number of applications for which efficient queries can be achieved.
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3.4a: Routing object Or has a
covering radius r(Or).

3.4b: Or references a covering
tree T (Or).

3.4c: A search rule of M-tree.

Figure 3.4: The objects and covering tree of M-tree. Fig 3.4c demonstrates one of search
rules. This rule is: If d(Or, Q) > r(Or) + r(Q), then d(Or, Q) > r(Or).

The objects in M-tree can be classified as ground object and routing object. Object

Oj is defined as a ground object if its entry is stored in a leaf node of the M-tree and all

non-ground (internal) objects are called routing objects (Or).

The following are two fundamental concepts of the M-tree design:

i. Database objects are recursively organized according to their distances from refer-

ence (routing) objects.

ii. Routing objects are database objects, which acquire their routing functions by

specific promotion algorithms.

The M-tree organizes the objects into fixed-size nodes (variable-size nodes can also

be used). Each M-tree node can store maximum M entries and M is the capacity of nodes.

An entry for a routing object Or is defined as entry(Or) = [Or, ptr(T (Or)), r(Or), d(Or, P (Or))].

ptr(T (Or)) is a pointer which references the root of a sub-tree T (Or). T (Or) is the

covering tree of Or with a covering radius r(Or) > 0. d(Or, P (Or)) is the distance

from Or to the parent object P (Or). The semantic of the covering radius r(Or) is

that all the objects stored in the T (Or) are within the distance r(Or) from Or, i.e.,

∀Oi ∈ T (Or), d(Or, Oi) ≤ r(Or). Therefore a routing object Or defines a region in the

metric space, centered on Or and with radius r(Or) (see Figure 3.4).
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In this way the M-tree organizes the space into a set of (possibly overlapping) regions

with the same principle recursively applied. M-tree support both range query and KNN

query. When the tree is built, the level at which each data entry has to be located is

determined through the following process: each new descriptor entry is compared with

the routing objects at each level; the tree traversing path is determined by selecting the

routing object which requires the minimum increase of the covering radius to include the

descriptor entry in the cluster. At the leaf level, if the leaf node selected is full (node

overflow), a split of the leaf cluster is performed. The split can propagate from the leaf

to the upper nodes, up to the root.

Different split policies can be used such as mM-Rad (minimum of Maximum of Radii),

or MLB-Dist (Maximum Lower Bound on Distance). They differ in the way in which

routing objects are promoted when a cluster split occurs. mM-Rad, promotes as routing

objects the pair of entries which have the minimum of the maximum of covering radii (thus

reducing the extension of covering regions). MLB-Dist, promotes the two entries that

are at the greatest distance (thus reducing the overlapped area). The detail algorithms

of insert, delete nodes and query based on M-tree are introduced in [64].

3.1.4.3 Building M-tree index to EMD-based computation

When the color features have equal weights such as DCD and the ground distance d(pi, qj)

in Eq. 3.8 is metric, the EMD is a true metric. Proof is given in [3]. So the DC Diff

based on EMD as Eq. 3.10 can be used as the distance function to build the M-tree. The

Dist in 3.1.1 cannot be used, because it is not a true metric for some values of W1, W2

and SC Diff .

We use EMD as the distance to build the M-tree. In the M-tree user’s guide [66],

several parameters about the M-tree structure are given, including the splitting and

balance policy. The M-tree is built in advance and the computation costs of building M-

tree are not considered. After testing, the parameter set “0.5, Generalized Hyperplane,
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MIN RAD” is most efficient in search and are used to build the M-tree. The meaning of

these parameters are as follows [66]:

0.5: it is the minimum node utilization. It is used to guarantee a minimum fill factor

for tree nodes during the split. It can assume values in the range [0, 0.5]. We use 0.5.

Generalized Hyperplane: it specifies the split policy of how to efficiently partition the

given entries N into two subsets, N1 and N2 according to two routing objects Op1 and

Op2. This method assigns each object Oj ∈ N to the nearest routing object.

MIN RAD: it specifies the promotion policy is “minimum maximum radius” policy.

It uses “minimum (sum of) RAD ii” algorithm which is the most complex in terms of

distance computations. It considers all possible pairs of objects and, after partitioning

the set of entries, promotes the pair of objects for which the sum of covering radii,

r(Op1) + r(Op2), is minimum [64].

3.2 Image retrieval based on multiple descriptors

Early CBIR research has focused on just one low-level visual feature. It would be

more accurate based on the combination of multiple features. In image retrieval, queries

can use several features such as color, texture, shape or text. Our work concentrates

on how to efficiently combine multiple MPEG-7 visual descriptors for image retrieval.

Each descriptor has a suitable weight for combination. In this section, we propose a new

optimization model for the proper selection of weights. The model determines the optimal

weights of descriptors directly instead of the calculated distances of each descriptor. The

weights are calculated according to the different values of the query descriptors and it

provides a simple optimal adjustment when the query image is changed. There is no

manual interaction needed, such as labelling.
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3.2.1 Combination of multiple descriptors

The retrieval of images based on a single descriptor constrains the range of images that

could be explored for meaningful results. Moreover, it is highly unlikely that a human

querying an image database would do so on the basis of a single feature, say, color. In

order to expand the scope of the query, it is important to consider how retrieval can be

done on the basis of multiple descriptors. This calls for a sound and rigorous method

to automatically determine the corresponding weights of each of the descriptors so that

meaningful retrieval can be obtained. In this section we describe the retrieval model

based on combination of descriptors through an optimization framework.

3.2.1.1 Optimization model

The underlying idea is to rank the distances between the query image and the images in

the database where the distance refers to either the distance of the combined weighted

descriptors, i.e., d(wxQx + wyQy, wxDx + wyDy) or the sum of the distance of each of

the descriptors, i.e., d(wxQx, wyQy, )+ d(wxDx, wyDy). Here x and y are the features. Q

and D refer to the query and database images respectively. Setting up the problem in an

optimization framework, the task is to minimize the distance subject to the constrains

that the descriptors in the retrieved image are close to the corresponding description in

the query image, where closeness is represented by normalized weights.

Firstly the definition of our notations is given. The descriptors of query image are

defined as set Q = Q0, Q1, ..., QI , where Qi is the ith query descriptor. The descriptors

of the ideal similar images are denoted by a set D = D0, D1, ..., DI , where each Di

represents similar descriptor of the corresponding type of Qi. Each descriptor takes the

form of a vector Qi = Qi0, Qi1, ..., QiJ or Di = Di0, Di1, ..., DiJ . The elements of vectors

are represented by Dij and Qij separately. The objective function of the optimization
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model is defined as:

minJ = d(Q,D) (Eq. 3.17)

s.t.Dij = wiQij, (Eq. 3.18)
I∑

i=0

1

wi

= 1, (Eq. 3.19)

i = 0, ..., I,

j = 0, ..., J.

where d(Q,D) is the distance between the query image and the database images in terms

of the descriptors Q and D. Qij represents the jth element of ith query descriptor. wi

is the similarity weight of ith descriptor as shown in Eq. 3.18. Eq. 3.19 is for scaling

purpose, otherwise a trivial optimal solution which are all zero can be obtained.

To solve this optimization problem, Lagrange multipliers are used to reduce this

constrained problem to an unconstrained one. Then the optimal solution of Dij and wi

will be calculated. The unconstrained problem is as follows:

L = d(Q,D) −
I∑

i=0

J∑
j=0

λij(Dij − wiQij) − β(
I∑

i=0

1

wi

− 1) (Eq. 3.20)

where λij and β are Lagrange multipliers.

3.2.1.2 Optimal solution of wi and Dij

To obtain optimal solution of wi and Dij, the partial differentiation are calculated.

∂L

∂Dij

=
∂d(Q,D)

∂Dij

− λij (Eq. 3.21)

∂L

∂wij

=
J∑

j=0

λijQij − β
1

wi
2

(Eq. 3.22)

Set the partial differentiation to zero, then the optimal λij is obtained.

λij =
∂d(Q,D)

∂Dij

(Eq. 3.23)
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According to [24], we multiply both side of Eq. 3.22 by wi and summarize over i, then

we have:

I∑
i=0

wi(
J∑

j=0

λijQij) + β(
I∑

i=0

1

wi

) = 0 (Eq. 3.24)

Let hij =
∑J

j=0 λijQij, the optimal value of β is:

β∗ = −
I∑

i=0

wi(
J∑

j=0

λijQij) = −
I∑

i=0

wihi (Eq. 3.25)

This will lead to the optimal solution of wi:

w∗
i =

I∑
i=0

√
hj

hi

(Eq. 3.26)

With w∗
i , we can get optimal solution of Dij:

Dij = w∗
i ∗ Qij (Eq. 3.27)

These are the ideal combination of multiple descriptors for the query image. The

image with these descriptors is the most similar one to the query image when multiple

feature descriptors are used to query. Although the ideal similar descriptors are obtained,

the images in the database may not have the same descriptors. So the retrieval results

cannot be obtained. To solve this problem, we have to calculate the distance between

descriptors of the images in the database and the ideal descriptors. Same optimal weights

are applied. These distances are the similarity measure and they reflect the degree of

similarity between these images. After the distances are sorted, we get the results in

terms of degree of similarity.

3.2.2 Application of different MPEG-7 visual descriptors

The optimal method is used to combine MPEG-7 visual descriptors for image retrieval.

In descriptor selections, two color descriptors and one texture descriptor are included,
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Figure 3.5: Five type of edges for EHD [2].

and they can be applied individually or used together for image retrieval. Because the

images usually have non-homogeneous texture, Edge Histogram Descriptor is selected as

a texture descriptor. It is designed for image retrieval with non-uniform texture. Two

color descriptors in different format are selected. One is a histogram descriptor (Color

Structure Descriptor); the other is of a specific format (Dominant Color Descriptor).

3.2.2.1 Introduction of EHD and CSD

Edge Histogram Descriptor (EHD) is a texture descriptor used for the region which is non-

homogeneous in texture properties [19]. It is a 80-bins histogram represents local edge

distribution in an image by dividing the image into 4 × 4 = 16 sub-images. The spatial

distribution of 5 kinds of edges as shown in Figure 3.5, including vertical, horizonal, 45◦

diagonal, 135◦ diagonal and non-directional edges in each sub-image are categorized to

form the vector, which has 16 × 5 = 80 bins. Semi-global and global edge distribution

histogram can be calculated according to the local histogram. Global edge distribution is

the edge distribution for whole image, i.e., the number of edge in each direction calculated

in whole image space. Semi-global edge distribution are calculated based on some group of

subsets of image space, as shown in Figure 3.6. When calculating the distance, combining

the local, semi global and global histogram, a total of 150 bins histogram is constructed

for similarity matching.

Color Structure Descriptor (CSD) describes both color content (like color histogram)

and the structure of this content by using a structure element. CSD can be used to
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Figure 3.6: Thirteen Clusters of sub-images for semi-global histograms [4].

Structuring Element

Pixels w/in   image having color cm

3.7a: Highly structured color plane.

Structuring Element

Pixels w/in   image having color mc

3.7b: Unstructured color plane.

Figure 3.7: Example of structured and unstructured color.

distinguish between images which have similar traditional color histograms and different

color spatial distribution. Figure 3.7 illustrates this using a pair of images [4]. Figure

3.7a is a highly structured color image and Figure 3.7b is an unstructured color image.

As the number of foreground color pixels is the same, they cannot be distinguished by

traditional color histograms. But using CSDs, these two images can be distinguished

very clearly because the distributions of color are different.

Compared with other color descriptors, CSD has detailed color information and can

achieve better retrieval results. This is proven in experiments shown in [67]. The format

of CSD is identical to a color histogram, but the semantic meaning is different. It is a

1D array of eight bit-quantized values, CSD = hs(m),m ∈ 0, 1, ..., M − 1, where s is the

scale of the associated square structuring element and M is chosen from the set {256,

128, 64, 32}. So CSD can be 256-, 128-, 64- or 32-bin (array elements). To extract CSD,
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an image is presented using HMMD (Hue-Max-Min-Diff) color space.

The HMMD, which is proposed in MPEG-7, is closer to a perceptually uniform color

space. It is defined by a nonlinear, reversible transformation from the RGB color space.

There are five distinct attributes (components) in the HMMD color space, however only

three of them (Hue, Max, Min, or Hue, Diff, Sum) are sufficient to define the color space.

The five attributes can be characterized as follows:

- Hue: the same as in HSV.

- Max: indicates how much black color it has, giving a flavor of shade or blackness.

- Min: indicates how much white color it has, giving a flavor of tint or whiteness.

- Diff: indicates how much gray it contains and how close to the pure color, giving a

flavor of tone or colorfulness.

- Sum: simulates the brightness of the color.

The transformations for Max, Min and Hue are the same as the equations for Min,

Max and Hue in HSV color space. The transformations for Diff and Sum have the

following form:

Diff = Max - Min;

Sum = (Max + Min)/2;

The Max, Min and Sum components have values in the range [0,1] and the Diff

component has values in the range [0,1]. The Hue component takes values in the range

[0,360]. The HMMD color space has a double cone appearance as shown in Figure 3.8.

In order to extract CSD, HMMD color space is non-uniformly partitioned to 32, 64,

128 or 256 cells. The M bins of CSD are bijective to the M cells of HMMD. In MPEG-7,

s = 82. Hence, an 8 × 8-sized structuring element is slid over the whole image and the

numbers of positions where the element contains each quantized color are accumulated

as the descriptor. In our experiment, 256-bin CSD is used. The distance functions of
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Figure 3.8: Appearance of the HMMD color space [2].

CSD and EHD suggested in MPEG-7 are both L1-norm. It is shown as follows:

d(Qi, Di) =
J∑

j=1

|Dij − Qij| (Eq. 3.28)

3.2.2.2 Combination of EHD and CSD

EHD and CSD are combined with the following optimal weights:

The partial derivatives of d(Q,D) with respect to Di are:

∂d(Q,D)

∂Dij

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂d

∂Di,0

...

∂d

∂Di,J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∑J

j=1 |Dij − Qij|
∂Di,0

...

∂
∑J

j=1 |Dij − Qij|
∂Di,J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Eq. 3.29)

Then the optimal values of λij are obtained according to Eq. 3.23, while the optimal

value of wi and Dij are obtained as described in section 3.2.1.2. For histogram descriptor,

such as CSD and EHD, their corresponding histogram bins are directly combined using

the optimal weights. Because their dimensions are a little different, zeros are added to

45

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3. Image retrieval based on MPEG-7 visual descriptors

extend the short one. For all the images in database, we can use this optimal weight to

combine these two descriptors. Then L1-norm is used to calculate the distance between

the new combined descriptor of query image and image in database. After the distance

sorting, the ranked list will be the retrieval results.

3.2.2.3 Combination of EHD and DCD

EHD (D0) and DCD (D1) are combined as another example. The partial derivatives

of EHD are calculated by Eq. 3.29 as in previous section. The details of DCD is de-

scribed in section 3.1.1. In section 3.1.3 the Earth mover’s distance is applied as the

similarity distance of DCD. As EMD is based on a solution to the transportation prob-

lem, the partial derivatives of EMD is difficult to calculate. Thus we have to use the

original distance function in in MPEG-7 eXperiment Model (XM) to compute the dis-

tance between DCDs. Consider the two DCDs, D1 = {cD1i, pD1i}, i = 1, ..., ND1 and

Q1 = {cQ1i, pQ1i}, i = 1, ..., NQ1 . The distance between the two images with respect to

DCDs in MPEG-7 eXperiment Model (XM) is defined by (ignoring optional vi and s):

[2]

d2(Q1, D1) =

ND1∑
i=1

p2
D1i +

NQ1∑
j=1

p2
Q1j −

ND1∑
i=1

NQ1∑
j=1

2aD1i,Q1j (Eq. 3.30)

where

ak,l =

{
1 − distk,l/dmax distk,l ≤ Td

0 distk,l > Td

(Eq. 3.31)

Td is the maximum distance for two colors which are considered similar and dmax = αTd.

In CIE-LUV color space Td is usually between 10 to 20 and α is usually from 1.0 to

1.5. Each ci has three elements ci,0, ci,1 and ci,2. The partial derivatives of d(Q,D) with
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respect to DCD are:

∂d(Q,D)

∂Dij

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂d

∂pD1i

...

∂d

∂Di,J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2pD1i −
∑NQ1

j=1 apD1i)

∂Di,0

...

∂
∑J

j=1 |Dij − Qij|
∂Di,J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Eq. 3.32)

Because DCD has special format and distance function, it is inefficient to combine

the element of EHD and DCD directly. We have to calculate the distances of DCD and

EHD separately according to the descriptors with the optimal weights and then we sum

up the two distances as the similarity measure.

More descriptors can also be combined using this optimization model. Furthermore,

it is not for MPEG-7 visual descriptors only and can be used to other feature vectors.

3.3 Experimental results

The experimental results of image retrieval based on one and several descriptors are

described in this section. At the beginning, we introduce the test set and evaluation

measure of MPEG-7, after that the detail results are presented.

3.3.1 Effectiveness evaluation of MPEG-7: CCD, CCQ and
ANMRR

MPEG-7 provides a common data set and a common set of queries for experiments to

test the effect of color descriptors. There are a total of seven subsets containing about

5,000 images in the Common Color Dataset (CCD). Among them subset 2 includes 2045

images in ppm format. About 50 Common Color Query (CCQs) have been defined as a

query image with specified ground truth images. The entire 9 CCQs in subset 2 are used

to test the color descriptors. The details of CCD and CCQ can be found in [68].
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Unlike the Recall, Precisions and Fallout, a new retrieval accuracy measure Average

Normalized Modified Retrieval Rate (ANMRR) is used in MPEG-7. ANMRR gives the

formula for computing the retrieval accuracy values. The objective is to determine how

many correct images are retrieved and how high they are ranked among the retrieval

results. The retrieval accuracy measures are computed as follows: [69]

• Let the number of ground truth images for a query q be NG(q)

• Compute NR(q), number of found items in first K retrievals (the top ranked K

retrievals), where

• K = min(4 ∗ NG(q), 2 ∗ GTM), where GTM is max{NG(q)} for all q’s of a data

set.

• Compute MR(q) = NG(q) − NR(q), number of missed items

• Compute from the ranks Rank(k) of the found items counting the rank of the first

retrieved item as one.

• A Rank of (K ∗ 1.25) is assigned to each of the ground truth images which are not

in the first K retrievals.

• Compute AV R(q) for query q as follows:

AV R(q) =

NG(q)∑
k=1

Rank(k)

NG(q)
(Eq. 3.33)

• Compute the modified retrieval rank as follows:

MRR(q) = AV R(q − 0.5 − NG(q)

2
) (Eq. 3.34)

• Compute the Retrieval Rate as follows:

RR(q) =
NR(q)

NG(q)
(Eq. 3.35)
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• Compute the normalized modified retrieval rank as follows:

NMRR(q) =
MRR(q)

K ∗ 1.25 − 0.5 ∗ (NG(q) + 1)
) (Eq. 3.36)

Note that the NMRR(q) will always be in the range of [0.0,1.0].

• Compute average of NMRR over all queries

ANMRR(q) =
1

Q

Q∑
q=1

NMRR(q)) (Eq. 3.37)

• Provide numbers NR(q), MR(q), RR(q), AV R(q), MRR(q), NMRR(q) for each

query, and the average of ANMRR over whole set of queries

If more than one retrieved (ground truth) images have the same similarity measure

value, then the rank value assigned to that image is the average ranks of all the retrievals

that have the same similarity value.

3.3.2 Image retrieval based on EMD

3.3.2.1 Retrieval results based on EMD

Here ANMRR is used to evaluate the retrieval quality of two different methods. The

smaller the ANMRR value, the better the retrieval effect is. The test set is subset

2 of MPEG-7 Common Color Dataset (CCD), including 2045 images in ppm format.

Now the entire 9 Common Color Query (CCQ) in subset 2 is used to test the color

descriptors. HSV color space is used to store the descriptor and CIE-LUV color space is

used to calculate the distance. Before calculating the EMD, all color values of different

color space are transformed into the CIE-LUV color space. Therefore which color space

is used to store the descriptor is not important. The test results of Dominant Color

Descriptor are as follows:

ANMRR results for Dominant Color Descriptor:

49

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3. Image retrieval based on MPEG-7 visual descriptors

XM without Spatial Coherency: ANMRR = 0.2604

EMD without Spatial Coherency: ANMRR = 0.2019

EMD with Spatial Coherency: ANMRR = 0.1914

In [18], the entire MPEG-7 CCD generates an ANMRR of 0.252 (without Spatial

Coherency and Color Variance). When we calculate the ANMRR on a subset of 2045

images, we get a value of 0.2604 (XM) which is comparable. It can be seen that a

significant improvement can be achieved by using EMD to calculate the distance. The

CCQs used for testing are shown in Figure 3.9. Table 3.1 shows an example of calculation

procedure of ANMRR.

Figure 3.10 shows a ground truth set of CCQ. The first image is the query image. In

Figure 3.11 the top 12 retrieval results by using EMD with SC are shown. It can be seen

that the results are very good.

3.3.2.2 Comparison of M-tree and lower bound

As described in section 3.1.4, both M-tree and lower bound are applied to reduce the

computation time of EMD. We compare the effect of M-tree and lower bound based

on two aspects, the computation complexity of EMD and the runtime for each of the

methods. All experiments are based on the CCD subset 2 with 2045 images described in

section 3.3.1.

Table 3.2 shows for the five different indexing methods, the average number of EMD

computations per query according to the number of top images retrieved. All 2045 images

are used as the query image and the table was generated by averaging all the queries.

For M-tree, many parameter sets are tested. Each dominant color forms a 4-dimension

vector because it has a percentage value and 3 color index values. To compare the effect of

different dimensionality, several dominant colors, including 2-color DCD (8-dimension),

5-color DCD (20-dimension) and the full-color DCD (32-dimension), are used as the

50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3. Image retrieval based on MPEG-7 visual descriptors

3.9a: Ron Reagan, 9 images 3.9b: Landscape Image 2, 4 im-
ages

3.9c: Landscape Image 3, 3 im-
ages

3.9d: Containers, 4 images 3.9e: Big pipes, 6 images 3.9f: Indoor Image, 12 images

3.9g: People on the red, 5 im-
ages

3.9h: Speaker, 6 images 3.9i: Sunset over lake, 8 images

Figure 3.9: The details of CCQ images in a subset of CCDs. These images are the query
images of corresponding CCQs.

index. 2-color DCD selects the two colors with the largest percentage to calculate the

distance. 5-color DCD uses the top five dominant colors. Full-color DCD uses the original

descriptor. For lower bound, calculating EMD with and without SC of DCD are tested

separately.

Table 3.2a shows that the results of M-tree are not as good as lower bound, especially

when the dimensionality is high. M-tree can give the exact query results. The results of

2-color DCD and 5-color DCD are approximate because we only use two and five colors

of the total DCD. The results of lower bound method are shown in Table 3.2b. This lower

bound guarantees that no image is wrongly missed as a result of saving computation. It
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Figure 3.10: A whole CCQ with eight ground truth images (sunset over lake).

can be seen that the lower bound can prune at least half of the images and it is therefore

very effective. Even without considering Spatial Coherency, the retrieval results are

satisfied. When the Spatial Coherency is used, the result is a little better. This is

because the SC increases the distance among the EMD distances.

Figure 3.12 shows the average runtime of both the M-tree and lower bound method

with the best results and the sequential search is also added for comparison. It can be

seen that the lower bound method is much faster than the sequential search. For M-tree,

when the dimension is less than 10, its performance is acceptable but still slower than

the lower bound method.

3.3.3 Image retrieval using combined descriptors

Because MPEG-7 has no ground truth sets to test combined descriptors, the ground

truth sets of color and texture descriptors is used to test the retrieval performance of

optimal combination model, including 17 Common Color Query (CCQ) and two standard

texture queries. The test sets are subset 1 and 2 of MPEG-7 Common Color Dataset

(CCD), including 2045 images in ppm format and 298 images in jpg format. In MPEG-7

these sets are also used to test the effect of non-homogeneous texture descriptor. Firstly

Average Normalized Modified Retrieval Rank (ANMRR) is used to evaluate the retrieval
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3.11a: 0.000000 3.11b: 11.172273 3.11c: 15.872145 3.11d: 16.767384

3.11e: 17.252483 3.11f: 19.320299 3.11g: 19.446711 3.11h: 19.559317

3.11i: 19.694727 3.11j: 19.909126 3.11k: 20.071930 3.11l: 20.205475

Figure 3.11: The top 12 retrieval results of EMD (with SC). The numbers under the
images are the corresponding distances.

quality of different methods. Table 3.3 shows the ANMRR value of the different methods.

Average combination means we only average the two distances of the corresponding

descriptors as the similarity measure. It can be seen that a significant improvement is

achieved by using the optimal combination. When the descriptors are both in histogram
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Figure 3.12: The average runtime of different methods.
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Figure 3.13: ANMRR of different combination methods. The details of methods are
according to the index of Table 3.3.

format, the results are better. The combination of CSD and EHD is better than DCD

and EHD. It is because, as a whole, the effect of CSD is better than DCD. But for

some user queries, the results of DCD are better than CSD. In order to compare with

other systems, the common evaluation measure Precision and Recall are also calculated

in Table 3.3.

Figure 3.13 shows ANMRR values of different methods explicitly. The index of dif-

ferent methods is the same as the order in Table 3.3. It is shown that the optimal

combination (method four) is better than other methods. A retrieval example is pre-

sented in Figure 3.14. It is an indoor image set and the top-left image (Figure 3.14a) is

the query image. Top 12 images are shown and sorted according to the distance. It is the

results of retrieval using optimal combination of CSD and EHD. Currently the optimal

combination is applied for whole image database. The calculation procedure is easy and

fast. If the image database is very large, single descriptor can be used to obtain the first

round results, and optimal combination is used to refine the retrieval results.
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3.14a: Query image 3.14b: Rank 1 3.14c: Rank 2 3.14d: Rank 3

3.14e: Rank 4 3.14f: Rank 5 3.14g: Rank 6 3.14h: Rank 7

3.14i: Rank 8 3.14j: Rank 9 3.14k: Rank 10 3.14l: Rank 11

Figure 3.14: A retrieval example using optimal combination of multiple descriptors.
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Table 3.1: The calculation procedure of ANMRR.

3.1a: XM.
CLASS CCQ 1 CCQ 2 CCQ 3 CCQ 4 CCQ 5 CCQ 6 CCQ 7 CCQ 8 CCQ 9
NG(q) 9 5 4 3 12 6 4 8 6
K(q) 24 20 16 12 24 24 16 24 24
NR(q) 9 4 4 3 11 6 1 4 3
MR(q) 0 1 0 0 1 0 3 4 3
AVR(q) 7.2222 7 5.25 2 11.0833 4 15.25 17.125 16.1667
MRR(q) 0 4 2.75 0 4.5833 0.5 12.75 12.625 12.6667
RR(q) 1 0.8 1 1 0.9167 1 0.25 0.5 0.5
NMRR(q) 0.0889 0.1818 0.1571 0 0.1950 0.0189 0.7286 0.4951 0.4780

ANMRR(q) = 1
Q

∑Q
q=1 NMRR(q) = 0.2604

3.1b: EMD without Spatial Coherency.
CLASS CCQ 1 CCQ 2 CCQ 3 CCQ 4 CCQ 5 CCQ 6 CCQ 7 CCQ 8 CCQ 9
NG(q) 9 5 4 3 12 6 4 8 6
K(q) 24 20 16 12 24 24 16 24 24
NR(q) 9 5 4 3 9 6 2 7 2
MR(q) 0 0 0 0 3 0 2 1 4
AVR(q) 5 3 4.75 2 12.9167 3.667 11 10.75 23.83
MRR(q) 0 0 2.25 0 6.4167 0.167 8.5 6.25 20.33
RR(q) 1 1 1 1 0.75 1 0.5 0.875 0.3333
NMRR(q) 0 0 0.1286 0 0.2731 0.0063 0.4875 0.2451 0.7672

ANMRR(q) = 1
Q

∑Q
q=1 NMRR(q) = 0.2019

3.1c: EMD with Spatial Coherency.
CLASS CCQ 1 CCQ 2 CCQ 3 CCQ 4 CCQ 5 CCQ 6 CCQ 7 CCQ 8 CCQ 9
NG(q) 9 5 4 3 12 6 4 8 6
K(q) 24 20 16 12 24 24 16 24 24
NR(q) 9 5 4 3 9 6 2 8 2
MR(q) 0 0 0 0 3 0 2 0 4
AVR(q) 5 3.4 3.75 2 14.5 3.5 11.5 6.125 20.33
MRR(q) 0 0.4 1.25 0 8 0 9 1.625 16.833
RR(q) 1 1 1 1 0.75 1 0.5 1 0.3333
NMRR(q) 0 0.0182 0.0714 0 0.3404 0 0.5143 0.0637 0.6351

ANMRR(q) = 1
Q

∑Q
q=1 NMRR(q) = 0.1914
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Table 3.2: The average number of EMD computations (the database contains 2045 im-
ages).

3.2a: The number of EMDs computed after using M-tree

Number of top images Top 10 Top 20 Top 50 Top 100 Top 200
Number 2-color 696 807 994 1168 1348
of EMDs 5-color 1246 1312 1502 1647 1788
computed Full-color 1316 1491 1645 1754 1871

3.2b: The number of EMDs computed after using lower bound

Number of top images Top 10 Top 20 Top 50 Top 100 Top 200
Number of Without SC 638 757 943 1115 1329
EMDs computed With SC 623 740 926 1098 1314

Table 3.3: The performance evaluation of different methods.

3.3a: The ANMRR and Precision/Recall for DCD and EHD.

Methods ANMRR Precision Recall
1 EHD only 0.2937 0.4512 0.7125
2 DCD only 0.2752 0.5243 0.7672
3 Average combination 0.1445 0.6524 0.8130
4 Optimization combination 0.1298 0.6917 0.8627

3.3b: The ANMRR and Precision/Recall for CSD and EHD.

Methods ANMRR Precision Recall
1 EHD only 0.2937 0.4512 0.7125
2 CSD only 0.1017 0.7058 0.9149
3 Average combination 0.1118 0.6967 0.8954
4 Optimization combination 0.0687 0.7426 0.9367
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3.4 Summary

In this chapter, we presented the image retrieval based on MPEG-7 descriptors. The

Earth Mover’s Distance is an effective and flexible measure with serval desirable proper-

ties. Compared with the original similarity measure of DCD in XM, better results can be

achieved when using EMD as the measure. Furthermore, both lower bound and M-tree

can also be used to reduce the number of EMDs calculated when the optional variance

parameter and spatial coherency are ignored. The results show that the performance of

lower bound is much better than M-tree. It excludes those images that does not need

to calculate the EMD distance, therefore reducing the number of the images to half. By

itself, it is also very easy to compute. M-Tree structure can also optimize the database

structure. Its results are affected by both distribution of the distance and dimensionality

of the feature. It can be seen that the 2-color index can meet the same effect as lower

bound. But the results is only approximate and can be used for first level filtering for

multi-level retrieval or browsing the image database based on single or two colors. When

the fixed lower bound cannot be used, M-tree is also a choice. For some features with

low dimension, M-tree performs well.

Besides the image retrieval based on single MPEG-7 descriptor, in this chapter we

propose a weighted combination method for image retrieval based on multiple features.

It is applied to several MPEG-7 visual descriptors and the weight of every descriptor

is determined self-adaptively based on optimization technology. From our experiments,

query by multiple descriptors with optimal weights can achieve better performance than

query by single descriptor or simple average combination. The same optimization struc-

ture can be used for many other visual features. It is a unified approach to content-based

image retrieval. The optimal solution is explicit and the calculation procedure is not

time-consuming.
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Chapter 4

Object category classification and
retrieval

To bridge the semantic gap, object recognition based on low-level features is an important

issue to address for image applications. Detection, representation, and training are the

three major issues that need to be discussed in an object recognition or classification

system. The difficulty in object-based image retrieval is the identification of an object

under different viewing conditions. In this case, the query might contain objects at

a different scale and orientation from those present in the database. Therefore, for

object retrieval or recognition, this factor should also be considered in addition to the

common visual features, such as color, texture and shape. In the last few years, scale

and orientation invariant features for CBIR systems has been investigated [70, 71]. These

local features focus on the local characteristics of the specific part and suitable for tasks

where one is looking for the identical points of a object. To represent object categories,

using collection of regions is a possible approach. Each region is a distinctive part of the

corresponding object category.

In this chapter, we investigate the object-based image retrieval using scale and orienta-

tion invariant features. The method can find an object in different scales and orientations.

Then we expand the recognition from the same object to object categories. We present
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an efficient method to classify the object categories based on the constellation of repre-

sentative regions. The regions with highest appearance frequencies are used to build the

model. Experimental results show that the image model based on representative regions

is easy to calculate and an improved performance can be achieved.

4.1 Robust matching and retrieval based on scale

and orientation invariant features

In this section scale and orientation invariant features are applied for region-based object

query. An efficient search algorithm based on interest point matching is discussed. Each

region represents an object at different scale or orientation. In these regions the interest

points and corresponding feature vectors are calculated based on [6]. The points are

detected by the Harris-Laplacian detector and the features are the Gaussian derivatives

calculated at the corresponding points. Then we use these features to query and improve

the retrieval process. Our proposed robust matching and retrieval procedure includes two

steps. First, a fuzzy distance measure is evaluated to measure the similarity for interest

points. Second, the cross-correlation is calculated to reject some mismatched image and

obtain the retrieval results.

4.1.1 The scale and orientation invariant feature of images

The objective of this work is to apply scale and orientation invariant features to region-

based image retrieval and to find the most similar images containing a scaled and rotated

object. The scale-invariant points are detected by the Harris-Laplacian detector from a

multiple scale representation of an image built by the convolution with a series Gaussian

kernel. In the multi-scale space, at first the Harris detector is used to detect the robust

points in a 2D plane at several scale planes. Then the scale invariant points are selected

from the robust points at which a local Laplacian measure is maximal over scales. So a
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Figure 4.1: An example of detected scale invariant points. ’◦’ and ’×’ are the detected
points.

Table 4.1: An example of two feature vectors. x and y are the corresponding coordinates
of scale-invariant points. Cornerness is a value indicating the degree to which the detector
believes this point is a corner. Scale is the detecting scale of the point.

x y cornerness scale feature vector (12-Dimension)
24 407 804.692 1 0.742243 0.0701232 -1.16625 0.568919 0.748237

0.298251 -0.0539323 1.11958 1.03285 -0.181406 -
0.584073 0.771906

252 10 900.561 1.4 0.721299 -0.923366 0.920174 0.622473 -0.294663
0.559273 0.0311264 2.45683 0.089865 0.759739
0.888222 -1.64331

subset of the points computed in scale space are selected. Figure 4.1 shows an example of

detected points. The corresponding derivatives at the scale invariant points are calculated

as orientation invariant feature vectors [6]. Up to 4th order Gaussian derivatives at the

point are computed to form a 12-dimension feature vector. Table 4.1 shows an example

of the feature vectors. Rotation invariance is obtained by selecting the derivatives in the

gradient direction.

These feature vectors are calculated for the images in database as well as for the query
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regions. Our work is mainly about how to compare and find the most similar images with

a scalable and rotated region efficiently. The query regions are cropped from the images

in database manually and each region represent one or more objects. Querying with

region that is cropped from an image makes it difficult to match its interest points with

those in the database. This is due to the fact that cropped regions have fewer interest

points, which could easily lead to mismatches. At the same time, we would like a point

matching technique that is not computationally intensive so that the retrieval is fast as

well as accurate.

The proposed region-based image retrieval algorithm consists of identifying the inter-

est points in the query image and determining similar images from the database using

a fuzzy distance measure. The results obtained at this stage are further refined using a

cross correlation method to obtain the final retrieval images.

4.1.2 Fuzzy measure of matching degree

In [6] a voting algorithm is used to select the most similar images in the database.

The distance between two matched points is evaluated to vote, with the image getting

highest number of votes being the most similar result. The detailed procedure is as

follows. For each point of a query image, its descriptor is compared to the descriptors

in the database. If the distance is less than a fixed threshold, the vote of that image in

database is increased by one. This will be repeated for each scale-invariant point. The

images with the highest number of votes are retrieved as the most similar results. Using

this method, the results greatly depend on the selection of distance threshold. In fact it

is very difficult to find a suitable fixed threshold for all images. If this method is applied

to region-based retrieval, a new problem occurs because a simple region usually does not

have enough scale-invariant points. It could be very easy to match the small number of

scale-invariant points in the region. When there are several images all have the same

high rank, it cannot distinguish the most similar one and get the correct results.
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To solve this problem, a matching degree is applied to measure the similarity of each

voted point. It is based on the assumption that if the two images are correctly matched,

the distance between the matched points of these two images will be very small. The

matching degree reflects the real distance between the matched points of images. It is

a fuzzy concept to measure the similarity and is of a value in the range [0, 1] ⊂ 
,

whereby 1 means these two points are equivalent and 0 means the distance is no less

than the threshold. In the retrieval procedure, the matching degree of all matched points

is accumulated and the average of accumulated matching degree is the final similarity

distance between current image and the query region.

Currently a simple linear function is used to map the distance to a matching degree:

f(xi) = 1 − xi

threshold
(Eq. 4.1)

where threshold is the fix threshold and xi is the ith computed distance. In our approach,

the common Euclidean distance is used as the distance measure between any two interest

points. Note that we have also calculated the distance using EMD, but the results are

not satisfied. This may be caused by the large number of feature vectors. As there

are hundreds of detected points in an image, it seems EMD cannot match these points

efficiently.

With Eq. 4.1, the average matching degree avgd of current image in database will be:

avgd =
1

N

∑
i

f(xi)

= 1 − 1

N

∑
i

xi

threshold
(Eq. 4.2)

where N is the number of matched points of current image. From our experiment, it can

be seen that the results of using a matching degree are better than using vote number

only.
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4.1.3 Cross correlation

As mentioned in section 4.1.2, there are large number of interest points in the whole

image. So it is possible that the average matching degree is large enough but in fact the

region is not similar to any part of the whole image. This is because the matched points

may be distributed in the whole image and not centralized on a part of the image, i.e., the

similar regions. These points are wrongly matched and there will be no similar region.

However, the correct selected image always has a similar region with the query region

and the correct matched points will concentrate on that region. So the spatial location of

matched points can be further detected to reject some mismatched images. To evaluate

the spatial location of the matched interest points, cross correlations between the feature

vectors of the query region and database images are calculated. Cross correlation is a

standard method to estimate the degree to which the query region and the region in

database image being sought are correlated.

In our system the features are represented by a series of points sort according to the

spatial location in the image or region. The cross correlation between the two series of

points of image and region separately is calculated with various delay. The peak value of

cross correlation series is determined as the cross correlation between current image and

the query region. If the cross correlation is less than a threshold, the image cannot be

similar with the query region and will be rejected. Instead of using a fixed threshold, the

average of all the cross correlations is used as the threshold. Cross correlation measure

is suitable for using a region to query a whole image. It can identify a subset from the

whole image which is similar with the query region.

The rejection procedure is shown as follows:

1. Calculate cross correlation series between the query region and the image in

database with different delay.

2. Select the peak value of cross correlation series as the cross-correlation value.
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3. Calculate the average cross correlation avgcorr for this query region as the thresh-

old.

avgcorr =
1

M

∑
i

corr(i) (Eq. 4.3)

where M is the whole number of images in the database and corr(i) is ith cross correla-

tion.

4. If corr(i) is less than avgcorr, the image will be rejected.

4.1.4 The disadvantages of the scale invariant points

As discussed earlier, these scale invariant points and their features focus on the local

characteristics of the specific part, because the target of these feature is to find the

identical points by the suitable distance of point matching. For example Lowe’s SIFT

descriptor [35] has been shown in various studies to perform very well particularly at

tasks where one is looking for the identical points. These methods are difficult to apply

for the classification of object category, as the objects in different images may not be the

same object. Another disadvantage is the large number of interest points. It is difficult

to handle the large number of points with an approach which is efficient and easy to

compute. More efficient methods need to be investigate to represent the object category.

4.2 Object category classification

Object understanding has always been an important tool for an image system to perform

an automatic search for similar objects or organize a large database of objects. Object

understanding usually attempts to find the same object under different visual conditions.

Another related but different problem is describing and classifying object categories,

such as [72, 73]. The important thing is to identity the characteristic of an object

category and yet be able to adapt it for some minor variations. For example, the color of

objects may be different, or some parts of the object may be absent or occluded. Image
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retrieval based only on basic low-level visual features may find some visually similar

images, but they may not in a same object category. For different categories of objects,

the visual features may differ and cannot be easily compared using a generic set of global

features. Recently object classification based on a collection of image regions has caught

the attention of some research groups [74, 75]. Since each object category must have

some distinctive properties, the definite parts of the objects can be used to represent

the corresponding category. Another benefit of classification based on regions is the

computation complexity. As the region is usually small and simple compared with the

whole image, the feature extraction and classification computation is easy and fast.

In our work, the salient regions are used to build the image model. The basic idea is

to calculate the matching probability of similar regions statistically. The regions which

appear most frequently are selected as the representative regions. After clustering these

regions are collected as an image model to represent the object category. After training,

the obtained image model is used for object classification. The salient regions and same

visual features in a new image are extracted and evaluated using the trained image model.

4.2.1 Selection and preprocessing for representative region

To identify the representative regions, salient regions detected in various scales have been

discussed in [76]. Visual saliency is a broad term that refers to the idea that certain parts

of a scene are pre-attentively distinctive. The visually attentive areas create immediate

significant visual arousal within the first few hundreds of a second when the image is

shown to the viewer [76]. These detected salient regions are reasonable representation of

the whole image and can be used in image classification and image understanding.

In our work the salient regions over suitable scales are used to represent the objects.

The salient regions are identified using the detector provided by Kadir and Brady [76]. It

is a affine invariant salient region detector. This region detector searches the saliency in
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the scale-space as well as spatial dimensions. It includes two steps to detect the salient

region. Firstly, the detector searches for scale localized features with high entropy and

obtains the scale with peaked entropy. The value of entropy has been weighted by the sum

of absolute difference of the PDFs (Probability density functions) of the local descriptor

around the peak entropy. Second, the salient volumes are clustered to form the salient

region. With the detector, regions with the highest saliency over the image are selected

for training and classification. In practise, this method gives a stable identification of

features over a variety of sizes and copes well with intra-class variability. Since this

method applies the scale dissimilarity as a weight for each detection, it can correctly

capture the most salient scales.

As the detected regions usually overlap each other, and a large number of regions are

difficult to handle, a preprocessing step is necessary to select the prominent regions. If

any two regions overlap by more than 2/3, these two regions are merged to form a new

larger region. Some very small regions are removed if there are no other regions that

are close to them. Figure 4.2 shows an example of the detected salient regions before

and after preprocessing. Once the regions are detected and pre-processed, they will be

cropped from the image using the minimum bounding box.

4.2.2 Feature representation of each region

For each region we need to select efficient features. The basic visual features includes

color, texture, shape etc. In our work the color, texture and location information of a

region are used to represent the regions and build the image model. For conformance

with standard description of visual features, we use Dominant Color Descriptor (DCD)

and Homogenous Texture Descriptor (HTD) of the MPEG-7 standard as the color and

texture feature respectively. These descriptors and the locations are used to describe the

regions.
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4.2a: Before preprocessing 4.2b: After preprocessing

Figure 4.2: An output example of the region detector and these regions after preprocess-
ing.

4.2.2.1 Color feature

For color images, color is one of the most expressive and distinguishing visual features.

Although the salient regions are detected based on monochrome information, the color

in the region is still useful to distinguish different kinds of objects. As the salient regions

are usually small and has limited colors, a color histogram with many bins is unnec-

essarily complex. So a color feature which can represent some main color information

of the regions is suitable. MPEG-7 standard provides a set of standard description for

multimedia content. To meet the requirement, we select the Dominant Color Descriptor,

which describes the dominant colors of an image or region in any shape.

As described in section 3.1.1, DCD can specify a small number of dominant color

values and their statistical properties including percentage and variance [18]. The de-

scriptor consists of the color index (ci), color percentage (pi), color variance (vi) and

spatial coherency (s); the last two parameters are optional and we have omit these two

parts. Therefore the DCD is defined by:

F = {(ci, pi)}, i = 1, ..., N. (Eq. 4.4)

where N is the number of the colors and
∑

pi = 1. The maximum number of colors in

DCD is modified to adapt our application. For regions, we set the maximum number
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of colors to four instead of the standard eight. The minimum number of colors is two.

The color index can be represented by common color space, such as RGB, HSV (hue-

saturation-value) or HMMD (Hue-Max-Min-Difference). Here we use the common RGB

color space. As the size of regions will not effect the value of color features, for different

regions we need not normalized the size of regions when extracting DCD.

4.2.2.2 Texture feature

As can be observed, textures within an image are usually concentrated in various regions

of the image. Therefore, texture is likely to be a region property, and the different levels

of homogeneity is a result from the presence of multiple colors or intensities within an

image. Texture can be applied to distinguish many natural and artificial objects. We also

apply a standard MPEG-7 descriptor as the texture feature in our experiments. MPEG-

7 Homogeneous Texture Descriptor characterizes the region texture with the mean and

deviation of energy of frequency channels [18]. The mean energy and its deviation are

computed in each of these 30 frequency channels. Figure 4.3 shows the 2-dimension

frequency plane partitioned into 30 channels. In our experiments, HTD is used as the

texture feature of a region. The structure of the HTD is shown as follows:

HTD = [fDC , fSD, e1, e2, ..., e30, d1, d2, ..., d30] (Eq. 4.5)

where fDC and fSD are the mean and standard deviation of the image, respectively. ei

and di are the nonlinearly scaled and quantized mean energy and energy deviation of the

corresponding ith channel in Figure 4.3 , respectively.

4.2.2.3 The location

Besides the standard color and texture features, the geometric distance between the lo-

cation of two regions is also evaluated. The change in location of corresponding regions
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Figure 4.3: Channels used in computing the HTD [2].

represent the geometric distortion between the objects. To measure the geometric dis-

tortion of regions, the images are normalized in advance. Then the Euclidean distance

between the coordinates of centroid of two regions is calculated as the distance.

4.2.3 Selection of representative regions

In this section how to select the most representative regions is introduced. It mainly in-

cludes two steps. Firstly, when a region either has multiple matching regions or a smaller

cumulative matching distance, it will have a higher matching probability. The regions

with high matching probability are selected and cropped as the candidate representative

regions of the current object. After that, the candidate regions are clustered to select

the most representative regions.

4.2.3.1 Distance for region comparison

For color and texture features different similarity distances are used for computation. We

applied Earth Mover’s Distance (EMD) as the similarity distance for the color feature

(DCD). Since EMD can be used to calculate the distance between two multi-dimensional

distributions where each distribution is represented by sets of weighted features, it is
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appropriate to use the EMD to determine the similarity between two DCDs, where the

basic elements are the dominant colors and their corresponding percentages. The distance

between DCDs of two regions i and i∗ is represented by dDCD(i, i∗) in our work. The

details can be found in section 3.1.3.

In the training procedure, the similarity distance between two regions based on HTD

is measured by summing the weighted absolute difference between two sets of feature

vectors, HTDi and HTDi∗ . The function used to calculate the distance between two

HTDs is shown in Eq. 4.6 [4].

dHTD(i, i∗) =
∑

k

∣∣∣∣HTDi(k) − HTDi∗(k)

α(k)

∣∣∣∣ (Eq. 4.6)

where α(k) is normalization value and it is usually specified to 1 as in [4]. k is the number

of HTD bins.

As the similarity distance of different features cannot be compared directly, the sim-

ilarity distance is normalized between 0 and 1 before comparison to avoid the difference

between the various features. Currently the original distance of features is proportional

to the matching degree. A linear function is used to map the original distance to a

normalized matching degree:

degree(dDCD(i, i∗)) = 1 − dDCD(i, i∗)
thresholdcolor

degree(dHTD(i, i∗)) = 1 − dHTD(i, i∗)
thresholdtexture

(Eq. 4.7)

The thresholdcolor and thresholdtexture are the corresponding thresholds which are de-

fined as the maximum distance selected from all similarity distances of the corresponding

features respectively. Then the matching degree is from 0 to 1.

As described in section 4.2.2.3, the Euclidean distance between the coordinates of

centroid of two regions are calculated as part of the similarity distance for each feature

(dlocation(i, i∗)). So the distance function of DCD and HTD are shown as follows:

dist(i, i∗)color = degree(dDCD(i, i∗)) + dlocation(i, i∗)
dist(i, i∗)texture = degree(dHTD(i, i∗)) + dlocation(i, i∗)

(Eq. 4.8)
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4.2.3.2 Matching probability

It is difficult to only use one image to represent an object. In our work several images

which contain objects of the same category are used to select the representative regions

for that object category. The training procedure is described as follows:

At beginning all training images are randomly selected from the image class. Each

class is a set of images which contains an object category. Usually for an object category,

10 images are randomly selected for training. The salient regions of each image are

detected and preprocessed as described in section 4.2.1. After preprocessing the color

and texture features of each salient region are extracted separately.

The image model is built according to the conjunction function [77]. Initially the

image model includes all the salient regions, as R1∧R2∧R3∧ ...∧Rn, where Ri represents

the regions and n is the total number of regions. The irrelevant items are determined and

removed from the function iteratively. For each region in an image, it is compared with

all other regions in other training images. The calculated matching degree as Eq. 4.7

between a pair of regions is recorded as a fuzzy matching probability. The matching

probability of every region is accumulated during the training. If more images have such

a similar region, the matching probability of this region is much higher than others. Then

this region is selected as a representative region for the current object category. For a

region with small number of matched regions, it will be removed from the initial model

function. The matching probability of a region is the summation of all matching degrees

of matched regions of this region.

4.2.3.3 Clustering of the selected regions

Using matching probability only, we could end up with numerous similar representative

regions. Figure 4.4a shows such an example. It can be seen that the top 10 regions

with high probability are almost the same three regions in different images, i.e., parts
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4.4a: Before clustering (motorbike), 10 representative regions

4.4b: After clustering (motorbike), 10 representative regions

Figure 4.4: The selected 10 regions before and after clustering for motorbike image class.
The regions in the red and yellow cycles are the representative regions. The red cycles
demonstrate the regions which are similar to the regions in Figure 4.4a.

of the front wheel and the spokes of the whole front wheel. Because these regions are

similar to each other, all their matching probability are increased accordingly during the

computation. In order to reduce representative regions being all from just a few similar

regions, we use clustering method to select one representative region to represent a set

of similar regions.

The centroid of each cluster can be directly used to build the model. But in order

to demonstrate the representative regions visually, the regions which are closest to the

centroid of each cluster are selected as the represented regions. After that other similar

regions are removed from the model. In this thesis the k-means clustering method is
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applied for clustering. The algorithm consists of a simple re-estimation procedure as

follows. First, the data points are assigned randomly to the clusters. Then the centroid

is computed for each cluster. These two steps are alternated until a stopping criterion

is met, i.e., when there is no further change in the assignment of the data points. The

number of clusters is predefined as the number of representative regions. In our method,

the number of cluster is 10 for the model used for basic classification measure. Because in

the first step the regions are randomly assigned to clusters, the results of representative

regions may be slightly different due to the clustering discrepancies.

4.2.3.4 The weights of representative regions

After clustering, a set of representative regions based on color and texture features are

obtained separately. Among these regions, different regions have different representative

degrees for the objects. Some representative regions should have a higher weight, as the

object which contains these regions in Figure 4.4b is more likely to be the object. The

representative regions with high weights in Figure 4.4b are shown using red color. These

regions appear more frequently than other regions in the motorbike class. So the weight

of region is related to the corresponding appearance frequency of this region. It means if

one cluster has more regions, the representative region of this cluster is more important

and should have a higher weight.

Therefore, for each region in the model, the number of similar regions in a training

set that have been classified into the corresponding cluster is evaluated as the suitable

weight. The weight of each region wi is defined as:

wi =
nclusteri

Nall

(Eq. 4.9)

where nclusteri
is the number of regions in cluster i and Nall is the total number of

regions in all cluster. So the cumulative weight is normalized to 1.
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As the color and texture focus on different characteristic and appearance of a region,

different regions will be selected according to color and texture features. So the model is

a combination of regions selected by color features and a number of regions selected by

texture features. Hereby the matching probability consists of two parts, color and texture.

When the representative regions selected by color and texture features are combined, the

weights in Eq. 4.9 are also applied. For those regions selected by both color and texture

features, their matching probability is increased to the weighted sum of the matching

probabilities based on two features separately. These regions with high weights will play

an important role in the similarity comparison.

4.2.3.5 The whole training algorithm for the image model

Suppose Di is the matching probability of region Ri and dist(Ri, Ri∗) is the calculated

matching probability between region Ri and Ri∗ , the complete algorithm is shown in

algorithm 1. threshold is a predefined value to decide if the region should be removed.

k is the number of representative regions, i.e., the number of clusters.

In our experiments, after preprocessing an image usually has 5 to 15 detected regions,

so there will be quite a number of comparisons. But due to the simple features and easy

matching method, the calculation time and memory requirements are reduced.

4.2.4 Basic classification using the trained image model

Object classification proceeds basically by evaluating the color and texture features (ap-

pearance) of other images using the trained image model. The location change of the

regions is also considered. Similarity distances based on color and/or texture and location

change will become the overall combination distance. This likelihood measure of each

image is calculated from the overall combination distance and compared to the threshold

of classification. If the likelihood measure is larger than the threshold, the object belongs

to this known category. Otherwise the object will be rejected.
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Algorithm 1 : Region Selection

Input: Ri, k
Output: Rs, the representative regions

1: Initialization
2: R = R1 ∧ R2 ∧ R3 ∧ ... ∧ Rn

3: for each item Ri in R do
4: Di = 0
5: end for
6: Reduce irrelevant items using positive samples
7: for each item Ri in R do
8: for each item Ri∗ in R, i∗ �= i do
9: Di = Di + dist(Ri, Ri∗)

10: end for
11: if Di < threshold then
12: R = R − {Ri}
13: end if
14: end for
15: for each item Ri in R do
16: k-means clustering to produce k clusters
17: end for
18: for each center of the cluster do
19: Find the nearest region Rs in R
20: end for
21: Return Rs(k regions)

4.2.4.1 Comparison between regions

The classification based on the model is according to the similarity between the regions of

model and the input image. For each region in the model, the corresponding region in the

image is selected. The quality of a correspondence is measured in two aspects: how similar

appearance is to its corresponding regions, and how much the spatial arrangement of the

regions is changed. The former is represented by the calculated matching probabilities

based on color and texture, and the later is represented by the geometric distortion of

a pairs of regions. So the computation of likelihood measure includes two steps. Firstly

a set of regions which have similar appearance to the regions in the model are selected.
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Then the mixed similarity measures are calculated between the model regions and selected

regions, including the appearance similarity and the geometric distortion. After that the

region pairs with maximum mixed similarity measure are selected as the matched region

pair. So the likelihood measure of the image is the sum of all similarity measures of

matched region pairs as in Eq. 4.10.

disttotal =
N∑

i=1

[distcolor(i) + disttexture(i) + distdistortion(i)] (Eq. 4.10)

where i is ith matched region pair and N is the number of total matched region pairs.

The details of Eq. 4.10 can be found in next section.

At the beginning, for each region in the model, the matching similarities compared

with all the regions in the image are calculated. Using the distance functions in section

4.2.3.1, the similarity distances based on color and texture information are calculated

separately, and normalized as Eq. 4.7. Then for each region in the model, the closest

regions in the image are selected as the similar region set. This is determined by com-

paring the similarity with a predefined threshold. If the similarity degree is less than the

threshold, we consider there is no matched region for current region. Currently we define

the threshold is 0.7. For one region in the model, it may have several similar regions

in the image. The most matching region is determined by the geometric distortion as

described in next section.

4.2.4.2 Geometric distortion costs

Besides the appearance comparison between the representative regions, the spatial re-

lationship between a pair of regions are also considered. For the change of location we

use a flexible and efficient distance, the geometric distortion costs, instead of the direct

comparison of coordinates. We consider correspondence between regions in image model

and the matched regions in any image of database.

77

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4. Object category classification and retrieval

pi

pk

ri'

pj

rj'

rl

v
ij

v
i'j'

Figure 4.5: An illustration of geometric distortion between pairs of regions. pi, pj is a pair
of regions, and ri′ , rj′ is the corresponding region pair. vij and vi′j′ are the two vectors
formed by region pairs.

The geometric distortion is computed over pairs of regions in an image. Figure 4.5

demonstrates an example of region pairs and the geometric distortion between them.

The centroid of two regions form a vector, so the difference in direction and length of

two offset vectors of corresponding regions in two images are measured. We adapted the

distortion function in [36] for the regions. The function is shown in Eq. 4.11. The dot

product of two vectors is used to calculate the angles.

Suppose the trained image model P has N regions P = {pi, i = 1, ..., N}, and for each

pi, it has a set of similar regions Ri = {ri,i′ , i
′ = 1, ..., M} in Q, where Q is any image

from the database for classification. To reduce notational clutter we abbreviate ri,i′ as r′i.

Then for any two regions pi and pj in P , they composes a vector vij = pi − pj. pi has a

similar region set Ri and pj has a similar region set Rj. The corresponding vector of vij

in Q is one of vector set vi′j′ = r′i − r′j, r
′
i ⊂ Ri, r

′
j ⊂ Rj, r

′
i �= r′j. At last the calculation

of geometric distortion between two vectors is as follows:
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dangle =

∣∣∣∣arccos

(
si′j′ · rij

|si′j′||rij|
)∣∣∣∣

dlength =
si′j′ − |rij|

|rij|
dij,i′j′ = 1 − distortion

threshold
distortion = min

i′,j′
d(ri, rj; ri′ , rj′)

= min
i′,j′

d(vij, vi′j′)

= min
i,j

(w1dangle + (1 − w1)dlength)

(Eq. 4.11)

where dangle calculates the angle between two vectors, and dlength calculates the change

in length between two vectors. The constant w1 weighs the proportion between angle

distortion term and the length distortion term.

The combined distance between two regions includes similarity distance based on

appearance and geometric distortion. The proportion of these two parts is adjusted by

a weight w2 as follows:

comb disti,j;i′,j′ = w2 ∗ (di,i′ + dj,j′) + (1 − w2) ∗ dij,i′j′ (Eq. 4.12)

where di,i′ (or dj,j′) represents the similarity distance between region ri and ri′ (or rj

and rj′) based on the appearance features, and dij,i′j′ represents the geometric distortion

between the offset vectors. The constant w2 weighs the similarity distance against the

geometric distortion. We assign it to 0.5 in the experiments. Note that these distances

are normalized according to the threshold in advance.

For the whole image, the likelihood measure disttotal of any images in a database is

the sum of distances of all match regions. It is shown as follows:

disttotal =
∑
i,j

comb disti,j;i′,j′ (Eq. 4.13)
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Figure 4.6: An illustration of nested spatial relationships between regions. These two
groups of four regions have different positions, but the spatial structures are the same.

4.2.5 Object model matching based on graph structure

In section 4.2.3 we have obtained the representative regions of the object category suc-

cessfully. In section 4.2.4 the regions in the model are directly used to classify the object,

but the relationships between the regions are not utilized adequately. In this section we

apply a more sophisticated method to evaluate the correspondences between the regions

in the model and images. Instead of only pairs of regions, the nested spatial relationships

between multiple regions are adopted to improve the results. Figure 4.6 demonstrates an

example.

4.2.5.1 Object representation based on attributed relational graph (ARG)

The attributed relational graph (ARG) is a relational structure which consists of a set of

vertices and a set of edges, which are representing the relationships between these vertices.

The detailed definition of ARG is given in [78]. A complete ARG can conveniently

represent a content model which combines the individual attributes of a set of spatial

entities along with their binary relationships. In ARG the spatial entities are represented

as vertices (V ), each labeled with a unary attribute (vi), and binary spatial relationships

are represented as pairs of vertices (V ×V ), i.e., the edges (E), each labeled with a spatial

feature (eij).

In our method, the regions that are the centers of all clusters are used to build the

model as described in 4.2.3. We use ARG to organize the model and the structure of
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model is a full-connected graph. Each vertex of the graph corresponds to a representative

region and the feature vector of the vertex is the color or texture feature of the region.

The edge reflects the spatial relations between the regions. The feature vector of the

edge is the difference of coordinates of regions. For each image in the database, a graph

is built based on the detected salient regions.

4.2.5.2 Graph matching based on EMD

As introduced in section 3.1.2, Earth Mover’s Distance (EMD) is a perceptual flexible

similarity measure between two weighted multi-dimensional distributions. The solution

of EMD is based on the well-known transportation problem. Suppose that there are sev-

eral suppliers required to supply several consumers. Each supplier has a known amount

of goods and each consumer has a known capacity. For each supplier-consumer pair, the

transportation cost of a single unit of goods is given. The transportation problem can

be defined as to find a least-expensive flow of goods from the suppliers to the consumers

that satisfies the consumers’ demand. Graph matching can be naturally cast as a trans-

portation problem by defining one graph as the supplier and the other as the consumer.

The cost for a supplier-consumer pair is set as to the ground distance between a vertex

in the first graph and a vertex in the second. Intuitively, the solution is the minimum

amount of “work” required to transform one graph into the other.

However, EMD cannot be directly applied to graph matching because the ground

distance between vertices cannot be computed directly. So the computation procedure

can be divided into two steps. In the first step, the ground distances between every pair

of vertices in these two graphs are computed. Suppose a vertex in the supplier graph is

matched with another vertex in the consumer graph, the minimum cost for the conversion

between two graphs under this situation is computed. This cost can be considered as the

ground distance between this pair of vertices. After the ground distance of every pair
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of vertices is calculated, the minimum cost of converting these two graphs is computed

based on the obtained set of ground distances.

The idea is similar to the nested EMD in [42]. In [42] EMD is modified as nested

EMD (nEMD) to measure the similarity between two graphs. The nested structure of the

EMD consists of inner EMD and outer EMD. The inner EMD reflects the difference of

both vertices and edges between a pair of vertices in two ARG’s in a perceptual manner,

and the outer EMD establishes the correspondence between vertices in the two ARG’s in

a natural way. Note that in [42] some details of inner EMD is given and the outer EMD

is only described briefly. How to computed the outer EMD and the final matching flow

is not introduced. As the computation is based on the transportation problem and Earth

Mover’s Distance, we have investigated and finished the computation of outer EMD. The

results are verified and applied to the matching of our image model successfully.

To be compliant with the description in [42], we use the similar notation in the thesis.

Assume that two ARGs to be matched are G = (V, E), where

V = {vi|1 ≤ i ≤ n} (Eq. 4.14)

E = {eij|i �= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}, (Eq. 4.15)

and G′ = (V ′, E ′), where

V ′ = {v′
i′|1 ≤ i′ ≤ n′} (Eq. 4.16)

E ′ = {e′i′j′|i′ �= j′, 1 ≤ i′ ≤ n′, 1 ≤ j′ ≤ n′}. (Eq. 4.17)

The completed computation procedure is as follows:

1. 1st cost matrix for EMD (Inner EMD): for a pair of vertices Vi in the model G

and V ′
i in image G′, suppose these two vertices are matched. Then a matrix for the

transformation cost of other vertices under this situation is computed as Dinner. The

cost between any other two vertices includes two parts, the unary part and the binary
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part. The unary part is computed based on the features of these two vertices, i.e., the

color or texture feature of the regions. The same distance functions as in section 4.2.3.1

are applied to DCD and HTD separately. The binary part is based on the features of

the edges, i.e., the difference of spatial coordinates of the regions.

Finally, an inner EMD of the two vertices can be computed using a distance matrix,

Dinner = [d
(j,j′)
inner], including all differences from their unary features and binary relation-

ships, where j and j′ are the vertices in graph G and G′ respectively. More specifically,

given i and i′ , d
(j,j′)
inner is computed as following equation:

Di,i′
inner = [d

(j,j′)
inner] (Eq. 4.18)

d
(j,j′)
inner = (1 − α)d(Vj, V

′
j′) + αd(eij, e

′
i′j′) (Eq. 4.19)

where d(Vj, V
′
j′) and d(eij, e

′
i′j′) means the pre-defined distance between the vertices and

edges, respectively. Especially, eij = 0 or e′i′j′ = 0 when i = j or i′ = j′, respectively.

2. 2nd cost matrix for EMD (Outer EMD): For every pair of matched Vi and V ′
i′ ,

calculate the optimal cost when G is transferred to G′ in this case. Actually this optimal

cost is an EMD solution based on the previous cost matrix in Eq. 4.19. Combining with

the difference between Vi and V ′
i themselves, the minimum cost di,i′

outer for Vi and V ′
i is

calculated as follows:

di,i′
outer = (1 − α)d(Vi, V

′
i′) + αEMD(Di,i′

inner) (Eq. 4.20)

where EMD(Di,i′
inner) is the EMD solution based on the cost matrix Di,i′

inner. During the

computation of EMD, to allow for partial matches, all weights in both inner and outer

EMD’s are identically provided as follows:

wi = w′
i′ =

1

max(n, n′)
, 1 ≤ i ≤ n, 1 ≤ i′ ≤ n′ (Eq. 4.21)
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Algorithm 2 : Graph matching based on 2-step EMD

Input: G = {V, E}, G′ = {V ′, E ′}, α
Output: Flow, the matching vertices and cost flow between G and G′

1: for each item Vi in G do
2: for each item V ′

i in G′ do
3: Suppose Vi and V ′

i is matched

4: Di,i′
inner = [d

(j,j′)
inner]

5: d
(j,j′)
inner = (1 − α)d(Vj, V

′
j ) + αd(eij, e

′
ij)

6: end for
7: end for
8: Douter = [d

(i,i′)
outer]

9: di,i′
outer = (1 − α)d(Vi, V

′
i ) + αEMD(Di,i′

inner)
10: Flow = EMD(Douter)
11: Return Flow

For all the pairs of vertices in G and G′, the minimum costs di,i′
outer based on the inner

EMD are calculated. These minimum costs form a new n × n′ matrix Douter. It is the

ground distance matrix to convert G to G′.

Douter = [d
(i,i′)
outer] (Eq. 4.22)

3. Using Douter as the ground distance matrix for the computation of EMD, the EMD

to convert G to G′ is calculated. At the same time the minimum flow matrix F between

vertices in G and G′ can be obtained. It establishes the corresponding relations between

the vertices of G and G′ automatically. The EMD is used to identify whether there is an

object in the image.

The completed algorithm of graph matching based on EMD is given in Algorithm 2.

4.2.5.3 A computational example of graph matching based on EMD

In order to demonstrate the graph matching algorithm, we give an example of sub-graph

matching to clarify the computation procedure based on EMD. Figure 4.7 shows two

fully connected and undirected ARG to be matched, G with five nodes and G′ with
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four nodes. So it is a sub-graph matching. Euclidean distance is used to calculate the

distance between vertices and edges. The weights of all vertices in G and G′ are set to

0.2 as determined by Eq. 4.21. In fact, G and G′ can be converted into each other by

using a permutation matrix P , which is given by

P =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎥⎥⎦ (Eq. 4.23)

Now, let us investigate the detailed procedure of the 2-step EMD. First, an inner

EMD between every pair of vertices in G and G′ requires a corresponding Dinner. In case

that the 1st node in G and the 1st node G′ are matched, i.e., i = i′ = 1, the inner EMD

of the two vertices is given by

D1,1′
inner =

⎡
⎢⎢⎢⎢⎣

0.05 0.35 0.25 0.35
0.65 0.25 0.75 0.25
0.25 0.45 0.05 0.45
0.6 0.3 0.7 0.2
0.05 0.35 0.15 0.35

⎤
⎥⎥⎥⎥⎦ (Eq. 4.24)

where α = 0.5.

Using D1,1′
inner matrix in Eq. 4.24 as the ground distance, the minimum cost of trans-

ferring the graph in this case is 0.1375 computed by EMD. According to Eq. 4.20,

d1,1′
outer = (1 − 0.5) × √

(0.5 − 0.6)2 + 0.5 × 0.1375 = 0.11875. After all the elements

in Douter are calculated, Douter is given by:

Douter =

⎡
⎢⎢⎢⎢⎣

0.11875 0.2875 0.23125 0.23125
0.33125 0 0.49375 0.075
0.2 0.5 0 0.45
0.29375 0.075 0.45 0
0 0.33125 0.2 0.29375

⎤
⎥⎥⎥⎥⎦ (Eq. 4.25)

The matrix in Eq. 4.25 is the ground distance between the vertices to transfer G to

G′. So the EMD based on this ground distance matrix can be used to calculate the
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4.7a: Graph G with 5 nodes
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4.7b: Graph G′ with 4 nodes

Figure 4.7: An example of sub-graph matching based on EMD.

minimum work for graph transferring and the flow. The calculated minimum work is 0

as the graph G′ is a sub-graph of G. The flow in matrix format is shown in Eq. 4.26. It

can be seen that the matrix F is corresponding to the permutation matrix P , which is

proved that the correspondence of vertices is correct.

F =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0.2 0 0
0 0 0.2 0
0 0 0 0.2
0.2 0 0 0

⎤
⎥⎥⎥⎥⎦ (Eq. 4.26)

4.2.5.4 Other applications of the image model

Besides object classification, the trained image model can be used for image retrieval.

Retrieval proceeds by using the representative regions in the image model as an virtual

image directly. The images in the database are compared with the virtual image as an

initial comparison. Then the image model can determine whether the current image

belongs to the object class.If the current image is belongs to the object class, it is similar

to the query virtual image and added to retrieval result set. Other possible methods can

be used to improve the initial results. In an image retrieval system with user feedback,
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user can help determine a set of positive images and this set of positive images can be

used to train the image model. This image model and its representative regions (virtual

image) can be used for retrieval and will likely yield better results.

4.3 Experimental results

In this section some experimental results are presented to demonstrate the performance

of the image retrieval based on the scale invariant points, and the object recognition

based on the representative regions.

4.3.1 Image retrieval based on scale invariant points

The image retrieval are based on an image database including 1500 images and 300

regions. The images are randomly selected from the standard COREL Photo Library

and we manually crop these 300 regions from our database of 1500 images. Each image

has about 800 feature vectors and each region has about 100 feature vectors corresponding

to each interest point. Some small regions contain only 10-20 feature vectors.

At first a small region without scale change is used to find the original image. 300

regions are tested and more than 290 corresponding original images can be found at the

top rank successfully. Others are all in the top 10 results. Figure 4.8 shows some retrieval

examples. It can be seen that even when the region is very small and simple, or there are

many additional points in target image, the target image also can be found successfully.

The matched points and all detected points are also shown and most of them are matched

properly. The calculation is very fast because of the small number of interest points.

In the second part of experiments, new regions are formed from existing regions by

applying different scales and rotations. Figure 4.9 is an example for query using rotated

and scale-change region. The query region and top five results are shown here. The

query region is rotated in 20 degree and changed with a 2.4 scale factor. It is a simple
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4.8a: 14 interest points 4.8b: 47 interest points

4.8c: 75 interest points, 10 matched 4.8d: 930 interest points, 33 matched

Figure 4.8: Query with small regions. 4.8a and 4.8b are the query regions and 4.8c and
4.8d are the corresponding top rank results. The numbers shown are the whole number
of interest points detected in the region or image. ’◦’ means matched points and ’×’
means unmatched points.

region and only has 39 interest points. The original image is correctly found and some

regions in other scale are also found in high rank. Rank 3 and 4 are two very similar

image and region regardless of the color information. Currently the feature vectors are

not represent any color information. Another example is given in Figure 4.10.

Table 4.2 shows the summarized retrieval results under different scale factor, “1.4”,

“1.8”, “2.4” and “2.8”. A total of 100 regions are used for test and each region is

changed with these four scale factors. Some regions also rotated up to ±20 degree. The

performance is evaluated as the average percentage when the original image is present as

the first image or in the top five or in the top 10 of the result set. It can be seen that

even if the scale is changed up to 2.8, the results are good. We compare our results with

the voting algorithm of [6] and the results of the voting algorithm are shown in Table

4.3. Table 4.3a shows the results presented in [6] which are querying with the whole

images and Table 4.3b shows the query results of using the same regions and images of
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4.9a: Query region 4.9b: Rank 1 4.9c: Rank 2

4.9d: Rank 3 4.9e: Rank 4 4.9f: Rank 5

Figure 4.9: Top 5 results of querying with scale and orientation changed region. 4.9a is
the query region, scale=2.4, rotated 20◦, 39 interest points. 4.9b scale=1.8, 62 interest
points, 17 matched. 4.9c is the original image, 126 interest points, 19 matched. 4.9d is
a similar image, 209 interest points, 20 matched. 4.9e is a similar region, 181 interest
points, 16 matched. 4.9f scale=1, rotated 15◦, 112 interest points, 21 matched.
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4.10a: Query region 4.10b: Rank 1 4.10c: Rank 2

4.10d: Rank 3 4.10e: Rank 4 4.10f: Rank 5

Figure 4.10: Top 5 results of querying with scale and orientation changed region. 4.10a is
the query region, scale=2.8, 213 interest points. 4.10b scale=2.4, 299 interest points, 167
matched. 4.10c is the original image, 1761 interest points, 149 matched. 4.10d scale=1.8,
484 interest points, 137 matched. 4.10e scale=1.4, 699 interest points, 148 matched.
4.10f is a wrong matched image, 1362 interest points, 152 matched.

Table 4.2: Retrieval results based on regions in different scales. All 100 regions are
rotated with 10◦-20◦ separately.

Scale factor (rotation 10◦-20◦)
Retrieved rank 1 1.4 1.8 2.4 2.8
Top rank 97% 85% 76% 64% 52%
Top 5 100% 100% 90% 74% 66%
Top 10 100% 100% 94% 81% 70%

our image database. Here only the percentage of results in top 10 rank is evaluated. It

can be seen that the results of region-based retrieval is not satisfied. Compared with the

results of vote algorithm, it can be seen that the results of our method are better.

4.3.2 Recognition of object categories

The experiments were carried out as follows: the test sets are selected from the COREL

image set, 101 Object Categories 1, Pond’s image set [79] and the test set of [38], including

1http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html
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Table 4.3: Retrieval results using vote algorithm [6].

4.3a: The results of using whole images presented in [6].

Scale factor (rotation 10◦-20◦)
Retrieved rank 1.4 1.8 2.4 2.8
Top rank 60% 60% 60% 50%
Top 5 100% 90% 60% 80%
Top 10 100% 100% 90% 90%

4.3b: The results of using the same Corel regions and images in our image database.

Scale factor (rotation 10◦-20◦)
Retrieved rank 1 1.4 1.8 2.4 2.8
Top 10 50% 30% 20% None None

eagle, military aircraft, airplane (side), motorbike, car (side and rear), butterfly, bobsled,

watch and face. Each class includes about 100 to 300 images. Totally there are about

1200 images in the database. Figure 4.11 shows some sample images from the image sets.

From each class 10 images are randomly selected to train the image model.

4.3.2.1 Representative regions in image model

As described, 10 images of an object category are randomly selected for training. The

results of region detection show that usually each image includes 5 to 15 regions. There-

fore there are about 100 regions for comparison. The number of representative regions

can be determined by a predefined threshold, i.e., the number of clusters. Here we use

10. Figure 4.12 and Figure 4.13 demonstrate the initial region set and the representative

regions based on color and texture separately. In order to demonstrate the exact cropped

region, rectangles are used to identify the regions. As the clustering procedure can affect

the results, each time the representative regions in the model may be slightly different.

Because in the initial step of clustering the regions are randomly assigned to clusters,

finally the results of representative regions may be slightly different.

The training time for different classes is shown in Figure 4.14. The platform is a

PC with 512M RAM and Intel 1.8G CPU, visual studio environment. For most classes,
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the training time is less than 0.5s. The three classes which use more training time are

butterfly, face and airplane (side). Due to a larger number of detailed regions, training

time is higher. The training based on texture feature is faster than color feature. The

representative regions in the model based on color and texture features are determined

separately. Eventually, these regions are combined to form the combination image model.

4.3.2.2 Basic object category recognition

The trained image model are used to classify the objects. Precision and recall are used

to evaluate the results.

Precisionk =
Ak

Ak + Bk

Recallk =
Ak

Ak + Ck

(Eq. 4.27)

where k is the number of total results, Ak is the number of correct results, Bk is the

number of false results and Ck is the number of missed results.

The results of unweighted for regions in the model are shown in Table 4.4. The results

of weighted regions are shown in Table 4.5. It can be seen that for most object classes

the results are improved after the weights are applied. The classification results based on

DCD and location are shown in Table 4.4a and Table 4.5a. The results based on HTD

and location are shown in Table 4.4b and Table 4.5b. The classification results using a

combination of all features, including color, texture and location of the regions are shown

in Table 4.4c and Table 4.5c. For the car (side) class, as the image is monochrome, only

the results of texture feature is presented.

It can be seen that the model can achieve better results for the objects with standard

structures, such as face and motorbike. Although the trained image model contains only

a few representative regions, the military aircraft and eagle have similar background but

they can be easily differentiated. For the bobsled class, the results is not optimal due to

the very large variation of direction and scale inside the class. For some object categories
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with different colors of objects, the texture feature can obtain better results. When the

combined distance is used, the results of all classes show an improvement.

Figure 4.15 shows the average time of classification for one image. Because the num-

bers of regions in the model for all classes are all 10, the classification time of different

classes for one feature is very similar. To classify one image, the time is less than 0.01s.

When the texture feature is used, the classification is only about 0.001s. As the classi-

fication based on combination features is the combination of the results based on color

and texture separately, the time of combination is not evaluated.

Figure 4.16 shows some examples of the representative regions and the matching

images. The regions in top two line of images are the representative regions. The image in

last line is the matching image. The regions which are corresponding to the representative

regions are marked in the corresponding colors. For two regions in a matched region pair,

the same color is applied. Figure 4.17 show a match of an object with a more complex

background. It can be seen that although the background affects the result, most of the

regions are correctly detected and matched.
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Table 4.4: Object classification results without weights of regions for all image categories.

4.4a: The results of using color features and location.

Category Precision Recall Category Precision Recall
Military aircraft 82.2% 79.0% Eagle 73.5% 71.0%
Car (rear) 76.9% 71.0% Face 87.8% 79.2%
Motorbike 93.3% 82.3% Bobsled 73.3% 70.0%
Airplane (side) 76.8% 72.0% Watch 86.7% 76.0%
Butterfly 82.0% 79.0% Car (side) (grey images)

4.4b: The results of using texture features and location.

Category Precision Recall Category Precision Recall
Military aircraft 84.7% 81.0% Eagle 76.8% 75.0%
Car (rear) 80.5% 78.7% Face 91.5% 86.3%
Motorbike 94.5% 86.3% Bobsled 77.3% 72.0%
Airplane (side) 81.0% 78.5% Watch 82.5% 73.3%
Butterfly 74.0% 72.0% Car (side) 83.3% 74.8%

4.4c: The results of combination.
Category Precision Recall Category Precision Recall

Military aircraft 86.3% 81.6% Eagle 79.4% 73.5%
Car (rear) 83.9% 82.3% Face 92.5% 93.3%
Motorbike 95.5% 89.0% Bobsled 78.2% 74.5%
Airplane (side) 84.0% 82.3% Watch 88.3% 81.0%
Butterfly 82.6% 80.0% Car (side) (grey images)

4.3.2.3 Object category recognition based on graph matching

The experiments of graph-based matching for the image model use the same dataset

as in section 4.3.2.2. In order to reduce the computation complexity and demonstrate

performance of graph-based matching, we reduce the number of regions in the model

from 10 to 6. Figure 4.18 shows some examples of the six representative regions selected

as the image model. Figure 4.19 shows some matching examples based on the graph

structure. It can be seen that the corresponds of regions in the image model and images

are correct and efficient. For the 10 categories of objects, the precision and recall based

on color and texture information are shown in Table 4.6a and Table 4.6b separately.

Although the number of regions in the model are reduced to 6, the results are still better
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Table 4.5: Object classification results with the weights of regions for all image categories.

4.5a: The results of using color features and location.

Category Precision Recall Category Precision Recall
Military aircraft 82.4% 79.5% Eagle 72.7% 70.5%
Car(rear) 76.2% 70.3% Face 89.5% 82.6%
Motorbike 94.6% 83.2% Bobsled 71.8% 70.0%
Airplane (side) 83.2% 76.5% Watch 81.2% 75.6%
Butterfly 81.0% 76.6% Car(side) (grey images)

4.5b: The results of using texture features and location.

Category Precision Recall Category Precision Recall
Military aircraft 84.9% 81.5% Eagle 77.2% 75.0%
Car(rear) 82.0% 79.4% Face 93.5% 89.3%
Motorbike 94.9% 86.5% Bobsled 77.6% 72.0%
Airplane (side) 86.2% 79.5% Watch 83.5% 74.2%
Butterfly 75.5% 72.0% Car(side) 87.4% 79.5%

4.5c: The results of combination.
Category Precision Recall Category Precision Recall

Military aircraft 89.2% 82.3% Eagle 80.5% 75.2%
Car(rear) 84.1% 83.0% Face 94.8% 93.7%
Motorbike 95.7% 89.6% Bobsled 79.5% 74.9%
Airplane (side) 89.3% 84.5% Watch 85.4% 78.0%
Butterfly 83.2% 79.2% Car(side) (grey images)

than the simple comparison as shown in Table 4.4 and Table 4.5. Note that even if we

can define different suitable weights for the representative regions in the model according

to the corresponding appearance frequency, we cannot pre-define the weights of regions

in the images properly. Thus we have to assign the same weights to the regions both

in model and images. How to effectively improve the performance based on the suitable

weights needs more investigation. For one image, it takes about 2-3 seconds to obtain

the matching results in the same platform as described before. It depends on the number

of regions in the images.
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Table 4.6: Object classification results based on graph matching for all image categories.

4.6a: The results of using color features and location.

Category Precision Recall Category Precision Recall
Military aircraft 83.1% 79.4% Eagle 76.4% 73.2%
Car (rear) 80.5% 75.3% Face 92.8% 83.5%
Motorbike 96.3% 84.6% Bobsled 77.1% 74.2%
Airplane (side) 78.7% 74.8% Watch 88.4% 79.3%
Butterfly 85.6% 81.2% Car (side) (grey images)

4.6b: The results of using texture features and location.

Category Precision Recall Category Precision Recall
Military aircraft 86.7% 83.2% Eagle 79.8% 76.5%
Car (rear) 84.5% 81.3% Face 93.5% 89.2%
Motorbike 95.8% 88.5% Bobsled 79.3% 72.5%
Airplane (side) 88.5% 82.1% Watch 88.2% 81.3%
Butterfly 83.6% 75.5% Car (side) 89.3% 82.0%

96

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4. Object category classification and retrieval

4.11a: Class 1: Military aircraft 4.11b: Class 2: Motorbike

4.11c: Class 3: Bobsled 4.11d: Class 4: Butterfly

4.11e: Class 5: Car (rear) 4.11f: Class 6: Car (side)

4.11g: Class 7: Eagle 4.11h: Class 8: Face

4.11i: Class 9: Airplane (side) 4.11j: Class 10: Watch

Figure 4.11: Some sample images from the datasets.
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4.12a: The detected regions of the training images

4.12b: The selected 10 representative regions based on color information

4.12c: The selected 10 representative regions based on texture information

Figure 4.12: The original detected regions of motorbike and the representative regions
based on color and texture information. The areas in the red blocks are cropped from
the images as representative regions.
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4.13a: The detected regions of the training images

4.13b: The selected 10 representative regions based on color information

4.13c: The selected 10 representative regions based on texture information

Figure 4.13: The original detected regions of car (rear) and the representative regions
based on color and texture information. The areas in the red blocks are cropped from
the images as representative regions.
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Figure 4.14: The training time for different classes. The numbers in x axis represent the
10 classes.
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Figure 4.15: The classification time using the trained model for different classes. The
numbers in x axis represent the 10 classes.
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4.16a: The representative regions and a match example of motorbike

4.16b: The representative regions and a match example of face

Figure 4.16: The 10 representative regions in the model and matched examples. The
image in last row is the matching image. The different colors of regions and lines demon-
strate different corresponding matches.
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4.16c: The representative regions and a match example of car (rear)

Figure 4.16: The 10 representative regions in the model and matched examples. The
image in last row is the matching image. The different colors of regions and lines demon-
strate different corresponding matches. (con’t)

Figure 4.17: The image model and matched example of a motorbike with a complex
background. The different color regions and lines indicate the corresponding regions.
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4.18a: The selected 6 representative regions based on color information of car (rear).

4.18b: The selected 6 representative regions based on texture information of motorbike.

4.18c: The selected 6 representative regions based on texture information of car (side).

Figure 4.18: The 6 representative regions based on color and texture information for some
categories. The areas in the red blocks are cropped from the images as representative
regions.
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4.19a: The representative regions and a match example of car (side) based on texture features.

4.19b: The representative regions and a match example of motorbike based on color features.

Figure 4.19: The 6 representative regions in the model and matched examples based on
graph. The image in last row is the matching image. The different colors of regions and
lines demonstrate different corresponding matches.
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4.4 Summary

Besides the whole image retrieval based on the low-level features, we want to identify the

objects in the images. In this chapter, an initial work to use scale-invariant information

in region-based retrieval is discussed. From the experimental results, it can be seen that

fuzzy matching degree measure can greatly improve the retrieval performance, especially

for small set of interest points, because the matching degree is more important when

there are inadequate interest points to vote. Cross-correlation can further reject some

mismatched images. How to obtain the matching points efficiently from very different

numbers of points still needs more investigation.

After that a fast classification method of object category based on salient regions is

introduced in this chapter. The classification is based on the representative regions of

object categories. Firstly the salient regions in images containing objects are extracted.

Then the most representative regions are selected according to the matching probability.

These regions with suitable weights are used to build an image model. After training,

this image model can be used for object classification and image retrieval. The spatial

relationships between pairs of regions are calculated to improve the results.

In order to use the nested spatial relationships between the regions, we further intro-

duce a graph-based matching algorithm to find the corresponding regions in the image

model and images in the database. Each region is a vertex in the graph and the spa-

tial relations between pairs of regions form the edges in the full-connected graph. An

efficient graph matching algorithm based on EMD is investigated. EMD is applied in 2

steps to find the minimum cost, i.e., the distance between the two graphs. The graph

based matching can fully make use of the relationships between the regions and better

results can be achieved with less regions. For objects in a stable structure, the results

are even better.
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Chapter 5

Efficient sampling and its
application to multimedia data

Currently the increasing size and diversity of multimedia information has stimulated

the requirements for intelligent methods to analyze and manage data effectively. For a

large image database, a good sampling algorithm can help us to efficiently manage and

browse the images. Besides, the images in sample set can be easily tailored to different

applications, such as finding more suitable training samples for machine learning and

classification.

Another important issue related to the selection of training set is to reduce outliers

or noise in the dataset. As real-world data is never perfect, the classifier can often suffer

from corruptions (noise) that may impact the results based on the data. For example: (a)

The feature values maybe erroneous or missing, and/or (b) the samples can be labeled

with wrong classes. Noise can reduce system performance from several aspects, such as

classification accuracy, training time, and the size of classifier. Accordingly, most existing

training algorithms have applied various approaches to enhance their training abilities on

noisy dataset, but the existence of noise can still introduce serious negative impacts [80].

A more reasonable solution is to employ some noise filter mechanisms to handle noisy

data before a classier is trained. It is better if a sampling algorithm is able to distinguish

the noise while selecting the training set from the original dataset.
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In this chapter, firstly we briefly review the ε-approximation method and Epsilon-

approximation method and Epsilon Approximation Sampling Enabled (EASE) algorithm.

Then we introduce the new EASIER algorithm and analyze the performance vis-a-vis

EASE. Finally the applications of EASIER for image and audio dataset are discussed.

5.1 Epsilon-approximation method

In this section we introduce the EASE sampling algorithm. We also analyze the limita-

tions of EASE.

5.1.1 Notation

Firstly we introduce the notations used in describing the sampling algorithm. To be com-

pliant with the predecessor EASE, the notation is according to the context of association

rule mining.

Denote by D the database of interest, by S a simple random sample drawn without

replacement from D, and by I the set of all items that appear in D. Let N = |D|, n

= |S|, and m = |I|. Here | · | means the number of data or item, in the corresponding

dataset or itemset. Also, denote by I(D) the collection of itemsets that appear in D; a

set of items A is an element of I(D) if and only if the items in A appear jointly in at

least one transaction t ∈ D. If A contains exactly k(≥ 1) elements, then A is sometimes

called a k-itemset. In particular, 1-itemsets are simply the original items. The collection

I(S) denotes the itemsets that appear in S; of course, I(S) ⊆ I(D). For k ≥ 1, we

denote by Ik(D) and Ik(S) the collection of k-itemsets in D and S, respectively.

For an itemset A ⊆ I and a transactions set T , let n(A; T ) be the number of trans-

actions in T that contain A. The support of A in D and in S is given by f(A; D) =

n(A; D)/|D| and f(A; S) = n(A; S)/|S|, respectively. Given a threshold s > 0, an item

is frequent in D (respectively, in S) if its support in D (respectively, in S) is no less than
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s. We denote by L(D) and L(S) the frequent itemsets in D and S, and Lk(D) and Lk(S)

the collection of frequent k-itemsets in D and S, respectively.

For data sampling, the following notations are applied. Specifically, denote by Si the

set of all transactions in S that contains item Ai, and by ri and bi the number of red and

blue transactions in Si, respectively. Red means that the transactions will be kept in the

final subsample and blue that means the transactions will be deleted. Q is the penalty

function of ri, and bi. fr denotes the ratio of red transactions, namely, the sample ratio.

Then the ratio of blue transactions is given by fb = 1 − fr.

5.1.2 Epsilon-approximation method

From mathematic point of view, if for any instance of the problem, it delivers a solution

with a relative discrepancy not exceeding epsilon, an approximation algorithm for an

extremum problem is called ε-approximation algorithm. In order to obtain a good rep-

resentation of a huge database, an ε-approximation method can be used to find a small

subset, so that the supports of 1-itemset are close to those in the entire database. The

sample S0 of S is an ε-approximation if its discrepancy satisfies:

Dist(S0, S) ≤ ε. (Eq. 5.1)

The discrepancy is computed as the distance of 1-itemset frequencies between any subset

S0 and the superset S. It can be based on Lp-norm distances, for example [60]:

DistL1(S0; S) =
∑

A∈I1(S)

|f(A; S0) − f(A; S)| (Eq. 5.2)

DistL2(S0; S) =
∑

A∈I1(S)

(f(A; S0) − f(A; S))2 (Eq. 5.3)

In this thesis Dist∞ metric is used as the distance metric and the discrepancy is

calculated as follows:

Dist∞(S0, S) = max
A∈I1(S)

|f(A; S0) − f(A; S)|. (Eq. 5.4)
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5.1.3 EASE algorithm and its limitations [1]

Given an ε > 0, Epsilon Approximation Sampling Enabled (EASE) algorithm [1] is

proposed to efficiently obtain a sample set S0 which is an ε-approximation of S. The

procedure of sampling is deterministically halves the data to get sample S0. It will apply

halving repeatedly (S = S1 => S2 => . . . => St(= S0)) until Dist(S0, S1) ≤ ε.

Each halving step will introduce a discrepancy εi(ni,m) where ni is the size of sub-

sample Si, and m is the total number of items in database.

Halving stops with the maximum t such that

εt =
∑
i≤t

εi(ni,m) < ε (Eq. 5.5)

Finally, S0 maintains the property that at any point S0 is an ε-approximation for the

set of currently seen transactions in S.

Specifically, S is obtained from the entire dataset D by using simple random sampling

(SRS). SRS is the basic sampling technique where a group of subjects (a sample) is

selected from a larger group (a dataset). Each individual is chosen entirely by chance

and each member of the dataset has an equal chance of being included in the sample.

Every possible sample of a given size has the same chance of selection [44, 45]. A repeated

halving method keeps about half of the transactions in each round. Each halving iteration

of EASE works as follows:

1. In the beginning, uncolor all transactions.

2. Color each transaction in S as red or blue. Red means that the transaction is

selected in sample S0 and blue means that the transaction is rejected.

3. The coloring decision is based on a penalty function Qi for item Ai. The penalty

function is based on hyperbolic cosine and has the shape depicted in Figure 5.1. Note

that Qi is low when ri = bi approximately, otherwise Qi increases exponentially in |ri−bi|.
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Figure 5.1: The penalty function for the halving method: penalty as a function of |ri−bi|.

The penalty function Qi for each item Ai is converted into an exponential equivalent,

shown as follows:

Qi = 2 cosh(δi(ri − bi)) (Eq. 5.6)

= exp(δi(ri − bi)) + exp(−δi(ri − bi)) (Eq. 5.7)

As for a small δi, exp(δi) and exp(−δi) can be replaced by (1+δi) and (1−δi), Eq. 5.7

can be modified to:

Qi = Q
(j)
i = Q

(j)
i,1 + Q

(j)
i,2 (Eq. 5.8)

Q
(j)
i,1 = (1 + δi)

ri(1 − δi)
bi (Eq. 5.9)

Q
(j)
i,2 = (1 − δi)

ri(1 + δi)
bi (Eq. 5.10)

where Q
(j)
i means the penalty of ith item in jth transaction and δi controls the steepness

of the penalty plot. The initial values of Qi,1 and Qi,2 are both 1.

Supposing the (j + 1)-th transaction is colored as red (or blue), the corresponding

penalty function Q
(j||r)
i (or Q

(j||b)
i ) is

Q
(j||r)
i,1 = (1 + δi)Q

(j)
i,1 (Eq. 5.11)

Q
(j||r)
i,2 = (1 − δi)Q

(j)
i,2 (Eq. 5.12)

Q
(j||b)
i,1 = (1 − δi)Q

(j)
i,1 (Eq. 5.13)

Q
(j||b)
i,2 = (1 + δi)Q

(j)
i,2 (Eq. 5.14)
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The penalty function of the current transaction is the summation of penalties for all

items. If Q(j||b) =
∑

i Q
(j||b)
i is less than Q(j||r) =

∑
i Q

(j||r)
i , the (j + 1)-th transaction

will be colored blue and rejected. Otherwise, it will be colored red and added to the

sample. The initial value of δi is
√

1 − exp (−ln(2m)/n), where m is the number of items

in original dataset and n is the initial sample size. EASE maintains the property that S0

is always an ε-approximation of the current transaction set S. The details can be found

in [1].

However, EASE has some limitations.

• Due to its halving nature, EASE has certain granularity in sample ratio, i.e., the

sample ratio must be 0.5, 0.25 or 0.125 etc. In [1] an ad hoc solution was proposed

where the size of the initial sample is so chosen that by repeated halving of several

rounds, one obtains the required size. It means that if a sample ratio 0.3 is wanted,

a initial sample set of sample ratio 0.6 will be randomly selected from original

dataset firstly. Then EASE is applied to initial sample set to obtain a half sample

set, i.e., sample ratio 0.3 of the original dataset.

• In order to obtain a desired sample ratio, EASE may run several iterations of

halving procedure. This will increase the computation time. The idea of choosing a

large simple random sample initially, before applying the halving method of EASE,

is motivated by the total time taken to produce the final sample. If the halving

method is applied on the whole data, the accuracy will be better, but time taken

will be more than when halving is done starting from an initial simple random

sample.

• EASE was built especially for categorical count data, for example, market bas-

ket data (the purchase records of a supermarket). It was natural to extend it to

continuous data. A simple quantization can be applied to transform the original

continuous data of both image and audio applications to binary format.
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• EASE cannot handle noise. Experimental results in Section 5.5 show that the

percentage of noise remains the same for the sample set as for the original set.

The reason for this behavior is that due to its halving nature, EASE keeps half of

everything, including the noise.

5.2 New and modified EASE: EASIER

EASE is a good sampling algorithm that outperforms SRS, but it has some disadvantages.

In this section we analyze the problems of EASE in detail and propose the new algorithm

EASIER to avoid these problems.

5.2.1 EASIER sampling: without halving

As mentioned in previous section, in EASE, the halving process has certain granularity.

It can only compute a subset that is approximately half the size of S. If a different

sample ratio is wanted, we have to run the halving procedure several times with a proper

initial random sample set S of dataset D. Moreover, this will consume more time and

memory due to multiple halving iterations.

In order to directly obtain a sample set of any sample ratio in one pass, the halving

round is modified to select red transactions with a probability which is proportional to

the desired final sample size. This will remove the need to store several levels of penalties.

If we want to obtain a sample set from S with sample ratio rs directly, the ratio of red

transactions is fr = rs and the ratio of blue transactions is fb = 1 − rs. Then we have

ri = fr · |Si| and bi = fb · |Si|. So ri

fr
= bi

fb
= |Si|. As ri

fr
+ bi

fb
= 2|Si|, we use ri

2fr
= bi

2fb
and

thus ri

2fr
+ bi

2fb
= |Si|. As the objective of the halving method is to minimize |ri − bi|, and

ri + bi = |Si| for each item i, our new method will be modified to minimize

∣∣∣∣ ri

2fr

− bi

2fb

∣∣∣∣
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instead of |ri − bi|.
The modified penalty Qi of jth transaction will be

Qi = Q
(j)
i = Q

(j)
i,1 + Q

(j)
i,2 (Eq. 5.15)

Q
(j)
i,1 = (1 + δi)

ri
2fr (1 − δi)

bi
2fb (Eq. 5.16)

Q
(j)
i,2 = (1 − δi)

ri
2fr (1 + δi)

bi
2fb . (Eq. 5.17)

Supposing that the (j + 1)th transaction is colored as r (or b), the corresponding

penalty function Q
(j||r)
i (or Q

(j||b)
i ) in Eq. 5.11 is changed to

Q
(j||r)
i,1 = (1 + δi)

ri+1

2fr (1 − δi)
bi
2fb

= (1 + δi)
1

2fr (1 + δi)
ri
2fr (1 − δi)

bi
2fb

= (1 + δi)
1

2fr Q
(j)
i,1

(Eq. 5.18)

Q
(j||r)
i,2 = (1 − δi)

1
2fr Q

(j)
i,2

Q
(j||b)
i,1 = (1 − δi)

1
2fb Q

(j)
i,1

Q
(j||b)
i,2 = (1 + δi)

1
2fb Q

(j)
i,2 .

(Eq. 5.19)

The computation process of Q
(j||r)
i,1 is given in Eq. 5.18. Other penalty functions are

computed with a similar procedure and the results are shown in Eq. 5.19. The overall

penalty is calculated as described in section 5.1.3.

For Q
(final)
i , we cannot guarantee that Q

(final)
i ≤ 2m. As δi is a very small value,

(1 + δi)
1

2fr and (1 + δi)
1

2fb are both close to 1. So Q
(final)
i is close to 2m. According to [1]

the value of
∣∣∣ ri

2fr
− bi

2fb

∣∣∣ is close to

ln(2m)

ln(1 + δi)
+

|Si| ln(1/(1 − δ2
i ))

ln(1 + δi)
.

Therefore, the same δi, as in Section 5.1.3, is used in the new algorithm. In Algorithm

3 the completed EASIER algorithm is given. The penalty for each item i of a transaction

is calculated only once. So, it does not need to store the penalty for each halving iteration,
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and thus results in a reduction of memory from O(mh) for EASE to O(m). The time for

processing one transaction is bounded by O(Tmax) for EASIER, whereas EASE requires

O(hTmax), where Tmax denotes the maximal transaction length in T . Thus, unlike EASE,

EASIER is independent of sample size.

5.2.2 Handling noise

Here, we consider one type noise that often occurs in transactional data. In transactional

data, each transaction has several items. A noisy transaction has some of its actual

(nonnoisy) items deleted and some noisy items inserted. Typically, the frequencies of

these noisy items are low compared to those of the nonnoisy items. This scenario of

transactional data can be easily extended to other multimedia data, such as image and

audio, as is verified in our experiments.

Due to the halving nature of EASE, in each halving the items are evenly divided into

two parts. As half of the noisy items are also kept in the sample set during each halving,

EASE is not able to discriminate between noisy and nonnoisy items. The experiments in

Section 5.5 demonstrate this phenomenon. SRS has a similar problem. As SRS randomly

selects the sample set, the noisy data in the sample set has almost the same percentage

as the original data when the experiment repeats several times.

However, the proposed EASIER is able to avoid this problem in an elegant manner.

For simplicity purposes, consider that each transaction holds only one item. This as-

sumption can be generalized to multiple items. In Eq. 5.18 and Eq. 5.19, the sample

ratio fr is typically very small, that is, fr � fb. The associated penalties for painting a

transaction red or blue are influenced by the values of fr and fb. This effect can be offset

only by the two other variables in Eq. 5.18 and Eq. 5.19, that is, ri and bi. That means

the transactions have to be painted in such a manner that the effect fr � fb is offset.

This is possible only by painting a sufficient number of transactions as blue before paint-

ing a transaction as red. When the item is nonnoisy, there will be a sufficient number
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of transactions so as to ensure that some transactions holding that item are eventually

painted red, i.e., selected. But when the item is noisy, usually there is not sufficient

number of transactions so as to ensure that even one transaction holding that item is

painted red. This is particularly so when the sample ratio fr is very small.

5.2.3 Comparison of other EASE-related algorithms

In [81] two extensions of EASE are presented, Biased-EA and Biased-L2. Unlike EASIER,

Biased-EA attempts to minimize the difference between the current item count (ri =

fr · |Si|) in the sample obtained so far and the expected count of items in the sample

fr · ni, where ni = ri + bi is the count of the item encount red so far. Thus

∣∣∣∣ ri

2fr

− bi

2fb

∣∣∣∣ =

∣∣∣∣fb · ri − fr · bi

2fr · fb

∣∣∣∣ =

∣∣∣∣(1 − fr) · ri − fr · bi

2fr · (1 − fr)

∣∣∣∣
=

∣∣∣∣ri − fr · (ri + bi)

2fr · (1 − fr)

∣∣∣∣ =
|ri − fr · ni|
2fr · (1 − fr)

.
(Eq. 5.20)

Therefore the idea of Biased-EA is similar to EASIER, but the detail implementation

is different. Another extension is Biased-L2. Compared with Biased-EA, Biased-L2 uses

an L2-norm instead of the L1-norm in Biased-EA and the δi is reduced by adjusting the

format of the penalty function.

5.2.4 Various applications of EASIER

EASIER can efficiently select a representative sample set from a large database based

on a set of features dynamically. It is a suitable sampling algorithm to select the train-

ing set for multimedia classification. We validate and compare the output samples of

EASE1, SRS, and EASIER by performing classification of continuous multimedia data.

For image data, a support vector machine (SVM) is used as the image classifier due to

1There exist a few variants of EASE. Owning to time constraint and the goal of generalization, we
mainly use EASE for comparison.
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its high classification accuracy and strong theoretical foundation [82]. The results of the

SVM classifier show that EASIER samples outperform SRS samples in the accuracy and

EASE samples in the time to perform sampling. EASIER achieves the same or even

better accuracy than EASE. For audio data, audio event identification is considered as

a classification problem. In [5, 83], the research on audio event identification by using

Hidden Markov Models has been presented. Previously the SRS samples are selected

to train an audio event identifier without considering sample efficiency and computation

time. Experimental results shows that EASIER outperforms SRS and EASE greatly,

especially when the sample ratio is very small.

Besides the classification of multimedia data, another important data mining task,

namely association rule mining, is performed to evaluate the performance of EASIER.

The association rule mining results for IBM QUEST dataset [84] are reported to compare

with the earlier reported results [1]. For the small sample ratio, the accuracy of EASIER

is better than EASE and the computation is very fast.
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Algorithm 3 : EASIER Sampling

Input: D,n,m, fr
Output: S0, the transactions in red color

1: for each item i in D do

2: δi =
√

1 − exp (− ln(2m)
n

);

3: Qi,1 = 1;
4: Qi,2 = 1;
5: end for
6: for each transaction j in S do
7: color transaction j red;
8: Q(r) = 0;
9: Q(b) = 0;

10: for each item i contained in j do

11: Q
(r)
i,1 = (1 + δi)

1
2fr Qi,1;

12: Q
(r)
i,2 = (1 − δi)

1
2fr Qi,2;

13: Q
(b)
i,1 = (1 − δi)

1
2fb Qi,1;

14: Q
(b)
i,2 = (1 + δi)

1
2fb Qi,2;

15: Q(r)+ = Q
(r)
i,1 + Q

(r)
i,2 ;

16: Q(b)+ = Q
(b)
i,1 + Q

(b)
i,2 ;

17: end for
18: if Q(r) < Q(b) then

19: Qi,1 = Q
(r)
i,1 ;

20: Qi,2 = Q
(r)
i,2 ;

21: else
22: color transaction j blue;

23: Qi,1 = Q
(b)
i,1 ;

24: Qi,2 = Q
(b)
i,2 ;

25: end if
26: if transaction j is red then
27: set S0 = S0 + {j};
28: end if
29: end for

117

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5. Efficient sampling and its application to multimedia data

5.3 EASIER for image application

In this section we describe our approach in applying EASIER to image application. We

apply EASIER to select representative images based on color structure descriptor. The

selected samples are used as the training data of object classification.

5.3.1 Color Structure Descriptor

As described in Section 3.2.2.1 Color Structure Descriptor (CSD) is one color descriptor

in MPEG-7. It is defined to represent images by both their color distribution (like color

histogram) and the local spatial structure of the color [18]. We apply EASIER to huge

image databases to select the representative samples. The image feature we used are

CSD. In our experiments, 256-bin CSD is used. Each CSD descriptor has 256 bins and

each bin has an 8-bits numerical value (0-255). Because EASIER is based on calculation

of the frequency of each item, the format of CSD is changed as shown in Figure 5.2.

Firstly, all numerical values of CSD are binarized. The binary vector for a CSD value

has a length of 256 and contains all 0’s, except for a 1 in the position corresponding to

the numerical value. After that, each nonzero value in this binary vector is converted

back into a new discrete value depending on its position. This new vector represents the

data and is used for sampling with EASIER. It is found that this vector is usually length

100 (it indirectly corresponds to about 100 nonzero bins for each CSD descriptor). After

mapping, there will be a total of 256 × 256 = 65, 536 (one-bit) items.

In order to reduce the number of items in the data set, the 8-bit bin value of the

original CSD is requantized into a 4-bit-quantized representation. The requantization is

nonuniform and we use the suggested CSD amplitude quantization table in the MPEG-7

standard [4]. This will effectively reduce the number to 16 × 256 = 4, 096 items for each

CSD descriptor. A smaller number of bits to represent the data will result in a significant

reduction in the number of items for each CSD descriptor. In order to test the efficiency
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Figure 5.2: An example of the format modification of features.

of 16D CSD, CSDs in both format are used to retrieve the same query image in the same

image database. On average, there are 16 images that are in the top 20 images obtained

using both quantized data and original data. Experimental results have shown that the

retrieval accuracy of the quantized data is close to that using the original CSD data.

5.3.2 EASIER for image classification

To verify the representativeness of the samples, a classification algorithm is needed to test

the classification performance based on different training sample sets. For the choice of

classification algorithm, SVM is a good candidate for image classification applications. As

SVM maximizes the classification margin to obtain the results, the problem of overfitting

generated by the huge number of image features is alleviated. Furthermore, the kernel

functions of SVM can be complicated nonlinear functions [85]. The SVM is trained by

the sample sets selected by EASE, EASIER, and SRS. The remaining images are used for

testing the SVM. We use COIL-1002 as the image database because it has the predefined

ground-truth set. The database includes 7,200 color images of 100 objects: For each

object there are 72 images where each image is taken at pose intervals of 5 degrees.

2http://www1.cs.columbia.edu/CAVE/research/softlib/coil-100.html
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5.4 EASIER for audio application

In this section we present an audio application to demonstrate the effect of EASIER

sampling. Audio, including voice, music, and various kinds of environmental sounds, is an

important type of media and also a significant part of video. Recently, people have begun

to realize the importance of effective audio content analysis which provides important cues

for semantics [86, 87, 88]. Effective audio analysis techniques provide convincing results.

In consideration of computational efficiency, some research efforts have been made for

audio content analysis [86, 89]. SRS samples may not represent the characteristics of all

audio sequence particularly for small sample ratios. Experiments show that even when

10% random samples are used for training, the classification performance is still very

low for SRS, especially for small classes. Therefore, to obtain stable results and achieve

better performance using a small size of training data, we propose EASIER sampling

algorithm to select representative samples.

5.4.1 Audio event identification

Audio events are defined as some specific audio sounds which have strong hints to inter-

esting video events or highlights. Especially in sports video, some game-specific audio

sounds (e.g., excited audience sounds, excited commentator speech, etc.) have strong

relationships to the actions of players, referees, commentators, and audience. In this sec-

tion, we use basketball audio to demonstrate how effectively and efficiently the EASIER

work.

In [5], the research on audio event identification using Hidden Markov Models (HMM)

is presented. The samples to train audio event identifier are randomly selected without

considering sample efficiency and computation time for training. Since the audio database

is large, we have to consider the following two issues: 1) When audio data comes from

various audio sequences, SRS may only select part of the audio sequences. It is not a
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good representative of all sequences; 2) There is a tradeoff between the size of training

dataset and accuracy, as the learning-curve sampling method described in Section 2.5.

5.4.1.1 Basketball audio events identification

Basketball games have compact structure. Generally, the offence and defense actions,

which are the highlights of a basketball game, take place on an alternating basis. These

highlights, which attract most audience’s interests, are significant and should be de-

tected for future basketball video editing. Fortunately, excited commentator speech and

audience sounds play important roles in highlight detection of sports video. Therefore,

basketball audio event identification focuses on identifying excited commentator speech

(EC) and excited audience sounds (EA). Besides EC and EA, there are two other bas-

ketball audio events: plain commentator speech (PC) and plain audience sounds (PA).

These four kinds of events almost cover the full basketball game. Out of these four, EA

and EC are smaller classes. A classification task is to classify audio samples into these

four predefined classes. There are some other audio events in basketball games, such as

whistling, etc., that have small number of samples and are easy to identify. In order to

test the efficiency of the proposed sampling algorithm, we use only these four classes.

5.4.1.2 HMM-based audio event identification

Audio signal exhibits consecutive changes in values over a period of time, where vari-

ables may be predicted from earlier values. In other words, strong context exists in audio

data. In consideration of the success of HMM in speech recognition, we propose our

HMM-based audio event generation system. The proposed system includes three stages,

namely feature extraction, data preparation and HMM learning, as illustrated in Figure

5.3. Selected low-level features are extracted from audio streams and tokens are added

to create observation vectors. This data is then separated into two sets for training and
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Figure 5.3: Audio events generation system [5].

testing. After that, HMM is trained and then reestimated by using dynamic program-

ming. Finally, according to the maximum posterior probability, the audio keyword with

the largest probability is selected to label the corresponding testing data. Details can be

found in [5, 90].

5.4.2 EASIER for audio event identification

We apply EASIER to find representative training samples according to the low-level

features. In our experiments, we segment audio signal at 20ms per frame, which is

the basic unit for feature extraction. Mel-Frequency Cepstral Coefficient (MFCC) and

energy are selected as the low-level audio features as they are successfully used in speech

recognition and further have be proven efficient for audio keyword generation. Delta

and acceleration are further used to accentuate signal temporal characters for HMM.

Therefore, 39-dimension (39D) feature vectors are composed. Because the amplitude

of an audio signal is continuous and EASIER is based on calculation of the frequency

of each item, the format of the features is changed. Firstly, the continuous values are

nonuniformly quantized to a range [0, 17]. Then, this discretized data is binarized as

shown in Figure 5.2. Similar to CSD, the binary vector has length 18 and it contains

all zeros except for a one in the position corresponding to the discretized value. After

that, each nonzero value in this binary vector is converted back into a new discrete value
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considering its position. This new vector represents the data and is used for sampling

with EASIER.

Although experimental results show that using all features gives high accuracy, we

experimented with reduced dimensionality that requires less space. In order to reduce

the number of items, the most dominant 13 dimensions (13D) of feature vectors are used.

These 13 dimensions represent MFCC and energy of the audio signal. Their efficacy in

audio analysis has already been shown in [83]. Note that we only use 13D data to select

the samples and the original 39D data of the corresponding 13D samples is used in the

training and test of HMM. Our experimental results have shown that the classification

performance of 13D data is close to that of the original data.

5.5 Experimental results

In this section we compare the performance of EASIER, EASE, and SRS in the context of

classification and association rule mining. Both real-world data (CSDs of image database

and audio features) and synthetic data (IBM QUEST data) are used for testing.

Primary metrics used for the evaluation are: (a) performance metric of different

applications, (b) sampling time, and (c) memory requirements. Sampling time is the

time taken to obtain the final samples. For the performance of image classification, since

the classifier is SVM, the correct rate of SVM classification is used as the performance

metric. For audio event identification, the performance of is measured using precision

and recall.

For association rule mining, since it is focused on finding frequent itemsets, namely,

the itemsets satisfying the minimum support [84, 91, 92], we use the following perfor-

mance metric to measure the accuracy of the sampling algorithms:

accuracy = 1 − |L(D) − L(S)| + |L(S) − L(D)|
|L(D)| + |L(S)| , (Eq. 5.21)
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where, as before, L(D) and L(S) denote the frequent itemsets from the database D and

sample S, respectively. We used Apriori [84] to compare the three algorithms in a fair

manner. It computes the frequent item sets for related experiments. A publicly available

version of Apriori, written by Christian Borgelt3, is used.

5.5.1 Image application

As mentioned before, a COIL image database which is composed from 72 class images

is used to extract CSD. Thus there are totally 7200 descriptors. To verify the effect of

processing outliers, 5% and 10% noisy data are added to the CSD dataset separately.

The noise is a series of Gaussian white noise generated by Matlab.

All three sampling algorithms, EASIER, EASE, and SRS, start from the whole dataset

to obtain the samples. As the halving process has a certain granularity and EASE cannot

achieve the specific sample ratio in halving, in each iteration we first ran EASE with a

given number of halving times. Then we use the actual sample ratio from the EASE

samples to generate EASIER samples. As EASIER is probabilistic, it does not guarantee

the exact sample size. Hence, the actual EASIER sample size is used to generate the

SRS sample. Note that although EASE and EASIER sample sizes are not exactly the

same, the difference is very little.

For image classification, because EASE is based on halving, the final sample ratios of

training sets are predetermined to be 0.5, 0.25, 0.125, and 0.0625. Accuracy of classifica-

tion is used as the classification metric. We also compare the samples using the accuracy

of association rule mining. As one to seven times halving are applied, the sample ratios

are 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625, and 0.0078125.

Since the results of EASIER and EASE change with the input sequence of data,

for each sample ratio we run EASIER and EASE 50 times, and in each iteration the

3http://fuzzy.cs.uni-magdeburg.de/˜borgelt/apriori.html
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input descriptors are shuffled randomly. SRS is also run 50 times over this shuffled data.

The association rule mining results of EASIER, EASE, and SRS are computed as an

average over these 50 runs. The minimum support value for Apriori is set to 0.77%

and we evaluated only the 1-item frequent set for CSD data, as otherwise there are too

many frequent itemsets. However, for IBM QUEST transaction data, we use all frequent

itemsets. The image classification results are the average of 10 runs.

Table 5.1 and 5.2 straightforwardly demonstrate the effect of removing noise by ap-

plying the three methods, EASE, EASIER, and SRS. The whole dataset includes 7,200

CSDs and several subsets are also used for test. It can be seen that when the sample

rate is 0.5, about half of the noise is kept in the training sample. As the sample ratio

of EASE is always 0.5 for each halving, 50% noise is kept in the sample set of EASE.

The results of SRS are similar. For EASIER, when the sample ratio is 0.5, it works

identically to EASE. When the sample ratios are reduced, the amount of noisy data in

the training sample is reduced greatly. Almost none of the noisy data is included in the

training sample. Hence, EASIER can reduce noisy data efficiently when the training set

is selected from the whole dataset.

The results of original CSD data (65,536 items) are shown in Figure 5.4. Figures 5.4a,

5.4b and 5.4c show the correct classification rate of image classification with nonnoisy, 5%

and 10% noisy data, respectively. Figures 5.4d, 5.4e and 5.4f show the different accuracy

of association rule mining respectively. EASIER achieves better accuracy than EASE

when the dataset has noise. For data with noisy, the results of EASIER are much better

than EASE and SRS for both classification and association rule mining. For example,

for a sample ratio of 0.0625 with 10% noise, the proposed sampling method achieves

82.5% classification rate, while the correct rate of EASE is 77.3%, and SRS achieves only

51.7%. For nonnoisy data, EASIER achieves similar accuracy as EASE which is better

than SRS for both classification and association rule mining, especially when the sample
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Table 5.1: The average number of noise in selected training samples, and the correspond-
ing percentage against total number of noisy data of original CSD data, which is extracted
from COIL image set. The sample ratios are 0.5, 0.25, 0.125 and 0.0625, respectively.

5.1a: EASIER
Number of Noise The number and percentage of noise for different ratios
dataset 0.5 0.25 0.125 0.0625

7200 720 (10%) 358.4 49.78% 59 8.19% 0 0.00% 0 0.00%
7200 360 (5%) 176.3 48.97% 17 4.72% 0 0.00% 0 0.00%
1440 144 (10%) 71.48 49.64% 5.5 3.82% 0 0.00% 0 0.00%
1440 72 (5%) 35.46 49.25% 0 0.00% 0 0.00% 0 0.00%
288 29 (10%) 14.4 49.66% 0 0.00% 0 0.00% 0 0.00%
288 15 (5%) 7.3 48.67% 0 0.00% 0 0.00% 0 0.00%

5.1b: EASE
Number of Noise The number and percentage of noise for different ratios
dataset 0.5 0.25 0.125 0.0625

7200 720 (10%) 356.4 49.5% 179.2 24.69% 88.9 12.35% 44.3 6.15%
7200 360 (5%) 178.3 49.53% 89.3 24.81% 43.8 12.17% 22.5 6.25%
1440 144 (10%) 70.7 49.10% 35.9 24.93% 17.7 12.29% 9.2 6.39%
1440 72 (5%) 35.8 49.72% 18.1 25.14% 9 12.50% 4.5 6.25%
288 29 (10%) 14.3 49.31% 7.1 24.48% 3.3 11.38% 1.4 4.83%
288 15 (5%) 7.4 49.33% 3.6 24.00% 1.4 9.33% 0.7 4.67%

5.1c: SRS
Number of Noise The number and percentage of noise for different ratios
dataset 0.5 0.25 0.125 0.0625

7200 720 (10%) 361.0 50.17% 179.2 24.69% 88.9 12.35% 44.3 6.15%
7200 360 (5%) 180.4 50.11% 89.3 24.81% 43.8 12.17% 22.5 6.25%
1440 144 (10%) 72.8 50.56% 36.4 25.28% 17.5 12.15% 9.5 6.60%
1440 72 (5%) 36.1 50.14% 17.7 24.58% 9.2 12.78% 4.4 6.11%
288 29 (10%) 14.5 50.00% 7.3 25.17% 3.7 12.76% 1.8 6.21%
288 15 (5%) 7.6 50.67% 3.8 25.33% 1.9 12.67% 0.9 6.00%
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Table 5.2: The average number of noise in selected training samples, and the correspond-
ing percentage against total number of noisy data of requantized CSD data. The sample
ratios are 0.5, 0.25, 0.125 and 0.0625, respectively.

5.2a: EASIER
Number of Noise The number and percentage of noise for different ratios
dataset 0.5 0.25 0.125 0.0625

7200 720 (10%) 355.3 49.32% 20 5.56% 0 0.00% 0 0.00%
7200 360 (5%) 179.7 49.92% 0 0.00% 0 0.00% 0 0.00%
1440 144 (10%) 71.0 49.31% 0 0.00% 0 0.00% 0 0.00%
1440 72 (5%) 35.8 49.72% 0 0.00% 0 0.00% 0 0.00%
288 29 (10%) 14.2 48.96% 0 0.00% 0 0.00% 0 0.00%
288 15 (5%) 7.4 49.33% 0 0.00% 0 0.00% 0 0.00%

5.2b: EASE
Number of Noise The number and percentage of noise for different ratios
dataset 0.5 0.25 0.125 0.0625

7200 720 (10%) 355.2 49.32% 175.6 24.38% 88.4 12.28% 44.7 6.21%
7200 360 (5%) 179.3 49.81% 88.6 24.61% 42.9 11.97% 21.8 6.06%
1440 144 (10%) 70.8 49.17% 35.6 24.72% 17.1 11.89% 8.9 6.18%
1440 72 (5%) 35.5 49.31% 17.6 24.44% 8.9 12.36% 4.4 6.11%
288 29 (10%) 14.1 48.62% 7.2 24.82% 3.5 12.07% 1.5 5.17%
288 15 (5%) 7.3 48.66% 3.7 24.67% 1.5 10.00% 0.8 5.33%

5.2c: SRS
Number of Noise The number and percentage of noise for different ratios
dataset 0.5 0.25 0.125 0.0625

7200 720 (10%) 358.1 49.74% 178.5 24.72% 85.5 11.82% 44.5 6.18%
7200 360 (5%) 178.3 49.53% 89.6 24.89% 45.3 12.58% 22.6 6.28%
1440 144 (10%) 72.6 50.42% 36.2 25.14% 17.7 12.29% 9.2 6.39%
1440 72 (5%) 36.4 50.56% 17.9 24.86% 9.1 12.64% 4.5 6.25%
288 29 (10%) 14.6 50.34% 7.4 25.52% 3.5 12.07% 1.9 6.55%
288 15 (5%) 7.5 50.00% 3.9 26.00% 1.8 12.00% 0.9 6.00%

127

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5. Efficient sampling and its application to multimedia data

ratio is very small. For example, for a sample ratio of 0.0625, EASIER achieves 83.5%

classification rate, while the correct rate of EASE is 82.3% and SRS achieves only 59.7%.

Figure 5.4g shows the sampling time of original CSD data. EASIER requires a fixed

amount of time, even as the sample ratio falls. For EASIER, the computation time for

sample ratios 0.125, 0.0625, and 0.015625 is 0.1300s, 0.14427s, and 0.1321s, respectively,

whereas the computation time of EASE for these sample ratios is 0.26069s, 0.26927s, and

0.26992s, respectively, which increases even as the sample ratio falls.

As described in section 5.4.2, we reduced the number of items in the CSD dataset

to 4,096 through requantization. The results of requantized CSD data (4,096 items) are

shown in Figure 5.5. Figures 5.5a, 5.5b and 5.5c shows the correct classification rate

of image classification with different percentages of noisy data, respectively. Figures

5.5d, 5.5e and 5.5f show the accuracy of association rule mining. For nonnoisy data,

the accuracy of EASIER is similar to EASE, with less running time. For example, for a

sample ratio of 0.000785, EASIER achieves 85.7% accuracy in association rule mining,

while the accuracy of EASE is 85.4%, and SRS achieves only 71.5%. For data with noise,

the results of EASIER are much better.

Figure 5.5g shows the sampling time of re-quantized CSD data. The sampling time

of EASIER does not change with the sample ratio. For the sample ratio 0.125, 0.0625,

and 0.015625, the time taken by EASIER is 0.0717s, 0.0717s, and 0.0713s, respectively,

whereas the time taken by EASE for these sample ratios is 0.1831s, 0.2004s, and 0.2166s,

respectively. As the total number of items in dataset is reduced, the running time of

EASIER is reduced from about 0.13s to 0.07s.

For the memory consumption comparison, in EASE, the memory required for storing

the penalty function increases with the number of halving times. For example, when we

applied seven halvings to CSD data, the penalty functions of each halving procedure are

stored. The required memory for storing the penalty of CSD items is about 7+2 = 9MB.
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Table 5.3: The average number of noise in the selected training samples and the corre-
sponding percentage against total number of noisy data. The dataset is the original 39D
data.

5.3a: Results of EASIER. The sample ratios are 0.6, 0.3 and 0.1 separately.
Number of Noise The number and percentage of noise for different ratios
dataset 0.6 0.3 0.1

3600 360 (10%) 215.1 59.74% 63.4 17.61% 10.6 2.96%
3600 180 (5%) 106.5 59.17% 26.8 14.91% 0 0.00%
360 36 (10%) 21 58.35% 5.8 16.22% 1 2.68%
360 18 (5%) 10.6 58.61% 2.5 13.80% 0 0.00%

5.3b: Results of EASE. The sample ratios are 0.3 and 0.1 separately.
Number of Noise The number and percentage of noise for different ratios
dataset 0.3 0.1

3600 360 (10%) 105.2 29.21% 33.6 9.32%
3600 180 (5%) 51.7 28.71% 16.4 9.11%
360 36 (10%) 10.7 29.77% 3.5 9.6%
360 18 (5%) 5.4 29.82% 1.7 9.67%

5.3c: Results of SRS. The sample ratios are 0.6, 0.3 and 0.1 separately.
Number of Noise The number and percentage of noise for different ratios
dataset 0.6 0.3 0.1

3600 260 (10%) 216.4 60.11% 105.6 29.33% 36.7 10.20%
3600 180 (5%) 109.3 60.71% 53.9 29.96% 17 9.47%
360 36 (10%) 21.8 60.67% 10.5 29.05% 3.5 9.72%
360 18 (5%) 10.8 60.15% 5.3 29.41% 1.8 10.00%

But for EASIER, only one set of the penalty functions needs to be stored, so the memory

required is only about 1 + 2 = 3MB. Although a memory requirement of 9MB is not

very large, when the number of items is greatly increased, the memory requirement can

significantly affect the performance of the algorithm.

5.5.2 Audio application

EASIER and SRS are compared using an audio database that contains one hour of

basketball audio in 3,600 samples (one sample for each second). Both algorithms run five

times and the results are computed as an average over five samples. As earlier discussed,

we use HMM as the audio event identifier. Audio data with different ratios of noisy data

is classified into four classes namely are EA, EC, PA, and PC. EASIER, EASE, and SRS

are used for sampling. The precision and recall of nonnoisy and different ratios of noisy
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Table 5.4: The average number of noise in the selected training samples and the corre-
sponding percentage against total number of noisy data. The dataset is the 13D data.

5.4a: Results of EASIER. The sample ratios are 0.6, 0.3 and 0.1 separately.
Number of Noise The number and percentage of noise for different ratios
dataset 0.6 0.3 0.1

3600 360 (10%) 212.7 59.08% 60.6 16.84% 4.6 1.27%
3600 180 (5%) 106.7 59.25% 25.9 14.38% 0 0.00%
360 36 (10%) 21.5 59.64% 6.1 16.84% 0.5 1.39%
360 18 (5%) 10.4 57.58% 2.6 14.40% 0 0.00%

5.4b: Results of EASE. The sample ratios are 0.3 and 0.1 separately.
Number of Noise The number and percentage of noise for different ratios
dataset 0.3 0.1

3600 360 (10%) 102.9 28.6% 33.3 9.24%
3600 180 (5%) 51.1 28.36% 17.2 9.55%
360 36 (10%) 10.1 28.04% 3.2 8.96%
360 18 (5%) 5.2 28.92% 1.6 8.89%

5.4c: Results of SRS. The sample ratios are 0.6, 0.3 and 0.1 separately.
Number of Noise The number and percentage of noise for different ratios
dataset 0.6 0.3 0.1

3600 360 (10%) 217.6 60.43% 108.2 30.06% 37.3 10.37%
3600 180 (5%) 108.4 60.24% 54.5 30.26% 19.3 10.71%
360 36 (10%) 21.7 60.15% 10.9 30.33% 3.6 10.00%
360 18 (5%) 10.6 59.13% 5.2 29.15% 1.9 10.55%
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data are shown in Figures 5.6, 5.7 and 5.8. The sampling ratios for EASIER and SRS

include 0.6, 0.3, and 0.1. For EASE only 0.3 and 0.1 are used, as EASE cannot achieve

every sample ratio. The data in the sample set is used for training and the other data is

used to test the results. For example, if the sample ratio is 0.1, this means 10% samples

are selected from the data set for training and other 90% data are test data. For sample

ratio 1, all data is used for both training and test.

Tables 5.3 and 5.4 demonstrate the effect of removing noise for audio data. The whole

dataset includes 3,600 audio features and two subsets are used for test. It can be seen

that EASIER can remove the most of noisy data when the sample ratio is small. EASE

and SRS always keep the same percentage of noisy data in the sample set. The results

are not as good as image data because in each audio feature, the number of items is more

than 3,000. It is too large.

As demonstrated in Figure 5.6, compared with SRS, sampling with EASIER can

achieve high performance with less training samples, especially for the smaller classes

EA and EC and the data with noisy. By using EASIER, identification improves in two

aspects: 1) To achieve similar recall and precision, EASIER sampling needs relatively

less training data than SRS. For example, for a precision of 85% for EA, SRS needs

60% training data, whereas EASIER needs only 30%; and 2) For the same training set,

EASIER gives higher performance. For sample ratio 0.1 and “Excited Audience” class,

the precision of EASIER is 90%, which is significantly higher than that of SRS (54%).

Although the expected precision and recall values for 13D data are a little smaller than

those for 39D, they are significantly larger than those for SRS.

The performance of EASIER is better than EASE with noisy data, while EASE takes

longer sampling time. Figure 5.9 shows the computation time taken by EASIER, EASE,

and SRS. For 39D data, the sampling time of EASIER is about 1.8s. This is acceptable,

considering the long training and classification time. EASE takes up to 2.8s when the
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sample ratio is smaller. For 13D data, the sampling time of EASIER is reduced greatly

to only 0.4s. It can be seen that for different sample ratios, EASIER requires almost a

fixed amount of time, whereas EASE requires varying time.

Note that for the identification of an event in basketball, the smaller classes of EA

and EC are more important than PA and PC. EASIER gives higher accuracy for these

two important classes, signifying its preferability over SRS. In addition, EASIER’s per-

formance vis-a-vis SRS improves further as we reduce the sample ratio. This has been

shown in other experiments not reported here. Due to small size of EA and EC (ap-

proximately 10% each of the whole data) classes, we could not show results of EASIER

vis-a-vis SRS for sample ratios of less than 10%, since otherwise the training set is too

small and cannot achieve satisfactory performance.

5.5.3 Association rule mining

In order to further compare the performance of the three algorithms, the IBM QUEST

transaction data of [1] is also used to test the accuracy in the context of association rule

mining. The dataset has total 98,040 transactions and the total number of items is 1000.

The average length of these transactions is 10, and the average length of potentially

frequent item sets is 4. The minimum support value is set to 0.77%.

All three algorithms start from a 20% simple random sample S of the original database.

One to five halvings are applied to EASE. Thus we get final sample ratios as 0.1, 0.05,

0.025, 0.0125 and 0.00625 of the whole database. The three algorithms generate samples

using the described setting. All three algorithms run 50 times for each sample and the

results are computed as an average over these 50 runs. For EASIER and EASE, in each

iteration a different random sample is used as the initial 20% sample.

The accuracy is shown in Figure 5.10a. It can be seen that the accuracy of EASIER

is better than EASE in small sample ratio. For sample ratio 0.00625, the accuracy of
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EASIER is about 86.2% while EASE has only 71.2% accuracy. The SRS gives the worst

accuracy of 41.2%.The sampling time of the three methods are very similar as shown in

Figure 5.10b.

5.5.4 Summary of experimental results

The experimental results in this section have shown that EASIER applies well to a

varied range of applications. The image and audio applications have continuous features,

whereas the market basket data (IBM QUEST data) has discrete features. Furthermore,

for both classification and association rule mining, EASIER samples outperformed SRS

significantly. A simple quantization is applied to transform the original continuous data

of both image and audio applications to binary format. After that, to reduce the elements

in the whole dataset, different approaches are used for image and audio data. For image

data, the 8-bit bin values are requantized to 4-bit representations. For audio data,

the main 13D features are directly extracted from the original 39D features. Although

quantization or discretization invariably results in some information loss, it has only slight

impact on performance in comparison with original data because most of the dominant

information is retained. In the literature there are more sophisticated discretization

methods, such as entropy-based discretization [93]. This is a future direction of the

current work, that is, to see the effect of discretization on the performance of EASIER.
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Figure 5.4: The performance of original CSD data extracted from COIL image set.
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Figure 5.5: The performance of re-quantized CSD data extracted from COIL image set.
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5.6b: Plain Commentator
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5.6c: Excited Audience
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5.6d: Excited Commentator

Figure 5.6: The performance of audio event identification based on sample set se-
lected by SRS and EASIER.
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5.7b: Plain Commentator
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5.7c: Excited Audience
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5.7d: Excited Commentator

Figure 5.7: The performance of audio event identification based on sample set se-
lected by EASIER, EASE and SRS. The noisy rate is 5%.

137

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5. Efficient sampling and its application to multimedia data

0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

Sample Ratio

P
re

ci
si

on

Precision comparison

EASIER(39D)
EASIER(13D)
EASE(39D)
EASE(13D)
Random

0.2 0.4 0.6 0.8 1
20

40

60

80

100

Sample Ratio

R
ec

al
l

Recall comparison

EASIER(39D)
EASIER(13D)
EASE(39D)
EASE(13D)
Random

5.8a: Plain Audience

0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

Sample Ratio

P
re

ci
si

on

Precision comparison

EASIER(39D)
EASIER(13D)
EASE(39D)
EASE(13D)
Random

0.2 0.4 0.6 0.8 1
20

40

60

80

100

Sample Ratio

R
ec

al
l

Recall comparison

EASIER(39D)
EASIER(13D)
EASE(39D)
EASE(13D)
Random

5.8b: Plain Commentator

0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

Sample Ratio

P
re

ci
si

on

Precision comparison

EASIER(39D)
EASIER(13D)
EASE(39D)
EASE(13D)
Random

0.2 0.4 0.6 0.8 1
20

40

60

80

100

Sample Ratio

R
ec

al
l

Recall comparison

EASIER(39D)
EASIER(13D)
EASE(39D)
EASE(13D)
Random

5.8c: Excited Audience

0.2 0.4 0.6 0.8 1
50

60

70

80

90

100

Sample Ratio

P
re

ci
si

on

Precision comparison

EASIER(39D)
EASIER(13D)
EASE(39D)
EASE(13D)
Random

0.2 0.4 0.6 0.8 1
20

40

60

80

100

Sample Ratio

R
ec

al
l

Recall comparison

EASIER(39D)
EASIER(13D)
EASE(39D)
EASE(13D)
Random

5.8d: Excited Commentator

Figure 5.8: The performance of audio event identification based on sample set se-
lected by EASIER, EASE and SRS. The noisy rate is 10%.
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Figure 5.9: The sampling time for different sample ratios.
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Figure 5.10: The performance of IBM QUEST transaction data.
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5.6 Summary

In this chapter, we proposed a new sampling algorithm, EASIER. We applied it to

the selection of concise training set for multimedia classification. EASIER is similar to

its predecessor EASE, but reduces the requirements for time and memory. In EASE,

sampling time and memory increases when the sample ratio is reduced. However, in

EASIER the running time is almost fixed and the memory independent of the sample

ratio. Another improvement is that due to its halving nature, in EASE we must change

the size of the initial sample to obtain some specific ratios. However, using EASIER, any

sample ratio can be obtained directly from the same initial set. We have evaluated the

performance of EASIER using both real-world and synthetic data. It can be seen that

EASIER is a good approximation algorithm which can obtain better sampling results

with almost fixed time and even better accuracy than EASE.

We successfully applied EASIER to image and audio applications that have continuous

features and marketing basket application that has categorical features. Some Gaussian

noisy data was added to verify the efficacy in reducing noise by EASIER. As EASIER can

flexibly generate representative samples of a huge image database on-the-fly, it is used to

select the training samples for a SVM classifier for image classification and an for audio

event identification. The performance study shows that an EASIER sample represents the

original data much better than a simple random sample. Compared with SRS, EASIER

algorithm improves classification performance in the following two aspects: 1) EASIER

effectively finds the relative representative data for training, and consequently improves

the classification rate significantly; and 2) it provides a feasible way to train a classifier

or identifier for a large multimedia database by only using a small training dataset.

Especially for small sample ratios, EASIER can achieve significantly better results than

SRS. Currently, in multimedia applications, we test with images and basketball audio.
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EASIER is an online algorithm where the incoming transactions are processed once

and a decision is taken regarding its participation in the final sample. This scheme is

very conducive to stream data processing. The idea is to maintain a sample for the

stream data dynamically. Just like reservoir sampling [94], each incoming transaction is

processed in a given amount of time. But unlike reservoir sampling, where this decision

is made based solely on probability, EASIER makes informed decisions. The initial idea

is to maintain a ranking among the selected transactions in the reservoir sample. When

a new streaming transaction arrives, its rank is determined by calculating the change in

distance of the reservoir sample from the actual data. If its rank is higher than the lowest

rank among the reservoir transactions, it is selected.
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Chapter 6

Conclusion and Future Work

Multimedia indexing and description is important and useful when we face huge mul-

timedia dataset. The target of this thesis is to find an appropriate representation and

indexing scheme based on image content, as well as efficient management of large mul-

timedia database. Different from the traditional database or the text-based retrieval,

images need some low-level features to describe the content, such as the MPEG-7 vi-

sual descriptors. The semantic gap between low-level features and high level concept is

important and needs further research, especially when the image dataset is very large.

6.1 Summary of contributions

In this thesis, an image retrieval system based on MPEG-7 descriptors is proposed and

implemented. This system starts with image retrieval based on low-level visual features,

and goes to semantic object classification. Besides efficient multimedia management is

investigated in several aspects. The main contributions include:

1. Basic image retrieval based on some MPEG-7 color descriptors. A more efficient

similarity measure, Earth Mover’s Distance, is 385lied to improve the retrieval perfor-

mance based on Dominant Color Descriptor. M-tree index and lower bound of EMD

are discussed to prune the images far from the query image and improve the retrieval

efficiency.

142

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 6. Conclusion and Future Work

2. Extend image retrieval based on single descriptor to combination of multiple

descriptors. We have proposed a weighted combination model and the model is applied

to several MPEG-7 visual descriptors. The weight of every descriptor is determined self-

adaptively based on optimization technology. The same optimization structure can be

used for many other features. It is a unified approach for content-based image retrieval.

Lagrange multiplier is applied to solve the optimal solutions. The optimal solution is

explicit and the calculation procedure is time-efficient.

3. Extend image retrieval based on whole image to local features of points and

regions. As discussed earlier, image retrieval based on low-level descriptors can only

find some images with visual similarity. For the same object with different scales and

orientations in images, the local features are more efficient to determine the object. This

is because the local features focus on finding the identical points of an object. As an

initial research, scale invariant points and corresponding features are applied to find the

objects in different scales and orientations. Using more accurate similarity measures the

retrieval efficiency is improved.

4. Extend the search for same object in different views to classification of object

category. It is necessary to make the distinction between the recognition of specific in-

stances of objects and classes of objects. Different from local characteristics which are

only suitable for the same object in different scale and orientation, a high performance

and easy calculated classification model is proposed in this thesis for classification of

object category. The model is based on salient regions and multiple MPEG-7 descriptors

are applied to represent the regions. When this image model is used for object classi-

fication, the similarity distance based on appearance of single region and the geometric

distortion between a pair of regions are both taken into consideration. In order to effi-

ciently make use of the nested spatial relationships between the regions, a graph-based

matching algorithm is investigated to determine the corresponding regions in the image
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model and images in the database. Experimental results show the image model based

on representative regions is easy to calculate and efficient results can be obtained. This

model can be used to classify the object categories automatically. After that, user can

put semantic labels to the object categories, which may be helpful to bridge the semantic

gap.

5. Efficient sampling for large and noisy multimedia dataset - from random selection to

EASIER sampling. EASIER can directly obtain sample set with any ratio from the whole

dataset. As EASIER can flexibly generate representative samples of huge multimedia

database on the fly, it can be applied to the selection of concise training set for multimedia

classification. We have successfully applied EASIER to image and audio applications that

have continuous features. Some Gaussian noisy data are added to verify the effect of

reducing noise by the proposed EASIER. The performance study shows that the sample

set of EASIER represents the original data much better than a simple random sample.

The noisy data in the dataset can be reduced greatly in the sample set. Compared

with SRS, EASIER effectively finds the relative representative data for training and

consequently improves the classification rate significantly. It provides a feasible way to

train classifier or identifier for large multimedia database by only using a small training

dataset. Especially for small sample ratios, EASIER can achieve significantly better

results than SRS.

From the theoretical analysis to experimental results, it can be seen that MPEG-7

visual descriptors are efficient description tools to describe images as low level features.

With representative regions and suitable features, object categories can be distinguished

based on the classification model. Efficient sampling can help to find the most repre-

sentative set of the whole database. Applying good training set selected by sampling

algorithm can achieve better classification results.
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6.2 Future work

In this thesis we address on image retrieval and classification based on MPEG-7 visual

descriptors. We have developed serval methods towards semantic objective, however,

there are a number of issues need to be further investigated. We suggest some possible

research directions as follows:

1. More efficient combination of multiple descriptors and other features.

Currently the optimal combination is self-adapted according to the image descriptors,

i.e., user does not to need to manually adjust or label the results to determine the weights.

Although it is an advantage to reduce user’s effort, relevance feedback is a powerful tool

to iteratively improve a query without increasing the computational requirements.

Another possible approach is to combine the low-level image features with other

content-aware information. For example, huge number of images are available in the

Internet and there usually exits text related to the images. The text is usually greatly

related to the semantic meaning of the images and very useful to refine the results. It is

helpful to automatically extract semantic information in high level.

2. The improvement of classification model for object category.

Currently the classification model is based on several individual features and it can

be improved with the combination of multiple features. As the spatial locations of a

pair of regions cannot sufficiently represent the relationship between regions and the

fully-connected graph is a little time-consuming, more research is needed to use the

relationship between regions to represent the characteristic of the object category, such

as the spanning tree for a graph. Since the effect of region selection greatly influences

the retrieval results, more efficient methods for region selection and combination can be

investigated in the future. Some negative training sets could also be added to further

improve the retrieval results.
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As the model is easy to compute and apply, the multi-view representation of objects

can be built in one model in a time-efficiency way. Currently the model performs well

for the objects with stable structure, such as the motorbike. But plenty of objects are

flexible in structure, for example, the butterfly or eagle. Their wings can be open or

close. It is can also be included in a multi-view model. To make the current classification

model more useful and applicable, an attempt should be made to address these issues.

3. Apply EASIER sampling to various applications.

It is proved that EASIER sampling is efficient in selecting samples of multimedia

data. As EASIER is a common sampling method, it is suitable for most of the data

reduction issues and can be easily extended to various applications.
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