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Executive Summary 

 

It is estimated that around forty percent of pharmaceutical or biological 

entities under development are chiral. The specified stereochemistry of the 

substance is closely related with their pharmacological efficacy. Thus, fast and 

efficient analysis and preparative techniques for chiral compounds are required by 

the rapid development of the pharmaceutical industry. Conventional 

high-performance liquid chromatography (HPLC) provides diverse 

chromatographic conditions and versatility for most racemates’ enantioseparations. 

On the other hand, in supercritical fluid chromatography (SFC), the analytes’ 

higher diffusivity and eluents’ lower viscosity allow faster flow rate and affords 

greater column efficiency in comparison with analyses using HPLC. In addition, 

the baseline stabilization after changing conditions in SFC is faster than in HPLC. 

Thus, SFC has undergone rapid development in recent years so as to afford 

reduced analyses time and enable higher throughput in modern pharmaceutical 

industry. 

In all the chromatographic modalities for enantioseparations, the chiral 

selectors are either applied as mobile phase additives or as chiral stationary phases 

(CSPs). The former approach is not usually adopted for the conventional HPLC 

and SFC, as valuable chiral selectors are being consumed and unrecyclable. On the 

other hand, the development of CSPs is considered highly desirable and they are 

widely applied for most enantioseparations. Amongst all developed CSPs, 
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Cyclodextrin (CD) based CSPs have been used extensively for enantioseparations. 

These CSPs usually enable enantioseparations through hydrophobic inclusion or 

adsorption between the CD cavity and hydrophobic moieties of analytes. More 

specifically, in contrast to the conventional neutral CD CSPs where only 

hydrophobic inclusion is considered, dual interactions of electrostatic forces and 

hydrophobic inclusion in the CD cavity account for retention and 

enantioseparation of racemates in the applications of charged CD CSPs. The 

preparation and intensive investigations of anionic β-CD derivatives’ in 

enantioseparation were reported during recent years where the anionic β-CD 

derivatives were shown to depict versatile enantioseparation capabilities. In 

contrast, cationic β-CD derivatives were exiguously studied. Few works on 

cationic β-CD derivatives in enantioseparation focused on their application as 

chiral mobile phase additives. Motivated by the popular investigation on 

imidazolium, pyridinium and ammonium based ionic liquids, we designed cationic 

derivatives by introducing one imidazolium, pyridinium or ammonium substituent 

onto the primary ring of β-CD and applied them as CSPs. To the best of our 

knowledge, this is the first application of introducing cationic β-CD onto stationary 

phase for enantioseparations in HPLC and SFC. The derived cationic β-CD CSPs 

are able to achieve complementary enantioseparation results with those being 

achieved on anionic β-CD CSPs. 

The cationic β-CD CSPs are prepared via two methods: physical coating or 

chemical bonding. Coated CSPs were prepared based on 
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6
A
-(3-alkylimidazolium)-6- deoxyphenylcarbamoyl-β-cyclodextrin, 

6
A
-(4-vinylpyridinium)-6-deoxyphenyl- carbamoyl-β-cyclodextrin and 

6
A
-(N,N-allylmethylammonium)-6-deoxyphenyl- carbamoyl-β-cyclodextrin. 

Thereafter, in order to broaden the applicable chromatography conditions, bonded 

CSPs were prepared via co-polymerization in the presence of small molecular 

monomers, as direct polymerization between chiral selector and silica gel 

invariably afforded diminished chiral resolutions. However, it was found that 

different reaction conditions and even varying the sequence of reagent additions 

may affect the ultimate bonding effectiveness. By optimizing all the reaction 

factors, cationic β-CD derivatives of 6
A
-(3-vinylimidazolium)-6-deoxyphenyl- 

carbomoyl-β-cyclodextrin, 6
A
-(p-vinylpyridinium)-6-deoxyphenylcarbomoyl-β- 

cyclodextrin and 6
A
-(N,N-allylmethylammonium)-6-deoxyphenylcarbomoyl-β- 

cyclodextrin were chemically immobilized onto silica and three bonded CSPs were 

prepared.  

The coated cationic CSPs prepared were applied in normal phase liquid 

chromatography (NPLC) and SFC. These coated cationic CSP depicted better 

enantioseparation abilities over commercial neutral CD CSP such as SINU-PC 

[129]. Three coated CSPs with precise loading of 15% (w./w.), 20% & 35% were 

prepared. Among them, the one with 20% loading afforded the best 

enantioseparation results. 

In the studies on the coated CSPs, it was found that longer alkyl chain on the 

cationic imidazolium substituent on the chiral selectors afforded more favorable to 
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enantioseparations. The longer alkyl chain on the substituent may supply 

additional hydrophobic interaction site with the analyte and it also prevent the CD 

cavities from being too close to each other to afford better enantioseparation 

results.  

Moreover, amongst all the coated CSPs prepared, the phenylcarbamate 

derivative has shown better enantioseparations than 3,5-dimethylphenylcarbamate 

derivative. The phenylcarbamate substituents may be easier to form π-π 

conjugation interaction with the analytes.  

The bonded CSPs were applied in different chromatography modes such as 

normal phase liquid chromatography (NPLC), reversed phase liquid 

chromatography (RPLC) and SFC. Series comprising chiral flavanone derivatives, 

dansyl amino acids, thiazides and small molecular aromatic acids were 

successfully resolved. The enantioseparation abilities of the bonded cationic β-CD 

CSPs appears better than neutral β-CD CSPs in both HPLC and SFC. 

It is notable that acid additives have significant influence on the 

enantioseparation results attained on the bonded cationic CD CSPs. The acid 

additives in the mobile phase might have interacted competitively with cationic 

chiral selector through electrostatic forces. Consequently, all acidic analytes 

depicted diminished retention time. However, only the enantioselectivities of 

weakly acidic analytes’ were enhanced with acid additives in the mobile phase 

while neutral analytes and strong acids’ were not changed significantly.  

In order to determine the role of cationic substituents in enantioseparation 



 14 

more clearly, CSPs incorporating imidazolium, pyridinium and ammonium 

moieties were compared. It was found the CSPs with aromatic substituents 

afforded better enantioseparations towards most of the racemates used. It is 

conjectured that the aromatic cationic substituents are more accessible due to their 

planer structures, thus favoring the formation of π-π conjugation which contributes 

to the enhanced enantioseparation abilities. 

On the other hand, the importance of hydrophobic inclusion between the 

cationic β-CD CSPs and analytes in enantioseparations is also discussed. The 

cationic β-CD CSPs were found to afford different enantioseparation mechanisms 

in NPLC and SFC. In NPLC, the hydrophobic CD cavity is occupied by organic 

solvent, therefore, the enantioseparations may have arisen solely from interactions 

between analytes and substituents on the CD rim. In SFC conditions, small CO2 

molecules in the CD cavity can be readily displaced by the hydrophobic moiety of 

the analytes. Thus, hydrophobic inclusion is counted as one factor in the SFC 

enantioseparation processes.  

Finally, as the cationic β-CD CSPs exhibited strong chiral resolution abilities 

in SFC, loading studies were performed. It is found that overloading the same 

amount of samples through overloading sample injection volume or sample 

concentration may give different separation results. In the comparison between the 

two overloading methods, the former, with samples of lower concentration but 

overloaded injection volume, affords broader peaks but higher chiral selectivities. 

During optimizations in loading study, it was also found that lower content of 
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organic modifier in the mobile phases would result in longer retention times but 

better chiral separations. 
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