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Summary

This thesis studies the use of general equilibrium approach in valuing contingent

financial claims under jump-diffusion settings.

Jump-diffusion process is a mathematical technique aiming to account for discon­

tinuity in asset prices by introducing jumps. Equilibrium-based valuation is a

modeling perspective aiming to give an economic explanation for how asset prices

are determined. We model the basic variables as jump-diffusion processes and ap­

ply the equilibrium-based approach to discover pricing relationships. From there

we manage to derive a compact-structure jump-enhanced Black-Scholes formula

for a standard European-style call option. It is shown to aggregate all existing rel­

evant formulas into one and proven to hold a sensible interpretation from economic

standpoint. Some numerical examples and computation results are presented in

support of the formula's performance.

Following the theme, two application are examined. One is a mean-reversion jump­

diffusion short rate and bond option pricing model, the other is a two-country two­

good jump-diffusion model and foreign currency option pricing. These extensions

consolidate the argument that the equilibrium-based approach is effective.

v
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Natura non facit saltum -Nature does not jump.

Alfred Marshall

Principle of Economics

1890
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R

real interest rate

nominal interest rate

X t spot exchange rate

general mathematical symbols:

n state space

F filtration

lP', Qi, ffi. probability measure, probability
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vanance

covariance
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state price deflator

Radon-Nikodym derivative
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market price of risk

geometric Brownian motion
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stochastic differential equation

partial differential equation
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Black-Scholes
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Hyperbolic Absolute Risk Aversion

Capital Asset Pricing Model

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle



~1

Introduction

Option valuation is a major accomplishment of modern finance. It spurred the

development and widespread use of familiar financial options, such as calls and

puts in common assets, and exotic options. It also sparked a firestorm of research

by economic theorists and empiricists. The research in this area aims at a better

understanding of the stochastic evolution of financial markets through the formula­

tion of appropriate mathematical models, as well as at the development of efficient

new methodologies for pricing and hedging financial derivatives.

A precise description of the stochastic process followed by the underlying asset price

is a prerequisite to attain the option evaluation. The Brownian motion model for

stock price movements was incorporated into the option pricing theory by Black,

Scholes in their highly acclaimed 1973 paper [18], and hence named the Black­

Scholes model. Basically it assumes that the stock price is log-normally distributed,

while the stock returns in non-overlapping periods, defined as the changes in the

logarithm of stock prices, are identically, independently and normally distributed.

Over the decades, despite the popularity and longevity of the Black-Scholes model,

empirical biases and systematic mispricing have been widely recognized.

The current research is actively evolving in two directions. The first one involves

4
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the relaxation of some of the underlying assumptions with a view to developing

a theory that can account for realistic phenomena, e.g., with transaction costs.

The second direction focuses on the generalization of the price dynamics of the

traded assets to include broader classes of processes, such as the so-called Levy

processes and their extensions. The purpose of this dissertation is not to study

the general case of a Levy driving process but rather to concentrate on a specific

subclass of jump-diffusions. A jump-diffusion is a mixture of a continuous diffusion

process and a discrete jump process and the most widely used jump-diffusion is

the independent sum of a Brownian motion and a compensated Poisson process

(also called Poisson-Gaussian processes).

The condition of no-arbitrage among the various assets, namely the assumption

that an investor cannot make excess returns without suffering any risk, has an

elegant and useful characterization in the language of martingale theory. Under

"market completeness" assumptions, martingale techniques offer a powerful tool

for pricing and hedging derivatives, and provide a framework for the analysis of

numerous other financial applications. Assuming complete markets, an asset can

generally be priced by breaking into a sequence of history-contingent claims, evalu­

ating each component of that sequence with the relevant state discounter and then

adding up those values. This allows us to price any asset whose payoff could be

synthesized as a measurable function of the economy's state but is untenable in an

incomplete market context.

There is yet another distinct approach, one that does not require the assumption

that there are complete markets - the equilibrium-based approach. It spells out

fewer aspects of the economy and assumes fewer markets, but nevertheless derives

testable inter-temporal restrictions on prices and returns of different assets, and

also across those prices and returns and consumption allocations. In fact, it can

rely on the Euler Equations for a utility-maximizing agent and supply stringent

5
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restrictions without specifying a concrete general equilibrium model.

The goal of the dissertation is to examine the implications of the equilibrium-based

valuation on a jump-diffusion setting. In our model, the exogenous endowment or

the technology variable is specified to evolve as a jump-diffusion process, which

renders a market portfolio price following a jump-diffusion process and endoge­

nously determines the interest rate in the economy. An asset is valued in market

equilibrium on the basis of its characteristics as well as on the basis of preferences

and endowment of an agent/investor representing the capital market. Under some

canonical assumptions regarding the distribution of jump magnitude and the struc­

ture of the economy, we obtain a compact-structure jump-enhanced Black-Scholes

formula for standard European call options. It is shown to include all related ex­

isting formulas as special cases. More importantly, we substantiate the systematic

nature of jump risks and explore its relevance to option pricing. Some data and

simulation results are presented in support of the performance of the formula.

Jumps are also expected to be a satisfactory modeling device for interest rate

as stylized facts from the bond markets suggest that jump behavior is ubiqui­

tous. We thus extend the approach to bond option pricing to show that the gen­

eral equilibrium framework can accommodate stochastic interest rate. A feature

of mean-reversion is added to the basic jump-diffusion process, which entails a

mean-reverting jump-diffusion short rate process. This is quite interesting as both

jumps and mean-reversion have been perceived to be present and accounted for

in interest rate behavior. Jumps in the interest rate may result from information

surprises such as economic announcements that are different from expectations;

mean-reversion reflect a central tendency or government control. For the purpose

of analysis, Fourier inversion technique is used.

Given the ample empirical evidence that jumps are present in foreign exchange

6
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rates, we carry forward the theory from a single economy to an international econ­

omy. We use the general equilibrium synthesis where real, financial and monetary

aspects are integrated. Our two-country two-good jump-diffusion model and mod­

ified valuation formula of foreign currency option are to our knowledge new to the

literature.

The detailed content of the dissertation comprises six chapters. Chapter 1 briefly

outlines the problem. Chapter 2 presents an overview of the benchmark option pric­

ing methodologies and an exposition of the general equilibrium analytics. Chapter

3 introduces the jump processes and explains how jumps make the market incom­

plete. Chapter 4 provides a menu of option price formulas in jump-diffusion models

and demonstrates ours along with numerical assessment. Extension to stochastic

interest rate and resulting bond option pricing formulas are also offered. Chapter

5 deals with an international equilibrium model and develops a currency option

price formula. The last chapter concludes this treatise and mentions a few future

research directions.

7
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c::-2 _
General Pricing Mechanism

A derivative security (also called contingent claim) is a financial asset whose payoff

depends on the value of some underlying variables. The underlying assets may be

stocks, stock indices, foreign currencies, debt instruments, commodities and future

contracts. A (so-called plain vanilla) option gives the holder the right to buy or

sell the underlying asset for a strike or exercise price K (fixed when the option is

written) at a later time. If the holder has the right to buy the asset, the option is

a call, while a put gives the holder the right to sell the asset. The option is called

European if it can only be exercised at a certain date (the expiration or maturity

date T). An American option can be exercised at any time before the expiration

date.

A European call option offers the purchaser limited downside loss as given by the

premium paid combined with unlimited upside potential. The value of the option

at expiry is the payoff of the option. It is zero if exercising the option doesn't

provide a profit and positive otherwise. For a long position in a European call

option it can be written as CT = max (ST - K, 0), where K is the strike price and

ST is the spot price of the asset at maturity of the contract.

If the spot price is below the strike price for a call option then the option is said

8
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2.1 No-arbitrage Pricing

to be out-of-the-money. On the contrary, if the spot price is above the strike price

then the option is said to be in-the-money. If the strike price is equal to the spot

price, the option is at-the-money.

An option that has no chance of ever being exercised would be worthless; however,

if an option has a high probability of being exercised then one should expect to pay

more for it. A fundamental principle behind the option price prior to maturity is

that the higher the probability of an option being exercised, the higher will be its

price other things being equal. Therefore those factors influencing the likelihood

of an option being exercised will be determinants of the price to be paid for the

option.

2.1 No-arbitrage Pricing

There are basically two approaches to option pricing.

The first approach, following the path laid out by Black and Scholes (1973) [18],

is to infer from the replicating argument that the price of the derivative must

follow a certain equation of motion. This fundamental equation is either a partial

difference equation or a partial differential equation (PDE), depending on whether

the underlying asset price is modeled in discrete time or in continuous time. In

either case it describes how the arbitrage-free price of the derivative changes with

respect to the various "state variables" -typically, time and the prices of assets

that comprise the replicating portfolio. The solution gives price as a weighted

sum of the prices of the primary assets and thereby indicates precisely what the

replicating portfolio is and how it can be adjusted as the state variables evolve.

The second way to find a derivative's arbitrage-free price relies on the "no-something­

for-nothing" property of the market. Adopting Arrow-Debreu characterization of

assets as bundles of state-contingent receipts, we can view the market value of an

9
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2.1 No-arbitrage Pricing

2.1.1 PDE

10

(2.1)

(2.2)

Consider first the PDE approach. Assume a simple continuous process for the

underlying stock price St:

risk-free asset r. The above differential equation admits a solution for the stock

price in the form of a geometric Brownian motion(GBM).

where !-ts is the relative drift, or the instantaneous expected return on the stock q

is the dividend rate and o"s is the instantaneous volatility of the return. For ease

of notation, we assume that !-ts, o"s and q neither depend on calendar time t nor

on the current stock price St. B = {Bt } is a standard Brownian motion under the

physical probability measure JPl which captures the underlying uncertainty in this

market. Trading in this asset is unrestricted, i.e., no taxes, transaction costs or

other frictions. Likewise, investors can invest without restrictions at the constant

asset in an arbitrage-free market as simply the discounted sum of the values of

products of the cash amounts received in various states and times. Specifically,

this method makes use of equivalent martingale measures (EMM). The probability

distribution of the underlying stock is adjusted so that the discounted value of

the stock price becomes a martingale. A martingale has a remarkable property

that its expectation function is constant. One can then value the option Ct as the

discounted value of its terminal payoff CT: Ct = e-rrEiQl[CTIFtJ, where T == T - t

is the time to expiration, r is the risk-free interest rate, and Ft is the filtration

describing the history of the underlying process up to time t and Q is the adjusted

probability measure.
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2.1 No-arbitrage Pricing

The same source of uncertainty, i.e., the Brownian motion B, will affect both stock

and option prices. Suppose that we seek to value a European call option that pays

off CT at T. It would be possible to construct a hedge portfolio, which must earn

the risk-free rate of return in the absence of arbitrage opportunities. That is, we

can form a portfolio consisting of one call option and short nt shares of the stock.

The value of this portfolio at t is Vi = C t - ntSt - nqStt.

This portfolio is also self-financing, which means that for each period the accession

of a new asset has to be financed through the sale of some other assets. In this

case, the number of units of the stock nt has to be adjusted in each period in order

to maintain the portfolio Vi risk-free and self-financing. Assuming that the current

price Ct == C(St, r) of the security has suitable differentiability properties, one can

apply Ito's lemma [44] to get

dVi = dCt - ~dSt - ntqStdt

[aCt ( ) 1 2 2 ] )= fJt + /1s - q StCS + 2CTSSt Css dt + CTsStCsdBt - ntSt(/1sdt + CTsdBt

where Cs denotes the partial derivative of Ct with respect to St and Css denotes

the second order partial derivative.

We can choose nt = Cs to knock out the dBt term so that the portfolio grows at

a deterministic rate.

dVi = rdt
Vi

Therefore we have the following partial differential equation

(2.3)

Append the above PDE to the boundary conditions and we can obtain the unique

solution C(St, r). There are two boundary conditions for a European call option.

The first one, C(ST,O) = max (ST - K,O) comes from the fact that a call gives its

holder the right but not the obligation to buy the underlying stock at time T. The

11
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The risk-neutral measure Q is also termed the equivalent martingale measure(EMM).

Accordingly, this pricing method is known as martingale pricing technique. In a

more formal setting, Harrison and Kreps (1979) [31] show that for a security market

model to be sensible from an economic standpoint, the existence of a risk-neutral

measure is equal to the absence of arbitrage. Moreover, Harrison and Pliska (1981)

[32] recognize that the martingale measure is unique if and only if the market is

complete.

2.1 No-arbitrage Pricing

second one, 0(0, T) = 0 holds because zero is an absorbing barrier of St as defined

in equation (2.1). Once St becomes zero, it stays there so that the price of the

option contract must be zero.

2.1.2 EMM

It is noteworthy that the instantaneous expected return of the underlying stock /18

does not appear in (2.3). In other words, the risk-preferences of individual investors

are never relevant for solving the partial differential equation. Therefore all people,

risk-avoiders and risk-lovers, should place the same value on the derivative security,

and thus the derivative can be priced as if all agents were risk-neutral. So a

derivative can be valued by taking the expectation of the option payoff at maturity

using the risk-neutral probability density function of the underlying asset, and then

discounting this expected value back to the present at the risk-free rate.

(2.4)

To apply this approach, we need to find the risk-neutral measure Q which makes the

discounted stock prices !h = (e-rt St + J~ e-ruSuqdu) (plus accumulated dividends

if any) a martingale

12
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(2.5)

2.1 No-arbitrage Pricing

The Girsanov theorem provides the general method to convert a probability mea­

sure JIll into its equivalent martingale measure [54].

IP' 1 2Q(A) = E [exp (-<pBT - 2<P T)IA ] VA EFT

The new measure Q is called "equivalent" since it assigns positive probabilities to

the same sets as the original probability measure ]pl. Although the two measures

are different, with Radon-Nikodym derivative 7]t we can recover one measure from

the other.

13

_ dQ 1 2
7]t = dJPllFt = exp( -<pBt - 2<P t) t E [0, T] (2.6)

7] is a JIll-martingale with initial value 7]0 = 1. Combining this with the fact that

7]T > O(JIll - a.s.) enables us to conclude that Q is a probability measure and

equivalent to ]pl. Under Q measure Et = Bt + <pt; Eo = 0 is a new standard

Brownian motion. <p = ~ is termed the market price of risk (or the Sharpeas

ratio) as it measures the reward (i.e., the risk premium) per unit risk. The stock

process under measure Q has a drift rate equal to r but the diffusion term is

unaffected.

dSt -
St = (r - q)dt + CTsdBt (2.7)

(2.8)

(2.9)

Because 7]T depends on the market price of risk, the measure Q can be interpreted

as a risk-adjusted probability measure.

St = E? [e-nsT + iT e-r(U-t)SuqdU]

This expression shows that the asset price equals the expected value of the dis­

counted dividends augmented by the expected value of the discounted terminal

price under Q. This formula can be restated in terms of expectations with respect

to ]pl. Indeed, changing the measure yields the alternative representation

St = Et [~t'TST + iT ~t,uSuqdU]
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with h as defined above.

2.1 No-arbitrage Pricing 14

(2.10)

(2.11)

In(StiK) + (r - q)T CYVT
----'----'-----'-='------'-+--

CYVT 2

jh 1 x 2

-exp(--)dx
-00 ..j2ir 2

h

<p(h) =

where

<PC) is a cumulative standard normal distribution. It has been agreed upon that

(St, T; r, q, CYs, K) are the six fundamental direct determinants of option value.

The same set of variables matter for both calls and puts, albeit not always in the

same way. Similar arguments lead to the value of a European put option,

where ~t,T == CTT"lT/"lt and E[ ] without superscript means it is under the original

market measure JP. The quantity ~u == ~o,u is known as the state price deflator,

which captures the market wide pricing information. (The terms state price de­

flator, state price density, state discount factor, pricing kernel are synonymous.)

The Arrow-Debreu price at time 0 of a dollar received at date u in state s equals

~udJP(s). Conditional Arrow-Debreu price at time t for cash flows received at time

u are given by ~t,udJP(s). Arrow-Debreu prices are also known as state prices. The

present value of the underlying asset is the sum of cash flows multiplied by the

state prices.

With complete market, the PDE and the EMM approaches give the same results.

The following is the celebrated Black-Scholes formula solved for the price at time

t of a European call option with strike price K and maturity date T written on a

stock St paying a constant dividend at rate q.
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2.2 Equilibrium Framework

In some versions of the formula, it is assumed that stock does not pay dividend

and the BS formula is the same as the above one except for q = o. Allowing

cash dividend payment requires only a minor modification which is to subtract the

present value of dividends from stock price or to use e-qrSt instead of St. Here

we present a general formula but in later chapters q mayor may not be included

depending on the context.

2.2 Equilibrium Framework

A critical aspect of the models described in the first section is the ability to hedge all

risks with the existing menu of assets. This property is called market completeness.

When the underlying source of risk consists of a d-dimensional Brownian motion,

market completeness can be ensured if d + 1 securities, namely d risky assets and

one locally riskless assets, are freely traded. However when additional risks are

incorporated, markets are often incomplete.

Incomplete markets have generally more than one equivalent martingale measure.

It is necessary to select an appropriate one among several possible measures for

option pricing. The equilibrium approach advocates selecting the equivalent mar­

tingale measure by giving a description of a general equilibrium model. Pioneered

by Lucas [47] and Cox et al. [23] this approach rests on a notion that the econ­

omy, in the aggregate, behaves like a single well-defined agent. Analysis of this

representative agent's behavior combined with market-clearing conditions lead to

equilibrium values for the interest rate, the market price of risk, and the prices of

primary and derivative assets.

15
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2.2 Equilibrium Framework

2.2.1 Structure of the Economy

16

(2.14)

(2.12)

(2.13)

A time zero deposit of Ao will grow to

dAt
At = rdt.

at t.

Let us sketch a continuous time version of the Lucas pure exchange economy model.

The economy has a finite time horizon [0, T]: all processes described below are un­

derstood to "live" on that interval. The fundamental quantity, the single infinitely­

divisible good, like crops falling from the productive "tree", is endowed according

to an I to process

Financial markets are composed of primary and derivative assets. Primary assets

include n risky stocks and one riskless asset. The riskless asset is in zero net supply

and pays annually interest rate at the rate r. We may refer to this asset as the

bank account. Let A = {At} denote the price process of the bank account. The

increment to the balance of the account over an infinitesimal interval [t, t + dt] is

known at time t to be

where B = {Bt } is a n-dimensional Brownian motion representing n exogenous

shocks to the economy at time t. The infinite state space n is in this case the set

of all paths of the Brownian motion B. /10 is a progressively measurable process

representing the expected consumption growth rate and (Jo is a d-dimension vec­

tor of progressively measurable processes capturing the volatility exposures of the

consumption growth rate with respect to the various sources of risk.
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(2.15)

(2.16)

o
o

dS; + D~dt _ id (i)TdBSi - f.1t t + (Tt t·
t

Each stock is in unit supply (one share outstanding) and pays dividends. Stock i

pays D~ per unit time, D t = (Di, . .. ,Df)T and

2.2 Equilibrium Framework

The price of n type of stocks are modeled as general Ito processes. The price

process Si = {S;} of the i-th risky asset is assumed to be of the form

with (/-lP,oP) progressively measurable. Assuming that dividends are the only

source of consumption mandates the consistency condition l.:~=1 D~ = Ot.

where

Sl D1 Sl 0t t t

S2 D2 0 S2
St=

t
,Dt = t

,diag(St) =
t

sn Dn 0 0t t

f.1i 1 1 1(Tlt (T2t (Tdt

f.1; 2 2 2
S S (Tlt (T2t (Tdt

f.1t = (Tt =

f.1f (TIt (T~t (Tat

The price dynamics of all the n risky assets can be written compactly in vector

We assume that the process {f.1i : i = 1, ... , n} and {(T~ : z = 1, ... , d; i = 1, ... , n}

are "well-behaved", e.g. generating prices with finite variances. The economic

interpretation of f.1r is the expected rate of return per time period over the next
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2.2 Equilibrium Framework

instant. The matrix O"f captures the sensitivity of the prices to the exogenous

shocks.

Derivative assets are III zero net supply and consist of k securities with payoff

(fj, Yf) : j = 1, ... , k, where P is a continuous, progressively measurable payment

and Yf is a terminal, measurable cash flow. The price dynamics of all the k

derivative assets V t = (v?, v;,2, ... ,v;,k)T are conjectured to satisfy Ito processes.

18

diag(Vt)(ILYdt + O"YdBt )

YT

(2.17)

with progressively measurable coefficient matrix {(ILY, O"n :j = 1, ... ,k}.

All assets, primary and derivatives, are freely traded at the relevant prices. These

prices, as well as the rate of interest, are endogenous in equilibrium. No specific

restrictions are placed on n, d and k. Hence n + k < d is an admissible market

structure.

The economy has a representative agent who maximizes welfare by consuming and

investing in the assets available. The consumption space is the space of progres­

sively measurable, nonnegative processes. Preferences over consumption processes,

denoted by c == {Ct : t E [0, T]}, are represented by the von Neumann-Morgensten

utility

U(c) == E[lT

e-OtU(Ct)dtj (2.18)

where U(Ct) is the utility of consumption at time t. e is the time preference rate

or subjective discount rate of the agent. The utility function is assumed to be

strictly increasing and concave in consumption and to satisfy the limiting (Inada)

conditions limc-+o Uc(Ct) = 00, limc- Hx) Uc(Ct) = °for all t E [0, T], where Uc is the

derivative with respect to consumption.

Investment policies are progressively measurable processes denoted by Jr == (Jrs , JrV)

where Jrs represents the vector of fractions of wealth invested in stocks and Jrv the
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(2.19)

2.2 Equilibrium Framework

vector of fractions invested derivatives. The complement 1 - (1fS+ 1fV)T1 is the

fraction of wealth invested in the risk-free asset (1 is a vector of ones with suitable

dimensions). For a given consumption-portfolio policy (c,1f) wealth Wevolves

according to the dynamic budget constraint.

dWt = (rWt - Ct)dt + Wt(1ff)T[(JLf - r1)dt + afdBt]

+ Wt(1fn T[(JLi dt - r1)dt + aidBt]

subject to some initial condition Wo and nonnegativity condition Wt ;::: O. The

representative agent maximize over policies (c, 1f) satisfying the constraint. Policies

that solve this maximization problem are said to be optimal for U at the given

price process (8, V, r).

2.2.2 Equilibrium Conditions

A competitive rational-expectation equilibrium for an economy is a collection of

price processes {(8: JLs,aS);(V: JLv,aV),r} and consumption-portfolio policies

(c, 1f) such that

• given the asset prices, an agent has chosen an optimal trading strategy ac­

cording to her preferences and endowments, i.e. (c, 1f) is optimal for U at

the price process (S, V, r) .

• markets clear, i.e., total consumption equal to total production, Ct = bt , and

total demand equal total supply for each asset, W1fs = 1, W1fv = 0 and

W[l - (1fs + 1fV)T1] = O.

Under suitable conditions, standard arguments can be invoked to show that the op­

timal consumption satisfies the first-order condition e-etUc(Ct) = a~t where Uc(Ct)

denotes the first order derivative of U(Ct) with respect to Ct, a is a constant and

~t is the relevant state price density implied by the given price process (8, V, r).

19
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(2.23)

(2.22)

(2.21)

(2.20)

sl EdiT ~t,uDtdu]

~j (1, Y) = Ed~t,TYf + iT ~t,uf~du]

An application of Ito's lemma shows that the dynamics of the discounted prices is

Since ( is a martingale by the property of a state price deflator, we must have

f.1~ = -r, i.e., the relative drift of a state price deflator process is equal to the

negative of the interest rate.

for some relative drift f.1~ and some volatility vector (T~. Define (t = ~tAt = ~tert.

By Ito's lemma,

Let us write the dynamics of a state price deflator as

If Q is a risk-neutral measure, the discounted stock prices plus accumulated divi­

dends, if any, are Q-martingales.

The equilibrium state price density is therefore equal to the marginal rate of substi­

tution between consumptions at time t and O. The same arguments that were used

in prior sections can be applied in this context to establish the price representations

Equilibrium in the goods market then gives the condition e-OtUc ( 8t ) = a~t. Since

~o = 1 it must be that a = Uc (8o) and therefore

2.2 Equilibrium Framework
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If discounted prices are to be Q-martingales, the drift must be zero, so

21

(2.28)

(2.27)

(2.26)

(2.25)

(2.24)

Let us now look at the relation between the market price of risk and the state

price deflator. Suppose cP is a market price of risk and rtt defines the associated

risk-neutral measure. We know that under a regularity condition, the process

~ = {~t} defined by

~t = rtte- rt = exp ( -rt - ~ it IIcPul1 2du -l\cPuFdBu)

risk process.

From these arguments it follows that the existence of a solution p. to this system of

equations is a necessary condition for the existence of a risk-neutral measure. Note

that the system has n equations (one for each asset) in d unknowns, cPl,·.·, cPd

(one for each exogenous shock). The process cP = {cP } is called a market price of
- -t

is then a standard Brownian motion under the Q measure. Substituting dBt =

dBt - cPtdt into (2.23), we obtain

The change of measure from lP to Q is captured by the random variable, rtt =

Et[dQ/dJED]. Then it follows from the Martingale Representation Theorem [54],

that a d-dimensional process cPt exists such that

2.2 Equilibrium Framework

or, equivalently (using rto = E[dQ/dlP] = 1),

rtt = exp ( -~ it IIcPul12du - it (cPu) TdBu)

where II . II represents a n-dimensional Euclidean norm.

According to Girsanov's Theorem [54], the process B defined by
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We can then equally easily work with the pricing
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(2.32)

(2.31)

(2.30)

(2.29)

de
~/ = -[R(t)dt + 8(t)TdBt J

is a state price deflator. Since dTJt = -TJt(4Jt)TdBt, an application of Ito's lemma

implies that

2.2 Equilibrium Framework

Back to the real economy described above, the equilibrium (real) interest rate

r = {rt} and the (real) market price of risk 4J = {4Jt} can be obtained by applying

As we have just shown, the relative drift of a state price deflator equals the negative

of the short term interest rate. Now we see that the volatility vector of a state

price deflator equals the negative of a market price of risk.

The nominal riskfree bond price and nominal interest rate are obtained by eval­

uating equation (2.31) with a payoff function of unity. It can also be shown that

the nominal state price deflator is characterized by the pair of the nominal interest

rate R(t) and the market price for nominal risk 8(t).

Usually we have implicitly assumed that St is the real value of the asset, i.e.,

deflated by consumer prices. However when analyzing foreign exchange rate or

currency derivatives, monetary factors cannot be omitted. In that case the nominal

state price deflator is needed. Consider the nominal pricing equation for an asset

with a payoff that depends on a future nominal asset value. Inflation enters the

pricing equation exogenously as a numeraire. Suppose we are working with a

nominal price Pt and that It is the level of consumer price. Then the nominal state

price deflator:
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consumption.

2.2 Equilibrium Framework 23

(2.33)

(2.34)

Ito's lemma to both sides of equation (2.20). This yields

e+ i(bt)J-t~ - ti(bt)c;(bt)110"~112

i(bt)O"f

is the relative risk aversion coefficient and

Second, the multiplier of J-tlj is i, the relative risk aversion of the representative

agent, which is positive. Hence, there is a positive relation between the expected

growth in aggregate consumption and the equilibrium interest rate. This can be

explained as follows: we expect higher future consumption and hence lower future

marginal utility, so postponed payments due to saving have lower value. Conse­

quently, a higher return on saving is needed to maintain market clearing.

We can observe the following relations:

First, there is a positive relation between the discount rate eand the equilibrium

interest rate r. The intuition behind this is that when the agent of the economy is

impatient and has a high demand for current consumption, the equilibrium interest

rate must be high in order to encourage the agent to save now and postpone

where

Finally, there is a negative relation between the variance of aggregate consumption

O"Ij(O"Ij)T and interest rate r. Indeed this is true as long as the representative agent

has decreasing absolute risk aversion which makes Uccc(Ct) positive. The intuition

is that the greater the uncertainty about future consumption, the more will the

is the relative prudence coefficient.
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2.2 Equilibrium Framework

agent appreciate the sure payments from the risk-free asset and hence the lower a

return is necessary to clear the market for borrowing and lending.

Explicit expressions for the interest rate and security prices are impossible without

specifying the utility function. In the literature, the momentary utility function

for a representative agent often takes the following iso-elastic form.

(2.35)

where I > 0 and I =I- 1. When I = 1 it becomes the logarithmic utility. I is the

Arrow-Pratte coefficient measuring the relative risk aversion. This utility function,

also called power law utility, exhibits constant relative risk aversion (CRRA). It

exhibits several interesting properties that deserve examination. First, it is com­

patible with risk neutrality I = 0 and also includes I = 1. Second, with this

function form, the risk premiums predicted by the model are resistant to changes

in wealth levels and in the size of the economy. Third, to the extent that economic

agents share the same utility function, we can aggregate individual choices, even

if agents have different levels of wealth.

With CRRA, the economy has a flat term structure if the drift and variance rates

of endowment are constant.

1
r e+ IP" - 2

'
(, + 1)((7")2

¢ ,ci

2.2.3 Consumption CAPM

To facilitate the exposition of the consequent Consumption Capital Asset Pricing

Model, let us first consider a discrete-time version of the above equilibrium pricing

model.

The representative wants to maximize E[L:~ rptU(Ct)], where rp is the discount rate

24
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(2.36)

(2.37)

(2.38)

(2.39)
Cov[Uc(Ct+d, R~+I]

Et[Uc(Ct)]

T _ 1 []
~t = - = Et ET

R'13

T-t j

S; = EdI)II Et+s)D:+j].
j=1 s=1

in discrete setting. The Euler equation for the price of an asset is

2.2 Equilibrium Framework

EHI = epUc(Ct+l)/Uc(Ct) is a one-period state price deflator for converting a time

t + 1 payoff into time t value. By repeated substitution we can get

Making use of E[xy] = E[x]E[y]+Cov[x, y] to decompose the product, this becomes

For a T-period risk-free pure discount bond which has only a terminal payoff D T =

1, D s = 0 for 5 =1= T, then its price at time t is

Rearrange it into

where R'13 =1 + r represents the gross rate of return on the risk-free bond. Let

R~+1 == (S;+1 +D:+1)/ S: denote the gross rate ofreturn on the asset between t and

t + 1. Substitute Et and R:+1 into (2.36), we get

This equation is known as Consumption-CAPM. It indicates that all assets have

an expected return to the risk-free return plus a risk adjustment which depends

on the covariance of its return with marginal rate of consumption. Since Uc ( Ct) is

high when Ct is low, stock with a high return when Ct is low has a low expected

return: it offers insurance against consumption fluctuations.
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(2.40)

(2.41)Et [dSt ] = rdt _ Cov [d~t d~~] .
St ~t St

i [dS~] D~
fJs = Et S1 + S1 dt

2.2 Equilibrium Framework

~tS: = Et[l T

~uD~du] + Et[l T

~udS~]

= Et[l:t ~uD~du] + Ed~t+llS:+ll]

~ 6D~b. + Et[~tS: + (~t+llS~+ll - ~tS~)]

Use this to replace the right hand side of (2.39) we have

Apply this to a market portfolio which is perfectly correlated with the state price

deflator, we have

For the continuous time, the instantaneous return on a risky asset

which is exact as b. -----t 0 and hence

where

This is known as the security market line, which highlights the general measure of

the systematic risk of a risky asset Si in a consumption model.

We eventually get the important relationship

Note that rdt = -Et[d6/~t]. The expected instantaneous return on a risky asset

is the sum of capital gain and the dividend.
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2.2 Equilibrium Framework

which is the continuous time analogue of (2.39).

The reason for presenting the CAPM/C-CAPM here is to link them to our analy­

sis. On one hand, our representative agent paradigm can lead to the same secu­

rity market line as the financial portfolio theory does. On the other hand, the

CAPM/C-CAPM is an equilibrium model to price financial assets of any kind

even if standard implementation is usually limited to common stocks. CAPM and

Black-Scholes option pricing are often presented in so different contexts that they

seem to belong to disparate sections of finance or economics. However, we have to

bear in mind that CAPM is very general, concerning stocks, bonds and derivative

assets, including puts and calls. Option pricing is less special than it appears if we

perceive that common stocks are call options written on the assets of the firm and

corporate bonds are equivalent to default-free bonds plus a short position in puts.

Moreover, in such instances as jump-diffusion models, Black-Scholes option pricing

loses its predominance and CAPM/C-CAPM provides a plausible mechanism.

The valuation formulas (2.31) issued from this general equilibrium analysis have

the same structure as those prevailing in the complete market settings of earlier

sections. In light of this structural property, the representative agent model is

said to have effectively complete markets. We will soon see that the formulas are

especially useful in settings with systematic jump risks where not all the risks can

be hedged away. In those instances pricing based on the representative paradigm

provides a simple and often attractive approach to valuation.

27
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6::3--------------
Jump-Diffusion Models

Documentation from various empirical studies shows that the Black-Scholes-type

geometric Brownian motion (GBM) models are inadequate, both in relation to

their description power as well as for the systematic mispricing that they may

induce. The contributions of the literature to the present volume deal with various

generalizations of the basic GBM. Here we focus on the fact that returns of various

asset prices and interest rates may exhibit a jumping behavior. We thus study

possible superpositions of jump and diffusion processes. Jump-diffusion models

have some intuitive appeal in that they let prices change continuously most of the

time, but they also take into account the fact that from time to time larger jumps

may occur that cannot be adequately modeled by pure diffusion processes.

28
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3.1 Literature Survey

3.1 Literature Survey

Among the empirical studies documenting discontinuity in equity prices and inter­

est rates, one may quote Ball and Torus (1985) [9], Jorion (1985) [43], Andersen

et al. (1998) [6] and Jiang (1998) [40] etc. Jump effects tend to be prevalent in

regulated intervention environments such as the interest rate and foreign exchange

markets. Energy prices and electricity prices is another common case, which are

known for abrupt and unanticipated large changes caused by supply shocks such

as outage, generating or transmission constraints. As Merton [49] emphasizes, rou­

tine trading information releases are well depicted by smooth changes yet bursts

of information are often reflected in price behavior by jumps.

Jumps play two important related roles in modeling: one is to provide time series

data a better fit and the other is to afford greater flexibility in matching deriva­

tive prices-i.e. in modeling dynamics under an equivalent martingale measure.

Equivalence of physical and martingale measures require that both admit jumps

if either does yet their frequency and magnitudes can be quite different under the

two measures. Jump-diffusion processes can flexibly accommodate a wide range of

skewness and kurtosis, of which raw statistical evidence is strongly suggestive [28].

Kurtosis can substantially affect the pricing of derivative securities.

Press (1976) [55] noted long ago that the analytical characteristics of a Poisson

mixture of normal distributions agree with the properties of the empirical distri­

butions of security prices. To augment the Brownian motion, Press introduces

the first jump-diffusion model. On the other hand, a first approach extending the

Black-Scholes option pricing formula with inclusion of jumps is that of Merton

(1976) [49]. However when the underlying stock follows a jump-diffusion process

and transactions are solely possible in the stock and the risk-free asset, options will

have to elude arbitrage-oriented pricing. That stock weights eliminating the linear

29
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3.1 Literature Survey

diffusion risk cannot simultaneously remove the non-linear jump risk, vice versa,

because the option price is a convex function of the stock price. A non-hedgeable

residual risk remains, which one is only able to eliminate via portfolio strategies

under very restrictive assumptions. See, [24]' [37], [42], [38], [48].

Merton [49] makes an assumption that the jump component describes the evolution

of returns for an individual asset and is uncorrelated with returns on the market

portfolio. In another word, the jump risk is non-systematic and hence will not be

priced in equilibrium. So one can follow Black and Scholes [18] and equate the

option value to the expected value of its payoff discounted at the risk-free rate.

However, this hypothesis was later criticized by showing that such an assumption

is equivalent to the existence of a non-jump market portfolio containing the stock

[17]. Contradictorily, empirical evidence of discontinuities in the daily and weekly

price changes for diversified equity portfolios can be found in [37], [9], [43] and

[58]. Kim (1994) [45] also documented that jumps in stock returns are indeed

systematic. Moreover, Merton's assumption is obviously violated if the asset under

consideration is the market portfolio itself [7],

An alternative to circumvent the problem is to assume that the market, if not al­

ready complete, can be made complete by the introduction of additional contracts.

The non-uniqueness in the pricing problem then translates into the freedom that

one has in the specification of these new contracts. After completion of the market,

prices and hedging strategies can be determined uniquely. See e.g., [59], [11]' [50],

[39],

[56], [25], and [61]. These models have the advantage over Merton's model that

the absence of arbitrage ensures a unique price of the option without making any

assumptions about a non-priced jump risk. The drawbacks of these models are:

1. The jump amplitude has to fulfill certain requirements: either it has to be

a finite discrete random variable or it has to be a predictable process. In

30
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3.1 Literature Survey

this way the jumps may be controlled to some extent. In fact, if the jump

amplitude is an independent absolute continuous random variable, the market

will still be incomplete.

2. The stochastic evolution of a continuum of other assets has to be specified,

which complicates the whole analysis.

In a more general case, the risk associated with the jump component is systematic

and non-diversifiable and then general equilibrium arguments is called for. See [35],

[7], [51], [14], [1], [4]' and [52]. Like in the Arrow-Debreu tradition, the security

prices and returns are shown to arise from the interactions of profit maximizing

firms and utility maximizing households. The advantage of this approach is that

one can derive the Arrow-Debreu price of "jump insurance" and construct the

asset price process under the adjusted probability measure, which is fundamental

to option valuation.

When it comes to solving the continuous-time portfolio problem in an equilibrium

context, there are two parallel methods. One is the stochastic control approach

[21] [23], based on standard results of stochastic control theory. The optimal

solution is computed by solving the so-called Hamilton-Jacobi-Bellman Equation

in two steps. The first step consists of searching for the optimal portfolio strategy

as a function of the (unknown) optimal expected utility. Inserting this portfolio

and consumption strategy into the Hamilton-Jacobi-Bellman Equation results in

a non-linear partial differential equation, whose solution forms the second step.

With additional assumption like a HARA (hyperbolic absolute risk aversion) utility

function, there are closed form solutions for this problem. In general, however, it

is very hard to get explicit solutions to the Hamilton-Jacobi-Bellman Equation.

Bates (1988) [13] and Ahn (1992) [1] etc. have used this method in a jump-diffusion

setting and obtained option pricing results relying on the indirect utility of wealth

function. The other method, the Euler equation approach, is much simpler but

31
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3.2 Jump Processes

comparably useful and essentially accordable with the stochastic control theory.

This method makes it possible to derive the fundamental valuation equation for

contingent claims, interest rate sensitive or foreign exchange sensitive or otherwise,

with just first-order conditions [47].

3.2 Jump Processes

In this section we review basic definitions and results needed for the study of

jump-diffusion models limiting ourselves to univariate point processes.

3.2.1 Poisson Process

A point process is intended to describe events that occur randomly over time. It

can be represented as a sequence of nonnegative random variables 0 = To < T1 <

T2 < 00 where the generic Tn is the n-th instant of occurrence of an event. The

process may equivalently be represented via its associated counting process

(3.1)

which counts the number of events up to and including time t. The non-explosion

condition is Nt < 00 for t :2: O.

Definition 1. A point process Nt adapted to a filtration Ft defined on some

probability space (D, F, JP) is called a Poisson process if

1. No = 0;

2. Nt is a process with independent increments;

3. Nt - N s is a Poisson random variable with mean As,t.

32
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3.2 Jump Processes

Usually one assume As,t = J: Audu for a deterministic function At, called the in­

tensity of the Poisson process Nt. It can be seen that if At is a constant A, then

Tn+1 - Tn are Li.d., exponential random variables with parameter A. A natural

interpretation of the intensity is:

• the probability of one jump in an interval of length 6 is A6 + 0(6);

• the probability of two or more jumps in an interval of length 6 is 0(6);

• the number of jumps in non-overlapping intervals are independent.

Notice that these parallel the characterizations of a Brownian motion process: both

are processes with independent increments; the increments of a Brownian motion

are normally distributed while those of a Poisson process are Poisson distributed.

The Brownian motion is the natural prototype for the continuous component of

asset price changes whereas the Poisson process is the basic building block for

the discontinuous component. On the other hand, while the Brownian motion

is itself a martingale, a Poisson process process as such is not. It becomes a

martingale if one subtracts from Nt the process given by its mean. Indeed, since

E[Nt - NslFsJ = E[J: AudulFsJ,

33

(3.2)

is a Frmartingale and sometimes called a compensated Poisson process.

Let Nt be a Poisson process with constant intensity A. The infinitesimal change in

N over dt is:

{

0, with probability 1 - Adt;
dNt =

1, with probability Adt .
(3.3)

Given that the Poisson event occurs (i.e., some important information on the stock

arrives), there is a "drawing" from a distribution to determine the impact of this
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3.2 Jump Processes

yn = 1 if n = 0; ynt = rr7~1 Yj for n 2 1 where Yj are Li.d. and n is the number

of jumps, Poisson distributed with parameter Adt.

34

(3.5)

(3.4)
dSt- = (fJ,s - q - Ak)dt + crsdBt + (Y - l)dNt
St-

where fJ,s is the instantaneous expected return on the stock, cr~ is the instantaneous

variance of the return, conditional on no occurrence of price jumps. The B, Nand

Yare independent processes. From this stochastic differential equation, St can be

explicitly expressed as

It is standard to assume Yjs have independent lognormal distribution, which in­

volves a generic jump whose magnitude fluctuates between minus one and infinity,

thus allowing the generation of both downward and upward jumps. There are a

number of other candidate distributions: e.g., the uniform, truncated lognormals,

double exponential, a mixture of Beta and Pareto distributions. The choice of

the distribution for the jump size has important implication for the kurtosis and

skewness of the return process. The lognormal distribution is able to reproduce

the leptokurtic feature of the stock return distribution and the "volatility smile"

of option prices. It also leads to closed-form analytical solutions for option prices

and has many desirable properties.

When the jump amplitude is lognormally distributed, i.e. Yj = In Yj rv N(fJ,y, cr;).

information on the stock price. In other words, if St is the stock price at time

t and Y is the random variable description of this drawing, then, neglecting the

continuous part, SHdt will be StY, given that one such jump occurs. The addition

of jump process will increase the security price by a proportional amount k E[Y­

1]. Thus a so-called jump-diffusion model is in this thesis always encapsulated by

the equation:
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(3.8)

(3.9)

(3.7)

(3.6)

3.2 Jump Processes

Under the "risk-neutral" measure Q the dynamics of the stock price are

Consequently, the mean percentage jump in the endowment flow is k = eJ.!y+~a~ -1.

Consider a generic jump-diffusion model for a stock price.

3.2.2 Change of Measure for Jumps

where changing the measure from JID to Q we introduce a new standard Brownian

motion Bt according to

It can be represented by

rJt = exp [-it1~ [h(u, x) - l]JID(u, dx )Audu + it In h(u, Xu)dNu]

= exp [-it ElP'[h(u, Xu) - 1lFu]Audu + it In h(u, Xu)dNu]

with (Pt as the market price of diffusion risk. For the jump risk component, the

intensity changes from At to A?, and the distribution of the jump size changes from

JID(dx) to Q(dx). By the Girsanov theorem for point processes [27], the change of

measure from JID to Q is given by the Radon-Nikodym derivative

where N is a Poisson process with an intensity under JID denoted dy At. The sizes X

of the different jumps are assumed to be independent and identically distributed.

The mean jump size under JID is equal to E[X] == ElP'[X] and -1 is a lower bound.
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3.2 Jump Processes 36

(3.12)

(3.11)

(3.10)

h(t,x)
Q(t, dx) = E[h(t, Xt)IFtt(t, dx).

dTJ 100

_t = _ [h(t, x) - l]JED(t, dX)Atdt + [h(t, Xt) - l]dNt
TJt- -1

dTJt = (ea+bYt-bl-'y-~b2lT~ _ l)dNt _ (ea - l)Adt
TJt-

where h is some function of time t and of the jump size X that describes the measure

transform, similar to the term 1J in case of a diffusion process which captures the

change in the drift. The stochastic differential equation for TJt is

and the distribution of the jump size under Q is given by

From this expression we see that TJt is indeed a JED-martingale. Given this measure

transform, the new intensity of the Poisson process under Q is given by

We can have one such Radon-Nikodym derivative:

For instance, if the jump amplitude is lognormally distributed with mean fLy and

standard deviation rJy and so the mean percentage jump in the stock price is

k = exp (fLy + rJ;/2) - 1. That is,

dSt
St- = (fLs - kA)dt + rJsdBt + (eY

- l)dNt

where a and b are predictable processes and where ~o=1. By construction, the

process TJt, 0 ~ t ~ T is a martingale of mean one so that the measure Q thus

defined is indeed a probability measure. Under Q the jump arrival intensity XQ!

and the mean jump size kQ change from their counterparts A and k in the reference

measure JED to
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3.3 Pricing Relations in Presence of Jumps

3.3.1 Incomplete Market

37

(3.14)

(3.13)

(3.15)

fls = r + O"scP + EI!'[X]'x'I!' - EiQl[X],X.iQl

= r + O"scP +[~ x[,X.I!'lP'(dx) - ,X.iQlQ(dx)]

dCt 0 ) I 0 ) 2- = flodt + f (Xl dNt + f (X2 dNtCt -

The expected return on the stock is given by

3.3 Pricing Relations in Presence of Jumps

where dNl = 1 (i = 1,2) if a jump of size Xi occurs and zero, otherwise. The price

of a derivative contract C is a function of the stock price and the change in its

value is given by

On the other hand there is one market price of risk for each possible jump size. This

follows from the fact that to be hedged against jump risk, we need one instrument

for each possible jump size. To see this consider the following simple example

where the stock is only exposed to jump risk. There are two possible jump sizes

Xl and X2, and no diffusion risk. The change in the stock price is given by

where fO (x) is the percentage change in the claim price if the stock price jumps

by X and flo is the drift of the claim price. At the moment, we are not concerned

with the exact functional form of fO and flo. To create a risk-free portfolio, we

form a portfolio of the claim and the hedge instruments which is no longer exposed

Note that the stock is exposed to a diffusion risk B and to jump risk relating to

N and X. The exposure to diffusion risk is measured by the volatility coefficient

o"s. To be hedged against this type of risk, we need one instrument with non-zero

diffusion sensitivity, and consequently, there is one market price cP of diffusion risk.
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3.3 Pricing Relations in Presence of Jumps

to any of the risk factors. With two risk factors, namely a jump of size Xl and a

jump of size X2, the situation is similar to a trinomial model (where we implicitly

assume that the two Poisson processes do not jump simultaneously), and we need

in general two instruments exposed to these risk factors to eliminate jump risk.

The example can be easily generalized to more than two jump sizes. We need one

hedge instrument for every possible jump size, and thus there is not one market

price of jump risk, but there is one for each possible jump size. Consequently,

for a continuous jump size distribution there are infinitely many market prices of

jump risk. The total jump premium of the stock can be represented as the integral

over the compensations for each individual jump size x. Obviously, the exposure

of the stock to a jump of size X is just equal to x, and its contribution to the jump

risk premium is equal to this exposure times the difference .\JEll(dx) - .\IQiQ(dx)

between the intensity under the physical and under the risk-neutral measure. This

difference thus includes all the information about the pricing of jump of size x.

If the intensities of a jump size X are the same under JEll and Q, a jump of size X in the

stock is not priced. To see what happens if a jump is not priced, consider a negative

jump size x < 0 first. If the risk-neutral intensity is greater than the physical

intensity, the difference .\lP'JEll(dx) - .\IQiQ(dx) is negative and the contribution to the

total risk premium is positive. Intuitively, when it comes to pricing, the investor

over-estimates the probability of this negative jump. For a positive jump the

argument goes the other way around.

3.3.2 CAPM in a Jump-diffusion Economy

Recall the pure exchange economy with one representative agent and one perishable

consumption good. As usual, the economy is endowed with a stochastic flow of the

38
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whose dynamics follow Ito's lemma pertaining to a Poisson process applied to the

Let the price dynamics of a security be the following jump-diffusion process

39

(3.17)

(3.16)
d~ 0
b
t
- = [J-lo - >..E(X - 1)]dt + CTodBt + (X - 1)dNt

3.3 Pricing Relations in Presence of Jumps

Lemma 3.1 (Ito's lemma for jump-diffusion processes). Given a process

function ~t = f (bt ).

consumption good except that its rate evolves as a jump-diffusion process.

where J-lo and CTo are the mean and standard deviation of the diffusion component.

BO is the standard Brownian motion, N is a separated Poisson process with an

intensity parameter >... X -1 is the jump amplitude with InX rv N(J-lx,CT;).

It can be seen that the jump process increases the dimension of the basic uncer­

tainty source by one. It is thus possible to set up a market structure where the

same equilibrium argument is unaffected. So we can still use the state price deflator

where J-ls and CTs are the mean and standard deviation of the diffusion component,

another Brownian motion B S
, Nt is the same Poisson process as above but the

jump size is Y - 1. In Y rv N(J-ly, CT;). k == >..E(Y - 1).

With CRRA utility function,

let f(xt, t) be a continuously differentiable function of x and t, then,

(
8 f 8f 1 2 82 f) 8f

df(xt, t) = at + J-l(Xt, t) 8x + "2 CT (xt, t) 28x2 dt+ 8x CT(Xt, t)dBt+[J(xt-+ J )- f(xt, t- )]dNt.

(3.18)
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d~t [ 1 2 2] " [~(X8t-) ]
~t- = -8 -I[,u" - AE(X - 1)] +"2(r + 1)0"" dt -IO""dBt + ~(8t-) - 1 dNt·

We can also substitute the differential equation for d8t18t to get

d~t = _I ds.:8t + [-8 + ~(r2 + I)O"~]dt + [~~~8t)) - 1 + I(X - l)]dNt
~t Ut 2 t-

which suggests that d8t18t and d~tI~t are not perfectly correlated. Rewrite the

process for the state price deflator as

Lemma 3.2 (Ito's lemma for two correlated processes). Given

40

(3.20)

(3.19)d~t ]" (- = [,ue - AE(L - 1) dt + O"edBt + L - l)dNt
~t

r = 8 + I[,u" - AE(X - 1)] - ~(r2 + I)O"~ - AE(L - 1)
2

L

3.3 Pricing Relations in Presence of Jumps

-10""

~(X8t ) = X-"!
~(8t)

Using the property ,ue = -r we can obtain the equilibrium interest rate.

where B 1 and B 2 are two Brownian motion processes correlated through correlation

coefficient wand Nt is a Poisson jump process. Then the dynamics of an asset

whose payoff is f = f(Xl' X2, t) is

(
8 f 8f 8f 82 f 2 82 f 182 f 2)

df = 8t + 8Xl,ul + 8X2,u2 + 28xIO"l + 8X18X2 WO"W2 + "2 8x§ 0"2 dt

8f 1 8f 2 [
+ --;;:;-O"ldBt + --;;:;-0"2dBt + f(Xl + J1, X2 + J2, t) - f(Xl' X2, t)]dNt·uXl U X2

dXl ,u1dt + O"ldB; + J1dNt

dX2 ,u2dt + 0"2dB; + hdNt

To derive the pricing relations, we need to invoke the product rule of generalized

Ito's Lemma.

the dynamics of ~t can be represented as

where
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3.3 Pricing Relations in Presence of Jumps

o= JL~ - AE(L - 1) + JLs - AE(Y - 1) + wO"~O"s + AE[YL - 1]

where w denotes the correlation coefficient between BO and B S . By the martingale

property, it must hold that

41

(3.21)

JLs = r + AE(L - 1) + AE(Y - 1) - wO"~O"s - AE[YL - 1]

= r - wO"~O"s - AE[(L - 1)(Y - 1)]

= r - wO"~O"s - AE(L - 1)E(Y - 1) - ACov[L, Y]

and since JL~ = -r, we have

Therefore we have,

dc't5t
-5 = [JL~ - AE(L - 1) + JLs - AE(Y - 1) + wO"~O"s]dt
c't t

+ O"~dBf + O"sdBf + (YL - l)dNt

where Cov[L, Y] is the covariance between the state-price deflator jump size and

the asset price jump size.

This result (3.21) corresponds to the security market line equation in a jump­

diffusion economy. The risk premium of a security can be separated into two parts:

the premium for the continuous part of the return and the premium for the jump

part. Each premium is proportional to its covariance with the corresponding part

of the state price deflator. Because of the jump component, the asset's expected

return earns an additional jump risk premium. This jump risk has two items.

The first component is the negative of the product of the expected net asset jump

size and the state-price deflator jump size times the jump frequency. The second

component is the negative of the covariance between the asset and the pricing

standard jump size times the jump arrival frequency.

The covariance between the jump parts of the security price and state price deflator

is zero unless jumps occur simultaneously. Thus, if the state price deflator does

not jump simultaneously with the security, then the jump risk of the security will
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C [ d~t dSt]
ov ~t' St

= E{ ([-'\E(L - 1)]dt + CTt;dB% + (L - 1)dNt) ([J-Ls - '\k]dt + CTsdBf + (Y - 1)dNt)}

= wCTt;CTS - '\E(L - 1)E(Y - 1)dt - '\Cov[(L - 1), (Y - 1)],

Since

3.3 Pricing Relations in Presence of Jumps 42

(3.22)Et [dSt ] = rdt _ Cov [d~t , dSt ] .
St ~t St

the security market line can be rewritten as

An important perception is that asset pricing theories are largely developed based

on continuous price processes, they also shed insightful light on discontinuous

processes. Restrictions such as systematic jump risk [37] are sufficient but not

Again, the negative covariance between the price change and the state price deflator

change determines the security risk premium. So like the diffusion economy, the

fundamental valuation equation can be generalized by endogenizing the state price

deflator to versions of the capital asset pricing model (CAPM), the inter-temporal

CAPM and the consumption CAPM. In another word, the security market line is

valid whenever it can be formulated, Le., whenever the state price deflator exists,

risk premia exist and their local covariances exist. The intuition for this result is

very strong. For example, a security which tends to have its high returns when

state prices are low will not be a desirable asset and will trade at a low price,

relative to its expected payoff. Thus a large negative correlation with state prices

will translate into a high risk premium.

not be priced. This is a very intuitive result. Ordinarily an upward jump in

a security price should produce a downward jump in state price deflators, since

investors holding the security will be wealthier and hence value dollars less highly

at the margin. This negative covariance between the jump parts implies that the

jump risk will earn a premium. However, if the risk is diversified, then state price

deflators will not jump. In this case, the jump risk will not earn a premium.
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3.3 Pricing Relations in Presence of Jumps

necessary at all. If the state price deflator process is continuous, then all the

jumps represent idiosyncratic risk and the pricing relations look exactly the same

as in existing models. On the other hand, if the state price deflator can jump, we

generally retain most of the economic content of existing models, but we lose some

of the local linearity, and subsequently the pricing formulas are less simple.

43
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~4 __
Option Pricing Formulas

Last chapter has justified the economic content of equilibrium-based valuation.

This chapter will derive formally the option pricing results alongside with all other

authors' formulas that feature jumps in stock returns. We draw inspiration from

our formula and try to derive others in an identic format. That is, the call premium

is a weighted average of the conditional Black-Scholes premiums, each conditioned

on the number of jumps. The weights are the Poisson probability of n jumps with

the "adjusted" jump arrival frequency. The Black-Scholes values when there are

n jumps are computed using the "adjusted" risk-free interest rate and volatility.

Moreover, external parameters like the discount rate are made absent from the

formulas and the dividend rate is condensed so that the option price is a function

of variables mostly observable and universal.

In addition to the formalization, we compare them in terms of the theoretical

significance as well as practical value. Some numerical analysis is conducted to

verify our inferences and qualitative conjecture.

Furthermore, an extension is attempted to a mean-reversion jump-diffusion short

rate process. The equilibrium approach is still applicable to interest rate derivatives

thereof.

44
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4.1 Cox & Ross Pure Jump Model

4.1 Cox & Ross Pure Jump Model

This formula looks a lot like the Black-Scholes formula but with Poisson instead of

Gaussian distribution function. A pure jump model leads to the situation where

45

(4.2)

(4.1)

for all n < a;

for all n ~ a.

CCR = E~[e-rT max(ST - K, 0)]

= StW(a, b) - Ke-rTW(a, b/K).

{

0,
max(ST - K,O) =

ST-K,

A European call option has a price formula

The risk-neutral measure corresponding to jump process Q also exists, under which

W(a, b) = I:~=a e-~!bn is the complementary Poisson distribution function for St

with argument a and b. b = (r - f1s) Y T / (Y - 1). a stands for the minimum

number of jumps that the stock must make for the call to finish in the money.

Thus a is the smallest non-negative integer such that SteJ.'sTya > K. The final

payoff of an option written on a stock with such a pure jump is:

The literature addressing the discontinuity in stock processes can be tracked back

to Cox and Ross (1976) [24] who put forward a pure jump process

dSt
St- = f1sdt + (Y - 1)dNt.

As the name implied, there is no diffusion component. The percentage change in

the value of the stock on the interval from to is composed of a drift term and a jump

term. In contrast to the continuous process, it follows a deterministic movement

upon which are superimposed discrete jumps. Most of the time the stock price

grows at rate f1s. However occasionally it exhibits jumps equal to Y - 1 times

the current price. They used a constant Y. Jumps occur to a Poisson process at

the rate of A. The terminal stock price distribution is log-Poisson. By assuming

constant jump amplitude, the market is complete, a risk-free hedge could be formed

and used to value options.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



dVi = dCt - ndSt

= (88~t + Cs(/-Ls - )"k)St + ~Csss;a~) dt + CsasStdBt + [C(YSt-) - C(St)]dNt

- ntSt[(/-Ls - )"k)dt + asdBt + (Y - l)dNt].

4.2 Merton's Formula

the implied distribution has a fat right tail and a thin left tail (the opposite to that

observed for equities). Arguably the model is unrealistic in that jumps can only

be positive.

4.2 Merton's Formula

Merton (1976) [49] proposes the first jump-diffusion model for stock prices:

dSt
St- = (/-Ls - )"k)dt + asdBt + (Y - l)dNt

with parameters as noted before.

4.2.1 Replicating Portfolio

To derive an equation for an option price contingent on a stock following a jump­

diffusion process described above, let us attempt to set up a perfect hedge with

one option and nt shares of the stock like Black and Scholes (1973) [18]. The value

of this portfolio at time t is Vi = Ct - ntSt. The marginal change in the value of

the portfolio is

There are two random terms dBt and dNt. With only one choice parameter nt, it

would not be possible (in general) to form a perfect hedge between the stock and the

option since they are not perfectly correlated. With the hedge ratio nt = 8Ct/8St

substituted, we get

46
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where

4.2 Merton's Formula 47

(4.4)

Ct = E?[e-rT max (ST - K, 0)]

= E? [E?[e-rT max (ST - K, O)]INT - Nt = n]

= f e-AT~tT)n E? [e-rTmax(Stea~(n)+z~- K,O)]
n=O

Feynman-Kac Theorem:

Ct = E?[e-rT max (ST - K, 0)]

This portfolio is still risky due to the jump component. Merton (1976) [49] invokes

an assumption that the jump is firm-specific or non-systematic. In other words, the

rare events that cause sudden discontinuous changes in the price of a stock affect

only that stock, or, at most the stock of a few other firms (such as the other party

in a litigation or in a merger). The risk of these sudden changes will be diversifiable

and the market will consequently pay no risk premium over the risk-free rate for

bearing this risk. Thus the equilibrium expected rate of return on the partially

hedged portfolio is the risk-free rate r. We can have:

Taking expectation conditional on knowing that exactly n Poisson jumps occur

during the life of the option

Along with boundary conditions this is a mixed difference-differential equation.

When A = 0, it reduces to the Black-Scholes PDE. The solution also satisfies the

dSt -
St- = (r - Ak)dt + asdBt + (Y - l)dNt.

Bt = Bt + ¢t; Eo = 0 is a standard Brownian motion under Q measure. Let us
2

work out the explicit expression for this option price. Define a~ = r - ? - Ak and

Z~ = as(ET - Et ) + L7~nt+l Yj, Yj = In Yj as described in section 3.2, then

Ct = E? [e-rT max(Stea~+z~ - K, 0)]

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.2 Merton's Formula

Q - - n Q
where Zs (n) = as(BT - Bt ) + 2:j =l Yj' The mean and variance of Zs (n) is

E[Z~(n)] = nf-Ly and Var[Z~(n)] = a~T + na;. Therefore In(ST/St) follows the

normal distribution

Note that E?[e-rr max(Stea~+z~ - K,O)] mirrors the form of the Black-Scholes

model, so we can borrow from the Black-Scholes formula.

(4.5)

where

AE[Y]

n 1
r + AE[l - Y] + -(f-Ly + -a;)

T 2
n

a 2 + _a2
STY

It can be seen that the Merton formula is essentially a weighted sum of Black­

Scholes values (CBS)' AM may be viewed as the "adjusted" jump arrival intensity,

rM the "conditional" risk-free interest rate and aM the "transformed" volatility.

Actually AM can be regarded as the jump intensity under the risk-neutral measure

as well.

This type of adjustment is intuitively appealing. Consider the jump frequency, for

positive shocks to the economy (good state), the risk-adjusted jump arrival rate is

lower than the true arrival rate, for negative shocks (bad state) the risk-adjusted

jump arrival rate is higher than the true arrival rate. This shifting of "probability"

mass from the good states to the bad states is how the risk premium is extracted

in this economy.

48
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4.2 Merton's Formula

4.2.2 Fourier Inversion

49

(4.6)

nt( 12-IISt = Soe r-q->..k-"2(]"s)t+oBt Y
n

n=l

The term E?[IsT>K] = E?[Isr>lnK] = Q(ST > K) can be computed as follows.

Let p(a) = E?[eaiSr ] be the characteristic function of Sy where a is an arbitrary

real number and i = H. If this characteristic function is known analytically, we

can use the Fourier inversion formula [34]

The characteristic function in Merton's [49] model can be computed explicitly.

Q(Sy > X) = ~ + ~100

Re (p(a) e~:X) da

where Re refers to the real part.

Let S; = In St. Then conditional on S; and nT - nt = n, the distribution of Sy is

normal with mean (r - q - )"k - ~O"~)T and variance O"~T + nO";. The time t price

of a call option Ct(St, T) can be written as

The risk-neutralized model has the same form as in the Black-Scholes model, but

with the drift Ms - q replaced by r - )"k - q. The SDE under the risk neutral Q

measure has the explicit solution

In the following we shall produce the option pricing formula in Merton's model

through another method, Fourier inversion. The intention is to illustrate the

technique of Fourier inversion, which will be necessitated when the basic variable's

density function is complicated.
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4.3 N aik & Lee Formula on Market Portfolio

To summarize, the price of a European call in Merton's jump- diffusion model is

50

(4.9)

(4.8)

g(a) = Er[eiaSf] = E?[TJT eiaSf]
TJt

= e-(r-q)T-S;; E?[e(1+ia)Sf]

= e-(r-q)T-S;; 8J(-i + a)

Naik and Lee (1990) [51] consider a continuous-time infinite-horizon variation of

the Lucas model. They limit the analysis to a single firm completely financed

by equity with one share outstanding. Therefore they interpret the equity share

of the firm as the market portfolio and the dividends of the firm as the aggregate

dividends in the economy. The equity share is perfectly divisible and competitively

traded at instant t for a price St (in terms of the consumption good). Also available

4.3 Naik & Lee Formula on Market Portfolio

The term E?[STIsT>K] can be transformed to a probability computation by using

the change of measure. Let TJt = e-(r-q)tStlSo and call the measure ern. = TJTdQ.

Then E?[TJTP(Sf)] = E~[8J(Sf)] and so E?[STIsT>K] = e(r-q)TStlR(Sf > InK).

The characteristic function under the new measure can be computed explicitly as

where 8JU is defined above. The probability lR(Sf > In K) can be computed using

the Fourier inversion with 8J replaced by g.

where the two probabilities can be computed using the Fourier transform inversion

and the explicit formulas. The result is equivalent to Merton's original formula

that expresses the option price as an infinite weighted sum of Black-Scholes val­

ues. Although the expression of the characteristic functions are lengthy, the final

equation involves two one-dimensional integrals that can be computed numerically.
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E [rOO e-O(u-t) U (6 )6 du]S - t Jt c u u
t - Uc (6t )

= 100

Et [e-O(U-t)(~:)-'Y6u] du

1
00 (J"2

= 6t Et { exp[-I1(U - t) + (1 - ,)[fLo - ---.f - )..E(X - 1)](u - t)
t 2

nu

+ (J"o(Bu - B t ) + 2: xj]}du
j=nt+1

= 6
t
100

e{(;I+(l-'Y)[/Lo-;l-AE(X-l)]}(u-t) Et (e(1-'Y)ao(Bu -Bt») x Et (e(1-'Y) Lj~nt+l X j ) du

= 6
t
100

e{(;I+(l-'Y)[/Lo-;l-AE(X-l)](u - t)}Et (e(1-'Y)2al(U-t») x Et (eAE[X1-'Y](U-t») du

= 6t100

exp{ -[11 - g({)](u - t)}du

constant.

4.3 N aik & Lee Formula on Market Portfolio 51

(4.10)

(4.11)
St = Et [ftooe-O(u-t)Uc(Cu)6udu]

Uc(Ct)

d~ 0S; = [fLo - )..E(X - 1)]dt + (J"odBt + (X - 1)dNt

for trading are other claims in zero net supply. Aggregate dividends are assumed

to follow a compound diffusion-Poisson process

where fLo is the instantaneous expected rate of change of aggregate dividends, (J"o is

the instantaneous variance of rate of change in aggregate dividends conditional on

the Poisson event not occurring, BO is a standard Brownian motion, N is a Poisson

process with parameter ).., X - 1 is the jump size and In X rv N (fLx, (J";).

The representative agent's inter-temporal utility (assuming a CRRA form) maxi­

mization problem gives rise to the Euler equation.

At this price, the investor will never change her current holdings of the security

even though he is given the opportunity to do so. The authors point out that

the equilibrium real price at time t of the market portfolio in the economy is a
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(4.16)

(4.15)

(4.14)

(4.13)

q = e- g(r)

dSt ]")- = [p" - >.E(X - 1) dt + a"dBt + (X - 1 dNt
St

r = e- g(r + 1)

1
= e+ i[P" - >.E(X - 1)] - -I'(r + l)a~ - >.[E(X-'Y) - 1]

2

Our expressions do not appear the same as those in Naik and Lee's original paper.

Besides notational differences, there are two major modifications for the conve­

nience of comparison and investigation. First, it is arranged in a way that the

Likewise, Naik and Lee show that the term structure in the present economy is flat

with the instantaneous risk-free interest rate given by

where g(r) == (l-i)[P" - >.E(X - 1)] - ~i(1-i)a~ + >.[E(X1-'Y) - 1]. Finally,

6t
St = e_g(r)" (4.12)

The call option price formula is obtained by using (4.11) for a standard European

option.

This, then, endogenizes a mixed jump-diffusion process for the price of the market

portfolio. It also shows that the endogenously derived dividend yield on the market

portfolio in the above economy q is constant.

So it is clear that the equilibrium stochastic evolution of St is given by
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4.4 Ahn's Formula

dividend rate in computing CBS, the Black Scholes value corresponding to each

possible jump is a constant and the jump intensity differs. Secondly, expressions

for the interest rate and dividend yield have been incorporated so that variables

such as discount rate eand the expected rate of endowment J11i do not show in the

final formula.

4.4 Ahn's Formula

Ahn (1992) [1]'s setting is a production economy: there are a single good and

n production processes whose return follows jump-diffusion processes. Given her

budget constraint, each consumer chooses c the consumption, a the vector of the

proportion of wealth W to be invested in each of the n production processes, the

number of contingent claims and the amount of risk-free borrowing or lending,

in order to maximize expected utility given by E[JoT In Ctdt]. The indirect utility

function J is determined by solving the maximization problem. Since consumers

are identical, all wealth is invested in the production processes in equilibrium.

The dynamics of primary assets are assumed to follow a jump-diffusion process as

defined in prior sections:

dSt ] S )St = [J1s - q - AE(Y - 1) dt + CTsBt + (Y - 1 dNt

Ahn and Thompson 1988 [2] proves that the optimal consumption is equal to

c* = ew in this economy and hence the level of wealth also follows a jump-diffusion

process given by

dWt w
W

t
= [J1w - e- AwE(D - 1)] + CTwdBt + (D - l)dNt (4.17)

where J1w is expected growth rate of wealth and CTw is the volatility. B W is

a standard Brownian motion different from B S associated with the stock price

movement. Let w denote the correlation coefficient between B S and B W . But the

53
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(4.20)

(4.19)

(4.18)C = E [ -e(T-t) JW(WT ) G ]
t t e Jw(Wt ) T

r = J1w - CT?v - '\E(D - 1) - '\{E[D-1] - I}.

not include the discount rate as in ours. With log utility, the Naik Lee is similar

except for the existence of discount rate, too. This difference comes from the fact

that Ahn's is expressed with production parameters (in a production economy)

but ours is expressed with consumption parameters in an exchange economy.

where J(Wt ) is the value function, which is just the utility of the optimal consump­

tion at time t. Subscripts refers to first-order derivative so Jw(Wt ) = Uc(Ct) =

l/(OWt ). Applying the valuation equation for a default-free bond yielding 1 at

time T yields the risk-free interest rate

The price at time t of a European call option is

Notice that Ahn also has a flat term structure but the risk free interest rate does

4.4 Ahn's Formula

The value at time t of any contingent claim paying CT at time T is given by

jump process Nt is assumed to have the same intensity ,\ as the one above due to

simultaneous information arrivals. D is the jump size, lognormally distributed with

J1d and CT~ and p denote the correlation coefficient between y and d, the logarithm

of the stock price jump size and the wealth jump size.
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(4.21)

eE(y)+!Var(y)<I> (-a+E(X)+ COV(X,y))
JVar(x)

eE(x)+E(y)+! Var(x+y) <I> (-a + E(x) + Var(x) + Cov(x, y))
JVar(y)

2

Let as = P,s - ~ - )"k and Zs = as(B~ - Bf) + L7~nt+l yj,
2

a~ = P,~ - ~~ - )..E(L - 1) and Z~ = a~(Bf, - B;) + L;~nt+llj, then the option

valuation equation can be written as

~t,T

4.5 Our Framework

Lemma 4.1. If random variables x and yare bivariate normally distributed, then

4.5 Our Framework

Now let us use the equilibrium pricing equation to value a standard European call

option.

4.5.1 Option Pricing Formula

where

We make use of the following conditional expectation formulas [57] to obtain our

option pricing results.
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where

Et[exp (a~T + Z~(n) + asT + Zs(n))IsT?K]

= exp (a~T + E[Z~(n)] + asT + E[Zs(n)] + ~Var[Zs(n)] + ~Var[Z~(n)] + Cov[Z~(n), Zs(n)])

x <I> (In(St/K) + asT + E[Zs(n)] + Var[Zs(n)] + Cov[Zs(n) , z~(n)])
JVar[Zs(n)]

2 2

{[ az ay= exp fJ~ - >..E(L - 1) + fJs - >..E(Y - 1) + wa~as]T + n(fJz + fJy + - + pa[O"y + -)}
2 2

(
In(St/ K) + 'rHT 1f&r)

x <I> ~ +- aHT
a2 T 2H

56

(4.22)

Ot = Et[ea~T+Z~ max (SteaST+Zs - K, 0)]

= E [E[ea~T+Z~ max (SteaST+Zs - K, O)lnT - nt = nJ]

00 e-AT(>"T)n
= ~ , E [ea~T+z~(n) max(SteaST+ZS(n) - K,O)]

n=O n.

00 AT(>..)n
= '" e- T [S E [ea~T+Z~(n)+aST+Zs(n)I ] _ K E [ea~T+Zdn)I ]]6 n! t t ST?K t ST?K

n=O

where Z~(n) = a~(B~ - Bf) + 'L,7=llj and Zs(n) = as(B~ - Bf) + 'L,7=1 Yj·

The mean and variance of Z~(n) is E[Z~(n)] = nfJz and Var[Z~(n)] = a~T + nar.

Similarly, the mean and variance of Zs(n) is E[Zs(n)] = nfJy and Var[Zs(n)] =

a~T + na;. Letw denote the correlation coefficient between B6 and B S, p denote

the correlation coefficient between l = In Land Y = In Y, then Cov[Z~ (n), Zs(n)] =

wa~asT + npa[O"y. Now focus on the conditional expectation. For the first part,

Take expectations conditional on knowing that exactly n Poisson jumps will occur

during the life of the option.

4.5 Our Framework
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(4.23)

(4.24)

The second part becomes

4.5 Our Framework

2 2az ay= exp{[fL~ - >.E(L - 1) + fLs - >.E(Y - 1) + wa~aS]T + n(fLz + fLy + "2 + paWy + "2)}

X [St1>(hH) - Ke-rHT1>(hH - aHVT)],

v = fLs + fL~ - >.E(L - 1) - r + >.E(Y - 1) + wa~as = ->.E(LY - 1).

>.E(YL)
2n ay

r - >.E[(Y - l)L] + -(fLy + - + pawy)
T 2

2 n 2
as + -ay

T

1
Edexp [CY~T + Z~(n)]IST2K} = exp{CY~T + E[Z~(n)] + "2Var[Z~(n)]}

x 1> (In(st/K) + CYST + E[Zs(n)] + Cov[Zs(n) , z~(n)])
-jVar[Zs(n)]

(
In(st/K) + rHT 1~)= exp {[fL~ - >.E(L - l)T] + nfLz + nar /2} x 1> ~ - "2V ahT .

Substitute the expressions for the two parts into (4.22) we have

where

We have substituted fL~ = -r and the security market line (3.21). The results can

be rearranged to a simple form:

where
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where

4.5 Our Framework

>.E[YX-'Y]
n CT2

r - >.E[(Y - l)X-'Y] + -;'(fJy + ; -i(}CTxCTy)

n
CT2 + _CT2
STY

58

(4.28)

(4.27)

(4.25)

(4.26)-iCTiS

L

Ct = Ed~t,T max(5T - K,O)]

= Et[~t,T]Et[max(5T - K, 0)] + COV[~t,T, max (5T - K, 0)]

= e- rT Et[max (5T - K, 0)] + Cov[e- fiT UC~CT1, max (5T - K, 0)].
Uc Ct

Although this is already an applicable formula, the state price deflator process is

admittedly unobservable. We'd better endogenize the state price deflator process in

the equilibrium setting using its definition by incorporating the investor's marginal

rate of substitution. Given CRRA and a jump-diffusion consumption flow, we have

the following relations (refer to (3.17)):

Substitute these relations into the above formulas and using the properties of log­

normal distribution, allowing for a constant dividend yield q (This is an inessential

modification.), we complete our option valuation formulas as below.

00 e>"HT(>'HT)n
CH = L , CBs (5t ,T;rH,q,CTH,K)

n.
n=O

where (} is the correlation coefficient between the logarithm of the asset price jump

size In Y and the endowment (aggregate consumption) jump size InX.

Here a fully stated economic equilibrium is used to price the options. Both the

jump risk and the diffusion risk are priced in this equilibrium. In contrast with

Merton's, the formula for the price of a call option on the market portfolio is

equivalent to
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4.5 Our Framework

Thus, the call price is a sum of two terms. The first term is similar to the stan­

dard EMM approach: it is the expected cash flow on the option (discounted at

the risk-free interest rate which is shown to be constant in equilibrium) when the

underlying asset earns its equilibrium instantaneous expected return of {Ls. With­

out no-arbitrage argument, we do not conclude that the option is priced as if the

underlying asset earns an expected return equal to the risk-free interest rate. The

second term is the equilibrium price of the jump and diffusion risks implicit in the

option's price: it equals the covariance of the option's payoff with the change in,

the marginal utility of equilibrium aggregate consumption. Underthis parame­

trization, they can explicitly evaluate that term and do not need to assume that

the jump correlation with returns on aggregate consumption is zero.

4.5.2 Corresponding PDE

By using the security market line (3.21), one can retrieve the corresponding partial

differential-difference equations (FDE) of the above option pricing results. Recall

that the asset price change follows a jump-diffusion process. The price change of

a call option written on the asset can be derived by Ito's lemma. As shown, the

call value is a function of the asset price and time only; that is, Ct = C(St, T), so

This can be written into the following standard form:

(4.29)

where

59
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4.5 Our Framework 60

(4.30)[
C(YSt) ]/-Le = r - w(JE,(Je -)"E [ C

t
- l](L - 1)

Substituting /-Le and (Je (4.27) in gives us

8:;/ + Cs[/-Ls - )"E(Y - l)]St + ~CssSl(J~ [C(YSt)]
C

t
+)..E C

t
-1

= r - w(JE,Cs St (Js - )..E [[C(YSt ) - l](L - 1)] .
Ct Ct

Now recall that all traded assets including a call option must satisfy the security

market line.

/-Ls = r - w(JE,(Js - )"E[(L - l)(Y - 1)]

Simplifying, we obtain the following equation that an option price must satisfy

1 2 2 aCt { [2CSSSt (Js + at + Cs r -)"E X-I'(Y - l)]}St + )..E{[C(YSt ) - Ct]X-I'} = rCt

(4.32)

As the option's underlying stock is traded, it also satisfies the security market line:

It can be proved that the option pricing formula (4.23) solves the above equation

subject to the appropriate boundary conditions.

therefore the PDE can be rewritten as

Notice in case that L = 1, this will return to the PDE in [49]. This will be

interpreted in the next section.

To enrich the economic content, we can substitute (4.25) and (4.26) to deliver the

equilibrium results.

This fundamental valuation equation applies to any claim satisfying the smoothness

condition and written in the economy. It resembles the equation of [21] and [13]
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4.6 Comparison and Numerical Experiments

but differs from them. In their valuation equation, the PDE is expressed in terms

of the indirect utility function or value function that is a solution for the investor's

consumption-portfolio choice problem. However a closed-form solution for the

indirect utility is unobtainable in most cases unless very restrictive simplifications

are assumed. In contrast, (4.32) involves only the consumption.

The presentation of this equation is rather meaningful. Although we've concerned

ourselves with only plain vanilla options, the variety of new option contracts has

increased enormously in recent years. Many types of so-called exotic options are

now popular items in the over-the-counter markets. Their payoff involve various

pattern of cash flows and payment can be spread evenly through time or occur at

unspecific dates. With a little more effort, we will be able to value many other

types of options by the essential pricing equation. Sometimes we may need resort to

numerical methods to work out the solutions and there may not be neat analytical

closed-form results.

4.6 Comparison and Numerical Experiments

So far we have presented the above option pricing formulas and found a way to

homogenize them in a meaningful format. It can be seen that our results encompass

other authors' as special cases.

As A -+ 0, the process St converges to a lognormal diffusion and the pricing formula

for the call option degenerates to the conventional Black-Scholes formula. The

other three jump-diffusion formulas also collapse to Black-Scholes formula.

As CYs -+ 0, CYy -+ 0, the jump diffusion process converges to a pure jump process

with a constant jump size. This becomes the Cox & Ross model and the full-fledged

61
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4.6 Comparison and Numerical Experiments

option price formula simplifies to theirs. Transform (4.28) into

00 -bbn

Ct = e-TT L _e_,-Et[max (Ste/lST-A(Y-l)Tyn - K,O)]
n.

n=O

with

b ,AT exp (f-ll + f-ly)
).T(e/ll+/ly - e/ll )

--'-------'-y
e/ly - 1

_f-ls - )'E(Y - 1) - r TE(Y),
e/ly - 1

where the last line follows from (3.21)

f-ls - r = -)'E(L - 1)E(Y - 1)

= -).(e/l l - 1) (e/lY - 1)

This is consistent with equation (4.2).

Merton's [49] formula is a special case of our results with L = 1. In another

word, Merton's result is justified only if the state price deflator does not contain a

jump component. However in light of the empirical evidence that the market port-

folio does experience occasional jumps, Merton's option prices permits arbitrage

opportunities as they deviate from their true values.

In a general equilibrium framework, L = X-"( where I is the measure of agents'

risk aversion. L = 1 implies either ,= 0, i.e. the investor is risk-neutral or X = 1,

that is, aggregate consumption contains no jumps and therefore asset jump risk

does not command a jump risk premium. This suggests that major changes in

the market do not affect consumption. In fact, consumers cut down on major

purchases in economic downturns. Thus, Merton's formula, which assumes away

the jump risk premium, leads to questionable economic implications.
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4.6 Comparison and Numerical Experiments

-1 ) n ( 1 2rA = r + '\E(Y - 1 + - /1 - -0" ).
'I y 2 y

63

/18 - r - '\E(Y - 1) - ,\E(L - 1) - "fO"~

)
2 n 1 2 2

/1s - '\E(Y - 1 - "'(0"8 + -;.(/1y + 20"Y - "fO"y)

v

we end up like (4.16).

where

Ahn's [1] formula may also be specialized to value index options by assuming

perfect correlation between the index and the total wealth. In such instances,

'LV = 1, P = 1, q = () and /1s = /1w,O"s = O"w,/1y = /1d,O"d = O"y. With these

restrictions, the formula simplifies to

00 e-AT ('\T)n
CA = .2: , CBS(St,T;rA,(},O"A,K)

n.
n=O

It is the same as both our formula and Naik & Lee when restricting to the log

utility function. Therefore ours is more general in this sense. On the other hand,

our model and Ahn's include valuation of options on assets not perfectly correlated

with the market but Naik & Lee's does not. Obviously if the market jumps some

stocks must jump with it but the responsiveness may vary.

Index options cannot be properly valued using the Merton's formula since in this

case the jump is, by definition, completely non-diversifiable. But our option for­

mula can be applied to index option.

Under CRRA and constant investment opportunity set, a largely possible conclu­

sion is that the return on the market portfolio is perfectly correlated with the

aggregate consumption, i.e., St = a + bCt for some constants a, b. Then we have

Ct = bt , /1s = /18 and /1y = /1x' If we let a = 0, b = 1 as in Naik and Lee 1990 [51].

00 eev-r)T['\E(YL)T]n
CH =.2: , CBS(St,T;rH,q,O"H,K),

n.
n=O
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4.6 Comparison and Numerical Experiments

Albeit similar and conformable, the jump-diffusion formulas are still distinct. Ex­

amination of the adjusted jump arrival frequency reveals the following relation. )\M,

)\N, AA and AH differ in the expectation term multiplying A, which is a function of

the asset price jump distribution, the consumption jump distribution, the correla­

tion between them and the degree of risk aversion. For assets stemming against

the market, (i.e. negatively correlated with the market portfolio), AH > AM. As

a larger jump arrival frequency results in higher option values, we can infer that

Merton's formula is likely to undervalue such options. On the contrary, Merton's

tends to overvalue options positively correlated with the market. Examination of

the adjusted risk-free interest rate T'M, T'N, T'A, T'H, gives us no clear-cut relations

because of the offsetting two covariance terms.

Although we can't make conclusive remarks so far about the effects of jump risk

premiums on option values, we can test the above inferences and intuition using

numerical experiments. In the subsequent part we select some representative pa­

rameter values and calculate our pricing formula values as well as other author's

formula values. We use Matlab programming (Codes available upon request.) and

all the data is summarized in the four tables in the Appendix. In the bracket be­

neath those prices is the percentages by which the value exceeds the corresponding

Black-Scholes values. According to our analysis (4.28), the difference between the

price of an option and the expected value of its cashfiow discounted at the risk­

free rate is the jump risk premium. This kind of numerical trial follows [57], [51],

[Fuh, 2000] and [Navas, 2002]; the purpose is mainly to validate the qualitative

conjecture and to lay a groundwork for empirical investigation.

Let us price a standard European call option on a hypothetical aggregate consump­

tion index (i.e. f2 = 1 and /Lx = /Ly, (Jx = (Jy) with five possible expiration dates: one

month, three months, six months and one year, two years to maturity. The exercise

price of the index is 50 and the risk free interest rate is 10% per annum. Suppose
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4.6 Comparison and Numerical Experiments

that the true process describing the dynamics of stock returns is a jump-diffusion

process. The volatility for diffusion part is 20% per annum. As to the jump fre­

quency, we conduct a two-fold numerical examination: A = 2 and A = 7 which

translate into 2 and 7 jumps in one year on average respectively. Assume that the

logarithmic jump size follow a normal distribution with f-Ly = -0.0032, a y = 0.08.

Thus the expected jump amplitude is zero.

If an investor incorrectly believes that the asset returns follow a diffusion process,

she will use the Black Scholes formulas to price options. the volatility she estimates

from time series data will be total volatility instead of the diffusion part only.

Thus the Black-Schole value should be computed using the volatility-adjustment

procedure suggested by Merton: a;otal = a~iffusion + Aafump . Continuous dividend

yields 2%. We shall first use a relative risk aversion 'Y of degree 1, i.e., the log-utility

function. The number of jumps in the Poisson sum is cut off at 100 to ensure a

precision of 10-6 .

The first table reports these prices. Our formula produces exactly the same results

as Naik & Lee, Ahn. But Merton's model, which should not be used to price

index option, overvalues in-the-money options but undervalues out-of-the-money

options. In most cases, the jump risk premia that the Black-Scholes ignores are

insignificant. But larger errors occur for out-of-the-money options than for in-the­

money options. This is because the effect of the jump risk on call option pricing

is significant when the price is very low. Perhaps one jump can be sufficient to

bring the option back into the money. The bias percentage diminishes as the time

to expiration increases. The effect of the jump arrival frequency on option pricing

depends on whether the option is in or out of the money. For in-the-money options,

the discrepancy seems greater when the frequency is higher but the opposite is true

for out-of-the-money options.

The second table shows how jump-diffusion values depend on the importance of
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4.6 Comparison and Numerical Experiments

the jump component of the underlying asset price movement. We now consider an

asset that is correlated to the market portfolio with (! = 0.8. The jump amplitude

distribution parameters are /-Ly = 0, /-Lx = -09.0018, ax = 0.06. We still use I = 1

and consequently our results are the same as Ahn's.

The jump component is measured by K, = Aalumpja;otal: the percentage of the total

volatility explained by the jump part and A: the expected number of jumps per

year. We subject our formulas to combinations of low and high jump A and ay.

• For a given Aand atotal, as the variance of a typical jump increases, K, increases

and the call option value departs further from its corresponding Black-Scholes

value.

• But for a given K" as the intensity Aincreases, the jump component becomes

more like a diffusion part. T time diversification reduces the effect of the jump

risk on option pricing. As a result the jump diffusion values approximate their

corresponding Black-sholes values.

The third table looks at the effect of systematic jump risk, an indicator of which

is the correlation coefficients between the asset prices and the consumption flow or

market portfolio. From (4.27), they enter both the "adjusted" jump intensity and

the "conditional" interest rate expressions. As the correlation of the underlying

asset's logarithmic jump with the market portfolio's logarithmic jump increases,

out-of-the-money options become less valuable but in-the-money options become

more valuable. Merton's values are closest to ours when the correlation coefficient

is 0, that is, when the asset jump risk is uncorrelated with the consumption jump

risk. Merton's values still differ from ours because Merton assumes total jump risk

is diversifiable while zero correlation implies only the systematic jump risk is zero.

Therefore, the effect of the jump risk premium on option pricing is minimized when

the jump size of the underlying asset is uncorrelated with that of the market.
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4.6 Comparison and Numerical Experiments

When the correlation between consumption and asset price jumps is more negative,

out-of-the-money option values are higher since the option's hedging services for

jump risk becomes more valuable. This makes strong sense: if an asset is negatively

correlated with the market portfolio, that is, counter-cyclical, it delivers a high cash

flow when the state of the economy is bad. Therefore, people tend to view this

asset as hedging against "bad times" and are ready to pay high for it. In case

the jump risk cannot be hedged, options written on these assets supply a valuable

service and thus should have higher values. Merton undervalues such options and

this mispricing is more severe when the market is more volatile and investors are

more risk averse.

The last table shows how the different degrees of the representative agent's risk

aversion might influence our computation results. A look suggests that the jump

risk premia decrease slightly when 'Y increases. When 'Y = 0, that is, investors are

risk neutral, our formula and Naik & produce the same results as Merton. A more

volatile jump will cause larger price differences.

To conclude, given that prices of an asset follow a jump-diffusion process, equilib­

rium option pricing formulas are superior to Merton's and others. The presence

of jumps particularly benefits the pricing of short-term out-of-the-money options

while the equilibrium approach "effectively" completes the market despite addi­

tional jump risks. The combination is not only economically reasonable but also

potentially able to lessen the Black-Scholes pricing bias. Having said these, it is

not perfect and concerns arise with it.

To begin with, one can never be absolutely sure that the dynamics of an asset price

is a jump-diffusion process. As mentioned in prior sections, the actual underlying

asset price distributions often depart significantly from the Black-Sholes lognormal.

A corollary of this is the volatility smile - the way in which at-the-money options
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often have a lower volatility than out-of-the-money options or in-the-money op­

tions; or sometimes a skew. Volatility is the most critical parameter for option

pricing ~ option prices are very sensitive to changes in volatility. Nevertheless

it cannot be directly observed and has to be estimated. Volatility smile or skew

complicates the tasks of pricing and hedging options.

Consider the task of calculating an option's delta which measures the sensitivity

of an option's theoretical value to a change in the price of the underlying asset.

If we assume the sticky delta model, this will affect how we calculate the option's

delta, i.e., the rate of change of the option price with the underlying asset price.

Changes in implied volatilities that are expected to accompany changes in the value

of the underlying will impact the option's value. Deltas need to adjusted to reflect

this. This is more than a theoretical consideration. If a trader is dynamically

hedging an option's position and fails to incorporate volatility smile or skew into

her delta calculations, her hedge ratio will be off. This justifies the practical value

of more sophisticated models like jump-diffusions. Besides its ability to explain the

volatility smile, it is advantageous for hedging not simply pricing options, especially

exotic options which are less liquid, (i.e. their prices are not so readily visible in

the market place).

Secondly, jump-diffusion models or equilibrium pricing models do pose challenges

to empirical research. If we use Merton's formula, three more parameters ~ jump

intensity, jump distribution need to be estimated. A number of authors have tried

maximum likelihood, efficient methods of moments and indirect inference. They

either estimate from historical equity price data or try to find suitable parameters

that minimizes the difference between the proposed model and the synchronous

market option prices. For estimation purposes using daily data, it is convenient

to approximate the Poisson jump process by a binomial jump process. As for

equilibrium approach, it has been suggested to select an index as a proxy for the
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4.7 Stochastic Interest Rate

aggregate consumption. An alternative possibility is based on estimating/filtering

the state price deflator or market price of risk using market data.

The objective of such empirical studies should not be the comparison of model

and market prices bur rather to the extant differences between competing mod­

els. Actual market prices do differ from model prices. However, by contrasting

these model prices, we are able to ascertain whether such discrepancies should be

attributed to the mis-specification of the underlying asset price process. A lot of

authors have documented that jump-diffusion models can in principle eliminate the

systematic biases of the Black-Scholes model. The gain from this added feature is

worth the additional complexity.

Finally, a natural question is whether the deviation of the model option prices from

market prices really significant. This will depend on what one plans to do with

options. For a market maker who trades frequently with high turnover, the answer

may be yes whereas for a positioner holding for the long term then the answer may

be no. So further extensions and improvement of jump-diffusion models are still

needed.

4.7 Stochastic Interest Rate

Up to this point, we have been examining the pricing theory without paying atten­

tion to the term structure of interest rates. Under certain assumptions, the short

term interest rate can be constant. However, bonds with various maturities cer­

tainly differ in their interest rates and even the short rate is unlikely to be always

constant either. There is now a burgeoning literature that develops bond pricing

models using jump-diffusion processes. In this section we are going to add a feature

of mean-reversion to the basic jump-diffusion processes, which will be entailed to

the short rate process, and to look at some of the consequences this has for the
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4.7 Stochastic Interest Rate

interest rate derivatives. With mean-reversion introduced, the terminal density of

the underlying asset is dependent on the specific time at which jumps occur. The

mathematics will be a bit complicated but still tractable.

4.7.1 The Basic Stochastic Process

Suppose the endowment (the same as equilibrium aggregate consumption) follows

an exponential mean-reverting jump-diffusion process

70

dct- = {£[,uc - AE(X - 1) -In ct]}dt + (JcdBf + (X - 1)dNt
ct

(4.33)

with £ denoting the speed of adjustment, ,uc - AE(X - 1) the long run mean rate,

(J~ the instantaneous variance, and BC a standard Brownian motion. N is a Poisson

process with a jump intensity of A. X denotes the gross jump size of consumption

triggered with a log-normal distribution InX rv N(,ux,(J;). BC, N and X are

assumed to be independent. Let c; = In ct, then by Ito's lemma,

(4.34)

where ,u~ =,uc - AE(X - 1) - :h(J~. Therefore the solution to equation is

CT = exp (,u: + (lnct - ,u:)e-I'T + iT (Jce-I'(T-U)dB~+ iT e-I'(T-u) InxdNu)

(4.35)

Since itT (Jce-I'(T-u)dB~ is normally distributed with mean zero and variance itT (J~e-21'(T-u)du,

itT e-I'(T-u) In X dNu is a product of a random number of independent normal dis-

tribution variables, we can derive the moments of cy conditional on c;.

Var[~lc;]

,u: + (In ct - ,u:)e-I'T + A~x (1 - e-I'T)

1
2£(1- e-2I'T)[(J~ + A(,u; + (J;)]
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EtlebcT ] = Et [exp (bf-L~ + b(lnCt - f-L~)e-£T + iT bace-£CT-u)dB~+ iT be-£CT-u) lnxdNu)]

= ebJ1~+bCJ1~ -In Ct)e- fT
+~ te b2<Tz(1-e-2fT ) X E

t
[eJt be-i(T-u) In XdNu]

4.7 Stochastic Interest Rate

In the below we will derive the moment generating function Et[ebc:r] for cy condi­

tional on c; for later use. Substituting for cy gives

Focus on the jump part. The Riemann-Stigels integral in the exponent can be

computed by taking expectation conditional on the number n of jumps of size Xj

and the timing tij of the i-th jump of size xrth size.

The timing of the jumps tij is uniformly distributed on (t, T], allowing

Using the Poisson distribution for n and normal distribution for Xj gives

Therefore the moment generating function is

71

(4.36)

------------_._----_._-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle



4.7 Stochastic Interest Rate

4.7.2 Interest Rate Process

Pure discount bonds pay a single dividend 1 at maturity. Using this fact the Euler

equation gives us the price of a discount bond which matures at time T.

SJ3f = Et[~t,T]

Et[e-BT0"1]
~'Y

Ct

= Et[exp (-OT - ,In CT + ,In Ct)]

where the second step follows from (3.18). Making use of (4.36) and simplifying

gives the price of a discount bond.

72

(4.37)

In the equation above, the price of bond is a function of the current level of the

random process that drives the output, the parameters of the underlying jump

processes, the level of agent risk aversion, and the time to maturity. Long term

bonds are more sensitive to the current level and to jump shocks than short term

bonds because of the factor 1 - e~£T.

From the price of discount bonds, expressions for the yields of bonds of different

maturity (the yield curve) and the short-term interest rate can be obtained. The

yield-to-maturity is given as

T In SJ3[
ytmt = --­

T

[J 1 (1 *)(1 -eT) 1 2 2(1 -2fT)= U - -, n Ct - !-l - e - -, a - eT c 4£T cliT 1+ ,\ -,\-:;. t exp[_'!-lxe-e(T-u) + 2,2a;e-2e(T~u)]du.

(4.38)
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4.7 Stochastic Interest Rate

The short term interest rate is the yield-to-maturity on an instantaneously matur­

ing bond and is given as

73

rt = lim ytm'[
T--+t

1 1
= e-i£(lnCt - /1~) - 2i2(}~ + A[l - exp(r/1x + 2 i2(};)].

The stochastic processes governing the short-term interest rate is

= -i£[£(/1~ -lnCt)dt + (}cdB~ + InXdNt]

= £(r; - rt)dt -i£(}cdB~ -ieInXdNt

(4.39)

(4.40)

(4.41)

I
I

I

where r; = e- ~i2(}~ + A[l - exp(r/1x + ~i2(};)] is a central tendency parameter,

Le., the long-run mean of the interest rate. It depends on the discount rate, the

volatility of growth in the economy, the jump sizes and associated arrival rate and

the risk aversion of agents. The short term interest rate mimics the technology

process and follows a mean reversion jump-diffusion process.

4.7.3 Bond Option Price

Let Ht denote the price at time t of a contingent claim that has a payoff H s at

time s. Using the Euler equation, Ht is given as

Bond option, an option to buy or sell a type of bond by a certain date for a

particular price, is one of the most popular over-the-counter interest rate products.

A European call option expiring at s written on a discount bond which matures at

T, is a contingent claim with Hs = max(snr - K,O). Its price at time t E (0, s) is

Et [e-OCs-t)c;'Ymax(snr - K,O)]
Ht(s,T,K) = -'Y

ct
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4.7 Stochastic Interest Rate

The option pricing formula can be derived.

H (s T K) = E [e-O(S-t) c-;'Y (~T - K)I~T > K]t , , t -'Y s s
ct

= E [e-O(S-t) c-;'Y ~TI~T > K] _ E [e-O(S-t) c-;'Y KI~T > K]
t -'Y sst -'Y s

~ ~

Using the expression for ~~, one can write ~~ > K as

74

Use 0 to denote the right hand side. Then

H (s T K) = E [e-O(S-t) c-;'Y ~Tlc > eo] _ E [e-O(S-t) c-;'Y Klc > eo]
t , , t -'Y sst -'Y s .

ct ct

Using the expressions for ~r and ~~ we can get

Note that

we can rewrite the above as

Ht(s, T, K) = ~TEt[exp(-i In cse-f(T-s))lcs > eO] _ K~s Et (c-;'Ylcs > eO)
t Et[exp(-i In cse-f(T-s))] t Et(c-;'Y)

= ~TEt[exp( -ic:e-f(T-s))!c: > 0] _ K~sEt[exp(-ic:lc: > 0)]
t Etlexp( -ic;e-f(T-s))] t Et[exp( -iC;)]

(4.42)
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4.7 Stochastic Interest Rate

We then choose a new probability measure that is equivalent to the market proba­

bility measure, under which the option price can be written in a form similar to the

Black-Scholes formula. The prices are obtained using the characteristic function

inversion technique [34].

Assume that we are at time t, and that we are looking ahead to time s. We

are interested in the distribution of c; given the current value c;. In order to

get the (s - t)-interval characteristic function p(c;, s; a) = Et[eiae;J, we solve its

Kolmogorov backward equation.

75

(4.44)

op(c;,s;a)O( *_ *)+lop(c;,s;a)2 2_ o p(c;,s;a)+'E[ (*+1 X . )- (* . )]=0
;::) * ~ J1e ct 2 ;::) *2 (J"e ;::) /\ P Ct n , s, a P ct , s, a
u~ u~ uS

(4.43)

subject to the boundary condition that p(c;, 0; a) = eiae;

p(c;,s;a) = exp {iaJ1~ + ia(lnCt - J1~)e-£(s-t) - :£a2(J"~(1- e-2£(s-t))

I
s 1

- (s - t)'\ +,\ t exp[iaJ1xe-£(S-U) - "2 a2(J";e-U (s-u)]du}

Let JED(c;) be the probability density function of c; under the market measure.

Define a new equivalent probability measure

(4.45)

The characteristic function p(c;, s; a, b) of JR(c;, b) is given as

(4.46)
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where

Y1 prob [c; > ollR(c;, b = _,e-i )] = loo lR(c;, _,e-i(T-s))dc;

Y 2 = prob [c; > ollR(c;, b = -,)] = loo lR(c;, -,)dc;.

Y 1 and Y 2 can be efficiently computed by Fourier inversion and the characteristic

function of the probability density function lR(c;, b). The above expression for the

price of the call option is similar in form to those obtained by Merton (1976) [49]

and Naik and Lee (1990) [51] for options on stocks. There is one major difference:

in their option pricing models, the timing of the jumps does not matter. In the

option price we provide, the timing of the jumps is important because of the

mean reversion in the output process. Mean reversion causes jumps far from the

expiration date to be damped more; the impact is smaller on expiration date bond

price. Thus the timing of the jumps determines the end of period short-term

interest rate and bond price. In this extended model, jumps affect the output and

consumption and are still systematic, causing the jump risk to be priced.
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c:-5--------------
Foreign Currency Option Pricing

With the increasing globalization of world financial markets, derivative products

linked to exchange rates are assuming a new importance. The correct computation

of the derivative prices calls for a good model for the stochastic processes that

generate the time paths of foreign exchange rates.

Let X t be the spot exchange rate at time t, the value of one unit of the foreign

currency measured in the domestic currency. Consider a European call option from

the point of view of domestic country, i.e., a contract which gives its owner the

right to buy certain amount of foreign currency at a pre-specified exchange rate

K at the date T. The size of the contract varies but we can normalize to one.

Its payoff at T is max (XT - K,O). Note that from the point of view of foreign

country, it is a European put option, i.e., an option to sell one unit of their (foreign)

currency, which will be worth X T domestic currency at time T, to obtain K units

of domestic currency. Thus its payoff in foreign currency at T is max (X~~K,0).
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5.1 A Brief Review

Jump-diffusion processes have also been shown to be statistically superior to simple

diffusions for foreign exchange rates, see for example Akgiray and Booth (1988) [3].

They are more accurate than pure diffusions in valuing and hedging derivatives on

the exchange rate, such as currency option.

The model of Garman and Kohlhagen (1983) [29], which is a modification of the

Black-Scholes model, provides an analytical formula for currency option values.

Like the original Black-Scholes formula, its strength lies in its simplicity but a

number of authors have reported empirical biases and mispricing. Bodurtha and

Courtadon (1987) [19], Jiang (1998) [40] and Tucker (1991) [60] suggest using Mer­

ton (1976)'s [49] jump-diffusions model where jump risk is assumed diversifiable.

The problem with this assumption brings the same difficulty as mentioned above

in equity markets. Dumas et al. (1995) [26] notices an inconsistency when using

Merton's approach with currency options: the value of an option as seen in one

country does not match the value of the same option in the other country. Bardhan

(1995) [10] also admits this problem and shows further that investors in home and

foreign countries demand different premiums for the same source of risk. We will

show later that in an international general equilibrium setting, the inconsistency

problem will disappear.

Existing models for the valuation of foreign currency options are mostly based on

the arbitrage-free approach. See for a partial list, [53], [16], [29], [22], [5], [34],

[41], [26], [30], [10], [15], [20], [33]. Typically, these authors first specify some

exogenous process for the spot exchange rate, the factor risk premium, and the

domestic and foreign term structure of interest rates and then follow a variation of

the Black and Scholes argument to derive a partial valuation equation. While this

approach has generated many practically useful foreign exchange claims valuation
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formulas, there is no guarantee that the arbitrary choice of the exogenous processes

will be consistent with any international general equilibrium in which the factor

risk premium , the spot exchange rate and domestic and foreign interest rates are

endogenously determined.

In addition, it is expected that money supply should play a role in the model

given that the existence of foreign exchange claims is precisely due to the existence

of different monies. Possible sources of policy shocks include inflation pressure

reactions and some discretionary actions taken by central banks may cause jumps

in exchange rates [62].

Among the international general equilibrium models in the literature, several meth­

ods of incorporating nominal pricing have been used including transaction cost

technologies such as a cash-in-advance constraint [46], overlapping generations for­

mulations and money-in-the-utility-function formulations

Basak and Gallmeyer (1999) [12], Bakshi and Chen (1997) [8] have extended Lucas

(1982) 's [46] discrete-time two country monetary model and value foreign cur­

rency option in an international equilibrium context. With the cash-in-advance

constraint, the nominal exchange rates and international term structure of inter­

est rates are endogenously determined. However they still use the diffusion-type

process.

Our treatment of foreign currency option part builds on Bakshi and Chen (1997)

[8] and is an attempt to bridge the above mentioned gap. In another word, our

consideration of jump risks establish a link with the jump-diffusion formulation of

equity options. Exchange rate dynamics are characterized and closed-form formulas

for a standard European currency option are obtained.
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5.2 Garman & Kohlhagen Formula

5.2 Garman & Kohlhagen Formula

Garman and Kohlhagen (1983) [29] for the first time extend the Black-Scholes

model from equity options to the realm of currency options. Freely floating ex­

change rate regimes are usually modeled by letting the exchange rate evolve ac­

cording to a geometric diffusion process with constant drift and variance.

80

(5.1)

Risk-free assets, that is, the savings accounts in domestic currency and foreign

currency evolve respectively as:

(5.2)

(5.3)

(5.4)

R is domestic country risk-free nominal interest rate and R is foreign country risk­

free nominal interest rate. From now on a bar on a variable stands for the foreign

counterpart of the corresponding domestic variable.

The price of foreign savings account denoted in domestic currency is Ft = X u4t .

By Ito's lemma,

dFt - x
F

t
= (R + J-lx )dt + axdBt

Use the Radon-Nikodym derivative to define the equivalent martingale measure Q,

dQ
1

(X 1 2
7]t = dIP' :Ft = exp -1/JBt - 21/J t)

where 1/J = (R-R+J-lx)/ax is the exchange rate risk premium in domestic market.

By Girsanov's Theorem, Bf = 1/Jt + Bf is a standard Brownian motion under Q.

dXt - - x
X

t
= (R - R)dt + axdBt

Q is just the risk neutral measure for domestic investors. This equation reveals that

a foreign currency is analogous to a stock providing a known dividend yield. The
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5.2 Garman & Kohlhagen Formula

owner of foreign currency receives a "dividend yield" equal to the risk-free interest

rate in the foreign currency. To valuate the call option, we apply the standard

Black-Scholes technique.

81

where

CCK = E?[e-RT max (XT - K), OJ

= X te-RT <I>(1L) - Ke-RT <I>(1L - CTxVT)

1L = In(XtiK) + (R - R)T + CTxVT
CTxVT 2

(5.5)

That is only the domestic investor's outlook. Let us now transport ourselves to

foreign country where investors observe the inverse exchange rate Xt = 1/X t .

(that is, foreign country currency units per unit of domestic currency). Of course,

domestic and foreign here still refers to our original domestic and foreign. Xt =

1/X t is the inverse function of X.

(5.6)

where the source of risk is exactly the same Brownian motion except for an opposite

direction. In the same manner, we know that the risk neutral drift is R - Rand

the risk premium demanded by foreign investors is ij) = - (R - R - J-tx +CTi )/CTx =

7/J - CTx· The pricing formula for a European put option is

(5.7)

According to the law of one price, Pt converted into the domestic currency at the

spot exchange rate should be the same as Ct. It is verified that

(5.8)

which means that a currency option hence has the same domestic currency value,

whether viewed from domestic country or foreign country.
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5.3 Merton-style Currency Option Formula

5.3 Merton-style Currency Option Formula

On the ground of studies showing that jump-diffusion models perform well in mod­

eling the foreign exchange rate process, Bodurtha and Courtadon (1987) [19], Jiang

(1998) [40] and Tucker (1991) [60] suggest using Merton's jump-diffusions model

for currency option valuation. In Merton's model, investors are not paid for jump

risks since the jumps are assumed to be diversifiable.

Dumas et al. (1995) [26] point out that if both the domestic and foreign investors

assume their own risk neutral processes, even in the case where the jump component

in the exchange rate is uncorrelated with the consumption, applying Merton's

formula generates an analog to Siegel's paradox. The paradox refers to the violation

of the parity conditions between domestic and foreign investors' valuations.

Assuming an exchange rate dynamics as follows,

82

dXt x
X

t
= [fix - >'(Y - l)]dt + O"xdBt + (Y - l)dNt (5.9)

where fix is the instantaneous drift and O"x is the volatility of the diffusion part

B X
, N is an independent Poisson process with intensity>. and jump size Y - 1.

In Y rv N(fiy, O"y).

As a mimic of Merton (1976) [49] for stock options, the formula for a European

currency option from the point of view of domestic country is

(5.10)

where

>.E(Y)

R - >.E(Y - 1) + ~(fi + ~0"2)
T Y 2 y

2 n 2
O"x + -O"y'

T
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5.3 Merton-style Currency Option Formula

GCK is defined in (5.5). From the foreign country's point of view, the corresponding

put option formula is

83

(5.11)

where

AE(y-1 )

1 ) n 1 2)R - AE(Y- - 1 - -(p, --(J"
T y 2 y

n
(J"2 + _(J"2

X T Y

PCK is defined in (5.7). According to the law of one price, PM converted into the

domestic currency at the spot exchange rate should be the same as GM . However

in presence of jumps, it does not hold that

Therefore a domestic and a foreign investor do not assign the same value to that

same security, if both make the assumption that the jump risk is non-priced. In

fact, a zero price for jump risk is an untenable assumption in the international

financial market, when the investors look at returns from different currency points

of view.

In order to eliminate this paradox, Bardhan (1995) [10] has advocated a "directional

adjustment", Le., the extra term (J"3c + AE( f; - 1) appearing in the drift for the

inverse exchange rate flx.

dXt 2] X (1--- = [P,x + AE(Y - 1) + (J"x dt - (J"xdBt + Y - l)dNt
X t

_ 1)] x 1= [P,x - AE(y - 1 dt - (J"xdBt + (Y - l)dNt

where flx = -P,x + AE(Y - 1) + (J"3c + AE( f; - 1). He suggests that the foreign

investor makes a corresponding correction if using the domestic observations or
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5.4 Equilibrium Model

directly use to get her risk-neutral expectation for dXt/Xt . Her adjustment is

essentially the same as what Hull and White [36] suggest about using the foreign

country money account as numeraire for the inverse exchange rate process.

The ultimate problem in the application of Merton's stock option model to ex­

change rate option is its assumption that the jump risk is non-systematic or uncor­

related with the market. This assumption might have some justification in stock

market but is problematic for currency market. Since the exchange rate reflects

one nations's purchasing power relative to another nation, the exchange rate is

inherently correlated with aggregate fundamental forces that affect the market.

5.4 Equilibrium Model

In what follows, we will develop an international general equilibrium framework.

Specifically, we will extend Lucas (1982) [46] discrete-time two country monetary

model to continuous-time version in a jump-diffusion setting.

5.4.1 Structure of the Economy

The economy has a finite horizon [0, T]. There are two countries named domestic

and foreign country and two goods freely traded between them. Each country has

a stochastic non-storable endowment or production of its unique goods. Denote

the domestic dividend as 6, which are exogenously given as

84

d6t 15 15
6t- = [lii5 - Ai5E (G - l)]dt + (5i5dBt + (G - l)dNt (5.12)

where Bi5 is a Brownian motion process and Ni5 is an independent Poisson process

with intensity parameter Ai5 and an amplitude G - 1. In G rv N(lig, (5;).

There is one risky stock, which represents the ownership of the productive tech­

nology for the domestic good. The total supply of this risky stock is normalized
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5.4 Equilibrium Model

to one. Denote its nominal price at time t as St. Then its real price in terms of

domestic goods is St/Pt where Pt is the price of the domestic good at time t.

Since in either country monetary authorities control the monetary aggregate only

imperfectly through intermediate instrument, we model the evolution of the mon­

etary aggregate as a stochastic process. The monetary authority sets the money

supply on the basis of long term target for nominal money growth. Assume that

the monetary policy is exogenous, real productivity shocks or inflation shocks do

not feed back into the nominal side of the economy.

85

(5.13)

where B M is a Brownian motion process and N M is an independent Poisson process

with intensity parameter AM and an amplitude H - 1. In H rv N(f-Lhl (T~). This

money supply process incorporates both frequent fluctuations and infrequent large

shocks to the money supply. Possible sources of policy shocks include inflation

pressure reactions and some discretionary actions taken by central banks.

The foreign country also has

(5.14)

(5.15)

where B 3 is a Brownian motion process and N 3 is an independent Poisson process

with intensity parameter A3 and an amplitude G - 1. In G rv N(f-Lg, (T~).

dMt - M - M
M

t
- = [f-LM - AME(H - l)]dt + (TMdBt + (H - l)dNt

where B M is a Brownian motion process and N M is an independent Poisson process

with intensity parameter AM and an amplitude II - 1. In II rv N(f-Lli, (TV.

The four processes described above form the basis of what is referred to as the

primitives of the economy. Call St = (5tJ bt , Mtl Mt ) the state in period t. It follows

a Markov process with the distribution of SHI given by the distribution functions
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5.4 Equilibrium Model

JED (St+l 1St). That is, the probability distribution of St+l depends on the realization

of St only. They are assumed to be independent, measured with respect to a given

probability space (0, F, JED). Together with the specification of the utility function

for the representative agent, they induce equilibrium prices for other assets. Among

these assets, there are domestic and foreign risk-free bonds, domestic and foreign

risky stocks and other contingent claims on the stocks or the spot exchange rate or

the money transfer. As discussed in [46], there is a certain arbitrariness in which

assets are assumed traded. The important aspect is that there are enough assets

to allow for a stationary equilibrium.

The two countries each have an identical representative agent who maximizes ex­

pected utility and have the same preferences over the two goods, as given below

86

(5.16)

for a consumption bundle of Ct domestic goods and Ct foreign goods. () is the

discount rate. For simplicity, we use a log-utility Cobb-Douglas form function.

(5.17)

".

where f) E [0,1] is the expenditure share on the domestic good.

5.4.2 Agents' Decision Problem

We shall first look at the decision problem of the home agent. Initially, the

agent is endowed with one share of the domestic risky stock, one unit of domes­

tic money holdings and one share of the equity claims for domestic monetary

transfer. Her consumption over time is financed by a continuous trading strategy

{mt, mt, nt, Vt ~ O}, where mt is the domestic money holding by the domestic

agent at time t and mt is the foreign money holding by the domestic agent at time

t and nt = (nf, nf, nf, nY, n-f) represents the portfolio holdings consists of all the
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5.4 Equilibrium Model

financial assets held by the domestic agent at time t. The nominal prices of all

financial assets are denoted by P t = (St, St, At, Vi, t:t)T and corresponding vector

of dividends qt. Note that the nominal prices of foreign equity claims St and t:t
are prices at which they are traded in domestic financial market and therefore

measured in domestic currency. The cumulative dividends up to t is q = J~ qudu.

To make the budget manageable, assume for now that the agent does not invest in

the foreign bond market. At time t, the domestic agent's real wealth is

mt + mtXt + ?rtP t
Wt=

Pt

87

The flow budget constraint is

(Ct + Ct)dt + dWt = mtd (:J + ?rt(dPt + dqt)d (:J (5.19)

where Ct and Ct are the domestic agent's consumption of domestic and foreign

goods. This constraint intuitively states that the sum of the wealth increase dWt

and consumption flow (Ct + Ct) is bounded by the dividend and capital gain from

the portfolio.

The cash-in-advance constraint states that domestic currency is used to buy do­

mestic goods at the price Pt, whereas foreign currency is used to pay for foreign

goods at the price fit. The purchases must obey the liquidity constraint

(5.20)

•

With these constraints, one can apply the same technique to derive the necessary

first-order conditions. In equilibrium the security trading will not affect the hold­

ings or the consumption flow of the representative agent. As the two goods are

traded in the respective producing countries and only in the country's currency,

the domestic country's output 6t can only be purchased and consumed by paying a

total of 6tpt. The foreign country's output (5t can only be purchased and consumed

by paying a total of (5tiit .
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5.4 Equilibrium Model

The representative agent in foreign country is identical with the domestic one. She

maximizes expected utility given by

for a consumption bundle of Ct domestic goods and Ct foreign goods. The foreign

agent is endowed with one share of the foreign risky stock, one unit of domes­

tic money holdings and one share of the equity claims for domestic monetary

transfer. Her consumption over time is financed by a continuous trading strategy

{mt, m~, 1ft}, Vt ~ 0, where mt is the foreign money holding by the foreign agent at

time t and m~ is her domestic money holding and 1ft = (1ff, 1ft, 1ft, 1fr,1ft) rep­

resents the portfolio holdings consists of all the financial assets held by the foreign

agent at time t. The foreign-currency-denominated prices of all financial assets is

Pt = (Bt,s~, At, ft, ~')T and corresponding vector of dividends (It- The cumulative

dividends up to t is q= J~ iiudu. At time t, the foreign agent's real wealth is

_ mt + m~Xt +1ftPt
Wt = _

Pt

The flow budget constraint is

where Ct and c~ are the domestic agent's consumption of domestic and foreign

goods. Her cash-in-advance constraint dictates that

The first-order conditions arise from the foreign agent's problem are just the same

as those from the domestic side.

88
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5.4 Equilibrium Model

5.4.3 Equilibrium and Characterization

Given the above setup, a perfect pooling equilibrium exists in which the domestic

and foreign representative agent each consume half of each of the two goods.

I 1
(5.21)Ct ct = "2 bt

1-
(5.22)Ct Ct = "2bt

and in which each agent holds half of the domestic and half of the foreign equity

shares for every time t.

89

-8' 1
7f --'

t - 2'
11fv' _.

t - 2'

v - 1
8 -8

7ft = 7ft =-
2

v - 1v -8
7ft = 7ft =-

2

(5.23)

(5.24)

Then the equilibrium demand for the domestic currency is mt = ~Ptbt for the

domestic agent and m~ = ~Ptbt for the foreign agent, implying a total demand of Ptbt

domestic currency. Similarly, the total demand for foreign currency is mt + Tnt =

iitJt . In the perfect pooling equilibrium, the monetary policy for each country

should be such that its money supply equals demand.

(5.25)

A look at the equations tells us that holding bt , Jt and Mt fixed, an increase in

domestic money supply Mt will lead to a proportional increase in domestic price

level Pt , which in turn causes a proportional increase in exchange rate X t . Thus

a rise in money supply alone will only proportionally depreciate the value of the

domestic currency, whereas a rise in foreign money supply will have the opposite

effect.

The equilibrium nominal exchange rate must satisfy the equation below via the

purchasing power parity.

•

x - Uc(Ct, Ct) Pt
t - Uc(Ct, Ct)fit (5.26)
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5.4 Equilibrium Model

where subscripts on U denote the respective partial derivatives. Other assets' pric­

ing equations may be obtained via the substitution argument that in equilibrium

the investor should be indifferent between consuming now and holding a nominal

bond at the margin and then spending the return on consumption goods later.

90

(5.27)

where

is the nominal state price deflator. (2.30)

Under the utility function specified and the market clearing conditions, (5.26)

becomes

x _ (1 - {j)Ct Pt
t - {j6t Pt

(1 - {jH8t Pt

{j~8t Pt
1- {j M t
-{j-M

t
'

(5.28)

c1

The nominal exchange rate is decreasing in the expenditure share of the domes­

tic goods and proportional to the ratio of domestic to foreign money supplies.

More surprisingly, it is independent of production output in either country, which

means foreign exchange levels are driven by monetary policies. This detachment

of exchange rate from the real side of the economy is due to the perfect-pooling

assumption. Under this assumption, the cross-border trade in goods occurs irre­

spective of the exchange rates. Consequently the cash-in-advance constraint and

monetary policies become the sole determination of exchange rate. (There is how­

ever one indirect way in which real factors can still influence the determination of

the exchange rate, that is, the monetary authorities can index monetary growth to

real shocks and make M t and Mt dependent on the real sector.)
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Ito's lemma yields the dynamics of the exchange rate.

dXt - M M- = [ILM - )'ME(H - 1) - ILM + )..ME(H - 1)]dt + CTMdBt - CTMdBt
X t (5.29)

+ (H - 1)dNt
M + (iI- 1

- 1)dNt
M

Under the log-utility function, the nominal asset pricing kernel now becomes

C* _ -(Jr( CT )-1~
"'tT - e

, Ct PT

(16 )-1= e-(Jr :; T Pt
"26t PT

-(Jr Mt
=e M

T
'

The foreign agent's nominal state price deflator, (*t = e-(JrMtiMT , can be obtained

likewise. Then we can apply Ito's lemma and the property that the drift of a

nominal state price deflator equals the negative of the nominal interest rate.

91

R

R

e+ ILM - )..ME(H - 1) - CT~ - )..ME(H-1
- 1)

e+ ILM - )..ME(iI - 1) - CT~ - )..ME(iI-1
- 1)

(5.30)

(5.31)

tsd

We can see that in this special case of log-utility function, the nominal interest

rates turn out to be independent of the dividends' processes and solely determined

by the corresponding country's monetary policy. With a more general class of

utility functions such as CRRA, this may not necessarily the case. Knowing both

the domestic and the foreign term structure of interest rates allows us to rewrite

(5.29) as

d:
t = [R - R+ CT~ + )..ME(H-1

- 1) - )..ME(iI-1
- 1)]dt + CTMdBtt - CTMdBtt

+ (H - 1)dNt + (iI-1
- 1)dNt

M

(5.32)

The key feature of the above exchange rate is that it is derived endogenously from

the underlying processes for the money supply. This endogeneity is in contrast with
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5.4 Equilibrium Model

the arbitrariness in partial equilibrium currency option models. The exchange rate

and the interest rates are all endogenously determined as part of a general interna­

tional equilibrium. This guarantees that no internal inconsistency will arise among

the processes assumed for them independently. It also makes it possible to gain

some insights into how derivative prices may respond to a change in any underlying

variable or structural parameter. The exchange rate dynamics incorporate the two

independent jump components from the two countries' money supply. Obviously,

the jump in the exchange rate must be priced.

5.4.4 Option Valuation

Let us now value a European call option on the exchange rate.

92

(5.33)

Since the exchange rate is a function X t = 1~19 ~:' then

[
-OT Mt (1 - f) MT )]Ct = E t e -max ----- - K,O

M T f) M T

[
-OT (1 - f) Mt Mt) ]

= Et e max -f)-AfT - K MT'O

[
-OT (Mt Mt )]= Et e max X t M

T
- K M

T
' 0

Define aM = /-lM - >'ME(H -1) - ~0"1- and ZM = O"M(B¥ - B[J) + L.:;;;:nt+1 hj for

domestic money supply process M t . Likewise, for foreign country money supply

process aiM = /-liM - AiME(fI - 1) - ~O"~ and ZiM = O"iM(B¥ - Bf) + L.:;;;:nt+1 hj'

Then we can rewrite the valuation equation.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.4 Equilibrium Model

Taking expectation conditional on nM jumps occurring in domestic money supply

and nM jumps occurring in foreign money supply.

C _ 00 00 e->'MT(>wT)nMe->'MT(AMT)nM
t- L L nM! nM!

nM=OnM=O

93

...

where ZM(nM) = o-M(B!f - Bf!) + 'L,;:l h j and ZM(nM) = o-M(B!j! - Bft) +
'L,;~l hj . Now let us focus on the conditional expectation.

Et [e-8T-O:MT-zM(nM)IxT>K] = exp ( -(h - O'-MT - E[ZM(nM)] + tvar[ZM(nM)])

x <I> (In(Xt/ K) - O'-MT - E[ZM(nM)] + O'-MT + E[ZM(nM)] + Var[ZM(nM)])

JVar[ZM(nM)] + Var[ZM(nM)]

-r Tn;. (In(Xt/ K) + (rd - rf)T 1~)= e f '±' + - 0-FT
Jo-}T 2

where

In the same way, the second part conditional expectation can be expressed as

E [e-8T-O:MT-zM(nM)I ] = e-rdT<I> (In(Xt/K) + (rd - rf)T _ ~JO-2T)
t XT>K r:::'2::. 2 F .

V o-FT

These lead to our final formula

00 00 e->'MT(AMT)nMe->'MT(AMT)nM
CF = L L , _I CGK(Xt , T; rd,rj,o-F, K). (5.34)

nM· nM'nM=OnM=O

We can also express the conditional interest rate by substituting in the domestic

and foreign nominal interest rate.

J
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Valuation equations can be produced by the same argument as in the closed pure

exchange economy.

The currency option prices depend intuitively on the fundamental parameters.

First, an increase in the domestic money supply volatility (JM, or the volatility

of jump size (Jh induces a lower rd and a higher (JF: the joint consequence is not

clear since GGK is an increasing function of the conditional domestic interest rate

r d, and the conditional exchange rate volatility (JF. Second, a higher volatility of

foreign money supply (JM, or higher volatility of the corresponding jump (Jh' imply

a higher call price because it reduces rd and increases (JF simultaneously. Further,

the call value is positively related to the instantaneous expected growth rate of the

domestic money supply f-lM and negatively related to the instantaneous expected

growth rate offoreign money supply f-lM' The effects of parameters (AM, AM, f-lh, f-lh)

on currency call prices are ambiguous. Note that if there were no jump component

in foreign money supply, the currency call prices would reduce to Merton style

price equations with jump amplitude changing from Y to H-1. In this case, the

only jump uncertainty underlying the exchange rate would be from the domestic

money supply and this jump uncertainty is not priced.

5.4.5 Pricing the Foreign Side

Let us now examine from the foreign country's perspective, that is, we try to price

from the other side of the trade.

94
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5.4 Equilibrium Model

We shall first value a European call option on the inverse exchange rate.

Taking expectation conditional on nM jumps occurring in domestic money supply

and niVI jumps occurring in foreign money supply.

The same tedious derivation yields.

The corresponding put option formula is

According to the law of one price, FF converted into the domestic currency at the

spot exchange rate should be the same as CF. Since CGK(Xt,T;rd,rt,O"F,K) =

XtFGK(K/ Xt, T; rt, rd, O"F, 1), thus

95

(5.38)

It is self-evident that our currency option formula satisfy the property that its value

does not depend on whose point of view is taken, that of the domestic or foreign

investor without assuming away the jump risk. There is no instance of Siegle's
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paradox in our model. Actually, as Siegle and Dumas surmises, information about

investor risk-preferences or more primitive economic variables would help to pin

down the fair price.

We have examined a continuous-time two country dynamic monetary equilibrium.

With mild assumptions on all exogenous distributions on all exogenous distrib­

utions, we provide pricing results for the nominal exchange rate and currency

options. We can also easily obtain the equity option prices and modified secu­

rity market line within this international economy context. With incorporation of

money, the real quantities in the economy are identical to a benchmark economy

with no money since the representative agent's marginal utility is not dependent

on money balances. However the nominal interest rate and nominal prices will be

influenced by aggregate money balances in each country.

96
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Concluding Remarks

The contribution of this dissertation is two-fold. Firstly, the classic Lucas (1978)

[47] general equilibrium model is extended and applied to price stock options and

bond options in the presence of jumps in the process that determines output in

the economy. We have not only abandoned the assumption by Merton of unpriced

jumps [49], but also explored the consequences of systematic jump risks. We go

beyond other authors who have also made similar attempts in that our results are

more generalized, meaningful yet clear. To an extent, this is a unified treatment

of jump-diffusion option pricing models and a link between the CAPM and option

pricing. The other half of this dissertation employs an international general equi­

librium model originating with Lucas (1982) [46] and develops a foreign currency

option pricing formula in a jump-diffusion setting. In contrast with the existing

partial equilibrium models, the exchange rate process is endogenously determined

and there is no inconsistency for exchange rate option prices from two sides (do­

mestic and foreign) of the trade. All the formulas have been feasibly studied and

analytically solved, lending themselves to application and/or empirical tests.

Our model has exclusively priced ordinary call and put options. They can be used

as "building blocks" for constructing much more general and complex options. It

97
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is expected that jump-diffusion models may also prove useful for exotic options.

Especially for those path-dependent options, a rigorous consideration of jumps in

the sample paths of the underlying asset prices seem more important than for the

standard non-path-dependent options.

It is worthwhile suggesting further avenues of research, which could benefit from

the framework of this thesis. First, an extensive examination of which type of

information surprises causes jumps is an open question. Locating jumps in the data

and associating them with market events is one possible way. Secondly, parallelling

the equity option models, jump-diffusion processes have provoked the attention in

credit risk models [63] too. With firm value evolving as a jump-diffusion process, a

firm can default instantaneously because of a sudden drop in its value. However, the

treatment of jump risks thereinto still follows Merton (1976) [49]. Therefore models

that integrate market and credit risk in a general equilibrium await development.
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I AAppendix ---'

Tables

Here is a list of all parameters and variable values used in each table.

Table 1: Pricing a call option on consumption index with different maturity.

K = 50, r = 0.1, q = 0.02, CJs = 0.2,

/-Lx = /-Ly = -0.0032, CJx = CJy = 0.08, (} = 1, ,= 1

Table 2: Importance of jump component.

K = 50, r = 0.1, q = 0.02, T = 0.25,

/-Lx = -0.0018, CJx = 0.06, /-Ly = 0, (} = 0.8, ,= 1

Table 3: The effect of systematic risk.

K = 50, r = 0.1, q = 0.02, T = 0.25, CJs = 0.2,

/-Lx = -0.0018, CJx = 0.06, /-Ly = -0.0032, CJy = 0.08, A = 2, ,= 1

Table 4: The effect of different utility functions.

K = 50, r = 0.1, q = 0.02, T = 0.25, CJs = 0.2,

/-Lx = -0.0018, CJx = 0.06, /-Ly = 0, (} = 1, A = 2
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A=2 (Ttotat = 0.2298 5t T A=7 (Ttotat = 0.2912

BS Merton Huang BS Merton Huang

0.00043 0.0045 0.0038 40 1/12 0.0059 0.0221 0.019

(938%) (774%) (273%) (220%)

0.0943 0.1054 0.1006 45 0.2346 0.2488 0.2351

(11.80%) ( 6.71%) ( 6.07%) ( 0.24%)

1.4889 1.4506 1.4526 50 1.839 1.753 1.7592

(-2.56%) (-2.43%) (-4.68%) (-4.34%)

5.4164 5.4297 5.4361 55 5.5627 5.5814 5.6002

( 0.25%) (-0.36%) ( 0.34%) ( 0.67%)

0.0782 0.0891 0.085 40 0.25 0.2373 0.2545 0.2424

(14.06%) ( 8.70%) ( 7.25%) ( 2.16%)

0.7122 0.702 0.6968 45 1.1718 1.1435 1.1336

(-1.42%) (-2.14%) (-2.41%) (-3.26%)

2.7833 2.7556 2.7601 50 3.3781 3.3238 3.3356

(-0.99%) (-0.83%) (-1.61%) (-1.26%)

6.4509 6.4496 6.4595 55 6.8758 6.8612 6.8861

(-0.01 %) (-0.14%) (-0.21%) ( 0.15%)

0.4576 0.4598 0.454 40 0.5 0.912 0.9052 0.8961

( 0.50%) (-0.75%) (-0.75%) (-1.75%)

1.7152 1.699 1.6972 45 2.46 2.4238 2.4276

(-0.93%) (-1.04%) (-1.48%) (-1.32%)

4.2077 4.1877 4.1944 50 5.0248 4.9803 5.0036

(-0.47%) (-0.31%) (-0.89%) (-0.42%)

7.8274 7.8219 7.8331 55 8.4955 8.4666 8.5034

(-0.07%) (-0.07%) (-0.34%) ( 0.09%)

1.5669 1.5596 1.5568 40 1 2.4448 2.1126 2.4268

(-0.45%) (-0.63%) (-13.6%) (-0.74%)

3.545 3.5303 3.5335 45 4.6247 4.0557 4.6094

(-0.41 %) (-0.32%) (-12.3%) (-0.33%)

6.4522 6.439 6.4483 50 7.5425 6.6852 7.5397

(-0.2%) (-0.05%) (-11.4%) (-0.04%)

10.1193 10.1137 10.1259 55 11.073 9.8834 11.0864

(-0.05%) (-0.06%) (-10.7%) (-0.12%)

3.9655 3.9421 3.9597 40 2 5.2964 0.8133 5.2925

(-0.58%) (-0.14%) (-84.6%) (-0.07%)

6.658 6.626 6.6562 45 8.0748 1.2939 8.0785

(-0.47%) (-0.02%) (-84%) (-0.04%)

9.9686 9.9298 9.9726 50 11.3411 1.8705 11.354

(-0.39%) (-0.04%) (-83.5%) (-0.11%)

13.756 13.7107 13.7656 55 14.9982 2.5229 15.0196

(-0.33%) (-0.07%) (-83.2%) ( 0.14%)
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atotal = 0.2296 K= 50% as = 0.1625 >. atotal = 0.2296 K= 20% as = 0.2054

St Huang Merton NaikLee BS ay Huang Merton NaikLee BS ay

40 0.1876 0.2012 0.1317 0.0782 0.2966 0.3 0.1072 0.112 0.0953 0.0782 0.1879

(140%) (157%) (69%) (37.30%) (43.40%) (22.10%)

45 0.5876 0.6028 0.5311 0.7121 0.6812 0.6863 0.6696 0.7121

(-17.5%) (-15.4%) (-25.4%) (-4.3%) (-3.58%) (-5.93%)

50 2.4612 2.4617 2.4838 2.7831 2.7083 2.708 2.713 2.7831

(-11.6%) (-11.6%) (-10.8%) (-2.68%) (-2.69%) (-2.51%)

55 6.3531 6.3419 6.4317 6.4508 6.4306 6.426 6.4475 6.4508

(-1.51 %) (-1.69%) (-0.29%) (-0.31%) (-0.38%) (-0.08%)

40 0.1498 0.1603 0.1274 0.0782 0.1625 1 0.0919 0.095 0.0886 0.0782 0.103

(91.50%) (105%) (62.90%) (17.60%) (21.50%) (13.40%)

45 0.6535 0.6683 0.6239 0.7121 0.6994 0.7035 0.6952 0.7121

(-8.26%) (-6.17%) (-12.4%) (-1.78%) (-1.21 %) (-2.37%)

50 2.601 2.5992 2.6135 2.7831 2.7497 2.7488 2.7513 2.7831

(-6.55%) (-6.62%) (-6.1%) (-1.2%) (-1.23%) (-1.14%)

55 6.4277 6.4136 6.4668 6.4508 6.4481 6.4435 6.4537 6.4508

(-0.36%) (-0.58%) (-0.25%) (-0.04%) (-0.11 %) (-0.05%)

40 0.1221 0.13 0.1118 0.0782 0.1149 2 0.0855 0.0876 0.0843 0.0782 0.0728

(56.14%) (66.2%) (43%) ( 9.42%) (12.20%) ( 7.93%)

45 0.6777 0.6904 0.6618 0.7121 0.7046 0.7077 0.7029 0.7121

(-4.86%) (-3.07%) (-7.08%) (-1.03%)) (-0.6%) (-1.27%)

50 2.6715 2.6687 2.6782 2.7831 2.7647 2.7635 2.765 2.7831

(-4.02%) (-4.12%) (-3.78%) (-0.66%) (-0.7%) (-0.64%)

55 6.4479 6.4346 6.468 6.4508 6.4512 6.4473 6.4531 6.4508

(-0.05%) (-0.25%) ( 0.27%) (-0.Ql %) (-0.05%) (-0.04%)

40 0.1016 0.1072 0.0977 0.0782 0.0812 4 0.0818 0.0832 0.0815 0.0782 0.0515

(30.11%) (37.30%) (25.10%) ( 4.61%) ( 6.51%) ( 4.34%)

45 0.6915 0.701 0.6848 0.7121 0.7079 0.71 0.7074 0.7121

(-2.86%) (-1.52%) (-3.79%) (-0.58%)) (-0.29%) (-0.66%)

50 2.7219 2.7187 2.7241 2.7831 2.774 2.7727 2.7736 2.7831

(-2.19%) -2.30% (-2.11%) (-0.33%) (-0.37%) (-0.34%)

55 6.4543 6.4432 6.4619 6.4508 6.4524 6.4492 6.4523 6.4508

(-0.06%) (-0.11%) (-0.18%) (-0.03%) (-0.Q2%) (-0.02%)

40 0.0915 0.0958 0.0901 0.0782 0.0614 7 0.08 0.0811 0.0801 0.0782 0.0389

(17.10%) (22.60%) (15.30%) ( 2.45%) ( 3.82%) ( 2.57%)

45 0.6987 0.7056 0.696 0.7121 0.7092 0.7106 0.7091 0.7121

(-1.88%)) (-0.9%) ( 2.26%) (-0.36%) (-0.17%) (-0.38%)

50 2.7483 2.745 2.7482 2.7831 2.778 2.7767 2.7772 2.7831

(-1.25%) (-1.37%) (-1.25%) (-0.17%) ( 0.22%) ( 0.20%)

55 6.4557 6.4465 6.4577 6.4508 6.4523 6.4496 6.4515 6.4508

(-0.07%) (-0.07%) ( 0.11%) (-0.03%) (-0.Ql%) (-0.02%)
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0.0782 0.0859 0.0891 0.085 40 1 0.2373 0.2449 0.2545 0.2424

( 9.86%) (14.10%) ( 8.70%) ( 3.20%) ( 7.25%) (-2.16%)

0.7122 0.6977 0.702 0.6968 45 1.1718 1.1347 1.1435 1.1336

(-2.02%) (-1.42%) (-2.14%) (-3.17%) (-2.41%) (-3.26%)

2.7833 2.7584 2.7556 2.7601 50 3.3781 3.3308 3.3238 3.3356

(-0.89%) (-1%) (-0.83%) (-1.4%) (-1.61%) (-1.26%)

6.4509 6.4566 6.4496 6.4595 55 6.8758 6.8786 6.8612 6.8861

(-0.09%) (-0.02%) (-0.14%) (-0.04%) (-0.21%) (-0.15%)

0.0782 0.0876 0.0891 40 0.5 0.2373 0.2499 0.2545

(12.00%) (14.10%) ( 5.33%) ( 7.25%)

0.7122 0.7 0.702 45 1.1718 1.1396 1.1435

(-1.7%) (-1.42%) (-2.74%) (-2.41%)

2.7833 2.7572 2.7556 50 3.3781 3.328 3.3238

(-0.93%) (-1%) (-1.49%) (-1.61%)

6.4509 6.4533 6.4496 55 6.8758 6.8704 6.8612

(-0.04%) (-0.02%) (-0.07%) (-0.21%)

0.0782 0.0894 0.0891 40 0 0.2373 0.2554 0.2545

(14.30%) (14.10%) ( 7.64%) ( 7.25%)

0.7122 0.7026 0.702 45 1.1718 1.1456 1.1435

(-1.33%) (-1.42%) (-2.23%) (-2.41%)

2.7833 2.7565 2.7556 50 3.3781 3.3264 3.3238

(-0.96%) (-1%) (-1.53%) (-1.61%)

6.4509 6.4502 6.4496 55 6.8758 6.8632 6.8612

(-0.01%) (-0.02%) (-0.18) (-0.21%)

0.0782 0.0913 0.0891 40 -0.5 0.2373 0.2613 0.2545

(16.80%) (14.10%) (10.10%) ( 7.25%)

0.7122 0.7056 0.702 45 1.1718 1.1527 1.1435

(-0.91%) (-1.42%) (-1.63%) (-2.41%)

2.7833 2.7562 2.7556 50 3.3781 3.3262 3.3238

(-0.97%) (-1%) (-1.54%) (-1.61%)

6.4509 6.4474 6.4496 55 6.8758 6.857 6.8612

(-0.05%) (-0.02%) (-0.27%) (-0.21%)

0.0782 0.0933 0.0891 40 -1 0.2373 0.2676 0.2545

(19.40%) (14.10%) (12.80%) ( 7.25%)

0.7122 0.7089 0.702 45 1.1718 1.1608 1.1435

(-0.45%) (-1.42%) (-0.94%) (-2.41%)

2.7833 2.7563 2.7556 50 3.3781 3.3274 3.3238

(-0.96%) (-1%) (-1.5%) (-1.61%)

6.4509 6.445 6.4496 55 6.8758 6.8517 6.8612

(-0.09%) (-0.02%) (-0.35%) (-0.21%)
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ay = 0.08 atotal = 0.2298 f< = 24.24% St 'Y a y = 0.2 atotal = 0.3464 f< = 33.33%
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0.0782 0.0917 40 0 0.4513 0.5671

(17.40%) (25.70%)

0.7122 0.706 45 1.6157 1.4844

(-0.86%) (-8.13%)

2.7833 2.7553 50 3.9145 3.5986

(-1%) (-8.07%)

6.4509 6.446 55 7.3115 7.1256

(-0.07%) (-2.54%)

0.0782 0.0899 0.0917 0.0892 40 0.5 0.4513 0.5483 0.5671 0.5074

(15.00%) (17.40%) (14.10%) (21.50%) (25.70%) (12.40%)

0.7122 0.7032 0.706 0.7021 45 1.6157 1.4639 1.4844 1.4222

(-1.25%) (-0.86%) (-1.4%) (-9.4%) (-8.13%) (-12%)

2.7833 2.7558 2.7553 2.7558 50 3.9145 3.5959 3.5986 3.5976

(-0.98%) (-1%) (-0.98%) (-8.14%) (-8.07%) (-8.1%)

6.4509 6.4489 6.446 6.4497 55 7.3115 7.1396 7.1256 7.1781

(-0.03%) (-0.07%) (-0.02%) (-2.35%) (-2.54%) (-1.83%)

0.0782 0.0881 0.0917 0.087 40 1 0.4513 0.5306 0.5671 0.4601

(12.80%) (17.40%) (11.30%) (17.60%) (25.70%) ( 1.94%)

0.7122 0.7008 0.706 0.6991 45 1.6157 1.4456 1.4844 1.3848

(-1.58) (-0.86%) (-1.82%) (-10.5%) (-8.13%) (-14.3%)

2.7833 2.7569 2.7553 2.7575 50 3.9145 3.596 3.5986 3.6278

(-0.94%) (-1%) (-0.92%) (-8.14%) (-8.07%) (-7.3%)

6.4509 6.4522 6.446 6.4543 55 7.3115 7.1558 7.1256 7.2547

(-0.02%) (-0.07%) (-0.05%) (-2.13%) (-2.54%) (-0.78%)

0.0782 0.0852 0.0917 0.0833 40 2 0.4513 0.4986 0.5671 0.3998

( 9.01%) (17.40%) ( 6.59%) (10.50%) (25.70%) (-11.4%)

0.7122 0.6976 0.706 0.6957 45 1.6157 1.4158 1.4844 1.3864

(-2.03%) (-0.86%) (-2.3%) (-12.4%) (-8.13%) (-14.2%)

2.7833 2.7612 2.7553 2.7643 50 3.9145 3.6047 3.5986 3.7862

(-0.79%) (-1%) (-0.68%) (-7.91%) (-8.07%) (-3.28%)

6.4509 6.4603 6.446 6.4659 55 7.3115 7.1946 7.1256 7.4857

(-0.15%) (-0.07%) ( 0.23%) (-1.6%) (-2.54%) -( 2.38%)

0.0782 0.096 0.0917 0.0977 40 -1 0.4513 0.6086 0.5671 0.7309

(22.80%) (17.40%) (25.10%) (34.80%) (25.70%) (61.90%)

0.7122 0.7131 0.706 0.7164 45 1.6157 1.5324 1.4844 1.6886

( 0.14%) (-0.86%) -( 0.61%) (-5.16%) (-8.13%) ( 4.50%)

2.7833 2.7562 2.7553 2.7578 50 3.9145 3.6125 3.5986 3.6983

(-0.97%) (-1%) (-0.91 %) (-7.72%) (-8.07%) (-5.53%)

6.4509 6.4415 6.446 6.4408 55 7.3115 7.104 7.1256 7.0927

(-0.14%) (-0.07%) (-0.15%) (-2.84%) (-2.54%) (-2.99%)
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