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Due to multipath propagation characteristics of frequency-selective channels,

inter-symbol interference (ISI) is a major obstacle in high speed data transfer. At high

speeds of data transfer, blind estimation is also necessary to fully utilize the available

bandwidth. Therefore, blind channel estimation and subsequent equalization are

necessary at the receiver to combat lSI. In this thesis, zero based blind channel estimation

and equalization algorithms are proposed.

For point to point communication systems, a single input single output (SISO) finite

impulse response (FIR) channel model is used to describe the equivalent baseband system.

Channel coefficient estimation and channel zero estimation for a minimum phase (MP)

FIR channel is initially presented. It is shown that parameter estimation based on channel

zeros is a natural and efficient way to estimate the channel coefficients. Furthermore, the

estimation performance of the proposed algorithms through this approach can reach the

bounds of blind channel parameter estimation.

Based on the development of MP channel parameter estimation, blind channel

parameter estimation algorithms for non-minimum phase (NMP) channels are also
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investigated. Initial channel zeros, obtained by second order statistics based methods, can

be correctly located using higher order information of the received signal. The proposed

algorithms use advantages of both second order statistics and higher order statistics.

For multiple-receiver systems, a single input single output (SIMO) channel model is

exploited. The proposed SISO NMP channel parameter estimation methods are extended

to the parameter estimation of SIMO channel. Here all zeros of all sub-channels are

determined by using the cross-relationship between individual sub-channels.

It is well known that an equalizer at the output can be used to combat lSI and recover

the unknown transmitted signal in high fidelity. Based on the estimated channel zeros,

novel equalizer designs for SISO and SIMO channels are presented in the later part of the

thesis. These equalizers belong to the categories of zero forcing (ZF) equalizer, minimum

mean square error (MMSE) equalizer, and decision feedback equalizer (DFE).

Traditionally, all equalizers are realized in FIR form as this is a guaranteed stable

architecture. An efficient, stable infinite-impulse response (IIR) form for hardware

implementation is also discussed in the thesis for reducing the length of equalizers. It is

shown that the use of IIR architecture saves hardware register usage by a significant

amount. An example of equalizer application in underwater acoustic (UWA)

communication channel is provided which is designed by considering the characteristics

ofthe UWA channel. For block transmission systems, a bi-directional zero based decision

feedback equalizer (BizDFE) is also proposed.
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Chapter 1

Introduction

In recent years, the demand for high-speed data transfer has been increased in wireless

communications, such as radio communications, underwater acoustic

communications. In high-speed wireless communications, the multipath propagation

property of the channel and the limited bandwidth result in an unwanted superposition

of the transmitted symbols at the receiver. This is referred as inter-symbol interference

(ISI). lSI may result in high error rate in symbol detection. In order to combat lSI and

obtain reliable communication, channel estimation and subsequent equalization are

necessary at the receiver. Channel parameters can be estimated using a training

sequence, however, training estimation will cause a loss ofavailable bandwidth. Blind

channel estimation and equalization have received a large amount of research interests

in the recent two decades, due to the fact that no additional bandwidth is required for

blind channel estimation.

1.1 Motivation

For channel estimation, there are three types of estimators [1]. Most commonly, a

training sequence is used for channel estimation. The channel impulse responses are
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estimated from the known training sequence via a cross correlation at the receiver.

This mode is called training-estimation. Obviously, it is quite effective in the case that

the channel does not change over time. It is especially not efficient in rapidly varying

channels due to the requirement of frequent training. In a multipoint network,

whenever a link from the server to one of the benthic stations is interrupted, it is not

feasible for the server to start sending a training sequence to re-establish a particular

link. During online transmission impairment monitoring, the training sequences are

not supplied by the transmitter. Fortunately, the second method, blind channel

estimation method, needs no training sequences. The importance of blind estimation is

strongly supported by practical needs. The channel impulse responses are estimated

while information sequences are being transmitted. The major advantage of this

technique is the improved bandwidth utilization for time varying channels. The third

method of channel estimation falls in between the training based techniques and blind

channel estimation techniques. In digital communications, some known symbols are

incorporated into transmission to assist the detection operation, such as in

synchronization. This mode of channel estimation uses not only the known data and

its corresponding observation, but also the observation of the unknown data. Although

it causes loss of some bandwidth, it takes the advantages of training based technique

as well as blind channel estimation technique. But the known sequence is not

available under all conditions and, thus, this semiblind method cannot be used in all

systems. Based on these reasons, blind channel estimation and equalization have

drawn a large amount of research interests.

Blind channel estimation can be mainly grouped into two categories: the

nonparametric and parametric approaches. The nonparametric methods usually result

in estimation having high variances and low resolution. The parametric methods

assume that the data obey a probabilistic model of known structure and estimate the

unknown parameters of the underlying model via the available data. The goal of

parametric methods is to achieve the optimal accuracy in estimation. The parametric

method of channel estimation is discussed throughout this thesis.

Consider a single user channel model, a model usually suitable for describing point

to point communication systems, e.g. time division multiple access (TDMA) systems,

2
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and global system for mobile (GSM) systems [1], are known as single input single

output (SISO) channels. If the channel parameters are varying slowly, the channel can

be modeled as a linear time-invariant model. The wireless communication channels

can be assumed to be a finite impulse response (FIR) model. And the estimation of

FIR parameters has been a research problem in signal processing [2], control system

identification [3], and even can be dated back over fifty years. New estimation

algorithms continue to be proposed. However, all existing algorithms have one or

more drawbacks. In this dissertation, we propose channel estimation methods to

achieve better performance with robust property under various system conditions. It is

noted here that existing solutions for FIR channel estimation in literature can be

classified into two categories: minimum phase (MP) system estimation; nonminimum

phase (NMP) system estimation. Algorithms suitable for both MP and NMP channel

estimation are discussed in this thesis.

MP channel estimation can be traced back to the MA (Moving Average) model

parameter estimation. There are a large amount of existing algorithms for MA

parameter estimation. For example, the Durbin method [4] using SOS (second order

statistics) information-a method of maximum likelihood estimation (MLE) [5],

estimates the MA model coefficients using a long AR (Autoregressive) process to

approximate the observed MA process. The estimated AR parameters using the MLE

technique are then mapped into MA parameters. But it is shown that this estimation is

a biased estimator. Stoica [6] proposed the best algorithm appearing in the literature

for MA model coefficients estimation based on the SOS property. As noted in [6],

"The MA estimation algorithms proposed here are computationally fast, statistical

accurate, and reliable. None of the previously available algorithms for MA estimation

(methods based on higher-order statistics include) shares all these desirable

3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



properties" [6]. Given the observed MA covariance sequences, the method minimizes

a least square (LS) spectral criterion for covariance sequences via semidefinite

programming to obtain MA model parameters. In order to solve the minimization

problem and achieve good performance, an overparametrized signal (OS) approach is

adopted. This approach overcomes the usual convergence problem. It is noted that the

OS method has the best performance among all the reported MA parameter estimation

algorithms, especially when the zeroes are close to the unit circle. The common

character of all the above noted methods is that they use SOS information. The

advantages of SOS based methods are that a small number of samples are used with a

low computation load in the channel estimation algorithm and thus suitable for

estimating rapidly varying parameters. As is well known the second order correlation

sequence does not contain phase information, thus, the use of SOS based methods can

only be in MP channel estimation. In this case, it is always assumed that the channel

zeros are inside the unit circle.

Note that structure of FIR channel model and MA system model are very close. The

only difference between the MA model and the FIR channel is the type of input

signal. For the MA model, the input signal is assumed to have Gaussian statistics.

Whereas, the input for the FIR model is non-Gaussian, and Gaussian noise is added at

the receiver side of the model. If only second order statistical information is involved,

we note that algorithms suitable for MA model parameter estimation can be used in

MP FIR channel estimation as well.

Since the knowledge of the channel phase is very critical for data communications,

the identification of NMP systems has also received considerable attention during the

last two decades. Numerous blind techniques on NMP system identification,

estimation and deconvolution have been proposed in the literature. These approaches

4
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can be broadly divided into three categories. The first one is the estimation of

parameters by higher-order statistics (HOS) of the observed data [7]. Ifthe signal is

non-Gaussian, Lii and Rosenblatt [8] has shown that it is possible to obtain the correct

phase information from output data using higher order statistics information. Since

then, a variety of HOS based methods have been proposed and investigated. For

example, channel estimation methods based solely on HOS appear in [7-10]. Higher

order cumulants are also blind to any kind of Gaussian processes [10]; hence,

cumulant-based signal processing methods are inherently immune to colored Gaussian

measurement noise, whereas correlation-based methods are not. Consequently,

cumulant-based methods boost signal-to noise ratio when signals are corrupted by

Gaussian measurement noise. However, the major drawback ofHOS based methods is

that they require longer data lengths for estimation and they possess higher

computational complexity. Furthermore, if a random process is symmetrically

distributed, then its third-order cumulant is zero; hence, the fourth-order cumulant

(trispectrum) is needed in the parameter estimation [7]. Since the signals in wireless

communications, e.g. the BPSK (Binary Phase Shift Keying), QAM (Quadrature

Amplitude Modulation) signals are symmetrically distributed [11], the estimation

requires the use of fourth order cumulant or trispectrum [12], thus even longer data

length is necessary. The second category of blind channel estimation is based on the

signal distribution at the equalizer output. Linear inverse filters can be used to

equalize the observed data to recover input signal and estimate the characteristics of

the unknown channel, such as in [13-15]. The third blind estimation methods are

based on second order cyclostationary statistics (SOCS) based methods proposed by

Tong et al. in [16]. If the sampling rate at the receiver is higher than the baud rate, it is

identified as fractional sampling. The SOCS method also contains the phase

5
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infonnation. So SOCS based methods can be used in the NMP system estimation

[16-19]. But when the oversampling at the receiver is not an available option of the

application, the method cannot be used.

In order to exploit advantages of both SOS infonnation and HOS infonnation, Lii

and Rosenblatt [8] have noted that combining SOS with HOS can provide the solution

to blind channel estimation problem, but they did not propose any algorithms.

Reference [9] extends this idea by using the full fourth order cumulant to locate zero

positions. As noted earlier, the calculation of HOS is time-consuming and has high

computational complexity. Using other computationally low methods, such as HOS

slice information and finite alphabet infonnation, the channel zero positions also can

be located without resorting to the full fourth order cumluant. These techniques will

be discussed in detail in later chapters of the thesis.

When multiple sensors are used at the receiver, or oversampling is used with one

sensor at the receiver, the communication system is referred as a single input multiple

output (SIMO) channel model [11, 20, 21]. SIMO channel model exploits the channel

diversity of the transmission system. It is noted that the SIMO transmission can

improve the perfonnance significantly, especially in severely fading channels. The

SIMO systems are also attractive as they can be blindly identified using second order

statistical infonnation. A number of techniques for SIMO blind channel estimation

has been proposed since the work of Tong et al. [16]. One can refer to [21] for details

of these methods. Fractionally spaced equalization using CMA (constant modulus

algorithm) is adopted for SIMO channel equalization. However, we note that

developing efficient signal processing methods with low complexity for channel

estimation and equalization still presents challenging issues [15]. In this thesis, simple

6
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but efficient techniques for joint SIMO channel estimation and equalization are also

proposed.

It is known that the purpose of communications is to recover the channel input

symbols from the received signal. The received signal usually suffers from channel

multipath effect and additive white Gaussian noise. The solution is to design a

receiver that provides a means for compensating or reducing the lSI in the received

signal. The compensation for the lSI is done at the equalizer [11]. It is well known

that training-estimation based equalizers can be used to recover the transmitted signal,

but training based methods are not always feasible. In most communication systems

the channel characteristics are not only unknown a priori but also the channel

response is time-variant. Self-recovering or adaptive blind equalization techniques

which are based on initial adjustment of the coefficients without using training

sequence has gained more attention in recent years starting from the work of Sato

[22]. Rules of equalizer parameter adjustment are critical points of designing a blind

equalizer. Substantive algorithms for automatically adjusting the equalizer

coefficients to optimize a specified performance index and to adaptively compensate

for time variations in the channel characteristics are proposed over the years. Due to

the property that HOS is blind to Gaussian noise, HOS based cost functions have been

the most popular methods in designing blind equalizers (e.g. [13, 15,23]) since 1980.

Direct channel equalization and indirect equalization via symbol estimation are

commonly adopted in most practical systems. For indirect method, after the channel

parameters are estimated, the used techniques can be categorized into three kinds:

maximum-likelihood sequence equalizer (e.g. MLSE equalizer [24]); decision

feedback equalizer (DFE) [25]; and linear equalizer (inverse filter) e.g. [26,27].

7
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With regard to the computational complexity, the linear equalizer and DFE have a

lower complexity, although DFE is a little bit more complicated than a linear

equalizer; MLSE has the highest complexity among the three categories. With the

purpose of designing low complexity equalizers, the linear equalizer and the DFE are

investigated, and the MLSE is not discussed in the thesis.

Linear equalizer has two main categories. One is the zero-forcing (ZF) equalizer,

which is simple and easy to implement. However, it usually enhances the noise

effects. The other is the minimum mean square error (MMSE) equalizer. It can avoid

the noise enhancement and is especially useful under low signal to noise ratio (SNR)

scenarios, but it requires additional information, such as the knowledge of the noise

variance. Note however, that the MMSE design may increase the computational load

due to the required additional optimization.

The most common nonlinear equalizer, which is more complicated than the ZF

equalizer, but simpler than the MMSE design, is the use of a decision feedback

equalizer (DFE). DFE design minimizes the mean square error between the input to

the symbol decision threshold device and the detected transmitted symbol, and was

originally proposed by Monsen [25]. Error propagation is inherent in the DFE

equalizer, for example, when an error occurs at the receiver, it would be fedback

causing undesirable compensation. Due to this, the probability of subsequent errors

will increase, which usually results in error bursts. However, DFE is a good choice

considering a compromise between hardware complexity and optimization

complications.

SIMO equalization has recently shown wide applications. SIMO equalization based

on the channel estimation can be found in [16, 18, 28-30] . Gesbert firstly proposed

direct equalization for SIMO channel in [31]. It is followed by other direct

8
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equalization techniques proposed in [32, 33]. SIMa equalization has a variety of

applications in many fields, for example, application in wireless sensor networks can

be found in [28]. It also can be applied in optical systems [29], and in underwater

acoustics communications [34-36].

One of application areas for algorithms proposed in this thesis, is in underwater

acoustic (UWA) communications. Compared to the radio wireless communication,

blind channel estimation and equalization in the UWA communications still is a

difficult task and has received less attention from the research community. The UWA

environment is much more complicated and variant. Unlike digital communications

via radio channels where data are transmitted by means of electromagnetic waves,

underwater communications primarily use acoustic waves. The available bandwidth in

an UWA communication channel is severely limited by transmission loss, which

increases with both frequency and range. Within the limited bandwidth of UWA

channel, high-speed acoustic communication systems typically require a much larger

spectrum that may suffer from severe lSI due to the frequency-selective

characteristics of the UWA channels, which may result in large lSI and large Doppler

shift and spread in comparison with the radio channels. Underwater acoustic channels

are generally characterized as fading multipath channels that are quite variable and

depend on a variety of factors including ocean depth, the propagation path length and

the location of the transmitter and receiver [36]. Also, they may suffer from multiple

access interference (MAl) when multiple users share the common acoustic resource

[37]. The UWA is promising since the applications have been transferred from

military usage to commercial application, such as oil exploration, environmental data

collection [38]. To improve the data transfer capacity while keeping a high data

quality is without exception considered to be the most challenging task of an UWA

9

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle



communication system. Efficient means of data communication techniques are

required in UWA channels. More and more research works about UWA channels

estimation and equalization are proposed, such as [39, 40].

1.2 Objectives

Although there are a substantial number of algorithms for channel parameter (or

transfer function) estimation in literature, sometimes the interest is on the estimation

of roots (zeros) of the unknown channel, such as in DOA estimation [41], spectrum

analysis [42], and speech communication [43]. The performance analysis of zero

estimation can be found in [42, 44]. The distribution function of wireless

communication channel zeros is presented in [45]. All these show that the zero-based

channel estimation and equalization is possible. It is also noted here that the channel

zero information plays an important role in the channel estimation because channel

identifiability and estimation bounds can be directly related to the zero locations as

shown in Appendix B.

One of the major objectives of this dissertation is to propose simple and reliable

blind channel estimation algorithms for SISO and SIMa channels. According to the

need of the applications, the aim of blind channel estimation can be summarized as, I)

The method can be used under all conditions, that is, it has no convergence problems.

II) Due to the time varying nature, the channel estimation algorithm only can use

small or medium-size number of samples. The mean square error of the estimated

parameters should be a minimum value. III) The computational load should be low.

IV) The complexity of the algorithm needs to be as simple as possible. Since full

HaS cumulant can be used to identify the location of zeros which are obtained by

SOS based methods [8, 9], zero-based channel estimation techniques are investigated
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in the thesis. These techniques are expected to fulfill all the above noted requirements

of blind channel estimation, since the best SOS based method can be adopted together

with low computational complexity information, such as HOS slice, finite alphabet

information, and other information. Furthermore, in order to evaluate the performance

of the proposed algorithms in SISO and SIMO channel estimation, the bounds of

channel estimation are also required.

The second objective of this work is to develop equalizer algorithms based on the

channel estimation results obtained in the initial objective. Minimization of the

detection errors is the main function of the receivers. The equalizers used in practice

can be divided into three categories: training, blind and semiblind [1]. The training

and semiblind equalizers are designed through the use of both the received and

training or pilot signals at the expense of system resource (e.g. bandwidth). Due to the

benefit of resource (bandwidth) saving and no need of training phases, extensive

research on blind techniques have been reported, which usually exploit the properties

of the transmitted symbol sequences and the received signal's statistical properties or

the transmitted constellation properties. There are two ways for blind equalizer design:

one may directly design an equalizer using the received signal, the other way of

designing equalizer is based on the estimated channel impulse response. As the design

of an optimal detector requires the knowledge of the channel, the second way is

preferred in the design of equalizers as done in this thesis.

We note here that the zero-based equalizer design is attractive as zeros can be

obtained once the channel is estimated. For this, there exist a number of efficient and

robust zero estimation algorithms reported in the literature across numerous

application areas. As shown later in the thesis, channel zeros information also

simplifies the DFE implementation due to separate use of minimum phase and
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maximum phase zeros in the DFE feed-back and feed-forward structure [46]. As such,

equalization via channel zero locations can be justified as a natural approach to

equalizer design.

The third objective of this dissertation is to demonstrate the use of proposed

channel estimation algorithms in UWA communications and investigate the

application of spatial diversity equalizers in UWA communication. In this regard,

efficient means of data communication techniques are proposed for the UWA

channels.

1.3 Major Contribution of The Thesis

In this thesis, zeros based channel estimation and equalization algorithms for SISO

and SIMO channels are proposed. At first, techniques for blind estimation of SISO

channels are presented. Via the use of a zero forcing equalizer, three efficient and

reliable blind estimation algorithms are proposed. The first method is based on the

combination of SOS and HOS cumulant slice. Second method is based on the

combination of SOS and the kurtosis property of the transmitted signal. The third

method utilizes the SOS information and the finite alphabet knowledge of the

transmitted signal. SOS based methods provide efficient estimation of channel zeros

from a very small number of samples, but as noted earlier, the estimates are phase

blind. We show that the cumulant slice of HOS, kurtosis property and the FA

information can be used to resolve the ambiguity of system zero location. The

performance of the three estimation methods is compared and the complexity of

algorithms is discussed. In the channel estimation, a linear residue zero-forcing

equalizer based on the channel zeros is incorporated. It is then shown that the

equalizer output could be exploited recursively to improve the estimation accuracy

using the FA property of the transmitted signal. As all available information for blind
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channel estimation is used, the proposed methods achieve a very high accuracy in

blind channel estimation. This is elaborated by presenting the performance of the

estimation methods. As the method inherently uses an equalizer, separate equalizer is

not necessary. Thus, the approach is different to the conventional channel estimation

and equalization methods.

The equalization performance of a SIMO receiver is superior to a SISO receiver as

the SIMO model uses spatial diversity combination. The investigation of SIMO

channel estimation and equalization is very important for high speed and reliable

communication in particular in UWA communications. Based on the algorithms

developed for SISO blind channel estimation, SIMO channel estimation algorithms

are presented. It is shown that, given the polynomial correlation matrix (PCM) of the

SIMO model, SIMO channel parameters can be estimated with a low computational

complexity when a large number of samples are available and the additive noise

power is low. However, when a small number of samples are available and/or a higher

noise power is present, the performance of the use of PCM rapidly deteriorates. In

order to overcome this difficulty, a least squares technique is used for SIMO channel

estimation via the PCM. As a further improvement, it is also shown how the equalizer

output resulting from the strongest subchannel can be used to estimate the other

subchannels, via the use of a least squares technique. For the proposed algorithms,

having common zeros among subchannels does not pose any difficulty in estimation.

In digital communications, the transmitted signal takes values only in a discrete and

finite alphabetical set that is known at the receiver. This important a priori

information has been proven extremely useful, however it is ignored in many exiting

literature on channel estimation, such as in [1, 17, 26]. On the other hand, a method

proposed by Benveniste et al. [23], utilizes the distributional information of the
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unobservable signal to identify the nonminimum phase system. Blind system

identification and deconvolution methods via finite alphabet (FA) information have

also been investigated in detail by T.H.Li in [28, 47, 48]. An application of FA

property of the channel estimation in OFDM systems can be found in [49]. In this

work, we show that with the use of FA property in SISO and SIMO blind estimation,

one can achieve the same estimation accuracy that can be obtained by training

sequence estimation.

To recover the unknown transmitted signal is the ultimate goal in the

communication system. A series of novel approaches for channel equalization which

uses the estimated channel zero information is presented in the later part of the thesis.

It is shown how the estimated FIR channel zeros can be efficiently used in the design

of three different equalizers: ZF equalizer, MMSE equalizer, DFE, for both SISO and

SIMO channels. Simulations are used to indicate the performance differences of the

designed equalizers.

In summary, followings are the novel contributions ofthe work:

• Blind channel coefficient estimation and channel zero estimation of MP

channel are summarized in chapter 2.

• Algorithms for blind NMP channel coefficient estimation and channel zero

estimation are proposed in chapter 3.

• SIMO channel parameter estimation algorithms are proposed in chapter 4.

• Channel zero based equalizers for SISO and SIMO channel models are

discussed in chapter 5.

1.4 Organization of the Thesis

The dissertation is organized as follows:
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Chapter 2 presents channel coefficient estimation and channel zero estimation for a

minimum phase finite impulse response channel. A brief review of the methods for

channel zero estimation is followed by a discussion of their performance. It is shown

that the estimation of channel zeros is a good alternative way to estimate the channel

parameters. At the end of the chapter, bounds for blind channel zero estimation for

MP channels are presented. Thus, chapter 2 presents a basic framework for the work

presented later in the thesis.

In chapter 3, blind channel parameter estimation algorithms for NMP SIsa

channels, using sas combined with HaS cumulant slice, Kurtosis, FA property are

discussed. Initial channel zeros obtained by sas based methods, can be correctly

located by using the above noted higher order information. The performance of the

methods is compared in detail, by investigating the sensitivity of the proposed HaS

cost functions. Zero-tracking property of the proposed algorithm in a slow time

varying environment is provided.

In chapter 4, the proposed channel estimation methods are extended to SIMa

channel models. At the beginning, the SIMa channel model and assumptions used are

discussed. Then a brief introduction to existing sas based methods for SIMa channel

estimation is provided, e.g. the subspace method, the cross-relation method. In the

proposed SIMa estimation algorithm, the first subchannel is estimated by the SISa

techniques proposed in chapter 3. The zeros ofthe remaining subchannels can then be

determined by other techniques, for example, using the cross relationship between

individual subchannels. It is also noted that the Smith McMillan form is a powerful

tool in SIMa channel analysis. The application and simulation results of the proposed

SIMa estimation methods are given at the end ofchapter 4.
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Chapter 5 describes equalizer designs for SISO and SIMO channels. Equalizer is

used to recover the unknown transmitted signal in high fidelity. All proposed

equalizers in chapter 5 are based on the estimated channel zeros. For SISO channels,

zero forcing (ZF) equalizer, minimum mean square error (MMSE) equalizer, decision

feedback equalizer (DFE), are proposed and discussed. ZF, MMSE, DFE equalizers

for SIMO channels are also presented. The similarity and difference between all

equalizers are described in chapter 5. An efficient form for hardware implementation

is provided by reducing the length of FIR equalizers, which saves hardware register

usage by a large amount. Appendix C is provided to the chapter, where the linear

convolution structure imposed by the channel is reversed by using a time reversal

operation. This is done by reversing the time domain sequential order of the received

samples prior to equalization. In doing so, the equivalent channel impulse response

becomes a time-reversal of the actual channel impulse response as seen from the

equalizer side. The zeros of time-reversed channel are the reciprocal of the original

channel zeros. Based on this concept, a bi-directional zero based decision feedback

equalizer (BizDFE) is proposed and its performance is discussed in the appendix C.

An example of equalizer application in a UWA channel is provided, followed with a

brief introduction to the characteristics of UWA channels. The use of spatial diversity

equalization technique in UWA communications is elaborated, and the performance

of such equalization is illustrated.

Finally, conclusions based on this research work and directions for future research

are provided in chapter 6.
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Chapter 2

Minimum Phase Channel Coefficient and Channel
Zero Estimation

In this chapter, channel coefficient estimation and channel zero estimation for a

minimum phase (MP) finite impulse response (FIR) channel are discussed. Error

bounds for the channel coefficient and zero estimation are presented. They are useful

for estimation performance comparison. It will be shown how the derived bounds can

also be extended to non-minimum phase channel parameter estimation.

Section 2.1 describes the channel model and the assumptions used in this chapter.

The channel model is expressed as a polynomial in channel coefficients or as a

multiplication of several first order polynomials resulting from channel zeros. A brief

review of existing second order statistics based methods for coefficient estimation is

given in section 2.2. Techniques for finding roots ofa polynomial are introduced here.

The use of the autocorrelation function in estimating channel zeros is also shown. In

section 2.3, minimum phase channel zero and channel coefficient estimation error

bounds are presented. Simulation and comparison results for error bounds and

parameter estimation are illustrated in section 2.4. In section 2.5, a summary of this

chapter is presented. It is noted that the channel estimation algorithms and channel
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equalizer designs appearing in subsequent chapters are all designed based on the

concept of evaluating channel zeros. Therefore, channel zero estimation and the

performance evaluation via the derived bounds present a basic framework for the

work presented later in the thesis.

2.1 Channel Model & Assumptions

In this chapter, a single user channel is investigated. Such a channel is usually used in

point to point communication systems, e.g. time division multiple access (TDMA),

and global system for mobile (GSM) systems [1]. The channel is also known as a

single input single output (SISO) channel. If the channel parameters are varying

slowly, the channel can be modeled as a linear time-invariant system. For a

continuous time communication system, the SISO channel can be shown as in Fig.

2.1.

Inftlrmation..
modulariol1 demodulation

Match
filter
fM(t)

y(fj--.
sampler

Figure 2.1 The S1SO channel model for a continuous time communication system

In this system, at first, random information symbols are mapped onto signal

constellations at the transmitter. The mapped symbols are then pulse shaped within

the transmit filter. Then the pulse shaped signals are modulated by a carrier frequency

and transmitted through a frequency selective channel. At the receiver, demodulation

is used to remove modulation. The received signal, which is corrupted by the additive

noise, is filtered by a matched filter. The matched filter is matched to the transmitter

waveform. From Fig. 2.1, the continuous-time received signal can be expressed as,

yet) =Xn * fret) *e(t) * f M(t) + wet) * fM(t) =Xn *h(t) + wet) * f M(t) (2.1)
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where we have defined an equivalent frequency selective channel impulse response

as,

h(t) = iT (t) *e(t) * iM (t) (2.2)

The equivalent channel h(t) is the convolution result of the transmitter filter, the

analog channel and the matched filter. Due to sampling at baud-rate, both the input

and output of the continuous time system are discrete signals at the symbol rate. Thus,

an equivalent discrete time model can be realized based on the continuous-time

communication system in Fig. 2.1. The system model is shown in Fig. 2.2, where the

finite length discrete channel impulse responses {hen)} are obtained by sampling the

continuous-time impulse response. If the signal yet) is oversampled, i.e. sampled at

higher than baud-rate, the received signal will increase statistical information for

channel estimation. (The use of over-sampled signal statistics will be discussed in

Chapter 4.) According to the continuous-time system model, in the baseband digital

(sampled) communication system, the information symbols are transmitted through a

frequency selective digital channel. The channel output is corrupted by a discrete

additive noise sequence at the receiver as shown in Fig. 2.2.

Information

symools x(n)'--_---'

y(n)

Figure 2.2 Block Diagram of an equivalent baseband digital (sampled) communication system

According to the SISO linear time-invariant model in Fig. 2.2, the relationship

between channel input symbols {x(n)} and the received signal {yen)} can be expressed

mathematically as,

L

yen) =I h(k)x(n - k) + wen)
k;O

19

(2.3)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



The transmitted symbols {x(n)} are resulting from an independent identical distributed

(i.i.d.) process with zero mean, that is independent to the additive zero mean Gaussian

noise sequence {w(n)}. As the symbols belong to a finite-alphabet constellation, they

posses non-Gaussian and stationary statistics. Let H (z -I) represent the z-transform of

the channel impulse responses {h(k)}. Usually, the finite length channel impulse

responses {h(k)} are unknown at the receiver and should be estimated by either using

a training sequence or by using some blind channel estimation techniques.

Note that the channel transfer function can be expressed in a cascade form as the

multiplication of first order polynomials given by,

H(Z-I) = ±h(k)z-k =TI(I-b(k)z-l)
k=O k=1

(2.4)

where {b(k)} are zeros of the channel. Before we proceed to further discussion, the

following assumptions on the channel are noted.

AI) The memory of the channel impulse response is finite, so that the channel can

be modeled as a finite impulse response (FIR) filter. Without loss of generality, it is

assumed that h(n)=O for n<O and n>L, and h(O)::j:. 0, h(L)::j:. O.

A2) Define L as the memory order and it could be estimated by many existing

methods. For example, Akaike information criterion (AlC) searches minimum AIC

value for all possible model orders. However, it tends to overestimate the channel

order. Conditional model estimator (CME) proposed by S.M. Kay in [50] is

believed to be more consistent. One can refer to [51] for more detail discussion of

channel order estimation.

A3) No zero of the channel appears on the unit circle.

Note that zeros {b(k)} can be inside the unit circle or outside the unit circle, and the

positions of the zeros determine the type of the communication channel. If all the
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zeros are inside the unit circle then the channel is a minimum phase (MP) channel,

while having all the zeros outside the unit circle makes it a maximum phase channel.

However, in general channels are non-minimum phase (NMP), having zeros both

inside and outside the unit circle. If a channel may have zeros outside the unit circle, it

may not be severely fading if the zeros are far from the circle. Thus the estimation of

channel zeros in proper location is important in real applications [41]. It is well known

that autocorrelation sequence (second order statistics) is phase blind, and zeros inside

the unit circle (minimum phase zeros) and their reciprocals outside the unit circle

(maximum phase zeros) would produce the same autocorrelation sequence. Therefore,

using the autocorrelation (second order) statistics, the minimum phase zeros can be

located. And by proper relocation (as discussed in chapter 3) of the MP zeros, the

NMP channel coefficients also can be estimated.

2.2 Estimation using Second Order Statistics (SOS)

2.2.1 Channel Coefficient Estimation

The aim of this section is to estimate the coefficients and zeros of an MP FIR

channel. The only difference between the MA model and the FIR channel is the type

of input signal. For the MA model, the input signal has Gaussian statistics. Whereas,

the input for the FIR model is non-Gaussian, and Gaussian noise is added at the

receiver side of the FIR model. If only second order statistical information is used, we

then note that algorithms used for MA model parameter estimation can be used in MP

FIR channel estimation as well.

As an example of MA model parameter estimation technique, the Durbin method is

a linear procedure that produces suboptimal estimates for the MA parameters. The

popularity of the Durbin algorithm stems from its simplicity and speed. The routine
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finds the MA parameters from a linear least-squares technique that uses the

coefficients of a higher order AR model. The process {yen)} in (2.3) can be

approximated by the AR(00) process as,

00

yen) =-L a(k)y(n - k) + x(n)
k=l

(2.5)

where {a(k)} are the impulse responses of the AR model. And A(z-l) is the Z-

transform of {a(k)}. It is noted that an AR(N) process with N» L is a good

approximation to the MA(L) process. There are many ways to estimate the AR

parameters, such as Burg, Levinson, and Maximum-Likelihood. We do not discuss

AR parameters estimation here. The MA model parameters can be obtained from AR

model parameters as,

(2.6)

Stoica [6] proposed the best SOS based algorithm appearing in literature for MA

model coefficient estimation. The hypothetic covariance of the observed {yen)} can

be obtained using following expressions,

(2.7)

where Uk is the kth column of the (n+I)*(n+l) identity matrix. The observed

covariance of {yen)} is

(2.8)

where Q=lfTfj(}~ and If=[h(L)h(L-I)···h(l) I]. In order to minimize the

squared error between the observed covariance and hypothetic covariance in
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polynomial time, overparametrize {r}Y (j)} in a linear manner via the independent

elements of Q is an alternative way. The method minimizes a least square (LS)

spectral criterion of covariance sequences via semidefinite programming to obtain the

MA model parameters. It is noted that the OS (overparameterized signal) method in

[6] has the best performance of all the reported MA parameter estimation algorithms,

especially when the zeroes are close to the unit circle.

The common character of the above methods is that they use SOS information, but

as noted earlier the second order correlation sequence does not contain channel phase

information. That is, SOS based methods can only be used in MP channel estimation.

2.2.2 Channel Zero Estimation

It is also of interest to estimate the zeros of the MA model as noted in [43, 44].

Equalizers based on channel zeros are applied in underwater acoustic communication

in [52]. The direct method of estimating channel zeros is via the use of the estimated

channel coefficients. Let {h(k)} be the estimated channel coefficients from an SOS

based method, such as OS or Durbin method. The zeros of the channel can be found

by computing the eigenvalue of the companion matrix of the coefficients vector [53].

A

The companion matrix Me of the estimated coefficients vector {h(k)} is defined as,

-h(l)jh(O) -h(2)jh(0) ... -h(L)jh(O)

1 0

1 0

(2.9)

Using the property that the roots of a polynomial and the eigenvalue of its companion

matrix are equal, the roots (zeros) ofthe channel can be obtained from,

A A A

[b(l) b(2) .. · beL)] =eig(Md
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where eigO denotes a function (e.g. in MATLAB) delivering the eigenvalues of a

matrix.

The second method to find the channel zeros is via the use of the autocorrelation

sequence of the received signal {y(n)} . The two-sided autocorrelation function (ACF),

which is the Z-transform of the autocorrelation sequence, can be expressed as,

(2.11)

where autocorrelation sequence {ry'y(k)} is defined as,

ryy(l) = E{y(k)y* (k +/)}= o-;Lh(k)h* (k +/) + o-l:5(l) / = O,± 1,± 2,' .. ± L
k

and * denotes the complex conjugate operator. Under the assumptions on the input

signal stated in section 2.1 and without considering the additive noise, (2.11) can also

be expressed using the channel transfer function as,

Ry'y(Z-I) =o-;H(Z-I)H* (z)

=o-;Il (1- b(k)z-l )(1- b*(k)z)
k

(2.12)

From (2.12), we can see that the autocorrelation sequence (second order statistics) of

the received signal {yen)} contain the information of channel zeros and their

reciprocals. Information on both minimum phase zeros and maximum phase zeros are

inherent in ACF, since the roots of autocorrelation polynomial consist of channel

zeros and their reciprocals, i.e.,

roots(Ry'y(Z-I) = [b(l) b(2) ... b(k) l/b*(l) l/b*(2) ···1/b*(k)] (2.13)

However, information about the actual zero location, that is, whether a channel zero is

inside or outside the unit circle, can not be obtained from the ACF.

If the channel is a minimum phase channel, then by mapping the minimum phase

zeros obtained from (2.10) or (2.13) into the polynomial coefficients using (2.4) the

channel coefficients can be estimated. Vice versa, a maximum phase channel also can
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be estimated. However, for a mixed phase channel, which is the more general case of

communication channels, the problem is how to obtain the correct location of the

channel zeros. A solution for finding zeros location is described in [54] in detail.

Since blind estimation of MP channel coefficients and zeros via the SOS methods

does not have the problem of zero location ambiguity, in this chapter, we use SOS

based MP channel estimation performance as the benchmark for all NMP channels

estimation.

2.2.3 Impact of Input Signal Gaussianity of the Durbin and OS methods

In this section, via simulation, we will investigate the Gaussianity of the input

signal on the estimation performance of the unknown channel. In the simulations, six

different random sequences with different probability distribution functions (PDF) are

used as input signals. They are: 1) double-side exponential 2) uniform distribution (-

1,1) 3) 4-QAM (Quadrature amplitude modulation) [11] 4) 8-QAM 5) 16-QAM 6)

Gaussian. All input signals are zero-mean complex sequences. No Gaussian noise is

added at the filter output. The estimation performances are evaluated via the

normalized mean-square error (NMSE) defined as,

The NMSE results of channel estimation by using Durbin and OS are as follows:

TABLE 2.1 THE NMSE RESULTING FROM DIFFERENT INPUT SIGNALS.

exponential uniform 4-QAM 8-QAM 16-QAM Gaussian
Durbin 0.0024 0.0025 0.0024 0.0025 0.0024 0.0024
as 0.0017 0.0018 0.0017 0.0018 0.0017 0.0017

The MP channel used III the simulation has zeros

{0.5837 +0.6615i 0.5837 - 0.6615i - 0.6}. 2000 runs are used in the simulation and the

number of samples for each run is 1024. From Table 2.1, we can see that performance
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results are very similar for all different input signals. It is thus concluded that the

input signal distribution has no impact on the two channel estimation techniques. And

the two methods are suitable for FIR channel parameters estimation, regardless

whether the input being a Gaussian or a non-Gaussian signal.

2.3 Bounds on Channel Coefficient and Channel Zero Estimation

This section presents a discussion on the estimation bounds for zero estimation and

coefficient estimation of a minimum phase FIR channel. It is noted that the bounds on

the zero estimation of an MA process can be obtained via the bounds of zero

estimation of an ARMA process as shown in [44], with the assumption that the input

signal probability density function (PDF) is a Gaussian distribution. Reference [44]

only consider the case of zeros appearing in complex conjugate pairs. In this chapter,

we extend that analysis for a more general case where zeros can appear on the real

axis or as a complex conjugate pair. Based on the simulation results of the previous

section, we would extend this bound for the case of non-Gaussian inputs signals (e.g.

finite alphabet communication signals).

2.3.1 Error Bounds on Channel Zero Estimation

For an MA process, the Fisher information matrix for channel zero estimation can

be expressed as,

(2.14)

where N is the number of samples used in the estimation. It can be easily shown that

dm u is the uth coefficient ofthe following Z-transform as,,

D
m

(Z-l) =Z-l TI (l-b(k)z-l)[H(z-l) jl
k=l,k!=m
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The proof is presented in appendix A. It is easy to obtain dm u if the inverse filter,

[H(Z-I)r is expressed in the following partial fraction summation form,

(2.16)

where H:(Z-I) is a branch transfer function corresponding to each zero. The

minimum phase branches with amplitude of zero less than unity can be easily

implemented by an M length FIR filter approximately. The realization details of

H: (z -I) can be found in chapter 5. We will not dwell the details here, as they are

same as in the zero-forcing equalizer design of chapter 5. Error bounds for channel

zero estimation can be obtained using the Fisher information matrix in (2.14) as,

(2.17)

2.3.2 Error Bounds on Channel Coefficient Estimation

In a similar form to that in (2.14), the Fisher information matrix [55] for channel

coefficients estimation can also be derived as,

(2.18)

dm u is the uth coefficient of the Z-transform,

(2.19)

The detail procedure for obtaining (2.18) can be found in appendix A. It is noted here

that the Fisher information matrix in (2.18) is obtained under the assumption of

having a high SNR. We also note that at low SNR,

(2.20)
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Using (2.18) and (2.20), an approximate bound for the FIR channel coefficient

estimation error in the presence ofadditive noise can be obtained as,

(2.21)

The above bound can be used for MP channel estimation performance comparison. It

is also noted here that the above bound can be extended for the case when zeros are

outside the unit circle, since the bound on channel coefficient estimation error in this

case is obtained by considering an equivalent MP channel which has the same

autocorrelation sequence as that of the NMP channel.

The following example gives a simple explanation. Three channels are presented

here as: minimum-phase channel H1(z-l) =(1-az-1)(1-bz-1) , maximum-phase

channel H 2(Z-I) =(1- az)(1- bz) and mixed-phase

channel H 3 (z-l) = (1-az-1)(1-bz) , withlalsl and Ibls1. Given the same input

signal to these three channels, the output autocorrelation sequences are same as,

r(-2) =ab r(-l) = -(a + b)(1 + ab)

r(1) =-(a + b)(l + ab) ; r(2) = ab

We can easily find the roots of autocorrelation sequence as

roots([r(-2) r(-l) reO) r(1) r(2)] = [a b 1/a 1/b]

From the autocorrelation sequence, channel zeros can be obtained if zero location

information is known a prior. Assuming that the NMP zeros can be correctly located

by using the autocorrelation function, [H(Z-l)r can be realized for the NMP channel.

The bound in (2.21) also can be applied for evaluating NMP channel coefficient

estimation. Appendix B provides a detailed discussion on this.
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2.4 Simulation Results and Comparisons

2.4.1 Channel Coefficient and Zero Estimation

In this section, simulation results are shown to illustrate the performance of Durbin

and OS methods in comparison to the bounds derived in the previous section. At first,

we compare these algorithms for coefficients estimation for an FIR channel having an

input signal belonging to a 4-QAM constellation. The channel coefficient vector is

[1 - 0.5674 0.0778 0.4670], all the zeros are inside the unit circle and are as same as

those used in obtaining the results in Table 2.1. It is assumed that the SNR is high

enough to ignore the noise effects at the input of the receiver. The number of samples

is varying from 400 to 1600. The results are shown in Fig. 2.3. and Fig. 2.4, for

channel coefficient estimation and channel zero estimation respectively.

Estimation results and bound for MP chameJ coefficient

-26

-28!-:----------='::------:-::;:---~;:---___,:':_::___-==:::;;=::=:::::::~
400 1600

Figure 2.3 The blind estimation results obtained by OS, Durbin and ACF are compared with the
derived coefficient bound for MP FIR channel coefficient estimation.
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Estimation results and bound for MP chamel zero

-15

-20

-25

-7- -- ---------------- -- _
Boundi~ (2.17)

-3~OO:c:----;6=OO--=BOO:----::!,OOO:::----::,2=OO-----;,7.::400:----,-:,600

Number of samples

Figure 2.4 The blind estimation results obtained by as, Durbin and ACF are compared with the
derived zero bound for MP FIR channel zero estimation.

We note that when there are a large number of data samples or the SNR is high

enough, the ACF also can be used to estimate the channel coefficients and zeros.

Although, the estimation with ACF is of lower accuracy, it is a much more

computationally efficient technique than the other two methods. The highest accuracy

is obtained by the as method but at the expense of a higher computational complexity.

In Fig. 2.3 and 2.4, the estimation performances are also compared with the derived

bound for MP channel coefficient estimation and channel zero estimation.

2.4.2 Comparison with Higher Order Statistics based Estimation

It is well known that HaS based techniques can be used for proper location of the

channel zeros without having the minimum phase - maximum phase ambiguity. In

this section we would compare the previously noted SOS based as method with a

HaS based channel estimation technique. The HaS technique selected for

comparison is the generalized weighted slice (GEWS) [56] algorithms which,

arguably, is one of the best HaS based channel estimation techniques reported in the

literature. The input signal and example channel are same as those in section 2.4.1.

The additive noise is a white Gaussian sequence and the SNR in the simulation varies
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from 2dB to 42dB. The number of samples is 1000. The estimation performance of

SOS-based and HOS based algorithms is compared with the proposed bound for MP

FIR channel coefficient estimation is shown in Fig. 2.5.

Performance of MP Channel Coefficlerts Estimation

-20

-25

I 505-08[6]
!---B-- HOS-GEWS 152)

Figure 2.5

Channel SNR (dB)

Estimation results obtained by SOS and HOS based algorithms compared with bound
in (2.21) in MP channel coefficient estimation.

As noted earlier the bound in (2.21) can be used to evaluate the NMP channel

estimation. The estimation performance for a NMP FIR channel is illustrated in

Fig.2.6. The additive noise is white Gaussian sequence and the input signal is a 4-

QAM signal. The channel transfer function is gIven by

H(Z-I) =1-0.9z-1 +0.385z-2 +0.771z-3
, having zeros [0.75 + 0.85i 0.75 - 0.85i - 0.6].

Note that this channel is a widely quoted example used in the literature (e.g. in [56]

and references therein), and the reciprocals of the maximum phase zeros are as same

as the zeros of the previously discussed MP channel. For the SOS based method the

channel estimation is achieved by assuming that the zeros can be correctly located

[54]. From Fig.2.5 and 2.6, we can see that the derived bound in (2.21) provides us

with a bound for channel estimation for both MP and NMP channels over a wide

range of SNR. It should be stated here that a bound using (2.18) is obtained under a

high SNR assumption, while the expression in (2.20) is only valid for low SNR

conditions. Therefore, the expression in (2.21) is not accurate in the medium SNR
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range. SNR is varying from 2dB to 40 dB. The simulation results also suggests that

the SOS based technique is more accurate at high SNR while at low SNR the HOS

based technique is the better choice.

SNR

Figure 2.6 Estimation results obtained by SOS and HOS based algorithms compared with bound
in (2.21) in NMP channel coefficient estimation.

2.5 Summary

In this chapter, we have discussed exiting SOS based methods and compared their

performance in minimum phase FIR channel coefficient and zero estimation via the

use of only SOS information. It is noted that SOS based channel estimation

algorithms have a lower computational complexity compared with HOS based

techniques. The best SOS method, the OS method is the most complicated in

comparison to Durbin and ACF based algorithms. The simplest method based on the

ACF is suitable for channel estimation if the required accuracy is not too high.

It is also noted here that, unlike the work reported in the literature, the derived

bounds for MP channel coefficients and zeros estimation do not require restrictions,

such as that zeros should appear in complex conjugate. The derived bounds can also

be extended for the evaluation of NMP channel estimation. Therefore, the derived
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estimation bounds for MP FIR channels can be used as a benchmark for comparing

various channel estimation algorithms discussed throughout this thesis.
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Chapter 3

Blind Single Input Single Output Channel Parameter

Estimation

Based on the discussion and developments in chapter 2, blind SISa channel

estimation of an FIR channel is addressed in this chapter. The unknown channel can

be a minimum phase or a non-minimum phase channel. Assumed MP channel zeros

can be blindly obtained using techniques in chapter 2, the HaS information, kurtosis

property and the finite alphabet (FA) information can then be used to solve the

ambiguity in system zero location. Three efficient and reliable blind estimation

algorithms are proposed here. The first method is using SOS and a slice of higher

order statistics (HaS). The second method is based on the combination of SOS and
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the kurtosis property of the transmitted signal, which is one point of the fourth order

cumulant. The third method utilizes the SOS information and the FA knowledge of

the transmitted signal. It is also shown that the equalizer output could be exploited

recursively to improve the estimation accuracy using the FA property. As all available

information is used in estimation, the recursive estimation achieves a very high

accuracy in blind channel estimation. Performance of the various estimation methods

is also discussed.

3.1 Introduction

For NMP system estimation methods, there are a number of estimation categories,

such as maximum likelihood methods, and moment matching methods. The details of

these methods are not dwelt on here, but for a comprehensive review of blind channel

estimation methods one is referred to [1]. A common approach in developing well

behaved algorithms for parameter estimation is the use of second-order statistics

(SOS) [4, 6]. However, SOS based methods are phase blind as discussed in chapter 2.

In order to avoid this limitation, it is shown in [17] that the channel phase information

can be extracted from the second-order cyclostationary statistics (SOCS). But

oversampling and multichannel configuration (diversity) are required for SOCS based

methods, and when a single sensor is used these conditions cannot always be satisfied.

Thus, SOCS based methods are not suitable for baud rate spaced systems [56]. On the

other hand, higher order statistics (HOS) can be used for NMP channel estimation if

the input signal is not Gaussian, as shown in [56] and references therein. But HOS

methods have a high computational complexity and difficulty in implementation.

Lii and Rosenblatt [8] have noted that combing SOS with HOS can provide the

solution to the blind channel estimation problem. But they did not propose any

algorithms. Reference [9] extends this idea by using the full fourth order cumulant to
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locate zero positions. The correct location of the zeros can be obtained via the use of

various cost functions, which are discussed in detail in this chapter.

In this chapter, a two-step approach is used in the proposed algorithms. In the first

step, assuming that the channel is minimum phase, zeros are estimated using a SOS

based method. Three methods are used in the second step. They take advantage of the

best SOS based estimation method reported in literature [6] and other NMP

information to estimate the unknown characteristics of communication channels.

The first method, called SH, utilizes slice of fourth order cumulant with SOS to

exploit the NMP channel estimation in section 3.3.1. It has also been noted in the

literature that reduced cumulant information derived from a cumulant or a cumulant

slice has the capability of selecting correct zero location instead of using the full

cumulant [56, 57]. However, a single point of the fourth order cumulant is not robust

enough to identify the correct zeros location as shown in [57].

The second method, named SK, utilizes kurtosis (one point of the fourth order

cumulant) instead of using the full cumulant or cumulant slice, with the incorporated

linear residue zero-forcing equalizer, to estimate unknown channel parameter. The

well-known constant modulus algorithm (CMA) [14] notes that the channel input

signal has a constant modulus. As an extension of CMA, to achieve equalization, the

Shalvi-Weinstein algorithm [13] maximizes the kurtosis subjected to the condition

that the power of the equalizer input and output remain equal. In this chapter, we use a

simplified version of this criterion such that the normalized kurtosis at the transmitter

and the receiver being made to equal. The zero locations are efficiently located using

this normalized kurtosis criterion and thus avoids the use of complicated full (or slices

of) HOS cumulants. Based on this, the second proposed method (SK) is described in

section 3.3.2.
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The third method, called SF, employs FA property at the equalizer output. An

important property that the transmitted signal only takes values in a finite alphabet set

is ignored in most existing blind channel estimation algorithms, such as [17, 58]. The

FA property of the transmitted signal has shown to be extremely useful and the use of

FA property in channel estimation and equalization has been discussed in recent

papers [47-49, 59-61]. Univariate case is studied in [48, 59, 61]. Multivariate and

multichannel problems are solved in [47] [60]. FA property is also used in OFDM

communication system estimation in [49]. In section 3.3.3, FA property is

investigated. The third proposed method (SF) takes advantage of the best SOS based

estimation method in conjunction with the FA property of the transmitted signal to

estimate the channel parameters and recover the original input signal with the use of

the zero-forcing equalizer.

The estimation results obtained by the last two algorithms (SK and SF) can be

further improved by a subsequent recursive processing using the inherent finite

alphabet property of the transmitted signal. A refined estimation algorithm is then

proposed based on such recursion. As noted before, using FA characteristics, the

equalizer output signal can be recursively used to improve the initial estimation. The

recursive use of the output has similarity to the iterative least squares with

enumeration (ILSE) and iterative least squares with projection (ILSP) in [60] which

exploit FA property to provide channel parameter and recover original signal.

However, the proposed algorithms here (LS-SK, LS-SF) are different to these in that

they do not require oversampling (as in the use of an antenna array) and does not have

initial value problems as of ILSE and ILSP. Only a single iteration of a least square

computation is used in the proposed algorithms. The comparison results show that the
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proposed methods achieve better performance than any reported technique. The detail

method is shown in section 3.3.4.

The main contribution of this chapter is the proposal and evaluation of three

simple, low complexity blind channel estimation techniques (SH, SK & SF), and the

refinement of these methods (LS-SK & LS-SF). The performances of the proposed

methods are compared in detail in the chapter. As the proposed methods incorporate a

simple equalizer, a separate equalizer implementation is unnecessary.

3.2 Channel Model and Initial Zeros estimation

The channel model is same as (2.3) presented in chapter 2, except we do not assume

the channel zeros must be inside the unit circle. For a practical wireless

communication channel, channel zeros can be minimum or maximum phase, i.e. the

magnitude of zero {b(k)} can be lesser or larger than unity. It is noted that a zero

inside the unit circle (I b(k) 1< 1) and its reciprocal on the unit circle (1/1 b(k) I> I)

yield the same autocorrelation sequence [62]. As noted in chapter 2, all the minimum

phase zeros can be directly obtained from the autocorrelation polynomial as,

(3.1)

The operator min_ ph(-) only selects zeros inside the unit circle from the roots(-)

operation. Alternatively, the minimum phase zeros can be obtained as,

(3.2)

where parameters {h(k) } are estimated by any (sophisticated) SOS based methods.

For each MP zero estimated via the SOS based method, we note that there would be

A A A

an alternative maximum-phase zero [62], and thus using(b(l),b(2),.· ·,b(L» , a non-
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minimum-phase system can be obtained by reciprocating any number of zeros on the

unit circle. For an L'h order system, there are r such configurations. For example, the

zeros can be q;=(b(l),lji/(2),.··,b(L» or q;=(ljb*(I),b(2), ... ,b(L». Here we

propose to select the correct configuration by observing the output of the proposed

cost functions.

3.3 Proposed Algorithms

3.3.1 SOS and HOS Slice (SH) Based Algorithm

Before proceeding to the proposed algorithms, some basic knowledge of HOS is

introduced. If a random process is symmetrically distributed, then its third-order

cumulant is zero; hence, the fourth-order cumulant (trispectrum) is needed for

estimation [10]. For example, the BPSK, QAM signals are symmetrically distributed.

Their corresponding third order cumulants are zero. As such, it is necessary to use the

fourth order cumulant in conjunction with the second order cumulant for the channel

estimation to utilize both advantages and overcome the drawbacks. The fourth order

cumulant of the signal {yen)} is given as,

c4/'rp Tz,T3)=E{y*(t)Y(t+T,)y(t+Tz)Y*(t+T3)}-E{y(t)y*(t+T,) }E{y(t+Tz)y* (t+T3)}

-E{y(t)y*(t+Tz)}E{Y(t+T,)y*(t+TJ}-E{y(t+T,)y*(t+Tz)}E{y(t)y*(t+T3)}

And the sample fourth order cumulant can be estimated as,

(3.3)

1 N-k

C4y (T" Tz,T3) =- 2:>* (n)y(n+ T,)y(n +Tz)y* (n +T3)
N n=' (3.4)

-ryy(T,)rZy(Tz -T3)-ryy(Tz)rZy(Tj -T3)-ryy(T3)rZy(Tj -Tz)

where k = max(T" Tz, T3) and T" Tz,T3are lag variables of fourth order cumulant. The

hypothetical value of the fourth order cumulant ofy(n) also can be expressed via the

channel impulse response as,

if)

C4y (T" Tz,T3) = Y4x Ih* (n)h(n + Tj)h(n + Tz)h *(n + T3)
n=O
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where Y4x is the fourth order cumulant of the input signal {x(n)}, which is given by

Y4x =C4y(0,0,0)/I[C4y(Q,0,k)/C4/q,0,0)f (3.6)
k~O

where Y4x denotes 4th order cumulant of input signal {x(n)} , and Y4x can be

accurately calculated by using the constellation information of the transmitted signal

without using the above formula (3.6). From (3.3)-(3.6), higher order cumulants are

multidimensional functions. As substantial number of samples is involved, their

computation is intensive. The slices of higher order cumulant are used to exploit

useful information of non-Gaussian stationary process [63]. We can fix three, two,

one or none of the variables in the vector (r" r 2' r 3) to obtain different slice. One-

dimensional (lD) slice of fourth-order cumulant is obtained by freezing 2 of its 3 lags,

such as C4y (r"O,O). The two-dimensional (2D) slice of the fourth-order cumulant can

be obtained by freezing 1 of its 3 indexes, for example, C4y (r" r 2,0) . In analogy, full-

slice of the nth order cumulant, i.e. entire cumulant is obtained by not fixing any

index. If the fourth order cumulant of the observed signal is equal to the hypothetical

fourth order cumulant evaluated using the estimated parameters, then the estimated

channel parameters are the correct one. The following cost function [57] is considered

for this purpose,

(3.7)

Where rp is the set of estimated zeros. Because the 4 th order cumulant is used to select

the correct zeros of the system, and the computation of4th order cumulant is time

consuming, efficient method of implementing the proposed method have been

investigated. For 2D, the cost function similar to (3.7) is expressed as,
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(3.8)

The cost function related to ID slice is:

(3.9)

The procedure of the proposed SH method is summarized as,

1. Find initial zeros from estimated channel parameters by SOS method in chapter 2.

2. Using the zeros and their reciprocals, we can obtain 2L different systems (i.e. by reflecting one

or more minimum phase zeros to reciprocal location outside the unit circle). For different ([J,

a corresponding {h(k)} can be mapped from one zero set ([J. In order to compare with fourth

order cumulant, the {h(k)} should be normalized.

3. From the output data, the estimated value of fourth order cumulant can also be calculated by

(3.4).

4. For each system above, we can evaluate possible (hypothesized) values for theoretical fourth

order cumulants via (3.5).

5. Comparing the estimated 4th order cumulant with all hypothesized 4th order cumulants, it is

possible to choose a set of roots which minimize Euclidean distance in the cumulant domain

(3.8) for using 2D slice, or (3.9) for using lD slice.

Thus the true zeros of the FIR model can be obtained from combining the second

order statistics and slice of higher order statistics of the output data, i.e. the parameters

of the system are estimated by SH method. In [57], the performances of using one

cumulant point, ID slice, 2D slice and full cumulant are compared. Numerical

examples of using the algorithm and the robustness of algorithm are also shown in

[57].

The computational complexity of using cumulant slice is lesser than using the full

cumulant. And the computational load of one point of 4 th order cumulant is lesser than

that of any other cumulant slice. The results indicate that the slice of cumulant has the

same effect in selecting correct roots as the full cumulant does, however, one point of
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the fourth order cumulant is not robust enough to find the correct location of channel

zeros [57].

3.3.2 SOS and Kurtosis based Algorithm (SK)

Based on [57] which uses a linear programming approach to find the location of

system zeros by cumulant slice, the second proposed algorithm (SK) is presented. In

here, it will be shown that one point of fourth order cumulant is robust enough to

select the correct roots.

Usually, the equalizer is designed after the channel estimation and the system phase

information needs to be known. In the case of adaptive equalizers, the equalizers are

made to adapt using the phase information. In the proposed method the phase

information of the communication channel is recovered from the equalizer output.

A simple zero-forcing equalizer (see Fig 3.1) based on the zeros estimated in the

previous subsection is needed for channel estimation. For the zero-forcing equalizer,

(3.10)

The inverse filter (equalizer) with L poles can be expressed in a cascade form,

(3.11)

where H: (z -I) is a branch transfer function corresponding to each zero b(k). The

detail ofthe equalizer implementation is addressed in chapter 5.

The proposed zero-forcing equalizer has low computation load because we only

need to realize branches 2 x L for 2L different configurations stated above.

Furthermore, a recursive architecture based equalizer that has efficiency in hardware

implementation is proposed in [46].
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Equalizer sen)

C(Z-l) = 1

Figure 3.1 Zero-Forcing equalizer for SISO channel

As shown in Fig. 3.1, the equalizer output signal s(n) can be expressed as,

sen) =x(n) * hen) *c(n) + wen) *c(n) (3.12)

(3.12) can be rewritten as s(n) =x(n) *g(n) +c(n) *w(n) . Where {c(n)} are the

impulse response of the equalizer. It is noted in [14] that the output of the inverse

filter has the same probability distribution information as the input signal's. Suppose

that the vector g(n)=h(n)*c(n)=(gl'g2"') is denoted as g. The sufficient

condition to achieve equalization is that g should be a unit vector having only one

nonzero component equal to the phase shift [13]. As a further simplification of this

condition, here we propose to use the kurtosis of the transmitted signal for

equalization. Kurtosis is the fourth order cumulant of the signal at zero lags. (Note for

brevity, we use xn for x(n), sn for s(n), wnfor w(n) in the following deduction. ) The

kurtosis of the equalizer output sn is

(3.13)

A similar form exists for the input signal x n ' Using the i.i.d assumption on the input

signal xn ' we get

(3.14)

(3.15)
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Note that K(wn ) = 0 as the kurtosis of a Gaussian signal is zero. After simplification,

the relationship between the normalized kurtosis of Sn and xn in (3.13) can be

expressed as,

K(xn> K(sn) K(sn> 1/ +2fjJB K(xn> 1 ~I gl 1

4
B

E2{lxn12 } E2{l sn12 } E2{l sn12 } (¢+B)2 =E2{lxn12 } (~I gl 12 )2 (¢+B)2 (3.16)

where ¢ = E{I wn 12 } LII CI 12 a constant, that depends on the noise power and

B=E{I x n 1
2

} LII gl 1
2 is a constant because the equalizer impulse responses {CI } are

chosen to have the same autocorrelation function for different configurations.

Therefore, the minimization of left side of (3.16) is the minimization of

[1- Lli gl 1
4/<Lli gl 1

2)2[. Note that for the vector g, (3.16) is minimized if and only if g

has at most one nonzero component, 12: I 1 g I 1
4 = (2: I I g I 1

2 ) 21, i.e., g is a proper

equalizer transfer function. As the constellation of transmitted (e.g. communication)

signal is known, based on (3.16), a cost function can be devised as the criterion for

equalization which is given by

(3.17)

This makes the equalization easier and simpler when compared with, for example the

use of Shavlvi-Weinstein criterion in [13]. In equation (3.17) the constant C; can be

evaluated once the signal to noise ratio is known. The offset C; in (3.17) can be

ignored if the SNR is high. We note that J(ep) has following properties: nonnegative;

J(ep) ~ 0, and J(ep) is minimized if and only if the input normalized kurtosis is

closest to the normalized output kurtosis. That means when the constellation of the

equalizer output is similar to the constellation of the input signal, i.e. correct
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equalization. Thus, using the kurtosis, the mixed-phase channel zeros, which were

initially estimated by an SOS based method can be correctly located.

The procedure of the algorithm based on the discussed cost function can be

summarized as,

1. Find initial zeros from estimated channel parameters by SOS method

2. Zero-forcing equalizer is constructed via using one configuration of zeros from 2L

combinations.

3. Given equalizer output, calculate the cost function (3.17).

4. Repeat the step 2. Correct zeros belong to the configuration that minimizes the 2 L results.

5. Evaluate the channel parameters based on the estimated zeros.

3.3.3 SOS and FA Property based Algorithm (SF)

It is known that the transmitted signal in communication channel only appertains to

a finite alphabet set n. {xU)} En. For example, BPSK signal symbol occurs at +1 or

-1 withn = {+1,-1}. And n = {±I,±3,···,±i} EEl {±I,±3,···,±i} for QAM signals. Ifm is

the length of the set Q, m = 2 for BPSK signal. The ideal equalizer output signal can

be expressed as s(n) =ax(n - T) where a is the amplitude gain and integer T denotes

time delay. A properly equalized output symbols have the same FA characteristics as

those of the input symbols. In this section, the cost function exploiting the FA

property at equalizer output is discussed. The performance of this cost function is

compared with known efficient techniques in [48, 61] exploring FA property in

choosing correct zeros.

In order to determine the deviation of the equalizer output from the original input

sequence, a cost function based on the FA property is proposed as,

(3.18)

where N is the number of data samples, and Q k is the kth number of FA set Q . J(rp)

is a cost function that will approximate to zero when all the equalizer output {s(n)}
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are close to the corresponding symbols in FA set. Any deviation will increase the

summation. J(ep) has following properties: nonnegative; J(ep)?:. 0, and J(ep) is

minimized if and only if ep is the channel FIR filter and 1/ep is the correct equalizer.

The procedure of the algorithm SF is the same as that of SK algorithm except for the

use of the cost function in (3.18) instead of the one in (3.17).

To evaluate the performance of the proposed SF method, we have also used Li's

cost function [48, 61] for comparison.

(3.19)

J(ep) is constructed from a series of multiplications that will approximate to zero

when equalizer output {sen)} is close to any symbols in the FA set. It has the same

properties as the cost function in (3.18): nonnegative; J(ep)?:. 0, and J(ep) is

minimized if and only if ep is the channel FIR filter and 1/ep is the correct equalizer.

For example, if the input signal is BPSK signal, (3.19) can be expressed as,

1 ~ 2 2J(ep) =-L.(Sn Iep-l) (Sn Iep-(-I))
N n=!

One of the main limitations ofLi's cost function is that all the symbols of FA set are

used for one sample of computation to determine the deviation of the equalizer output

from the original input sequence. To minimize (3.19), a complex gradient search

algorithm can be used to find the system parameters as in [48, 61]. In order to obtain

the global minimum value, the constraint such as Ih(n) = 1 or Ilh(nf = 1 is

imposed. Here in the proposed SF method the complex searching approach is not

necessary and correct zeros' locations are found from those 2 L combinations by

minimizing (3.18), and a global minimum value is always guaranteed. By far, the

proposed SF method here is more efficient in using the FA property of the transmitted
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signal than the use of (3.19). This is mainly due to the fact that every observed sample

at equalizer output is only compared with the closest symbol of the FA set.

3.3.4 Performance Improved by Least Square Method (LS-SK & LS-SF)

KurtosislFA
zeros selector

correct
zeros

Figure 3.2 Structure of refined recursive estimator

It is noted that the equalizer output {sen)} can be used recursively to provide a better

estimation as shown in Fig. 3.2. For this, we project every data {sen)} to the closest

FA symbol set, to obtain {v(n)}. Combination of {v(n)} and the observed noisy

signal {yen)} would then provide the coefficients {h(k)} of the unknown system. To

~

do this, replace {x(n)} by the equalizer output {v(n)} in (2.3), to solve y =v*h + & . In

~

order to estimate the parameters {h(k)}, the estimation error & can be minimized in a

least square sense to obtain a minimization problem,

Illy_vh11 2

i=11

~

which can be solved for the parameters {h(k)} by,

(3.20)

(3.21)

Vi = [v(i + L), v(i + L -1),.· ·v(O)] . With known {v(n)} and {yen)} , the

coefficients {h(k)} can be obtained, and usually, n2 - n l =10 *L, is sufficient to
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provide a highly accurate estimate. By not using all the samples, the computational

complexity of the LS method can be reduced.

3.4 Performance Evaluation and Comparison

To demonstrate the performance of the proposed methods (SK, SF, LS-SK and LS

SF), several simulation examples are presented in this section. Three different

channels are used in these examples.

Channel I: This is a widely cited channel and has been used in [56] and references

therein. The system transfer function of this 3rd order NMP model is

H(Z-l) =1- 0.9z-1 + 0.385z-z + O.771z-3 having system zeros at 0.6 and 0.75 ±jO.85.

Channel II: A second order MP system having zeros at 0.5 and 0.3. The system

transfer function is H(Z-l) =1- 0.8z-1 + 0.15z-z •

Channel III: This channel, a second order MP model having system zeros at

0.7±jO.7, is also used in [56] and references therein. The system transfer function is

H(Z-I)=I-1.4z-1 +0.98z-z . The channel zeros have magnitude of 0.9899 and thus

are extremely close to the unit circle.

In these examples, the channel input signals are selected as i.i.d. QPSK sequences

having zero mean. The additive channel noise is modeled as complex white Gaussian

processes with zero-mean and independent to the channel input. The SNR (Signal to

Noise Ratio) is defined as SNR =1010g10(P
ys

/ P.v) (dB) where Py , denotes the power

of channel output signal Ys and P.v is the additive noise power. The estimation

accuracy is evaluated in NMSE.

3.4.1. Sensitivity to the Cost Functions

In section 3.4, we have discussed three cost functions via equations (3.17), (3.18)

and (3.19). SK method uses the cost function in (3.17) while SF method uses the cost
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function in (3.18). The SF method can also be implemented using Li' s cost function

as defined in (3.19). NMSE performances of the use of the three cost functions are

shown in Fig. 3.3. Results from the use of Li's method are also shown. The results of

Fig. 3.3 show that the proposed SK method and SF method have very similar

performances and have advantage over the use of Li's cost function. Furthermore, the

least squares methods (LS-SK and LS-SF) improve the estimation accuracy

dramatically, as the FA property provides extra information besides the use of SOS

and HOS information. It is noted that the least-squares method is one of the best

methods to estimate a given set of parameters by minimizing the sum of the squares

appearing in (3.21).

It can be concluded from Fig.3.3 that the kurtosis and FA property have the same

selectivity in locating the correct zeros, thus performing equally well as a criterion for

blind communication channel equalization. This is not surprising as the kurtosis is

fundamentally related to FA characteristics. However, when the constellation

becomes denser, the use of kurtosis looses its strength as it approaches a Gaussian

kurtosis. The use of FA property, on the other hand, is not sensitive to the

constellation density.
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MSEV.S. SNR
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Figure 3.3 Performance comparison of the proposed methods with Li's cost function. ChannelL 1000

Monte Carlo Runs, N=2048 for each Run.

3.4.2. Sensitivity to SOS Methods

It can be seen from Fig. 3.2 that the preliminary step in equalization is the SOS

method. Thus, the performance of the proposed SF and SK methods naturally depends

on the used SOS methods. Since SK/SF methods and LS-SK/LS-SF methods have

similar performance only the performance of SK and LS-SK methods are considered

here. Three simulation results based on ACF (autocorrelation function), Durbin

method and OS method are shown in Fig. 3.4, for the NMP channel 1. The

performance of the proposed LS-SK (LS-SF) algorithm based on the three different

SOS methods is very close especially when SNR is high. Thus we can see that the LS-

SK (or LS-SF) methods are reasonably independent of the used SOS method.
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Performance Based on Different Used SOS Methods
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Figure 3.4 Performance comparison of proposed methods based on different SOS methods. ChannelL

1000 Monte Carlo Runs, N=2048 for each Run.

3.4.3. Comparison with HOS Technique-GEWS

The GEWS algorithm via the use of HaS slices for FIR channel estimation has been

proposed in [56]. GEWS is used for comparison since it is arguably the best and the

most recent HaS technique reported in the literature. The comparison results are

shown in Fig. 3.5. The proposed SK/SF algorithms using as method (for SOS) have

better performance than GEWS algorithm. The LS-SK method using ACF or as

method outperforms the GEWS algorithm and converges to a very low value rapidly

and shows the best performance.
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MSE V.S. SNR for NMP Channel Estimation
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Figure 3.5 Performance comparison ofGEWS with the proposed SK and LS-SK algorithms based on

OS method and ACF method. ChannelL N=800 for each run, 200 Runs.

In Fig. 3.6, the performance of proposed methods is shown for different sample data

lengths. The data length used for estimation varies from 100 to 3200 samples.

Channel III is used in the simulation. 200 runs are executed. SNR is equal to 20dB.As

the zeros of channel III are very close to unit circle, this special case is an example of

a severe fading channel. The proposed LS-SK method with the OS algorithm

outperforms the GEWS algorithm and has better performance.

w
(J)

:2

MSE V.S. Data Number For Blind Channel Estimation

Data Number

Figure 3.6 Performance comparison of GEWS with the proposed SK and LS-SK methods based on

different SOS methods for different number of smaples.
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However, using ACF as initial zero estimation does not provide good performance

since the system zeros are too close to the unit circle. Furthermore, if the channel

roots are not very close to the unit circle (if fading is not severe in the communication

channel), any simple SOS based method, such as ACF, can be used in the algorithm to

obtain an extremely low complexity equalizer (for example, results in Fig. 3.3

Fig.3.6).

3.4.4. Symbol Error Rate (SER) Performance

It is noted that the symbol error rate is the final test for communication performance

evaluation, and that the equalizer output noise variance is directly related to the

symbol error rate via the complementary error function. (The noise is assumed to have

a Gaussian probability density function) [64]. More specifically, the probability of

symbol error is related to SNR at the equalizer output in the following manner.

PSER =log 2 (M)Q(~SNREqualizerOP ) (3.23)

where M is the size of the input alphabet. M=4 for QPSK signal. One would define

the equalizer output noise variance as ,

(3.24)

Therefore, we can use the equalizer output noise variance as a criterion to evaluate

the estimation performance. The estimated equalizer output noise variances of the

proposed estimators are shown in Fig. 3.7. For comparison, Fig. 3.7 also shows the

noise variance estimated assuming that the equalizer is designed using ideal channel

parameters.
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Figure 3.7 The noise variance performance of the SK method, LS-SK method and ideal channel.

Channel I. N=2048 for Each Run. 1000 Runs.

From Fig. 3.8, for channel III, it can be seen that the equalizer output noise variance

obtained using the estimated parameters of the proposed LS-SK method is close to the

noise variance resulting from a perfectly estimated channel. The difference between

LS-SK and SK is also clear from Fig. 3.8. The equalizer output noise variance can be

used to determine the SER through (3.23). This is shown in Fig. 3.8(a). In order to

justifY that the noise variance can be considered as an evaluation criterion for the

equalizer, the SER has been evaluated by simulating 100 symbol errors at the

equalizer output. The number of samples in each run is 2048. The input signal is

QPSK signal. This is shown in Fig. 3.8(b). Since the result in Fig. 3.7 is consistent

with that of Fig. 3.8, we state that by evaluating the equalizer output noise variance,

one can clearly predict the SER performances. Actual simulation of SER is extremely

computationally intensive, especially when the SNR is larger than 20dB.
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QPSK is the input signal, h=[1, 0.9, 0.385, -0.771]
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(a)

QPSK is the input signal, h=[1, 0.9, 0.385, -0.771]
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g
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(b)

Figure 3.8 (a) SER performance evaluation using the equalizer output noise variance. (b) SER

performance evaluated by simulating symbol errors at the output.

3.4.5 Application in Wireless Communication Channels

Channel IV: a two-ray multipath mobile radio channel with duration of six symbols

[33]. The continuous time channel h(t) for t E [O,6T) is expressed as,

h(t) =e-J2Jr(015)rc(t-0.25T,{J)+e- J2Jr(O.6\(t_T,{J) . The function rc(t,{J) is raised
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cosine function, fJ is roll off factor and fJ =0.35 .The discrete time channel hen) is

sampled by h(n)=h(nT) for n=O, 1, ...,5. We get the coefficients of channel IV as

h ={0.5254 - 0.7232i, - 0.4819 + 0.2427i, - 0.0523 + 0.0719i,

0.0177 - 0.0243i, - 0.0033 + 0.0046i, - 0.0014 + 0.0019i}
.We consider the

example (Channel IV) used by G.B. Giannakis in [33] . The estimation results of

proposed methods are shown in Fig. 3.9. Based on the correct zero-configuration

found by SK method, the LS-SK method achieves the best performance. In this

example, we can see that the proposed methods work for longer channel and the

difference between SK and SF. SK is better than SF in the long channel estimation.

Estimation results of channell!
10' r---:----.------.-----:------:---,----~

SNRdB

Figure 3.9 Channel IV. BPSK is the input signal. 1000 runs. 1024 samples are used in each run. The

SNR varies from 10dB to 30dB.

Another complex communication channel under investigation is given by impulse

reponse of h =[2 - OAi 1.5 +1.8i 11.2 -1.3i 0.8 +1.6i] . It is used in Labat and

Macchi's paper and reference therein. The performance of LS-SK in this channel is

shown in Fig. 3.10.
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MSE of estimated parameters

SNR

Figure 3.10 BPSK is the input signal. 1000 runs. 1024 samples are used in each run. The SNR varies

from 5dB to 50dB.

3.4.6 Channel Tracking Performance

In this section, we consider a slowly time varying channel. The transfer function of

the time-varying channel is:

H(Z-I) =(0.334+Go)+(0.3006+G1)z-I +(0.1286+Gz)z-z + (-0.2573+ G3)Z-3 . The

time-varying coefficients (Go, Gl' Gz' G3 ) are obtained from a color Gausssian noise

sequence which driven by a Butterworth filter with standard deviation f3 =0.1

respectively as described in [65]. The channel coefficients are estimated using 1024

sample. Within this period the coefficients are assumed to be constant. Initially, the

channel is estimated using the SK method. In the subsequent estimation, only the SOS

information in used and the channel coefficients are tracked to determine the correct

zero locations. Thus the selection over 2L configurations is not necessary. The

tracking results are shown in Fig. 3.11.

In Fig. 3.11, the estimated coefficients are shown together with the original

coefficients. Simulations show that coefficient-tracking is possible when channel
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variations are not very large. However, a detailed investigation of the tracking is not

presented here.

Estimated channel parameters by tracking
0.4r-----;----r-~--,-----,--~-,__~r____,

0,2

0.1

·0.1

-0.2

Figure 3.11 The tracking performance ofthe proposal. SNR=20dB. The original channel impulses are

plotted in solid line. The estimated parameters are plotted in symbols. The input signal is BPSK.

3.5 Training Estimation

We note that ifa training sequence is used for channel estimation, the estimation error

of least squares technique used for training estimation can be expressed as,

(3.25)

and one could use this as a bench-mark for evaluation of estimation performance. The

channel I in this chapter is used for simulation with 800 samples in each run. Results

are shown in Fig. 3.12. The proposed SK, LS-SK methods, HOS based algorithm

GEWS, and the NMP coefficient estimation bound in Appendix B are compared with

the training estimaiton. The use of recursive estimation via LS converges to a very

low value rapidly and approach the estimation accuracy of a training sequence. The

discrepancy between the training sequence and proposed recursive algorithm could be

accounted for the symbol errors resulting in the estimation, as noted in equation
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(3.25). Further more, simulations have shown that another recursion on LS would

achieve NMSE as same as that of using a training sequence.

Performance of channel coefficients estimation

-10

~ -20

w
(fJ

:2'
"U -30
Gl
.!:!

~o -40
Z

-50

-60

........................ ,.. ................
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/ ---------

Training error in (3.25)
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Channel SNR (dB)

Figure 3.12 Performance comparison of the proposed method with GEWS and the use of training

sequences. N= 800, and 200 Monte Carlo iterations

3.6 Performance with Estimated Channel Order

In practical situations, the unknown channel order needs to be estimated. In this

section, the robustness of proposed method LS-SK for order estimation errors is noted

and the results are shown in Fig. 3.13. Simulations show that the overestimated

channel order has little impact on the equalization performance. Underestimated

channel order impacts the estimation performance in MSE largely. The channel used

in the simulations is the third order Channel I, and the estimated channel order is

varying from 2 to 6. Input signal is QPSK, the SNR is 20dB, and 100 iterations are

simulated with 1024 samples in each iteration.
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Performance V.S. Estimated Channel Order
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Figure 3.13 Mean square error variation with estimated channel order. Correct channel order=3.

3.7 Summary

In this chapter, three algorithms for blind NMP FIR channel coefficients estimation

are proposed. The first method is using slices of fourth order cumulant to solve the

zeros location. It has lower computational load than the existing algorithm which use

full cumulant to solve where is the channel zero. Via the use of a zero-forcing

equalizer, two other novel blind FIR channel parameter estimation techniques are

proposed. They take advantage of the existing, most efficient sas based methods in

conjunction with the kurtosis or the finite alphabet property of the transmitted signal.

The methods also provides good performance when the channel zeros are close to unit

circle. The equalizer output is used once recursively to achieve a very low estimation

error. Simulation results demonstrate the superiority of the proposed algorithms. It has

been shown that at a low number of data samples, the proposed methods are superior

to any reported Has techniques. This is not surprising as Has techniques need larger

data samples (or low noise) to achieve better performances. As the proposed methods
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inherently use an equalizer, separate equalizer design is not required, thus making the

method attractive in hardware realization. Note that if channel zeros are close to the

unit circle, linear equalizers would not result in proper equalization, other efficient

recursive equalizer architectures as discussed in chapter 5 are required.

The choice of the order of the communication channel is an important design step. If

this order is estimated to be too small, under determination of channel order can cause

deterioration in equalizer performance. As recursive least squares estimation affects

the ultimate estimation performance, the under determination of channel order will

deteriorate the estimation performance. Simulation shows that the over order

determination has little impact to the estimation performance. As the over estimated

parameters are comparatively small or can be thought of small coefficients. The over

estimated parameters have little impact to the equalizer performance as well. So the

recursive least squares method can still provide satisfying results.
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Chapter 4

Blind Single Input Multiple Output Channel

Parameter Estimation

As a succession of the algorithms in chapter 3, joint blind channel estimation and

equalization techniques for single input multiple output (SIMO) channels are under

investigation in this chapter. It is noted that the polynomial correlation matrix (PCM)

of SIMO channel model, whose elements are the Z-transform of the output cross

correlation sequences, contains channel phase and amplitude information. Under low

noise environments, the PCM can be elegantly used for channel estimation. In order to

use the PCM matrix more robustly in noisy environments, in this chapter, we propose

two step procedures for SIMO channel estimation and equalization. In the first step,

strongest sub-channel is estimated using the SK method proposed in chapter 3. In the

second step, the estimates are refined via the use of SIMO channel diversity. In this

second step, if the finite alphabet property of the transmitted signal is exploited, the

estimation results would approach the performance of training estimation. The
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proposed techniques are useful in blind channel estimation even in the presence of

common zeros among the subchannels.

4.1 Introduction

In high-speed data communications, the SISO channel model can not fulfill the

requirements of the emerging new application requirements. It is noted that single

input multiple-output (SIMO) transmission is widely used, as it uses channel diversity

to improve the communication performance, particular in severely fading channels.

SIMO channel estimation and equalization have applications in diverse scientific and

engineering areas, such as wireless communication, image de-blurring, television

broadcasting [21]. A large number of techniques for the blind SIMO channel

estimation has been proposed since the appearance of [16]. One can refer to [21] for

details of these methods. Also subsequent SIMO equalization based on the estimated

channel impulse response can be found in [16, 18, 30]. Thus SIMO channel

estimation plays an important role in communications. In this chapter, simple but

efficient techniques for joint SIMO channel estimation and equalization are proposed.

Note that the second order cyclostationary statistics (SOCS), an SOS based

technique, can be used in the non-minimum phase SIMO channel estimation. It is

well-known that the primary assumption of the SOCS based methods of having no

common zeros in subchannels [21], which obstructs its widely applications.

Alternative techniques for SIMO channel estimation can be developed based on

higher order statistics (HOS). In [30], a fractionally sampling technique using HOS

based technique is proposed for SIMO channel estimation and equalization. Each

subchannel parameters are estimated independently by matching the second order

cumulant and the fourth order cumulant. Subsequently, all the estimated subchannels
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are aligned and scaled to form the actual SIMa channels. However, the use of HaS is

not as accurate as the use of sacs in SIMa channel estimation and the computational

load of HaS is comparatively higher. If sas is used to obtain the amplitude

information of the unknown channel and channel phase information is estimated by

other techniques, the unknown channel can be estimated without using sacs and

HaS to achieve a higher estimation performance. For example, as reported in [54], a

parametric method using minimum phase channel zeros estimated by an sas based

method in conjunction with the finite alphabet (FA) property provides a very accurate

single input single output (SISa) channel estimation. The work reported here can be

considered as an extension of our work in [54] (as in chapter 3) for the case of SIMa

channel estimation.

In the proposed methods of this chapter, the first step is to blindly estimate the

coefficients of subchannels, independently from the other subchannels, using SISa

estimation techniques. Via combining efficient sas based method with kurtosis

property of the equalizer outputs, the subchannels can be estimated with a high

accuracy and a lower computational load. For further reduction in computations, only

the strongest subchannel needs to be estimated, because the strongest subchannel

estimation determines the over-all SIMa channel estimation performance.

Subsequently, the polynomial correlation matrix (PCM) of the SIMa model is

exploited. PCM is comprised of polynomials, which are the Z-transform of the output

cross-correlation sequences. When a large number of samples are available and the

additive noise power is low, the PCM can be efficiently used in SIMa channel

estimation with a low computational complexity. Also with the use of PCM, having

common zeros among subchannels does not pose any problems in estimation.

However, when a small number of samples are available and/or a higher noise power
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is present, the performance of the use of PCM rapidly deteriorates. In order to

overcome this difficulty, a least squares technique is used for SIMa channel

estimation via the PCM. As a further improvement, it is also shown how the equalizer

output resulting from the strongest subchannel can be used to estimate the other

subchannels, via the use of least squares technique.

The SIMa channel estimation in the first step can be further refined by using a

recursive process in a subsequent second step. In doing this, the advantage of channel

diversity in SIMa channel is utilized. The performance of the proposed method is

compared and shown to be better than the existing methods, such as the subspace

technique [18], and the GCD (greatest common divisor) technique [66] for SIMa

channel estimation, while having a lower computational load. It is also noted here that

in communication channels, the transmitted signal only takes values in a finite

alphabet (FA) set. The use of the FA property in SIMa channel estimation and

equalization has been discussed in some recent papers, such as in [60]. The proposed

second step of recursive estimation can be further improved using the FA property. In

this method a single iteration of a least squares computation is used, which is a

simpler technique than iterative least squares with projection (ILSP) in [60]. It is

shown that when the FA information is used, the proposed low complexity technique

results in channel estimation as accurate as that could be obtained via the use of

training sequences [67]. The use of second order statistics and kurtosis in conjunction

with the FA property for blind SIMa channel estimation and the subsequent

algorithm performance improvement are the novel contributions reported in this

chapter.

The chapter is organized as follows: channel model and assumptions are presented

in section 4.2. Section 4.3 discusses the estimation via the use of polynomial
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correlation matrix. In section 4.4, the estimation of the strongest subchannel is

discussed. Estimation of remaining subchannels is described in section 4.5, followed

by discussions of diversity combination and refined estimation in section 4.6. In

section 4.7, simulation results under a variety of channel conditions are presented to

demonstrate the effectiveness of the proposed methods.

Channel
H,(z"')

Channel
Hizc

,)
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HI\II(z")
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1----I1Oi.+>--......
x1(n) Yl(n)
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Figure 4.1 SIMO channel model

4.2 Channel Model and Assumptions

We consider the case of having M sub-channels that are resulting from multiple

sensors' output sampling at the symbol rate, or resulting from the oversampling of a

single sensor output at the receiver. The discrete-time received signal of the mth

subchannel at the nth sampling time can be expressed as,

Ym(n)=Ihm(k)x(n-k)+wm(n) Form=I,2, ...,M n=I,2, ...N (4.1)
k

Let h", = [h",(O),h", (1), . ',h",(L)] denote the finite impulse response (FIR) of the mth

subchannel. The equivalent channel hm is the convolution result of the transmit filter,

the analog channel and the matched filter [11]. Let h = [hl'h2 ,.··,hM ] be the

collection of entire SIMO channel impulse responses. The block diagram of the SIMO
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channel model is illustrated in Fig. 4.1. Let H m (Z-l) represent the Z-transform of the

subchannel impulse response hm given by,

L

Hm(Z-I) = Ihm(k)z-k
k=O

(4.2)

And let bm(k) be the kth zero of the mth subchannel. Z-transform of the FIR channel in

(4.2) can be expressed in a cascade multiplication form using first order polynomials

as,

L

Hm(Z-I) = rr(I-bm(k)z-l)
k=l

In the vector notation, the SIMO channel can be rewritten as,

Y=XH+W

(4.3)

(4.4)

Where matrix Y is defined as, Y=[Y~ Y; '''Y~] with Ym= [Ym(1)Ym(2)"'Ym(N)]

and W is defined in the same form as Y . The whole matrix Y contains the channel

phase information, so permutation of Y is used to obtain the channel information. The

structure in (4.4) is very useful in describing the subsequent least squares technique.

For the reasons of convenience, the N*(L+1) matrix X containing the data samples is

defined as,

xCI)

X= x(2)

x(O)

x(1)

x(1-L)

x(2-L)

x(N) x(N -1) x(N -L)

and the ((L+I)*M) channel coefficients matrix H =[h{ hJ ..·h~] is given by,

!lr (0) hz(O)

H = !lr(1)

!lr(L) hz(L)
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Before further discussion, the following assumptions are made on the SIMO channel

model in Fig 4.1.

AI) The memory of the channel impulse responses is finite, so that all channels can

be modeled as finite impulse response (FIR) filters. All subchannel impulse responses

are assumed to be of order L at most. Without loss of generality, it is assumed that

hm(n) = 0 for n<O and n>L, andhm(O) *- 0, hm(L) *- O.

A2) The non-Gaussian stationary transmitted symbols {x(n)} are resulting from an

independent identical distributed (i.i.d.) process with zero mean. The additive noise

signals {wm(n)} m=I,2, ... ,M, which are independent of {x(n)} , are zero mean

Gaussian processes with variance (power) (j;.

A3) The transmitted symbols are from a finite alphabet (FA) set n and the

constellation information of the FA set is known at the receiver.

A4) No zero of a subchannel appears on the unit circle.

Since the channel impulse response of the SIMO channel H is unknown, it is

necessary to estimate it at the receiver, via methods such as the use of a training

sequence or a blind estimation technique. Given the data {y m 1::; m ::; M}, in the

following we investigate methods for estimating H, without knowing the transmitted

symbols {x(n)} a prior.

4.3 Blind Channel Estimation from the Polynomial Correlation

Matrix

In this section, we consider the correlation sequence of the observed signal

{ym (n)} in (4.4). The two-sided z-transform of the second order cross-correlation

sequence of{{Yi (n)}{y /n))}, 15, i 5, M, 15, j 5, M can be expresses as,
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L

Rij(Z-I) = L>ij(l)Z-1
I;-L

And {rij (I)} is the second order cross-correlation sequence given by,

(4.5)

Yij (I) =E~[ (k)y; (k + I)}= 0"; ~:>i (k)h; (k + I) + O"\~o(i - j) 1= 0, ± 1, ± 2,.·· ± L (4.6)
k

Under assumptions of input signal noted in section 4.2, (4.5) can be expressed using

the channel transfer function as [68],

Rij (z-I) = 0"; Hi (z-I )H;(1/z*) + O";"O(i - j)

L L

= 0"; IT(I-bi(/)z-I)IT (1-1/ b;(/)z) + O";"O(i - j)
1;1 1;1

Assuming low noise power, channel zeros can be estimated using (4.7) as,

(4.7)

roots(Rij (z-I)) = [bi (l),bi (2),··, bi (L),I/ b; (1),1/ b; (2),···1/b; (L)] (4.8)

It is seen from (4.8) that the information on minimum phase zeros and maximum

phase zeros are contained in correlation polynomials. Under low noise power

conditions and the availability of sufficient data samples, the estimation of second

order correlation sequences can be obtained very accurately. Therefore, the channel

zeros and their reflections on the unit circle can be accurately estimated from

correlation polynomials. However, as noted earlier, the second order statistics is phase

blind in that equation (4.8) alone dos not provide information about actual channel

zero location, i.e. inside or outside of the unit circle. If the channel is known to be

minimum phase channel, then by mapping the minimum phase zeros obtained from

(4.8) into the polynomial coefficients, the unknown channel coefficients can be

estimated. Similarly, an all maximum phase channel can also be estimated. However,

for a mixed phase channel, which is the most common case in communication

channels, the locations of channel zeros are unknown. Determination of correct zero

locations will be discussed in subsequent section 4.4.
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Using (4.5)-(4.8), the polynomial correlation matrix (peM) of the SIMO channel

can be expressed as,

R
12

(Z-I)

RZZ(Z-l)
(4.9)

The matrix R(Z-') is a polynomial matrix with M*M polynomial elements.

Polynomial matrix is deduced from the covariance matrix Y based on equations of

(4.5H4.7). So polynomial also contains channel phase information obviously as

shown in (4.1 O}-(4.12). Ignoring the effect of additive noise and by substituting (4.7)

into (4.9), it can be seen that the polynomial matrix has a common factor in each row

or each column. That is R(z-I) can be rewritten in the following form,

(J~H, (z-')H; (z) (J~H, (z-')H; (z) (J~H, (z-')H'u (z)

R(Z-') = (J~HZ(Z-')H;(z) (J~Hz (Z-I )H'u (z)

(J~HM(Z-I)H;(z) (J~HM(Z-I)H;(z) (J~HM(z-')H'u (z)

The polynomial correlation matrix in (4.8) can be decomposed into Smith-McMillan

Form (SMF) [69] using elementary matrix operations. SMF is quite elegant and

extremely useful in blind channel estimation provided that proper decomposition is

achievable in the following form.

HI (Z-I) 0 0 H;(z) H~(z)
HZ(Z-') 1 H;(z)

1 0 0 H;(z) H;(z)
HI (Z-I) 0

R(Z-') =(J~ 1 (4.10)
0 0 0

H
L
(Z-I)

0 0 1 0
HI (Z-I) 0 0 1

For the left most matrix in the right side of (4.10), every row except the first row is

multiplied by HI (z-I), the result is given by
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o

(4.11)

Every column except the first column in the right most matrix in the right side of

(4.10) is multiplied by H; (z) and obtain

[

H;(Z) H;(z)

H" (_-1)_ 0 H;(z)
SIMO '" - .

o
o

o H;(z)

(4.12)

The desired channel impulse responses are readily available from either (4.11) or

(4.12). (The first column in (4.11) provides the desired channel impulse responses.

The first row in (4.12) is the complex conjugate of the desired channel impulse

responses.) Since the SMF directly estimates the unknown channel parameters only

by the use ofelementary matrix operations, it is elegant and efficient.

A simple numerical example is shown here. Three subchannels are used in this

SIMO model. All subchannels have order of 1, that is every channel has only one zero.

The number of data samples used is 20,000. The first channel has the zero at 0.8, the

zero of second channel is at 1.6, and the third channel has the zero at 1.4. Table 4.1

illustrates the estimated zeros by using the SMF, at a very high SNR.

TABLE 4.1 RESULTS OF ESTIMATED ZERO BY USING SMF, 10 RUNS

bl (1) = 0.8 b2 (1) = 1.6 b3 (1) = 1.4

bm (1) 0.8010 1.5985 1.3992

1/ Z;: (1) 1.2485 0.6235 0.7128

In the case that the polynomial correlation matrix estimation has errors incurred due

to the presence of additive noise or due to the unavailability of a large number of data

samples, SMF still can be used to decompose the matrix. However, it is necessary to

determine the greatest common divisor (GCD) among the polynomials. Finding GCD
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of polynomials can be traced back to several decades ago, and in [66], Y. Hua

proposed a GCD method to blindly estimate the SIMO channel parameters using a

subspace technique. GCD based methods also can be used to obtain the pole-zero

model from given multivariable systems in [70, 71]. Methods of GCD estimation is

outside the scope of this chapter, but it is noted that GCD based methods require large

eigenvalue decompositions, and thus their computational complexity is comparably

high. In the following, we propose low computational complexity least squares

techniques for SIMO channel estimation via the use of polynomial correlation matrix.

The proposed methods comprise of two steps: an initial estimation and a refined

estimation via recursion.

4.4 Estimation of a Single Subchannel via SOS and Kurtosis

At first, in the initial estimation, one subchannel is blindly estimated. As the

performance of the subsequent SIMO channel estimation is based on the accuracy of

the first subchannel estimation, accurate estimation of the first subchannel is

necessary. Signal to noise ratio (SNR) for SIMO channel model has the same

definition as that in [18] given by,

(4.13)

where Y = [YI Y2 ••• y M] and W = [WI W2 "'WM] .The observed signal {ym (n)}

power is given by (J"~m =(J"; Ilhm (kf + (J",~. Since the additive noise power at each

subchannel is same and the input signals to every subchannel are same, the higher the

power of the received subchannel signal, the higher would be the SNR of that

subchannel. Based on this, the channel with strongest received signal power can be

selected for the initial subchannel estimation.
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Supposed that the mth subchannel is selected as the first subchannel for blind

estimation. In general, this channel is a mixed phase channel, i.e., the magnitude of

the channel zeros {bm (k)}can be smaller or larger than unity. As known, a zero inside

the unit circle (Ibm (k)1 < 11) and its reciprocal outside unit circle (Ibm (k)1 > 11) yields

the same autocorrelation sequence[10]. Therefore, for any zero estimated via an SOS

based method, there would be an alternative maximum-phase zero [23]. Using SOS

based methods, we can efficiently locate the minimum-phase zeros. As shown in Fig.

4.2, the mth equalizer output signal {Sm (n) } can be expressed as,

Sm(n) = s(n)®hm(n) ®cm(n) +wm(n) ®cm(n) = sen) ® gm(n) +cm(n)®wm(n) (4.14)

The proposed technique SK in chapter 3, can be used in the strongest subchannel

estimation in the SIMa channel model.

4.5 Estimation of All Subchannels using Least Squares

Using the estimated first subchannel coefficients, the remaining subchannels can be

estimated via least squares techniques. We outline two approaches which uses the

PCM and the equalized output, respectively.

4.5.1 Least Squares using PCM (LSPCM)

Let the estimated first subchannel coefficients be hm . It can be easily shown that

the cross-correlation function between two subchannels is given by,

rmj(l) =E{Ym(k)y;(k +l)}= 0"; Ihm(k)h; (k +1) +O"\:o(m - j) I =o,± 1,---,± L (4.15)
I

which can be rewritten in the matrix form as,
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hm(L) 0 0

rm/-L) hm(L-l) hm(L) h;(O)

0 h;(1)

rmj(O) hm(O) hm(1) hm(L) + (}\:6(m - j)I (4.16)

0 hm(O) hm(1) hm(L -1) h;(L-l)

rm/L) 0 h;(L)

0 0 hm(O)

where I is the identity matrix. For a compact representation, (4.16) can be expressed

in a succinct form,

(4.17)

Given rmj and It, the complex conjugate of the jth subchannel impulse response can

be easily obtained using a least squares approach as,

(4.18)

Therefore, using the cross-correlation function between the two subchannels obtained

from the peM, together with first subchannel coefficients hm , all other subchannels

can be estimated efficiently by using (4.16)-(4.18).

4.5.2 Least Squares using Equalizer Output (LSEO)

In the channel estimation described in section 4.4, the transmitted signal is

recovered at the mth subchannel via an equalizer. The equalizer output signal can be

used here to estimate the remaining subchannels coefficients. (for the sake of

comparison we do not use the FA property at this instance.) Since the strongest

subchannel is used in the estimation, the recovered signal at the equalizer output,

{Sm(n)}, is a good approximation to the input signal {x(n)}. Using {Sm(n)} in (4.1)

we get,

y/n)=Ih/k)sm(n-k)+w(n)j=I, ...M, j;t:.m ,n=I, ...N
k
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with wen) denoting the estimation error. Knowing {y/n)} and {sm(n)} , all the

remainingjth sub-channels where hj = [hj (0), h/l), ...h/L)]T , can be estimated via a

least squares technique given by,

where ~ [~~ ~ ]T
S = S n , S n +1' ... S n

I I 2

(4.20)

and

Sn =[sm(n+L),sm(n+L-l),,,,sm(n)]. The inverse matrix in (4.20) is of dimension

L*L, thus the computational load of the method is very low. Performance comparison

of the methods LSPCM and LSEO will be presented in section 4.7.

4.6 Refined Estimation

The SIMO channel model shown in Fig. 4.1 has diversity, e.g. in a multiple antenna

system it is the spatial diversity. It is well known that any estimation can be improved

using the diversity, and thus by exploiting the SIMO channel diversity here we

propose refinement to the estimation in previous section 4.5. Two possibilities are

described with and without the use of FA property.

4.6.1 Refined Estimation using Channel Diversity (RECD)

Using the estimated channel parameters from the method ofLSPCM, or the method

of LSEO equalizers can be realized for all the subchannels. All equalizer outputs are

then combined using a diversity combiner with different weights for each branch. The

combined equalizers output is then used recursively in the refinement of channel

estimates. Fig.4.2 depicts the structure of the refined estimation method. Note, for the

sake of comparison with other existing SIMO channel estimation methods, such as the

use of SOCS, the FA property is not used at the combined equalizer output.
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Figure 4.2 Structure for refined channel estimation without using the FA property

In Fig.4.2, for the diversity combining, the weighting for each subchannel is obtained

using the channel power, i.e.,

(4.21)

Using the least squares estimation theory, it can be easily shown that such a

combination is optimal. (The combination also has similarity to maximum ratio

combination.) In Fig. 4.2, the combined equalizer output, {v(n)} is given by,

M

v(n) =2:'~m(n)wt(m)
m=!

(4.22)

Using the output {v(n)}, again via a least squares technique, the refined SIMO

channel coefficients matrix can be obtained as,

where II =[hi hJ ... h~ ]and y =[y; y; ...y~], and V has the form given by,

(4.23)

V =[V(n!:+L) v(n! +:L-1) :::

v(nz) v(nz -1)

(4.24)

It has been observed in the simulations that the estimation performance is relatively

independent of the selection of the two numbers n! and nz , if nz - n! is sufficiently
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larger e.g. 10 times than the channel order. On the contrary, the performance of the

use of sacs via the subspace technique is related to the number of samples used.

Thus, using a smaller number of samples one can achieve estimation results

comparable or superior than the subspace estimation.

4.6.2 Refined Estimation using FA (REFA)

It is noted here that FA property is useful for improving SISa channel estimation in

chapter 3. The application ofthe FA property in multichannel has been investigated in

some works, such as in [60, 72]. However, the use of the FA property in SIMa

channel estimation is ignored in most existing blind SIMa channel estimation

algorithms, for example in [17, 30]. Using an FA slicer after the combiner, as shown

in Fig. 4.3, here we propose the method of REFA. Although this method has

similarity to the ISLP technique used with antenna arrays reported in [60], we

demonstrate later that only a single recursion is needed in the proposed method to

achieve near optimal channel estimation. It is also known that estimation technique

which uses FA property can reach performance achieved by the use of training

sequences [67].

Fig.4.3 shows the structure used in the REFA estimation, which differs from the

structure in Fig. 4.2 only by the presence of the output decision-device. After

projecting the equalized signal to the closest values in the FA set, it is used via a least

squares estimation to achieve the best performance.
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----------

Figure 4.3 Structure for refined channel estimation using the FA property

Defining the equalized signal of Fig. 4.3 as {V(n)} , following expressions can be

obtained in similar form to (4.24). II =YVT(VVTt, where V is given by,

V = [v(nl:+L)

v(nz )

v(n l + L -1)

v(nz -1)

4.7 Simulations and Performance Comparison

In this section, simulation results of the proposed methods are presented and

compared with other SIMO channel estimation techniques. The performance of SIMO

channel estimation is evaluated using the normalized mean square error (NMSE),

which is defined as,

(4.25)

where K is the number of Monte Carlo iterations used in the simulation, and

Ii. =[hi' hz , .. " hM ] is a vector containing the estimated channel coefficients. It is noted

that the proposed methods of LSPCM, LSEO and RECD are only based on statistical

information, such as the SOS and kurtosis. Thus, it is fair to compare these three

methods with existing statistical based methods. Only the method of REFA explicitly
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uses the finite alphabet property of the transmitted signal and its performance is

discussed separately later.

4.7.1 Comparison with the GCD based Method

The first example SIMO channel is as same as that used in [66] to illustrate the

performance of the GCD based method of blind SIMO channel estimation. As noted

earlier, the GCD is based on the determination of the common divisor among the

correlation polynomials. The channel has two subchannels with coefficient vector as

hi =[1.16500.0751-0.6965]; and hz =[0.62680.35621.6961].

TABLE 4.2 CHANNEL POWER AND ZEROS FOR THE FIRST EXAMPLE

hi hz
Channel Power 1.8480 3.3963
Channel Zeros -0.80610.7416 -0.2842 + 1.6205i-0.2842 - 1.6205i

The transmitted signal is an i.i.d. QAM signal which is same as that used in [66].

White complex Gaussian noise of equal power is added at all subchannel outputs. The

number of received signal in each subchannel is 200 and total Monte Carlo runs is

selected as 100. The NMSE results of channel estimation for five different methods

are shown in Fig. 4.4.

SNR from 5 to 40 dB

Figure 4.4 Proposed methods LSPCM, LSEO and RECD are compared with QCD and subspace based

methods in [66].
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From Fig.4.4, we can see that the proposed method LSPCM and LSEO have

comparable performance to that of the GCD method. The method of RECD is better

as it exploits the diversity among the SIMO channels.

4.7.2 Comparison with the Subspace Method

Second example: The number of subchannels M=3; the memory length of the

multipath channel L=3; Channel coefficients are given by:

~ = [1.45 - 2.32 1.3485 - 0.261} hz = [1 -1.75 0.73 - 0.0840 1

h3 = [0.5 -1.75 1.87 - 0.56} The inputed signal is the QPSK signal.

TABLE 4.3 CHANNEL POWER AND ZEROS FOR THE SECOND EXAMPLE

hI hz h3

Channel Power 9.3715 4.6025 7.1230
0.6 + 0.3i 1.2 1.6

Channel Zeros 0.6 - 0.3i 0.35 1.4
0.4 0.2 0.5

The input sequence and the noise characteristics are as same as those of Example 1.

The number of samples used in the simulation is 1024. In this example, the proposed

methods are compared with the subspace technique proposed in [18]. The results are

shown in Fig. 4.5(a) and (b). It is seen that the LSPCM and LSEO have comparable

performance to the subspace technique. The RECD shows the best performance in Fig.

4.5(a), due to the use of channel diversity. In Fig. 4.5(b), the performance of the

REFA is seen to have a dramatic improvement over the RECD method, primarily due

to the use of the FA property. Furthermore, the method of REFA, using a single

iteration, approaches the performance that can be obtained via training. For training

estimation, via a least squares technique, the NMSE can be easily shown that

(4.26)
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The FigA.5 also shows the results obtained using FA property in a single channel

without the use of diversity combining. It is seen that using a single channel can not

achieve the performance of REFA, and the difference is due to the use of diversity.

SNR from 5 to 40 dB

(a) Perfonnance comparison of the proposed methods with the subspace method. 100 runs are conducted.

Estimation performance of Proposed Methods

SNR from 510 40 dB

(b) Perfonnance of REFA compared with training estimation, 100 runs

81

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



(c) Performance comparison of the proposed methods with the subspace method. 100 runs are conducted.

Estimation performance of Proposed Ml!!thods

1O"l==~~~------'---~~-'-------r=~~11

10'~" . '\--:-:~;;; . .. . ..L~~"-'i

]
i 10.3
W

~
~ 10-4r -- -.- ..... -"'>.~ •........ -- -- -\.;: .- ... --- ,- ..... c- --- ---j

1
z 10-5 r . .... .. ..... ... .. . ~<.... ... . ... . .. ... -j

(d) Performance of REFA compared with training estimation, 100 runs

Figure 4.5 Comparison with subspace and training estimation

In order to study severe fading, the second channel power in Table 4.3 is reduced to

0.4 in the next simulation. The other channel power are kept the same. Fig 4.5(c) and

(d) show the performance, which shows that the proposed methods work under severe

fading.

4.7.3 SIMO Channel Estimation Performance in the Presence of Common Zeros

Third example: a common zero z =0.3 is inserted to the SIMO channel model

given in Table 4.3. QPSK is the inputted signal. The channel coefficients are given by,
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TABLE 4.4 CHANNEL POWER AND ZEROS FOR THE THIRD EXAMPLE

hI h2 h3

Channel Power 14.3216 6.87 10.8809
0.6 + 0.3i 1.2 1.6

Channel Zeros 0.6 - 0.3i 0.35 1.4
0.4 0.2 0.5
0.3 0.3 0.3

1024 samples are used in the simulation with 100 Monte Carlo runs. The

performances are shown in Fig. 4.6.

Estimation performance of Proposed Methods

SNR from 15to 40 dB

Figure 4.6 Estimation Performance of the proposed methods in a SIMO channel with common zeros.

It is seen from Fig. 4.6, that the proposed methods are effective in estimation of SIMO

channel parameters even in the presence of common zeros among the subchannels. As

one subchannel is estimated initially, the ratio of elements in the polynomial matrix,

for example HI (Z-I)* R21 (Z-I)/Rll(z-I) , would provide the channel coefficients even

when subchannels have common zeros. It is also noted that the diversity plays an

important role in SIMO channel estimation at low SNR. The combination of all

equalizer outputs has improved the initial subchannel estimation.

4.7.4 Noise Power at the Equalizer Output

Note that simple zero forcing equalizers are used in the algorithms proposed here.

The noise power at the output of the equalizer determines the performance of the

equalizer, that means the symbol error rate (SER) is dependent on the equalizer output
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noise power. Therefore, calculation of the noise power at equalizer output can be used

for equalizer evaluation. (This is simpler than the exact evaluation of SER, which is

extremely computationally intensive when SNR is higher than 20dB). The noise

power at the equalizer output is given by,

var(v(n) -x(n)) ~ a,~ (4.27)

If the equalized signal is away from the transmitted signal constellation, the equalizer

noise power is high and the SER is correspondingly higher. In Fig. 4.7, the noise

power at the equalizer output is evaluated in order to compare the proposed method in

equalization. It is seen that the noise power resulting from an ideal equalizer (using

true channel coefficients) and that resulting from an equalizer based on REFA

estimation are identical. It also demonstrates that the use of FA property in channel

estimation results in better equalization performances.

Performance of noise power

SNR from 22 to 40 dB

Figure 4.7 Comparison ofzero-forcing equalizers in the SIMO channel estimation. 100 simulation runs.

4.8 Summary

In this chapter, we propose techniques for blind SIMO channel estimation, by

extending the second order and kurtosis based techniques used in SISO channel

estimation. The use of kurtosis is especially useful with communication channels as
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the transmitted symbols possess non-Gaussian statistics. The proposed algorithms are

simple as least squares techniques are used thus having dimensionality of matrix

operations limiting at most to the channel order. The presence of common zeros

among subchannels does not pose any difficulty for blind estimation. The presence of

closely positioned zeros is realistic in communication channels, especially when the

number of channels is higher. Channel zeros play important role in estimation, as

many algorithms based on channel zeros are proposed and distribution function of

wireless communication channel zeros can be found in [45]. Via simulations it is

shown that the proposed algorithms achieve performances comparable or better than

other existing SIMO channel estimation methods. It is also demonstrated that the

performance reaches that of training performances, when the finite alphabet property

of the transmitted signal is incorporated to the algorithm. Furthermore, the algorithm

works with an inbuilt equalizer, thus a separate equalizer design is unnecessary. It is

also shown that the proposed equalization results in error probability rates that would

be achieved via equalization using ideal channel parameters. The symbol error rate

can be further reduced, if better equalizers are used instead of zero-forcing equalizer

[73]. Various equalizer designs and implementations are discussed in chapter 5.
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Chapter 5

Zero-Based Equalizers for Single Input Single Output

Channels and Single Input Multiple Output Channels

In this chapter, equalizer designs for single input single output (SISO) channels, and

single input multiple output (SIMO) channels are discussed. Three kinds of

equalizers: zero forcing (ZF) equalizer, minimum mean square error (MMSE)

equalizer, decision feedback equalizer (DFE), are implemented for SISO and SIMO

channels. The novelty of the discussed approach is that all the equalizers are designed

using the channel zero information. By considering recursive filter architecture, it is

shown that the proposed equalizers can be designed for efficient hardware

implementation. An efficient recursive architecture for implementation is presented

using the Laguerre filters. Simulations are provided to compare the differences
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between the designed equalizers. The symbol error rate (SER) and the noise variance

at the equalizer output are used to evaluate the equalizer performances. An equalizer

application is also shown.

5.1 Introduction

It is well known that the demand for reliable and broadband data access wireless

communications is rapidly growing [74]. It is anticipated that the emerging third

generation wireless access systems and the use of other sophisticated modulation

techniques would make such a demand achievable [75]. However, in most of these

systems, the intersymbol interference (lSI) caused by limited bandwidth and the

channel multipath effects are the two most major factors hindering high-speed

communication. To meet the demand of high-speed and reliable communication, the

equalizer employed at the receiver side of the channel plays an important role in

combating the effect of lSI. Equalization of communication channels has been a

problem attracting intensive research activity over the past few decades. The

equalization is used not only in wireless communications, but also in some other

diverse areas, such as seismology [76], image processing [77] and underwater acoustic

communications [11].

At first, SISO channel equalization is addressed. The proposed SISO equalizers are

based on the estimated channel zeros via techniques in chapter 3. As ZF equalizer is

used in chapter 3 to obtain location of channel zeros, the details of its implementation

are provided. And other equalizers, MMSE and DFE, can be thought as an extension

of the ZF equalizer design. SISO Blind equalizer can be applied in wireless GSM

systems [78], UWA communication systems [34, 79].
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Equalizers for SIMO channels are also investigated. SIMO equalization based on

the estimated channel parameters can be found in references [16, 18,30]. The proposed

equalizers here are realized based on estimation results of chapter 4. And they can be

regarded as a succession of the proposed SISO equalizers. An important application of

SIMO equalization is found in wireless sensor networks in [28]. The SIMO

equalization also can be applied in optical systems [29], and in UWA communication

systems [35, 36].

All the proposed designs in the chapter are based on the zeros of the known

(estimated via training or blindly) channel transfer function. This is the novelty of the

equalizer design presented in this chapter. Thus, the approach is different to the

conventional equalizer design methods. It is shown that the zero based approach is

simple and yet robust, and the designed equalizers can be implemented as FIR filters.

We note that the zero-based equalizer design is attractive due to the existence of a

number of efficient and robust zero estimation algorithms reported in the literature

across numerous application areas, such as DOA estimation [41], spectrum analysis

[42], and speech communications [43]. The distribution function of channel zeros for

wireless communications is noted in [45].

Zero-based zero forcing (ZF) equalizer, minimum mean square error (MMSE)

equalizer and decision feedback equalizer (DFE) are investigated and can be used with

both SISO and SIMO channels. The MLSE (maximum likelihood sequence estimator)

an equalizer with optimal performance is not addressed in this chapter, as MLSE

employing Viterbi decoders usually are too complicate to employ for high date rate

systems. It is shown in this chapter that the zero based design techniques possess

satisfactory performances as demonstrated via simulations. As the design is based on

channel zeros, the equalizer can be implemented for equalizing minimum phase

88

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle



channel zeros in separation from equalizing the maximum phase channel zeros. As

seen later, such a separation would aid in efficient implementation of the equalizer.

Channel zero information also simplifies the DFE implementation due to separate use

of minimum phase and maximum phase zeros in the DFE feed-back and feed-forward

structure. Furthermore, it will be shown how the knowledge of zero locations enables

one to design recursive filters with a reduced amount of computational load. It is also

noted that the channel zero information plays an important role in channel estimation

in that channel identifiability and estimation bounds can be directly related to the zero

locations (as shown in Appendix B). As such, equalizing via channel zero locations

can be justified as a natural approach to equalizer design.

Usually, the channel estimation is imperfect and the severity of the estimation error

depends on the noise present in the channel. If iI represents the estimated channel

coefficients, ZF equalizer is simply implemented as the inverse of H . As an

alternative, a minimum mean square error (MMSE) structure gIven by

iIH (iIiIH + 0'21)-1 can be selected for the equalizer realization, where 0'2 is the

additive noise variance, OH is the Hermitian transpose and I is the identity matrix

[17]. Although this pseudo inverse structure can be realized in different ways, the

inaccurate estimation of the (unknown) noise variance would seriously deteriorate the

equalization performance [18, 30]. In this chapter, based on the initial channel

estimation followed by a subsequent refined estimation, an MMSE equalizer design is

proposed. It is noted that the proposed design has the attractive property that it does

not require the estimation of noise variance. The MMSE design, although complicated

than the ZF design, avoids the noise enhancement effect of the ZF equalizer, and is

especially useful under low SNR scenarios. Another approach, simpler than the

MMSE design, which avoids the noise enhancement property, is the use of a DFE. In
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this chapter a novel approach to the DFE design, based on the estimated channel

zeros, is proposed. The DFE design approach used here is different from the

traditional MMSE-DFE design which minimizes the mean square error between the

input to the threshold device and the transmitted symbol, as proposed by Monsen [25].

The outline of this chapter is as follows. In section 5.2 SISO channel model and

equalizers are introduced. In section 5.3, SIMO channel model and equalizers are

discussed. The conceptual details of ZF, MMSE and DFE equalizers are presented in

this section for the SIMO channel equalization. An efficient hardware structure for

equalizer implementation is discussed in section 5.4. The simulation results

demonstrating equalizer performances are illustrated in section 5.5, followed with a

discussion on an application in section 5.6.

5.2 SISO Channel Model and Equalizers

Although the SISO channel has been given in chapter 3, for the purpose of

convenience, it is noted again as,

yen) =Ys (n) + wen)

ysCn) =L~=ox(n - k)h(k)

and the Z-transform ofthe channel transfer function is given by,

L

H(Z-l) =1+h
1
z-1 +... +hLz-L =I1(l-b(k)z-l)

k=l

(5.1)

(5.2)

where {yen)}, {x(n)}, {w(n)} , (): and L are under same assumptions as in chapter 3.

{b(k)} are the zeros of the channel. It is assumed here that no zeros exist on the unit

circle. The channel zeros can be estimated using any existing algorithms, such as

those techniques in chapter 3 of this thesis, and references therein. The design of

various equalizers based on the channel zeros are discussed in the following sections.
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5.2.1 Zero-Forcing equalizer

For a zero-forcing equalizerC(z-l), H(Z-I)C(Z-I)=I, the structure is as given in

Fig. 5.1.

5(n)
Channel

H(z-l)

Equalizer
C(z-l)=_l_

H(z-l)

'(n)

Figure 5.1 Structure of Zero-Forcing equalizer

The equalizer can be expressed as a product of recursive filters in a cascaded form

given by,

(5.3)

The equalizer can be expressed as a product of recursive filters in parallel form given

by,

C(Z-l) _ 1 _~HB(z-l) _ ~ r(k)
- H(Z-l) - {;t k - {;tl-b(k)z-l

(5.4)

where {b(k)} are the poles (zeros of the channel) of the inverse filter and r(k) are the

residues associated with the poles. r(k) can be calculated by the MATLAB© function

residuezO. Note that, the minimum phase part in equation (5.3) and (5.4) with

amplitude of pole less than unity (Ib(k)1 < 1) can be easily implemented using a simple

recursive filter, or alternatively, in approximate form as an M length FIR filter given

by,

1 _ ~ (b(k)z-I)i
1- b(k)z-l - '8 (5.5)

The value of M could be selected such that the terms neglected in the approximation

are insignificant, e.g.,
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· M =[lg(~)/lg(b(k»]+ 1c (5.6)

where [-] denotes the integer part of a real number. ~ is an accuracy control factor,

which normally selected as ~ = 0.01. The maximum phase parts with (lb(k)1 > 1) need

to be considered differently. It can be realized in FIR form with a delay D.

(5.7)

The delay D can be selected in a similar manner as the selection of Min (5.6). When

the zero b(k) is close to the unit circle, the length of the FIR filter, M, becomes

excessively large. In this case it is more efficient to implement the equalizer using a

recursive filter architecture as described in section 5.4.

Both cascaded form and parallel form can be used for ZF equalizer implementation,

but when the channel is long, the length of cascade filter will be very large. Since it

requires more registers in FPGA realization, the parallel form in (5.4) for ZF equalizer

design is preferred.

5.2.2 Minimum Mean Square Error (MMSE) Equalizer

It is also possible to design a minimum mean square error (MMSE) equalizer based

on the channel zeros. The transfer function of the equalizer implemented under the

MMSE criterion is given by [11],

H*(z)
(5.8)

with * denoting the complex conjugation operating on the channel coefficients. For

the MMSE design, it is required to estimate the unknown additive Gaussian noise

power spectral density No, to evaluate the denominator of (5.8). In the following we

present a novel approach for the MMSE equalizer design without resorting to noise
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power estimation. The method is based on a refinement to the channel estimation

using the equalizer output, in a single recursion, as described below.

Suppose that the channel parameters are estimated by any existing SOS or HaS

statistics based methods, e.g. as in [26, 54]. Let the estimated channel is given by

incorporates the effect of the additive noise in the channel [80]. Based on HI (z -I) the

channel can be (approximately) equalized to obtain an output {sen)}. As shown in

[54], via a single recursion of the equalizer output {s(n)}, the initial estimation

All equalized output data {sen)} is projected to the nearest appropriate FA symbol

set, to obtain an estimate of the transmitted signal {v(n)}. Cross correlation of {v(n)}

and the observed noisy signal {yen)} would then provide the channel coefficients of

the unknown system Hz(z-I). That is, using the least squares method in chapter 3 to

obtain a refinement to the initial estimates as given by Hz(z-I). Using HI(z-l) and

Hz (Z-I) , in the MMSE equalizer design, equation (5.8) can be rewritten as,

(5.9)

(5.9) can be designed in the same way as that of (5.4). As elaborated later, the MMSE

equalizer does improve the symbol error rate (SER) performance of the equalization

compared to a ZF equalizer, especially under low SNR conditions.

5.2.3 Decision Feedback Equalizer (DFE)

Over the last three decades, the use of Decision feedback equalizers (DFEs) has

become popular in digital communication applications in mitigating intersymbol
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interference (ISI) [11, 25, 80]. The DFE is a nonlinear symbol-by symbol detector,

which contains two linear filters: a feedforward filter, and a feedback filter. The

feedback from previously decoded symbols is used in lSI compensation. DFE

equalizer provides a good compromise between performance and complexity,

obtaining a much better performance than a linear equalizer, at a much lower

complexity than the optimum detector-the maximum likelihood sequence estimator

(MLSE). In the present discussion, we consider a DFE where both feedforward filter

(FFF) and feedback filter (FBF) are FIR filters. The explicit structure of the DFE is

illustrated in the Fig. 5.2, (more precisely this belongs to a DFE-ZF architecture). The

equalizer output can be expressed as,

o Lb

sen) = IfjYn-j + Ibjvn_j
j=-L/ j=1

(5.10)

where {~} are the filter-tap gains of the FFF, Lf is the length of the FFF; {bj } are

the filter-tap gains of the FBF, Lb is the length of FBF, and {v(n)} is an estimate of

the nth transmitted information symbols. Note that the assumption of sufficiently

accurate detection of the transmitted symbol is necessary which is often satisfied in

the DFE at high SNR.

Figure 5.2 Decision feedback equalizer

In a conventional DFE design, one minimizes the cost

functionJ=E{(s(n)-v(n)f}, and the DFE tap gains can be obtained by directly

solving the Wiener-Hopf equation [80]. However, in here, to reduce the computational
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complexity, we propose a different approach which uses the already available channel

zero information. Noting that the channel is comprised of minimum phase zeros and

maximum phase zeros, we separately consider the DFE design for the minimum phase

part and the maximum phase part. Let the two DFE filters, FFF and FBF, are given

respectively by the transfer functions Fk(z-l) and Bk(z-l). Ignoring the effect of the

decision device, it can be easily shown that the system transfer function in Fig. 5.2 is

given by,

(5.11)

However, FBF in Fig. 5.2 need to be a minimum phase filter (i.e. a causal filter) so

that output detection can be used in lSI compensation. Thus for a minimum phase

zero, e.g. the kth channel zeros, the DFE can be implemented easily by selecting FFF

and FBF in the following manneI;'.

For a maximum phase zero, we first observe that,

(5.12)

1 (l-b(kflZ-l)

(l_b(k)Z-I) (l_b(k)Z-I)(l-b(kflZ-l)
(5.13)

The first term on the right side of (5.13) is an all pass filter. The all pass filter can be

realized in the FIR form with a delay in a similar form as described in equation (5.7).

The second term on the right side of(5.13) represents a minimum phase filter, and thus

the DFE implementation can be realized as,

F (Z-l) = (l-b(kflZ-l) and B (Z-l) =(l-b(k)-IZ-I)
k (l-b(k)z-l) k

(5.14)

Consider all channel zeros, the over-all FFF transfer function of the DFE can be

expressed as,

(5.15)
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while the over-all transfer function of the FBF is given by,

(5.16)

The tap gains of the FFF {fj} and FBF {hj} are now resulting from F(z-I) and

B(Z-I) , respectively.

In the appendix C, a bidirectional zero based decision feedback equalizer is

proposed. The idea is an extension of the zero based DFE in this section. Since the

time-reversal operation is extremely useful for block transmission systems, such as in

UWA communication [81], in medical imaging [82], the BiZDFE has important

practical applications.

5.3 SIMO Channel Model and Equalizers

The single input multiple output (SIMa) models are widely used to exploit the

spatial diversity of communication channels. Here we would investigate receiver

equalizers for SIMa channels that are designed based on the channel zero information.

A discrete-time SIMa FIR model as same as (4.1) is considered as,

Ym(n)=Ihm(k)s(n-k)+wm(n) form=1,2, ...,M n=1,2, ...N (5.17)
k

Let hm =[~(O),~(l),. . .,~(L)] denote the finite impulse response (FIR) characteristics of

the mth subchannel, Hm(Z-I) represent the Z-transform of the subchannel impulse

response h m and hm (k) be the kth zero of the mth subchannel. The ((L+l)*M) channel

coefficients matrix is H =[g h; ...h~ ]. Assumptions of SIMa model are same as

those in chapter 4. The block diagram of SIMa multipath channel and equalizer is

illustrated in Fig 5.3.
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5.3.1 Zero-Forcing Equalizer

Based on the above discussed SIMO model, the structure for SIMO ZF and MMSE

equalizers is shown at the right most part in Fig.5.3. In the following, how the

structure in Fig.5.3 can be implemented using the channel zero information is

discussed.

x(n)
I
I

wM(k) :
I

~~~) I

Figure 5.3 The ZF and MMSE equalizer structure for SIMO channels

The conjugates of the filter responses required at each channel output in Fig.53 are

obtained from the estimated channel coefficients (e.g. any existing methods, such as

those in [17-19, 54] can be used). In the conventional ZF equalization of SIMO

channel as in [16, 18] the zero-forcing equalizer C(Z-I) is obtained as the pseudo

inverse given by iJH (iJiJH )-1. From Fig.5.3, we note that the equalizer, C(Z-I) can

be written as,

(5.18)

where

(5.19)
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(5.20)

a being a normalization factor and H m(z-I) is the channel transfer function ofthe mth

subchannel in the SIMO model. On the left hand side of (5.19), {cJare the zeros of

equalizer transfer function. By evaluating the zeros {cJ, the ZF equalizer for SIMO

channel can be realized in a cascade FIR form as done for SISO channel in section

II.A. When zeros k} are closer to the unit circle, a recursive equalizer architecture

proposed in section 5.4 would be useful for better efficiency in hardware

implementation.

5.3.2 Minimum Mean Square Error Equalizer

As noted before, the MMSE equalizer design, although more complicated than the

ZF design, avoids the noise enhancement effect ofZF equalizers. The transfer function

of the SIMO equalizer based on the MMSE criterion is [16, 18,30],

C(z-I)=HH(iIHH+ (j21)-1

As the additive noise variance (j2 is unknown, [16, 18, 30] estimate (j2 from the

singular values of the estimated signal covariance matrix. Observing the

autocorrelation matrix ofthe received signal, it can be seen that [83],

(5.21)

The covariance matrix Ry is composed of a signal term Rs (independent of noise),

and a noise term R,.. The effect of noise, in the form of (j2 appears along the main

diagonal of the autocorrelation matrix of the received signal. Thus, without using the

SVD to find the value of (j2 , the correlation polynomials of the diagonal element of

autocorrelation matrices can be used in the inverse operation appearing in the design

of equalizer C(Z-I) in (5.21). That is, equation (5.20) can be expressed as,

(5.22)
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As in the SISO design, a refined channel estimation is used to replace fI of equation

(5.22). Thus, it is straight-forward to implement the MMSE equalizer for SIMO

model based on the information of channel zeros.

5.3.3 Decision Feedback Equalizer

DFE equalizers for SIMO channels can be realized using the architecture shown in

Fig.5A. The input signal of the DFE is the observed signal at each sub-channel in

(5.17). The DFE architecture in Fig. 504 is different from the traditional MMSE-DFE

for SIMO channels which uses optimization techniques to search for the parameters of

feedback and feedforward filters, as described in [29]. In this section, a decision

feedback equalizer for SIMO channels, where both FFF and FBF are designed based

on the channel zeros, is described.

Figure 5.4 Decision feedback equalizers structure for SIMO channel

Again, in the DFE design, the minimum phase channel zeros and the maximum

phase channel zeros are considered separately. Recall that bm (k) is the kth zero of the

mth subchannel, and let Fmk (z -1) be the contribution from this zero to FFF and,

similarly, Bmk(z-1) is the contribution to FBF. The FFF and FBF contributions for a

minimum phase zero can be easily obtained as,

(5.23)
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For a maximum phase zero, similarly to the SISO DFE design, the FFF and FBF

contributions are obtained as,

-1 -1
-1 (l-bm (k)z ) -1 -1-1

Fmk(z )= -1 and Bmk(z )=(l-bm (k)z )
(1 - bm (k)z )

(5.24)

Using (5.23) and (5.24), the over-all FFF transfer function of the DFE for mth sub-

channel is expressed as,

(5.25)

where as the over-all transfer function of the FBF filter is given by,

(5.26)

Note that 'lm in Fig. SA is the feedback lSI compensating signal from the previously

detected symbols for the mth subchannel as given by,

o Lb
77m Cn)= . I fm(j)ym(n- j)+ ~ bm(j)v(n- j)

J=-Lf J=l
(5.27)

where {fmCn)} and{bmCn)} are the impulse response of the feed-forward and feedback

filters for mth subchannel. All 'lm are averaged before used in the decision device in

Fig.5A.

5.4 Efficient Laguerre Structure for Equalizer Design

All proposed ZF, MMSE and DFE equalizers for SISO and SIMO channels in

above sections are based on FIR filters designed using the channel-zero information.

As can be seen from equations (5.5) and (5.7), when the channel zeros are closer to

the unit circle, the FIR filter length would be excessively large. For such cases, we

consider efficient equalizer implementation via recursive filter architecture. Such

architecture is useful in finite word-length circuit implementations, such as in the

designs using FPGA (Field Programmable Gate Arrays) or ASIC techniques with
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limited hardware resources. Noting that recursive filters are unstable in general, a

robust and hardware efficient Laguerre filter [46, 84, 85] architecture is discussed

here as a possible means for equalizer implementation. (It has been shown that due to

the balanced requirement on the memory and combinatorial circuits, the Laguerre

filter can be easily optimized when implemented using FPGA [32].) Noting that

equation (5.4) can be re-written via the following truncated Laguerre series,

r M
H B ( -I) k "A.. ( -I)

k Z = I-b(k)z-I == f=tri,k'l'i z (5.28)

where ri,k is the Laguerre series coefficients and ¢;CZ-I) is the frequency domain

Laguerre function, given by,

r:--z( 1 )ivtl-a- z--a
¢i(Z-I) = 1 -I 1 -I;

-az -az (
-1::::;a<1 )

i=OI···M-l" ,
(5.29)

and a is the Laguerre filter pole. When a=O the Laguerre filter defined in equation

(5.28) becomes an M-Iength FIR filter. Consider minimum phase zeros, where

I b(k) I::::; 1, and using the following transformation:

-I
Z -a -I t + a

t= =)z =
l-az-I l+at

(5.28) can be rewritten as,

(~JM (-I )iH B -I rk vtl-a- z -a
k(Z )=I-b(k)z-1 ==rk l-az-I ~ri,k l-az-I

(5.30)

where ~( )ivtl-a- b(k)-a

ri,k = 1- ab(k) 1- ab(k)
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since Ib(k) I~ 1, the coefficients ri,k are monotonically decreasing with increasing

values of i. Therefore, the Laguerre series expansion could be approximated by

truncation to M terms, and the value of M could be obtained in a similar form to

equation (5.6), i.e.,

I
b(k) - a 1

M
=10-2 ~ M =- 2110glO[!1 b(k) I-a IJ

l-ab(k) 7 l-alb(k)1
(5.32)

For maximum phase zeros, when Ib(k) I> 1, equation (5.28) can be expressed in the

following form,

where
~ (l_ab(k))M-l-i

ri,k=-b(k)_a b(k)-a
(5.33)

and M can be selected as

!
l-ab(k)!M =10-2 ~ M =-2/10glo[ll-a Ib(k) IIJ
b(k)-a 7 Ib(k)l-a

(5.34)

In general, when the zero locations are unknown, the selection of a closer to the unit

circle would result in a lesser number of multipliers in the filter implementation.

However, choosing a closer to unit circle would result in unacceptable magnitudes for

limit cycles and thus a compromised value need to be used in the design [46]. Since

the zeros of the branch filters in (5.28) is known, it is possible to design the Laguerre

filter optimally as described in the following section.

An Example: consider the following ZF equalizer implemented using the Laguerre

filter architecture. The Laguerre filter pole is selected as a = 0.75 (or %) so that the
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pole could be represented using 2 bits. In this way, the Silicon area needed can be

saved in hardware implementations. The bit growth of the data path after each

multiplication can be also controlled. Furthermore, any multiplication by a can be

implemented by a few adders and subtractors. Following Table 5.1 shows the number

of multipliers required for implementing the branch filter stages for different values of

the pole b(k) of the estimated inverse channel transfer function [46, 86].

TABLE 5.1 NUMBER OF MULTIPLIERS REQUIRED FOR FILTER IMPLEMENTATION USING FIR AND

LAGUERRE ARCHITECTURE [46, 86].

Ib(k) I Implemented Implemented
as FIR Filter as Laguerre

Filter

0.05 1 14

0.15 2 11

0.40 5 6

0.60 9 3

0.90 43 5

0.95 89 12

1.05 95 14

1.10 49 7

1.30 18 2

2.00 7 6

5.00 3 11

It can be seen that the Laguerre architecture requires a significantly less number of

multipliers in the implementation when the pole Ib(k) I~ 1. When the pole is away

from the unit circle, an FIR implementation is the suitable choice. (Ideally the pole a

should be chosen equal to the channel zero, but this may be impractical under

implementation constraints.) Using equations (5.32) and (5.34) it is easy to show that

in the following range of the filter pole a the Laguerre implementation is

advantageous over an FIR implementation
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I-~ :::;lb(k)I:::;I+~
a a

(5.35)

For a = 0.75, equation (5.35) results in 0.45:::;1 b(k) I:::; 2.21. Based on equation (5.35)

it is proposed to implement the Laguerre ZF equalizer in the following manner.

(a) An FIR filter to account for the poles outside the range in equation (5.35). The

effect of all the poles in this range could be lumped together to realize a single

FIR filter. Poles greater than I (maximum phase) will result in non-causal

implementations.

(b) The effect of all the poles in the range in equation (5.35) is realized by a single

Laguerre filter. Again maximum phase poles would result in a non-causal

implementation which requires a maximum phase all-pass filter. The Laguerre

filter will be operated in parallel to the FIR filter.

5.5 Equalizer Performance Analysis

In this section, simulation results are presented to illustrate the performance of the

proposed equalizers. In the simulations, the channel input signals are selected as i.i.d.

QPSK sequences having zero mean. The additive channel noise is modeled as a

complex white Gaussian processes with zero-mean and independent to the channel

input. The simulations are described separately for SISO channels and SIMO channels.

5.5.1 SISO Channel Simulation

For the simulations, the SNR is defined as in chapter 3 for SISO channel.

Simulation channel I: The system transfer function of the 3rd order NMP model

used in the simulations is given by H(z-I)=1-0.9z-I +0.385z-2 +O.771z-3 which

has channel zeros at 0.6 and 0.75 ±jO.85 . This channel is widely cited in the

literature and has been used in [8] and references therein. Note that one channel zero
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is situated inside the unit circle while the other two zeros lie outside the unit circle.

The symbol error rates resulting at the equalizers are shown in Fig. 5.5, for the SNR

range of 2 to 16. The number of samples in each run is N=2048. The total number of

error symbols calculated for every simulation point is 100. From results in Fig. 5.5,

we conclude that the equalizers work satisfactorily and that the DFE provides the best

performance.

Chame! parameters h=[1. 0.9, 0.385, -0.771]

i
~.n 10·2t· •. . '~',\ ~~-,

i

SNRdB

Figure 5.5. The symbol error rates resulting from ZF, MMSE, DFE equalizers for SISO channel

equalization. SNR varies from 2 to 16 dB.

5.5.2 SIMO Channel Simulation

In this section, simulation results are presented to illustrate the performance of the

proposed SIMO equalizers. The SNR for SIMO model is defined same as that in

chapter 4. The input signal is selected from QPSK constellations.

A SIMO system with three, third order subchannels has been used in the

simulation. The first channel having a coefficient vector {1- 3.12.68 - 0.42} has two

maximum phase zeros and one minimum phase zero. The second channel coefficient

vector is {1-2.62.16-0.576}, and has two minimum phase zeros and a one

maximum phase zero. The third channel is an all minimum phase channel with
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coefficient vector {I -1.6 0.93 - O.18} comprising of two complex zeros and one real

zero.

In the simulations, the equalizer output noise variance, var(s - v) is used as a

criterion to evaluate the equalizer performances. The output noise variances are shown

in Fig 5.6. Note that the initial SIMO channel estimation is done using the CR

method [19]. The channel estimation is subsequently improved by using a least

squares recursive (LS) technique as discussed in chapter 4. Fig. 5.6 shows the noise

variance at outputs of ZF and DFE equalizers based on the estimation results by CR

and LS. For comparison, performances of equalizers implemented using the ideal

channel parameters are also shown. Not surprisingly, Fig. 5.6 shows that the equalizer

performances do not depend heavily on the channel estimation. The DFE using the

ideal channel parameters performs the best. For both ZF and DFE equalizers, the use of

LS provides estimation results as good as the use of ideal parameters. In the

simulations, as the SNR in the SIMO system is not small enough, the advantage of

MMSE is not obviously seen. (The MMSE noise variances are similar to ZF results at

higher SNR, and are not shown in Fig 5.6.) MMSE has better performance than ZF in

single channel systems [73] when SNR is low. This conclusion is also true for SIMO

channel equalization results shown in Fig. 5.7.
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Equalizers performance of SIMO channel
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Figure 5.6 Noise variance at SIMO equalizers output, SIMO channel parameters are obtained by

CR[I9], LS and ideal channel.

Fig. 5.7 shows the symbol error rates (SER)of different equalizers designed via the

results obtained by the LS method. It is seen that the MMSE has better performance

than ZF when the SNR is low and the DFE has the best performance among all the

equalizers. Note that the symbol error rates (SER) are estimated using the output noise

variance. Since SER estimation using noise variances has a much lower

computational load than for direct SER computation, Fig. 5.7 provides a more

efficient means of equalizer evaluation. The number of samples in each run is

N=2048. The total number of error symbols calculated for every simulation point is

100.

Equalizers performance of SIMO channel
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Figure 5.7 The SER performance of ZF, MMSE, DFE for SIMO Channel Equalization
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5.5.3 Comparison of Lagnerre Equalizers with FIR Equalizers

It was shown in section 5.4 that when channel zeros are closing on to the unit circle, a

Laguerre filter has the advantage over FIR filters in hardware implementations. As an

example, consider the communication system described by (2.3). Suppose that the

transmitted symbols {sen)} are from a QPSK modulation scheme, and the multi-path

channel transfer function, constitutes of two poles, maximum phase and minimum

phase, at (l.30-j0.lO) and (0. 70+jO.lO). The signal-to-noise ratio is given by 30dB. A

residue equalizer was implemented at the receiver using the Laguerre filter

architecture with a=O. 75. Fig. 5.8 shows the un-equalized and equalized signals at the

receiver. The equalizer has successfully separated the received signal into the correct

constellations. Fig. 5.8 also shows results from an FIR zero-forcing filter which

produces almost similar performance to the Laguerre filter. However, the FIR

implementation needed 32 multipliers whereas the Laguerre implementation required

only 7 multipliers. This exemplifies the effectiveness of the Laguerre equalizer over

the FIR equalizer in hardware implementations.
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Figure 5.8 Performance of Laguerre Structure ZF-Equalizer

In Fig. 5.8, the top figure is the received signal corresponding to a QPSK

transmission. The below-left is FIR ZF equalized signal constellations. The below-

right is equalized signal from a Laguerr ZF Implementation. SNR is 30 dB.

5.6 Application in Underwater Acoustic Communications

Demand for high speed underwater acoustic (UWA) communication is increasing,

as the underwater applications shift from exclusive military use to commercial

applications [37]. UWA communication can be applied in areas, such as environment

monitoring, underwater exploration, scientific data collection, ocean bottom detection.

If techniques for UWA communication were mature enough, people would find more

energy resources under water, the conflict on territorial sea between countries could

be less, and the recently happened Tsunami tragedy in Indian Ocean could have been

avoided. This section addresses blind techniques for UWA communication channel

equalization. It also serves as an application example of the proposed techniques in

this thesis. Firstly, the characteristics of UWA channel are presented. Then the signal

processing for UWA communications is addressed. The spatial diversity equalization

for UWA communication is the main concern of this section. Finally, a numerical

example is provided to demonstrate the performance of the proposed techniques.

5.6.1 UWA Communications Channel Characteristics
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As cables are heavy and expensive for deployment, wireless communications is in

demand for underwater communications. Due to high attenuation property of the

seawater, radio communication is not feasible. And optical communication only can

be used in short range. Acoustic communication is the most suitable choice. A large

amount of research activities in UWA communication are emerging.

Attenuation for underwater channel can be expressed as, A(d,f) = dka(f)d [36],

where k is the frequency and d is the distance. a(f) is an increasing function in f. We

can see that the attenuation is increasing with frequency and distance. It shows that

the distance of UWA communication can not be too far and the speed can not be too

fast. What's more, it makes the available bandwidth for communication very limited,

thus, bandwidth-efficient modulation, such as a coherent modulation technique

QPSK, is needed for high-rate communications.

Noise in underwater environment is more severe than the noise in radio

communication systems. One category of the noise is site-specific, it includes man

made, biological (shrimp) and effect of rain and so on. The other is ambient, for

example, turbulence, shipping, thermal etc. Power spectral density (PSD) of the most

ambient noise is continuous and they have Gaussian statistics. It is approximated that

noise PSD decays at b=18 dB/dec. The SNR for UWA channel can be approximated

as SNR(d,f)~10*k*logd-d*10*loga(f)-b*10l0gf, so the noise effect makes

UWA communication more difficult than radio communication.

The other major problem that obstructs the UWA communication is multipath

propagation. For shallow water, reflections from surface, bottom and other objects

contribute to the multipath effect. It is noted that reflections at surface have little loss.

Reflection loss at bottom is stronger, but it depends on the type of bottom, as sand and

rock have different effect. Also angle of incidence and frequency are major factors
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affect the intensity of loss. Multipath effect will be attenuated with repeated reflection

loss and increased path length. In order to investigate the UWA communication,

suitable models for prediction is required. Impulse response of a UWA multipath

channel can be obtained via an equivalent baseband model as,

(5.36)

where g p = Ip / A/2 and Ap =A(lp' f) is pth path attenuation; Ip is pth path

reflection coefficient.lp is the pth path length. rp =Ip / c is the pth path delay

The UWA channel is time-variant due to a large amount of factors, such as water

movement, turbulence, surface motion and so on. Time variation will cause signal

fading. The above properties of UWA channel cause severe intersymbol interference

(lSI) [11] and obstruct high speed transfer. In order to combat lSI and reach the target

of high speed acoustic communication, channel equalization techniques are adopted at

the receiver.

5.6.2 Channel Equalization for UWA Communications

Different from various types of equalizers used in radio communication systems,

channel-estimation based equalizer is a major choice for UWA communication

systems, such as in [34, 35, 87, 88]. Channel parameters are estimated via a preamble

packet, it is assumed that the channel is invariant during this period. This technique is

suitable for high speed acoustics transfer system, where the most important factor is

computational complexity, that is, the channel can be assumed to be constant over the

transmission period of the preamble packet [88]. The proposed blind channel

estimation techniques can be used in such UWA communication systems if the

channel is slow varying, however, the proposed equalizers still are useful even fast

varying channels. Equalization is the focus ofthis section.
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It is shown in [89] that multipath decision feedback equalizer (DFE) jointly with a

phase looked loop (PLL) has obvious advantage over passive phase conjugation

(PPC) techniques in reducing lSI when there are a small number of receivers. Note

also that DFE is a nonlinear equalizer, a good compromise between performance and

complexity, obtaining a much better performance than a linear equalizer at a much

lower complexity than for the optimum detector, the maximum likelihood sequence

estimator (MLSE) [25]. DFE is a popular equalization technique adopted in UWA

communications [37, 89].

In this section, the proposed zero based DFE in chapter 5 is applied to underwater

acoustic communication channel equalization. Compared with the conventional

channel coefficients based MMSE-DFE, which requires inversion of a matrix that

may have high computational complexity [89], the proposed technique here is more

efficient and faster in optimum selection of the equalizer. The performance of the

proposed equalizer for communication channels is demonstrated in a simulated

shallow water environment. The performance of the initial channel estimation can be

updated by exploiting the finite alphabet property at the decsion feedback equalizer

output.

The block diagram of the use of DFE in UWA communcations is shown in Figure

5.9. The equalizer coefficients are estimated and updated using trainging data in the

least square channel esitmaiton algorithm.
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Figure 5.9 Block of single channel equalization for UWA communications

5.6.3 Multiple Channel Equalizaiton for UWA Communications

Spatial diversity equalizers applied to UWA communications has drawn a lot of

research interest, and one can find applications in [35, 79] and references therein. The

availability of multiple and uncorrelated measurements of the transmitted signal is

called as diversity. Diversity can be achieved in frequency, time or space from the

statistical point of view. It is noted that diversity can increase the SNR of the received

signal with uncorrelated measurements. Diversity plays an important role in UWA

communications.

When multiple receivers are used to improve performance via diversity combining,

the recently single input multiple output (SIMa) channel model as discussed in

chapter 4 can be used for describing UWA channel. The zero based SIMa multipath

decision feedback equalizer (DFE) can be used to achieve spatial diversity in UWA

communication channels with the assumption of accurate timing recovery.

The SIMa DFE for UWA spatial diversity equalization is shown in Fig. 5.1 0 as,
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Fig 5.10 Multipath Channel Equalizer for UWA Communications

The novelty of the proposal is that the SIMO DFE equalizer is designed using the

estimated channel zeros, which is faster than the use of traditional MMSE-DFE. The

estiamtion results are compared with blind SIMO channel estimation bounds and the

training channel estimation performances.

5.6.4 Simulation Examples

An example used here for simulation refers to the Shallow Water Channel (SWC)

[88]. We assume that there are two receivers and the sampling rate at the receiver is

baud rate. The multipath channels are assumed to be time-invariant during the data

transfer period. Channel impulse responses of the multipath channels are given by,

4

hi(t) = I aijP(t-ri)
j=-4

where the amplitude of each ray aij is in matrix from,

ra ]=(10.3421 -0.1235 -0.2936)
~ 1] 1 0.2631 0.1512 0.3916

and r ij the time delay to the first ray is selected as,
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[r J= (0 0.7800 2.1300 2.9300)r
IJ 0 0.3500 1.9600 33550

(5.39)

where T is the symbol period. And p(t) is a raised cosine impulse shape with roll off

factor 20%. Length of channels is {-4 4} symbols. The modulated signal is QPSK.

The channels consist of additive white Gaussian noise, with SNR (signal to noise

ratio) of 20dB. Performance of equalization using ideal channel parameters is shown

in Fig. 5.11.

The most important observation is that the computational time of the zero based

DFE is less than that of the MMSE-DFE. The first channel in (5.37) is used as an

example. Computational time of zero-based DFE is compared with computational

time of MMSE-DFE. Two MMSE-DFEs with different lengths of feedforward filter

and feedback filter are used for comparison. They all have same long feedback filters,

whose order is equal to the order ofchannel. The results are shown in Table 5.2.

Table 5.2 Computation time ofzero-based DFE

Zero-based DFE MMSE-DFE MMSE-DFE
If= 23, Ib=8 If=23, Ib=8 1f=15, 1b=8

0.0050 ms 0.0180 ms 0.0068 ms

where If is the length of FFF, lb is the length of FBF. From Table 5.2, we can see

that computation of zero-based DFE is faster than that of MMSE-DFE even MMSE-

DFE has shorter feedforward filter. If they has same long feedforward filter, zero-

based DFE is almost three times faster than MMSE-DFE. This is very useful for

UWA communications, as high speed equalization techniques are necessary for time

varying UWA channels.

QPSK is used as the transmitted signal with SNR equal to 20dB. The received

signal at first receiver is shown at the right of Fig. 5.11. And the equalized signal
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using zero based SIMO DFE is shown the left of Fig. 5.11. It is shown that the

proposed SIMO-DFE is suitable for UWA communication equalization.
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Fig.5.11 Equalization performance of the proposed SIMO equalizer for SWC communication.

Symbol error rate (SER) performance of the proposed zero based SIMO DFE

equalizer is compared with conventional MMSE-DFE [89], the lengths of FFF and

FBF ofDFEs are same. In Fig. 5.12, it is shown that the proposed ZF-DFE has better

performance when SNR is larger than 10 dB, although conventional MMSE-DFE has

marginally better performance when SNR is low. This conclusion also is supported by

the discussion in [89].
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Equalizers performance in VWACommunication Channel
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Fig 5.12 Comparison of ZF-DFE and MMSE-DFE in UWA communication channel.

5.7 Summary
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In this chapter, three kinds of equalizer are implemented for SISO channels and

SIMO channels. The novelty of the proposed implementations is that all equalizers are

designed based on (blindly) estimated channel zeros. Not surprisingly, it has been

demonstrated that the zero forcing equalizer enhances the noise in the channel, but the

linear MMSE equalizer, although complicated in implementation, provides better

noise immunity than the ZF equalizer. At higher SNR, the nonlinear equalizer-DFE

equalizer-achieves the best performance with ease in hardware implementation.

(The described DFE in the chapter has the DFE-ZF architecture. Simulation of DFE

MMSE architecture has shown no additional advantages.) It is also shown that using

the FA property of the transmitted signal, the initial channel estimation can be

improved. In this case the designed equalizers reach ideal performances for channel

equalization. The use of the channel zeros in the equalizer design enables one to

implement filters in hardware in an efficient manner. An application of the proposed

equalizer is an UWA communication environment is discussed.
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Chapter 6

Conclusions and Future Work

The objective of blind channel estimation and equalization to recover the transmitted

signal, which is corrupted by noise in a frequency-selective multipath channel, is

achieved in this thesis. Conclusions based on the proposed zeros based channel

parameter estimation and equalization algorithms for SISO and SIMO channels and

their applications are presented in section 6.1. Then future research works are

discussed in section 6.2.

6.1 Conclusions

At first, algorithms based on channel zero information are reviewed. In some areas,

information of channel zeros plays an important role in system identification.

According to the work in [45], where the distribution function of wireless

communication channel zeros is presented, it is shown that channel-zero based

estimation techniques are also important for wireless communications. Using the

existing SOS based methods, the channel zero estimation for minimum phase systems
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is addressed. In order to evaluate the proposed techniques, bounds for channel zero

estimation and channel coefficient estimation are presented in appendix A.

Restrictions, such as zeros are assumed to be complex conjugate pair, are not used in

the analysis. This discussion serves as the benchmark of this thesis.

As most practical channels are not minimum phase and channel parameters are

unknown for the receiver, blind channel parameter estimation for single user

communication system is addressed based on the channel zero information. It is

shown that non-minimum phase information, such FA and kurtosis, can be used to

solve the ambiguity of channel zeros location without resorting to complicated higher

order statistics. The zeros distribution information of NMP channel and its impact on

the channel parameter estimation are analyzed in appendix B.

With multiple sensors or receivers are used at the communication receiver, the

channel model is regarded as a SIMO channel model. Using the techniques in SISO

model and cross-relationship between all subchannels, it is shown that reliable SIMO

channel parameter estimation is feasible.

In order to recover the transmitted signal subjected to noise and multipath effect,

equalizer is an important tool in combating lSI. The existing equalizer designs are

reviewed. As it is known that linear and nonlinear equalizers have their own

advantage and disadvantage, both kinds of equalizers are implemented for SISO and

SIMO channels for comparison. ZF, MMSE, DFE equalizer design methods are

investigated, which are based channel zeros.

If the communication signal is transmitted in a block mode, a bidirectional zero

based decision feedback equalizer (BiZDFE) can be used. An equalizer suitable for

such a communication system is proposed in appendix C. BiZDFE consists of two

parallel DFE structures, one equalizes the received signal in normal time sequence
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and the other utilizes the time-reversed version of the received signal. The structure is

efficient in minimizing error propagation and also results in a low bit error rate. In

addition, for a minimum phase channel or a maximum phase channel, the BiZDFE

can reduce the length of equalizer filer, which is the major concern in any FPGA

implementation. Such equalizers can be applied in time-reversal acoustic

communication, which is a very active research area currently [81, 82].

In recent years, the demand of high-speed data transfer has been increased in UWA

communication. Applications of the proposed equalizers in UWA communication

channels are also discussed.

6.2 Future work

The channel zeros based channel estimation and equalization for SISO and SIMO

channels have been discussed. It is possible to extend these ideas to MIMO (Multiple

Input Multiple Output) [90] channel parameter estimation and equalization. Normally

MIMO channel coefficients can be estimated by semi-blind or training estimation

techniques. And FIR equalizer can be used for MIMO equalization [80, 90]. So

channel zeros based equalizers are also suitable for MIMO system.

In chapter 3 and appendix B, the bounds for NMP channel estimation are discussed,

but it was only feasible for low SNR and high SNR cases as it is an approximation to

the NMSE. Cramer-Rao Low Bound (CRLB) is a theoretical bound to compare the

performance of any unbiased estimator. The difficulty of evaluating bounds for NMP

channel estimation is the ambiguity information of the zeros location as noted in

Appendix B. The evaluation ofCRLB is a problem to be investigated in the future.

In chapter 4, the strongest channel is used in the first step estimation, as it determines

the results of the second step. A more robust technique for the selection of strongest
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channel is desired. A bounds for SIMO channel estimation can be found in [83]. But

this bound is a deterministic bound, and not statistic based bound, and the bound

could be changed with different input signals. A more appropriated bound is required.

Although the UWA channels are generally confined to low data rates as compared to

a radio channel, the encountered channel distortions make UWA communications

more challenging. As the span of UWA channel can last several hundred symbols

duration, the practical DFE design may need to be tap-selective. Although researchers

have proposed many equalizers in literature, such as [36, 39,40, 91], the commercial

version of these in underwater acoustic modems is not feasible. Designing a practical,

low-cost, real-time equalizer (modem) for UWA communications is another future

research direction.

As the emergence of third generation wireless communication systems, such as

Wideband Code Division Multiple Access (WCDMA) [92], the high speed data

transfer becomes practical. The application of proposed algorithms in real

communication systems is another future work.
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Appendix A

Proof of Equations

Equation (2.3) also can be expressed via a discrete variable

yet) =h(O)x(t) + h(l)x(t -1) + h(2)x(t - 2) + ... h(L)x(t - L) + wet) (A. 1)

The following relationship can be obtained,

1

From (2.4), we know that

H(Z-l) = Ih(k)z-k =n(I-b(k)z-l)
k:O k:l

(A.2)

Gradients ofx(t) with respect to channel zeros can be obtained by differentiating (A.l)

as,

L
_Z-l I1(I-b(k)z-l)

ax(t) _ k:l,k!:m ( () ( »------ yt-wt
ob(m) (h(O) + h(l)Z-1 + h(2)z-z + ... h(L)z-L}

L
Z-l I1 (l-b(k)z-l)

= k:l,k!:m x(t)
H(Z-l)

(A.3)

Let Dm(Z-I) =Z-l n(l-b(k)z-I)[H(z-I)J
1
, and coefficients of Z-transform function

k:l,k!:m

Dm(Z-I) are {dm,n} in (A.3) can be rewritten as,

, ox(t)
xt =---- =dmox(t) + dmlX(t -1) + dmzx(t - 2) + ...

ob(m)' , ,

As given in [44], for larger N, the fisher information matrix (FIM) for data is,

According (A.3) and (A.4), (A.5) can be rewritten as,
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Gradients of x(t) with respect to channel coefficients can be obtained by

differentiating (A. I) as,

ax(t) = _ z-m (y(t) _ w(t)) = z-m () (A.7)
ahem) (h(O) + h(l)Z-1 + h(2)z-z + ... h(L)z-L ) H(Z-l) X t

And the fisher information matrix for channel coefficients is given by,

where dm u are coefficients of the Z-transfer function given by,

Dm(Z-I) =-z-m[H(z-l)r·
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Appendix B

Bounds for NMP Channel Estimation

Let the true NMP channel H(Z-') and the estimated channel H(Z-') can be expressed

as a product of a minimum phase and all pass transfer functions, i.e.

(B.l)

Assuming un-biased estimation we get,

L , L , L

L (h(k) - h(k)) 2 = L h(k)2 - L h(k)2
k:O k=O k=O

(B.2)

where h(k) and h(k) are the coefficients of polynomials H(Z-') and

H(z -I) respectively, (B.2) can be expressed as,

=H(Z-' )H* (z)lz:1 - H(z -I )H* (Z)/Z:I

=HMP(Z-I)HMP *(Z(:I - HMP(Z-I)HMP* (z)lz:1
(B.3)

Equation (B.3) shows that the MSE of the NMP channel is as same as that of an

equivalent MP channel. The bounds for estimation HMP(Z-I) has been shown in

approximate form as,

bound =(pw/O"; + tr(Ih-I)))/2:1 h(k) 1

2 (B.4)

The fisher information matrix I h is given in (A.8) in appendix A. Thus, the above

bound (B.4) in conjunction with equation (B.3) can be used for performance

comparison in NMP channel coefficient estimation.

Impact of Non-Gaussianity on Estimation HAP(Z-I)

It is well known that blind SISO channel estimation fails when the input is

Gaussian. That is HAP (z -I) of equation (B.l) can not be properly estimated using any
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HOS techniques. To evaluate the impact of non-Gaussianity on estimation, we note

that equation (3.12) can be equivalently expressed as,

S(z) =H(z)C(z)X(z) + C(z)W(z) (B.5)

At high SNR, assuming that the MP zeros can be accurately estimated using SOS, we

phase information is not used in the SOS. Using (B. 1), (B.3), (B.5) can be rewritten

as,

where the all pass section is resulting from the reflection of one or more MP zeros on

the unit circle.

For evaluation, the channel used in [54], a third order NMP model with system zeros

- 0.6 and 0.75 ±jO.85 IS selected. The system transfer function is

H(z) =1-0.9z-1 +0.385z-2 +0.771z-3
• For this channel, 3 other channels having

same MP zeros and power can be obtained as,

(B.7)

For the example channel H(Z-I) and the 3 other equivalent channels noted in (B.7),

there would be 4 branch impulse responses, Ia(k)z-k , resulting from equation

(B.6). These are shown in Fig. B.l, where the top figure notes a delta function

corresponding to the properly equalized branch. It was shown in chapter 3, that using

the cost function in equation (3.17), the channel zeros can be correctly located, i.e.

HAP(Z-I) can be properly estimated.
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Branch (B1~B4) Impulse Responses

Figure B.1 Branch impulses responses resulting from channel transfer function and 4 different

equalizer transfer function realizations. Top one corresponds to correct equalizer branch.

Using La(k)z-k , the expected value of the cost function E[J(lp)] , of equation

(3.17) for each branch can be expressed in a simplified form as,

Note that the second term on the right hand side of (B.8) is always non-negative and is

zero for proper equalization (as in the top line of Figure 2). The probability

distributions for J(lp) resulting from simulating the 4 branch outputs are shown in

Fig. B.2. Note that in Fig. B.2 the zero mean density corresponding to the proper

equalizer branch, and increasing the level of modulation (e.g. from 4 to 16

constellations) reduces the separation of the distributions. When the input is Gaussian,

K(x)/ E 2 {1 x 1
2

} =2 . Then the right hand of (B.8) is always zero and thus the

equalization is not possible.

An i.i.d. quadrature phase shift keyed (QPSK) random sequence with zero mean is

used as the input signal x(n) having power of (J~. For a given input and given
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channel, it is possible to obtain the distributions in Fig. B.2 in approximate analytical

form. Therefore, the MSE resulting from selection of HAP(Z-I) can also be

determined.

0.2,----,-------,-----,------,-==

0.18

0.16

0.14

Z. 0.12
.~

~
~ 0.1

Loa
0.06

0.04

0.02

-81
82

- - B3
--- B4

Figure 8.2 Probabilty density of the cost function of equation (8.8) for the four branches, resulting

from a 16 - QAM input sequence.

For the given channel in section 304, for QPSK inputs this MSE is given by,

MSE =6.29 x erfc(5.18) (B.9)

When the MSE in (B.9) is larger than the bound in (Bo4), we could say that the non-

Gaussianity has an impact on the NMP channel estimation and the MSE is determined

by (B.9) rather than bound in (Bo4).
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Appendix C

Bidirectional Zero-Based Decision Feedback Equalizers (BiZDFE)

C.l Introduction

In this appendix, a new bidirectional decision feedback equalizer (BiDFE) is

proposed. The novelty of the proposed structure is that the proposed equalizer is based

on channel zeros, which is different from traditional BiDFE designs. The proposed

bidirectional zero-based decision feedback equalizer (BiZDFE) efficiently exploits the

time reversal operation, which results in that zeros of the equivalent channel seen

from equalizer are the reciprocals of the actual channel zeros. It is shown that

BiZDFE is more efficient in fading channel equalization than BiDFE and traditional

MMSE-DFE.

Over the last three decades, the use of Decision feedback equalizers (DFEs) has

been reported in digital communication applications to mitigate lSI [11, 25]. DFE

equalizer provides a good compromise between performance and complexity,

obtaining a much better performance than a linear equalizer at a much lower

complexity than that of the optimum detector-the MLSE. Time-reversal DFE

technique has drawn research interest since [93], as time reversal operation results in

that the equivalent channel seen from equalizer are the reciprocals of the actual

channel zeros (the equivalent channel impulse response is the time-reverse of the

actual channel impulse response [93]). BiDFE has two braches [94], one DFE is used

for normal time sequence equalization, the other DFE is used for time-reversal

sequence equalization. As channel diversity is exploited, BiDFE has better

performance over traditional DFE [80, 94]. We consider the DFE where both
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feedforward filter (FFF) and feedback filter (FBF) are FIR filters based on channel

zeros, as an FIR filter is more robust in filter implementation [95, 96].

C.2 Proposed BiZDFE

For a single-user system, the discrete-time base-band model is a time-invariant

single-input single-output (5150) system described as [1],

yen) =Ys (n) + wen)

ys(n)= L~=ox(n-k)h(k)

Then the over-all FFF transfer function of the DFE can be expressed as,

while the transfer function of the feedback filter is,

L L

B(z-I)=l- IT(l-b(ifIZ-I) IT(l-b(i)z-l)
i=I,lb(i)I>1 i=I,lb(i)I<1

(C.l)

(C.2)

(C.3)

[93] notes that by reversing the observed signal {yen)} before equalization, the

equivalent channel impulse response changes to the time-reversal of the actual

channel impulse response. The time-reversed channel transfer function can be

expressed as,

L L

H(Z-I) = h(O) + h(l)z+· .. +h(L)ZL = IT (l-b(i)z) = cIT z(l-b(i)-I Z-I) (C.4)
i=1 i=1

L

where constant c =(_l)L ITb(i) can be directly derived from the channel zeros. From
i=1

(C.4) and (2.4), we can see that the zeros of the time-reversal channel are the

reciprocal of the original zeros of the normal mode channel in (2.4). A DFE can be

used to equalize the time-reversal signals. Using (C.2) and (C.3), the coefficients of

the FFF and FBF oftime-reversal DFE are,
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L L

BTR (z-I)=l- Il(l-bUf1z-
1

) Il(l-bu)z-I)
i=I,lb(i)I>1 i=I,lb(i)I<1

(C.S)

(C.6)

As seen from (C.S), the coefficients of the FFF of time-reversal DFE is composed of

the minimum phase zeros of the original channel. This is the major difference with

normal model DFE. When the original channel is maximum phase channel or has

more maximum phase zeros than minimum phase zeros, the FFF of the time-reversal

DFE can be simpler than that of normal model DFE. From (C.3) and (C.6), we can see

that the coefficients of the FBF of the normal model DFE and the time-reversal DFE

are same. This property will reduce the complexity ofDFE realization.

The explicit block structure of the BiZDFE is illustrated in Fig. c.l. BiZDFE has

two branches, the first branch is for normal time sequence equalization. This DFE

equalizer output can be expressed as,

o Lb

YI (n) = IfjYn-j + Ib}'n-j
j=-Lf j=1

(C.7)

where {f) are the tap coefficients of the FFF, Lf is the length of the FFF; {b
j

} are

the tap gains of the FBF, Lb is the length of FBF. {v(n)} is an estimate of the nth

information symbols. The assumption of accurate detection of the previous symbol is

necessary and is often satisfied in the DFE.

The second branch is for time-reversed sequence equalization. The sampled signal

{yen)} is reversed in time-domain before feedings into the following DFE.

Subsequently, the DFE output is time reversed again to obtain the equalized signal

{Yz (n)}. The equalized signals of two equalizers are combined together before used

at the input of the decision device shown in Fig.C.I.
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Figure C.l. The Block Structure of Bidirectional Zero based Decision Feedback Equalizers (BiZDFE)

C.3 Simulation results

In this part, three different channels are used in the simulation. The input signal is

selected as 16-QAM signal having zero-mean. The three channels are a minimum

phase channel hI = [1.285 - 0.729 0.1 0.6]

channel hz =[0.77IO.385 -0.91] and

a mixed

a maximum

phase

phase

channel h3 = [0.6 0.1 - 0.729 1.285]. Definition of SNR is as same as that used in

chapter 3. The number of samples in each run is N=2048. The total number of error

symbols calculated for every simulation point is 100. SER is used as the criterion to

evaluate the equalizer performance. The performance of BiZDFE in these channels is

compared with those of traditional BiDFE in [80]. The results are illustrated in the

following.

The first example is the minimum phase channel noted above. In Fig.C.2(a),

BiZDFE is compared with zero-based DFE of [73] and time-reversal zero-based DFE.

That is the performance of signal {v(n)} in compared with signals {YI (n)} and

{Yz (n)}. Similar to ZF design, MMSE design can also be used for bidirectional

equalization. In Fig.C.2(b), BiMMSEDFE is compared with traditional MMSE-DFE

[11] and time-reversal MMSE-DFE.

131

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Performance for Equalizers
10'r----r-~-~-,__----~-,___,-__,

10-2 b················· ,....... ,.............. . , , ....., "." ....••.•..........

(a)

10'

'"~
Cl:

~ 10.2
W
Cl:
W
[J)

Performance for Equalizers

~

rJ

I r.ull~n" ""~,~.::r"cc
,,~

-<;- ..w~-~ ~

"-
._"""

~ ~

\.

\

8 10 12 14 16 18 20 22
Signal to Noise Ratio (SNR)

(b)

Fig. C.2 Performance of BiZDFE in minimum phase channel

In Table C.l, we list the length of all FFFs and FBFs used in Fig.C.2

Table C.1 Length of FFFs and FBFs for minimum phase channel

Normal Time-reversal Normal Time-reversal
Zero based DFE Zero based DFE MMSE-DFE MMSE-DFE

If 1 127 15 15
Ib 3 3 3 3

For a minimum phase channel, the zero-based DFE can be realized using a very

short filter. And it still can achieve similar performance compared to the other

equalizers. However, because of short FFF, the performance of normal zero-based
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DFE is not as good as that of time-reversal zero-based DFE, which has a very long

FFF.

The second example is the maximum phase channel noted earlier. The inputted

signal is 16-QAM signal. SNR definition is same as noted earlier. Results are shown

in Fig.C.3(a) and Fig.C.3(b). The number of samples in each run is N=2048. The total

number of error symbols calculated for every simulation point is 100.
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Fig. C.3 Performance of BiZDFE in maximum phase channel

In Table C.2, the lengths of all FFFs and FBFs used in Fig.C.3 are listed.
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Table C.2 Length ofFFFs and FBFs for maximum phase channel

Normal Time-reversal Normal Time-reversal
Zero based DFE Zero based DFE MMSE-DFE MMSE-DFE

If 127 1 15 15
lb 3 3 3 3

For maXimum phase channel, the FFF of time-reversal zero-based DFE can be

realized using a very short filter. On the other hand, the FFF of normal zero based

DFE is very long. Different from the performance of time-reversal MMSE-DFE, time-

reversal zero-based DFE does not improve the equalization performance, as its FFF

only has one tap. But the results still are encouraging, because such a short equalizer

can provide close performance achieved by other longer equalizers. This property is

useful in FPGA implementations to reduce the number of registers used. Also it can

improve the efficiency of hardware design.

The third example is the mixed phase channel noted above. Results are shown in

Fig.C.4(a) and Fig.C.4(b). The inputted signal is 16-QAM signal. SNR definition is

same as noted earlier. The number of samples in each run is N=2048. The total

number of error symbols calculated for every simulation point is 100.
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Fig_ C.4 Performance ofBiZDFE in mixed phase channel

In Table C.3, the lengths of all FFFs and FBFs used in Fig.CA are listed.

Table C.3 Length ofFFFs and FBFs for mixed phase channel

Normal Time-reversal Normal Time-reversal
Zero based DFE Zero based DFE MMSE-DFE MMSE-DFE

If 15 113 15 15
Ib 3 3 3 3

For mixed phase channel, the time-reversal zero-based DFE and normal zero-

based DFE have close performance as shown in Fig.CA, although their FFFs have

different length shown in Table C.3. However, use of the diversity combining [93],

has provided the BiZDFE the best performance among all equalizers.

The long filter lengths in Table C l-C3 can be reduced by interchanging the filtering

operators in equations (Co2) and (C.5) with a time reversal. This is new structure is

shown in Fig. C.5.
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Figure C.5. The new block structure of the proposed BiZDFE

The filters F and FTR can be efficiently implemented by changing Z-l to z in these

equations. Band BTR are same as Band BTR of BiZDFE. From Fig.e.! and Fig.e.5,

the proof is given by,

(e.8)

It is easy to see that FTR(z-l) = FTR(Z), and F(Z-l) = F(z) is true obviously.

C.4 Summary

In this appendix, a novel zero-based bidirectional decision feedback equalizer is

proposed. The proposed BiZDFE makes full use of time-reversal operation, which

results in an equivalent channel with zeros as the reciprocal of the actual zeros.

Performance of the proposed equalizer is compared with traditional equalizers in

minimum phase, mixed-phase and maximum phase communication channels. The

results show that the proposed BiZDFE has good performance. An alternative

structure is proposed aimed to reduce the filter length.

136

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle



Publication List

[1] Y. Ye and S. S. Abeysekera, "Efficient Blind Estimation and Equalization of
Non-Minimum Phase Communication Channels via the use of a Zero Forcing
Equalizer," Signal Processing, vol. 86, no. 5, pp. 1019-1034, May 2006.

[2] S. S. Abeysekera and Y. Ye, "Channel-Zero based Equalizers for SISO and SIMO
channels," Accepted by Signal Processing, 2008.

[3] S. S. Abeysekera and Y. Ye, "A Comparison on Efficient MA Parameter
Estimation Using Second and Fourth Order Statistics for Communication Channels,"
Proc. of the Fourth ICICS and Fourth PRCM, vol. 2, pp. 1220 - 1224, Singapore,
Dec.15-18,2003.

[4] Y. Ye; S.S Abeysekera, "Evaluating a Blind channel Estimation Technique That
Uses a Hardware Efficient Equalizer" Proc. IEEE Int. Symposium on
Circuits and Systems-ISCAS, Kobe, Japan, vol. 6, pp. 5718 - 5721, May 23-26,
2005.

[5] S.S Abeysekera, Y. Ye, "Blind Multipath Channel Estimation using Second Order
Statistics and the Finite Alphabet Property" Proc. of Int. Con! on Communications,
Circuits and Systems-ICCCAS, Hong Kong, vol. 2, pp.739-743, May 2005.

[6] S. S. Abeysekera and Y.Ye, "Zero Based Blind Equalizer Implementation using
Zero Forcing, MMSE and Decision Feedback Concepts," Proc. of Fifth ICICS,
Bangkok, Thailand, pp. 96-100, Dec 2005.

[7] S.S. Abeysekera and Y. Ye, "A Zero based Decision Feedback Equalizer for
Underwater Acoustic Communications" Proc. of IEEE Oceans Asia Pacific 06,
Singapore, May 16-19,2006.

[8] S. S. Abeysekera and Y. Ye , " Performance of Blind Channel Estimation using
2nd Order Statistics and Finite Alphabet Properties," IEEE Int. Symposium on
Intelligent Signal Processing and Communication Systems-ISPACS, Japan, 2006.

137

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



[9] Y. Ye and S. S. Abeysekera, "BiZDFE: Bidirectional Zero-Based Decision
Feedback Equalizers," IEEE Int. Conference on Acoustic, Speech, and Signal
Prcoessing-ICASSP, Hawaii, USA, April 15-20, 2007.

138

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle



Bibliography:

[1] J. K. Tugnait, L. Tong, and Z. Ding, "Single-User Channel Estimation and
Equalization," IEEE Signal Processing Magazine, vol. 17, no.!, pp. 17-28, May. 2000.

[2] J. G. Proakis, C. M. Rader, F. Ling, C. L. Nikias, M. Moonen, and I. K.
Proudler, Algorithms for Statistical Signal Processing. Upper Saddle River, NJ:
Prentice Hall PTR, 2002.

[3] L. Ljung, System Identification Theory for the User. Upper Saddle River, NJ:
Prentice Hall PTR, 1999.

[4] S. M. Kay, Modern Spectral Estimation: Theory and Application. Englewood
Cliffs, NJ,: Prentice Hall, 1988.

[5] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical Signal Processing
Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing:
McGraw-Hill Co, Inc., 2000.

[6] P. Stoica, T. McKelvey, and J. Mari, "MA Estimation in Polynomial Time,"
IEEE Trans. Signal Processing, vol. 48, no.7, pp. 1999-2012, Jul. 2000.

[7] J. M. Mendel, "Tutorial on Higher-Order Statistics (Spectra) in Signal
Processing and System Theory: Theoretical Results and Some Applications,"
Proceedings ofThe IEEE, vol. 10, no.2, pp. 278-305, Mar. 1991.

[8] K.-S. Lii and M. Rosenblatt, "Deconvolution and Estimation of Transfer
Function Phase and Coefficients for Non-Gaussian Linear Process," The Annals of
Statistics, vol. 10, pp. 1195-1208, 1982.

[9] J. K. Tugnait, "Identification of Non-Minimum Phase Linear Stochastic
Systems," Automatica, vol. 22, noA, pp. 457-464, 1986.

[10] C. L. Nikias and J. M. Mendel, "Signal Processing with Higher-Order
Spectra," IEEE Signal Processing Magazine, vol. 10, pp. 10-37, Jul. 1993.

[11] J. G. Proakis, Digital Communications, Fourth Ed. New York: McGraw-Hill,
2001.

139

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



[12] D. Hatzinakos and C. L. Nikias, "Blind equalization using a tricepstrum-based
algorithm," IEEE Trans. Commun., vol. 39, no.5, pp. 669 - 682, May. 1991.

[13] O. Shalvi and E. Weinstein, "New Criteria for Blind Deconvolution Of
Nonminium Phase Systems (Channels)," IEEE Trans. Infor. Theory, vol. 36, no.2, pp.
312-321, Mar. 1990.

[14] D. N. Godard, "Self-recovering Equalization and Carrier Tracking in Two
Dimensional Data Communication Systems," IEEE Trans. Commun., vol. COM-28,
no.ll, pp. 1867-1875, Nov. 1980.

[15] C. Y. Chi, C. Y. Chen, C. H. Cheng, and C. C. Feng, "Batch Processing
Algorithms for Blind Equalization Using Higer-Order Statistics," IEEE Signal
Processing Magazine, pp. 25-48, Jan. 2003.

[16] L. Tong, G. Xu, and T. Kailath, "A New Approach to Blind Identification and
Equalization of Multipath Channels," presented at 25th Asilomar Conf., Pacific Grove,
CA, 1991.

[17] L. Tong, G. Xu, and T. Kailath, "Blind Identification and Equalization Based
on Second-Order Statistics: A time Domain Approach," IEEE Trans. Inform. Theory,
vol. 40, no.2, pp. 340-349, Mar. 1994.

[18] E. Moulines, P. Dunhamel, J. Francois, and S. Mayrargue, "Subspace Methods
for the Blind Identification of Multichannel FIR Filters," IEEE Trans. Signal
Processing, vol. 43, no.2, pp. 516-525, Feb. 1995.

[19] G. Xu, H. Liu, L. Tong, and T. Kailath, "A Least-Squares Approach to Blind
Channel Identification," IEEE Trans. Signal Processing, vol. 43, no.12, pp. 2982
2993, Dec. 1995.

[20] T. S. Rappaport, Wireless Communications: Principles and Practice, Second
Ed. ed: Prentice Hall PTR, 2002.

[21] L. Tong and S.Perreau, "Multichannel Blind Identification: From Subspace to
Maximum Likelihood Methods," Proceedings ofThe IEEE, vol. 86, no. 10, pp. 1951
1968, Oct. 1998.

[22] Y. Stao, "A Method of Self-Recovering Equalization for Multi-Level
Amplitude Modulation," IEEE Trans. Commun., vol. COM-23, pp. 679-682, Jun.
1975.

140

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle



[23] A. Benveniste, M. Goursat, and G. Ruget, "Robust Identification of a
Nonminimum-Phase Systems: Blind Adjustment of a Linear Equalizer in Data
Communications," IEEE Trans. Automat. Contr., vol. AC-25, pp. 385-399, Jun. 1980.

[24] J. Chen, A. Paulraj, and U. Reddy, "Multichannel Maximum-Likelihood
Sequence Estimation (MLSE) Equalizer for GSM Using a Parameteric Channel
Model," IEEE Trans. Commun., vol. 47, no.1, pp. pp. 53-63, Jan. 1999.

[25] P. Monsen, "Feedback Equalization for Fading Dispersive Channels," IEEE
Trans. Information Theory, vol. 17, pp. 56-64, Jan. 1971.

[26] B. Porat and B. Friedlander, "Blind Equalization of Digital Communications
Channel using High-Order Moments," IEEE Trans. Signal Processing, vol. 39, no.2,
pp. 522-526, Feb. 1991.

[27] J. K. Tugnait, "Blind Equalization And Estimation Of Digital Communication
FIR Channels Using Cumulant Matching," IEEE Trans. Commun., vol. 43, pp. 1240 
1245, Feb. 1995.

[28] X. H. Li, "Blind Channel Estimation and Equalization in Wireless Sensor
Networks Based on Correlations Among Sensors," IEEE Trans. Signal Processing,
vol. 53, no.4, pp. 1511-1519, Apr. 2005.

[29] Z. Y. Zhu, H. R. Sadjadpour, R. S. Blum, and P. A. Andrekson, "A SIMO
DFE-based Equalization Technique for PMD Compensation," presented at IEEE
International Conference on Communications, Paris, France, 2004.

[30] J. K. Tugnait, "Blind Equalization and Estimation of FIR Communications
Channels Using Fractional Sampling," IEEE Trans. Commun., vol. 44, no.3, pp. 324
336, Mar. 1996.

[31] D. Gesbert, P. Duhamel, and S. Mayrargue, "On-line blind multichannel
equalization based on mutually referenced filters," IEEE Trans. Signal Processing,
vol. 45, no. 9, pp. 2307-2317, Sep. 1997.

[32] S. S. Abeysekera and C. Charoensak, "Optimum sigma-delta (L -.1. de
modulator filter implementation via FPGA," presented at Pro. of 14th Annual IEEE
International on ASIC/SOC Conference, 2001.

[33] G. B. Giannakis and S. D. Halford, "Blind Fractionally Space Equalization of
Noisy FIR Channles: Direct and Adaptive Solutions," IEEE Trans. Signal Processing,
vol. 45, no.9, pp. 2277-2292, Sep. 1997.

141

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



[34] T. C. Yang, "Correlation-based decision-feedback equalizer for underwater
acoustic communications," IEEE J Oceanic Eng, vol. 30, noA, pp. 865 - 880, Oct.
2005.

[35] Q. Wen and J. A. Ritcey, "Spatial Diversity Equalization Applied to
Underwater Communications," IEEE J Oceanic Eng, vol. 19, no.2, pp. 227-240, Apr.
1994.

[36] M. Stojanovic and L. Freitag, "Signal Processing Methods for Underwater
Acoustic Communications," IEEE Oceans Asia Pacific 06, Tutorial, May 16 2006,
Singapore.

[37] M. Stojanovic, "Recent Advances in High-speed Underwater Acoustic
Communications," IEEE J Oceanic Eng, vol. 21, no.2, pp. 125-136, Apr. 1996.

[38] J. G. Proakis, M. Sozer, 1. A. Rice, and M. Stojanovic, "Shallow Water
Acoustic Networks," IEEE Commun. Magazine, vol. 39, pp. 114-119, Nov. 2001.

[39] R. Jurdak, C. V. Lopes, and P. Baldi, "Software Acoustic Modems for Short
Range Mote-based Underwater Sensor Networks," presented at IEEE Oceans Asia
Pacific 06, Singapore, 2006.

[40] K. Zhong, S. S. Quek, T. A. Koh, and B. A. Tan, "A Real-Time Coded OFDM
Acoustic Modem in Very Shallow Underwater Communications," presented at IEEE
Oceans Asia Pacific 06, Singapore, 2006.

[41] C. C. Ko, K. L. Thurn, W. Ser, and T. S. Quek, "A Simple Fast Adaptive Zero
Tracking Algorithm," Signal Processing, vol. 20, noA, pp. 315-323, Aug. 1990.

[42] A. Nehorai and D. Starer, "Adaptive Pole Estimation," IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 38, no.5, pp. 825-838, May. 1990.

[43] S. J. Orfanidis and L. M. Vail, "Zero-Tracking Adaptive Filters," IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-34, no.6, pp. 1566-1571, Dec. 1986.

[44] S. P. Bruzzone and M. Kaveh, "Information Tradesoffs in Using the Sample
Autocorrelation Function in ARMA Parameter Estimation," IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-32, noA, pp. 701-715, Aug. 1984.

[45] R. Schober and W. H. Gerstacker, "The Zeros of Random Polynomials:
Further Results and Applications," IEEE Trans. Commun., vol. 50, no.6, pp. 892-896,
Jun. 2002.

142

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle



[46] S. S. Abeysekera, "Implementation of a Zero-Forcing Residue Equalizer Using
a Laguerre Filter Architecture," presented at International Symposium on Circuits and
Systems, Vancouver, Canada, 2004.

[47] T. H. Li, "Finite-Alphabet Information and Multivariate Blind Deconvolution
and Identification of Linear Systems," IEEE Trans. Inform. Theory, vol. 49, no.1, pp.
330-337, Jan. 2003.

[48] T. H. Li, "Blind Identification and Deconvolution of Linear Systems Driven
by Binary Random Sequences," IEEE Trans. Inform. Theory, vol. 38, no.38, pp. 26
38, Jan. 1992.

[49] S. L. Zhou and G. B. Giannakis, "Finite-Alphabet Based Channel Estimation
for OFDM and Related Multicarrier Systems," IEEE Trans. Commun., vol. 49, no.8,
pp. 1402-1414, Aug. 2001.

[50] S. M. Kay, "Conditional Model Order Estimation," IEEE Trans. Signal
Processing, vol. 49, no.9, pp. 1910-1919, Sep. 2001.

[51] P. Stoica and Y.Selen, "Model-Order Selection," IEEE Signal Processing
Magazine, vol. 21, pp. 36-47, Jul. 2004.

[52] J. Labat, O. Macchi, and C. Laot, "Adaptive Decision Feedback Equalization:
Can You Skip the Training Period?", IEEE Trans. Commun., vol. 46, no.7, pp. 921
930, Jul. 1998.

[53] G. H. Golub and C. F. V. Loan, Matrix Computations, Third Ed. ed. Baltimore
and London: The Johns Hopkins University Press, 1996.

[54] Y. Ye and S. S. Abeysekera, "Efficient Blind Estimation and Equalization of
Non-Minimum Phase Communication Channels via the use of a Zero Forcing
Equalizer," Signal Processing, vol. 86, no.5, pp. 1019-1034, May. 2006.

[55] H. L. V. Trees, Detection, estimation, and modulation theory. Part I New
York: John Wiley & Sons Inc., 1968.

[56] J. Liang and Z. Ding, "FIR Channel Estimation Through Generalized
Cumulant Slice Weighting," IEEE Trans. Signal Processing, vol. 52, no.3, pp. 657
667, Mar. 2004.

[57] S. S. Abeysekera and Y. Ye, "A Comparison on Efficient MA Parameter
Estimation Using Second and Fourth Order Statistics for Communication Channels,"

143

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



presented at Joint Conference of the Fourth ICICS, and Fourth PRCM, Singapore,
2003.

[58] B. Baykal, "Blind Channel Estimation via Combining Autocorrelation and
Blind Phase Estimation," IEEE Trans. Circuits and Systems-I. Regular Papers, vol.
51, no.6, pp. 1125-1131, Jun. 2004.

[59] D. Yellin and B. Porat, "Blind Identification of FIR Systems Excited by
Discrete-Alphabet Inputs," IEEE Trans. Signal Processing, vol. 41, no.3, pp. 1331
1339, Mar. 1993.

[60] S. Talwar, M. Viberg, and A. Paulraj, "Blind Estimation of Multiple Co
Channel Digital Signals Using an Antenna Array," IEEE Signal Processing Letters,
vol. 1, no.2, pp. 29-31, Feb. 1994.

[61] T. H. Li and K. Mbarek, "A Blind Equalizer for Nonstationary Discrete
Valued Signals," IEEE Trans. Signal Processing, vol. 45, no.!, pp. 247-254, Jan.
1997.

[62] J. G. Proakis and D. G. Manolakis, Digital Signal Processing Principle,
Alogrithms andApplications. Upper saddle River, NJ: Prentice-Hall PTR, 1996.

[63] U. R. Abeyratne, "On the identification of nonminimum phase systems from
arbitraryslices of output higher-order spectra," presented at 24th Annual Conference
of IEEE, IECON '98, Aachen, Germany, 1998.

[64] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission.
New York: John Wiely & Sons, Inc., 2002.

[65] Q. Liang and J. M. Mendel, "Equalization of nonlinear time-varying channels
using type-2 fuzzy adaptive filters.," IEEE Trans. Fuzzy Systems, vol. 8, no.5, pp.
551-563, Oct. 2000.

[66] W. Qiu and Y. Hua, "A GCD Method for Blind Channel Identification,"
Digital Signal Processing, pp. 199-205, 1997.

[67] E. d. Carvalho and D. T. M. Slock, "Blind and Semi-Blind FIR Multichannel
Estimation: (Global) Identifiability Conditions," IEEE Trans. Signal Processing, vol.
52, noA, pp. 1053-1064, Apr. 2004.

144

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle



[68] B. Jelonnek and K. Kammeyer, "Improved Methods for the Blind System
Identification Using Higher Order Statistics," IEEE Trans. Signal Processing, vol. 40,
no.l2, pp. 2947-2960, Dec. 1992.

[69] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control system design:
Prentice Hall, 2001.

[70] R. R. Bitmead, S. Y. Kung, B. D. O. Anderson, and T. Kailath, "Greatest
Common Divisors via Generalized Sylvester and Bezout Matrices," IEEE Trans.
Automat. Contr., vol. Ac-23, no.6, pp. 1043-1047, Dec. 1978.

[71] N. Karcanias and M. Mitrouli, "A Matrix Pencil Based Numberical Method
for the Computation of the GCD Polynomials," IEEE Trans. Automat. Contr., vol. 39,
no.5, pp. 977-981, May. 1994.

[72] J. H. Manton and Y. B. Hua, "A randomised algorithm for improving source
and channel estimates by exploiting the finite alphabet property," presented at
Asilomar Conference on Signals, Systems and Computers, 2000.

[73] S. S. Abeysekera and Y.Ye, "Zero Based Blind Equalizer Implementation
using Zero Forcing, MMSE and Decision Feedback Concepts," presented at Fifth
ICICS, Bangkok, Thailand, 2005.

[74] A. F. Naguib, N. Seshadri, and A. R. Calderbank, "Increasing Data Rate Over
Wireless Channels," IEEE Signal Processing Magazine, vol. 17, no.3, pp. 76 - 92,
May. 2000.

[75] T. J. A. Kobylarz, "Beyond 3G: Compound Wireless Services," Computer, vol.
37, no.9, pp. 23-28, Sep. 2004.

[76] H. Luo and Y. Li, "The application of blind channel identification techniques
to prestack seismic deconvolution," Proceedings of The IEEE, vol. 86, no. 10, pp.
2082 - 2089, Oct. 1998.

[77] S. Haykin, Adaptive Filter Theory, Fourth Ed., Prentice Hall, 2002.

[78] D. Boss, K. D. Kammeyer, and T. Petermann, "Is blind channel estimation
feasible in mobile communication systems? A study based on GSM," IEEE J Select.
Areas in Commum., vol. 16, no.8, pp. 1479 - 1492, Oct. 1998.

[79] D. B. Kilfoyle and A. B. Baggeroer, "The State of the Art in Underwater
Acoustic Telemetry," IEEE J Oceanic Eng, vol. 25, no.l, pp. 4-27, Jan. 2000.

145

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle



[80] J. Balakrishnan, "Bidirectional Decision Feedback Equalization and MIMO
Channel Training," Cornell University, Ph.D. Thesis. 2002.

[81] C. F. Edelmann, H. C. Song, S. kim, W. S. Hodgkiss, and W. A. Kuerman,
"Underwater Acoustic Communications Using Time Reversal,," IEEE J Oceanic Eng,
vol. 30, no. 4, pp. 852-864, Oct. 2005.

[82] M. Fink, "Time-Reversed Acoustics," Scientific American, no.12, pp. 91-97,
Nov. 1999.

[83] Y. B. Hua, "Fast Maximum Likelihood for Blind Identification of Multiple
FIR Channels," IEEE Trans. Signal Processing, vol. 44, no.3, pp. 661-672, Mar. 1996.

[84] Z. Fejzo and H. Lev-Ari, "Adaptive Laguerre-Lattice Filters," IEEE Trans.
Signal Processing, vol. 45, no.12, pp. 3006-3016, Dec. 1997.

[85] R. Merched and A. H. Sayed, "Order-Recursive RLS Laguerre Adaptive
Filtering," IEEE Trans. Signal Processing, vol. 48, no. 11, pp. 3000-3010, Nov. 2000.

[86] S. S. Abeysekera and Y. Ye, "Channel-Zero based Equalizers for SISO and
SIMO channels," Submitted to Signal Processing, 2007.

[87] R. Weber, F. Schulz, and 1. F. Bohme., "Blind Adaptive Equalization of
Underwater Acoustic Channels Using Second-Order Statistics," presented at IEEE
Oceans'02, 2002.

[88] M. Stojanovic, L. Freitag, and M. Johnson, "Channel-Estimation-Based
Adaptive Equalization of Underwater Acoustic Signals," presented at IEEE OCEANS
'99 MTS, 1999.

[89] T. C. Yang, "Differences Between Passive-Phase Conjugation and Decision
Feedback Equalizer for Underwater Acoustic Communications," IEEE J Oceanic
Eng., vol. 29, no.2, pp. 472-487, Apr. 2004.

[90] J. K. Tugnait and B. Huang, "On a Whitening Approach to Partial Channel
Estimation and Blind Equalization of FIR/IIR Multiple-Input Multiple-Output
Channels," IEEE Trans. Signal Processing, vol. 48, no.3, pp. 832-845, Mar. 2000.

[91] L. Freitag, "Modem Hardware and Applications," IEEE Asia Pacific
OCEANS'06, Singapore, Tutorial 2006.

146

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



[92] A. Richardson, WCDMA Design Handbook, Cambridge Unversity Press, 2005.

[93] S. Ariyavvisitakul, "A Decision Feedback Equalizer with Time-Reversal
Structure," IEEE J. Select. Areas Commum., vol. 10, no.3, pp. 599-613, Apr. 1992.

[94] J. K. Nelson, A. C. Singer, U. Madhow, and C. S. McGahey, "BAD:
Bidirectional Arbitrated Decision-Feedback Equalization," IEEE Trans. Commun.,
vol. 53, no.2, pp. 214-218, Feb. 2005.

[95] N. AI-Dhahir and J. M. Cioffi, "Fast Computation of Channel-Estimate Based
Equalizers in Packet Data Transmission," IEEE Trans. Signal Processing, vol. 43,
no.11, pp. 2462-2473, Nov. 1996.

[96] N. A1-Dhahir and 1. M. Cioffi, "MMSE Decision-Feedback Equalizers: Finite
Length Results," IEEE Trans. Inform. Theory, vol. 41, noA, pp. 961-975, Jul. 1995.

[97] Y. Li, "Pilot-Symbol-Aided Channel Estimation for OFDM in Wireless
Systems," IEEE Trans. Veh. Techno!., vol. 49, No.4. pp. 1207-1215, July, 2000.

147

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle


	pg001
	pg002
	pg003
	pg004
	pg005
	pg006
	pg007
	pg008
	pg009
	pg010
	pg011
	pg012
	pg013
	pg014
	pg015
	pg016
	pg017
	pg018
	pg019
	pg020
	pg021
	pg022
	pg023
	pg024
	pg025
	pg026
	pg027
	pg028
	pg029
	pg030
	pg031
	pg032
	pg033
	pg034
	pg035
	pg036
	pg037
	pg038
	pg039
	pg040
	pg041
	pg042
	pg043
	pg044
	pg045
	pg046
	pg047
	pg048
	pg049
	pg050
	pg051
	pg052
	pg053
	pg054
	pg055
	pg056
	pg057
	pg058
	pg059
	pg060
	pg061
	pg062
	pg063
	pg064
	pg065
	pg066
	pg067
	pg068
	pg069
	pg070
	pg071
	pg072
	pg073
	pg074
	pg075
	pg076
	pg077
	pg078
	pg079
	pg080
	pg081
	pg082
	pg083
	pg084
	pg085
	pg086
	pg087
	pg088
	pg089
	pg090
	pg091
	pg092
	pg093
	pg094
	pg095
	pg096
	pg097
	pg098
	pg099
	pg100
	pg101
	pg102
	pg103
	pg104
	pg105
	pg106
	pg107
	pg108
	pg109
	pg110
	pg111
	pg112
	pg113
	pg114
	pg115
	pg116
	pg117
	pg118
	pg119
	pg120
	pg121
	pg122
	pg123
	pg124
	pg125
	pg126
	pg127
	pg128
	pg129
	pg130
	pg131
	pg132
	pg133
	pg134
	pg135
	pg136
	pg137
	pg138
	pg139
	pg140
	pg141
	pg142
	pg143
	pg144
	pg145
	pg146
	pg147
	pg148
	pg149
	pg150
	pg151
	pg152
	pg153
	pg154
	pg155
	pg156
	pg157
	pg158
	pg159

