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Abstract

This thesis explores the power of deterministic dynamic model in capturing

the qualitative attributes of �nancial crises and statistical features of the �nancial

time series. It is shown that, even without any random processes/variables, the de-

terministic dynamic model performs well in generating crises of di¤erent patterns

which are distinguished by their durations and accumulative depth and in repro-

ducing a wide range of stylized facts that are common across �nancial markets.

Such good performance is ascribed to the innovative modeling of investors�beliefs.

Speci�cally, investors�beliefs are regime-dependent, they are updated according to

various psychological trading regimes enclosed by di¤erent support and resistance

prices.

Chapter 1 describes three types of �nancial crises, namely sudden crisis, smooth

crisis and disturbing crisis and addresses the motivation of this thesis.

Chapter 2 examines various types of �nancial crises and conjectures their un-

derlying mechanisms using a deterministic heterogeneous agent model (HAM). In

a market-maker framework, forward-looking investors update their price expecta-

tions according to psychological trading windows and cluster themselves strategi-

cally to optimize their expected pro�ts. The switches between trading strategies

lead to price dynamics in market that subsequently move price up and down, and

in the extreme case, cause �nancial crises. The model suggests that both funda-

mentalists and chartists could potentially contribute to the �nancial crises.

Chapter 3 applies the nonlinear deterministic heterogeneous agent model pro-

posed in Chapter 2 to simultaneously reproduce a wide range of stylized facts that

are common across �nancial markets, namely, fat tails, volatility clustering, long

range dependence and leverage e¤ect. It is inferred from the model that (i) the

magnitude of the most negative return is greater than that of the most positive

return as the net buying force of fundamentalists is not comparable with the collec-

tive selling force of chartists and (ii) gradual bubbles and sudden crashes could be
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originated from the fact that upward price movements are counterbalanced while

downward price movements are always enhanced by fundamentalists.

Chapter 4 develops a model based on Chapter 2 and Day and Huang (1990). It

focuses on the regime-dependent belief, in the attempt to explain how crises di¤er

from each other. By introducing the regime-dependent belief into a simple de-

terministic HAM, di¤erent types of crises can be accommodated simultaneously.

Besides, the performance of HAM in capturing the salient qualitative and sta-

tistical properties in the real �nancial time series is improved. Speci�cally, the

simulated results exhibit technical price patterns including head-and-shoulder and

double-dip and reproduce various stylized facts.

Chapter 5 concludes by summarizing the �ndings and contribution of this the-

sis. It points out the caveats and outline the promising aspects for future research.
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Chapter 1

Introduction

Market capitalization evaporates dramatically and profoundly at the time of �-

nancial crisis, making the understanding of the complexity of dynamical market

behavior during the crisis particularly important. Di¤erent crises exhibit them-

selves di¤erently in terms of depth and length, which are key determinants for

many �nancial decisions. Unfortunately, forecasting the depth and length of the

crisis is hard, if not impossible, as they are usually the outcome of complicated

combination of internal dynamics and various external shocks. However, identify-

ing fundamental factors, which are necessary but not su¢ cient conditions of the

crisis, is possible. Turning to an endogenous deterministic heterogeneous agent

model (HAM) we aim to investigate such possibility as we believe that the crisis

has fundamentally an endogenous or internal origin and that exogenous or exter-

nal shocks only serve as triggering factors1. If a model is capable of generating

di¤erent types of crises that match with real historical scenarios, it should capture

correctly some, if not all, fundamental factors of the crisis. The fundamental fac-

tors identi�ed may not be able to explain completely why a market collapse but

they are certainly indispensable in providing an understanding on the origins of

1See for example Brock and Hommes (1998), Hommes (2001), Sornette (2004) for theoretical
discussions and Boswijk et al. (2007) for empirical evidence.
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the crisis.

Qualitatively, the crisis happens when market capitalization drops by a cer-

tain scale or more cumulatively over a consecutive period of time (for an ex-ante

de�nition from the perspective of mathematics see Watanabe et al. , 2007). We

investigate crises documented by Kindleberger and Aliber (2005) whenever price

data is available in Bloomberg. Following Rosser (2000), we group them into three

types according to their depth and length. We name them as sudden crisis, smooth

crisis and disturbing crisis, respectively. In the sudden crisis, price falls from the

peak or very close to the peak precipitately down to the bottom or very close

to the bottom. The length of such crisis is typically short. The price starts to

rebound consecutively immediately after touching the bottom. A typical example

of the sudden crisis is the Dow Jones Industrial Average Index (DJIA) in October

1987 as shown in Fig. 1-1. In the smooth crisis, the price lands smoothly from the

peak to the bottom with the succession of a moderate but persistent decline. No

visible crash occurs in between. The drop of DJIA during the Great Depression

as shown in Fig. 1-2 is one of this kind. Somewhere between the sudden crisis

and the smooth crisis is the disturbing crisis, during which the price �uctuates

disturbingly with a downward trend before it plummets suddenly. Moreover, the

price continue to decline after the plunge. Most historical crises are of this type.

One example is the fall of DJIA during the Wall Street crash in October 1929 as

shown in Fig. 1-3.

While various studies have been found focusing on the detection of the crisis,

the prediction of its end, and even the schemes of avoiding it (Hart et al., 2002),

they generally concentrate only on pre and post crisis market behaviors, rarely

between them. Day and Huang (1990), Chiarella et al. (2003) and He and West-

erho¤ (2005) are a few exceptions. Day and Huang (1990) and He and Westerho¤

(2005) uses chaotic HAM to examine the sudden crisis, Chiarella et al. (2003)

analyzes the smooth crisis, and Gallegati et al. (2010) investigates the disturbing

crisis. None of them, however, has presented all three patterns of crises within

11



the same model. Given that crises exhibit themselves di¤erently across markets

at the same time and over time in the same market, if a model captures all key

fundamental factors of crises correctly, it is expected to demonstrate multi types of

crises simultaneously. Putting it loosely, the better a model captures the essential

properties of crises, the more types of crises it should be able to demonstrate.

In contrast to the past literature, we model the three types of crises within the

same deterministic HAM in this thesis. Chapter 2 proposes an HAM that con-

sists of interacting heterogeneous agents, namely fundamentalists and chartists2.

Fundamentalists believe that the price will eventually converge to its long-term

fundamental value, which is determined by the real economic growth. They there-

fore buy in (sell out) the risky asset when it is under-valued (over-valued). Their

trading activities consistently drive the price towards its long-term fundamental

value. Chartists, on the other hand, extrapolate their price expectation from the

price trend as well as their trading experience. Speci�cally, they form a series of

psychological trading regimes, the thresholds of which correspond to the support

and resistance price levels in technical analysis. Each period, the price expecta-

tion is updated according to the psychological trading regime that current price

falls into. Their trading activities could either drive the price far away from its

long-term fundamental value, which may lead to bubbles and crashes, or push

the price towards its value. Neither fundamentalists nor chartists will stick to the

same trading strategies over time. Instead, investors interact with each other and

cluster themselves to the strategy that is expected to yield superior pro�t. The

evolutionary switches between di¤erent trading strategies lead to dynamic market

weights of fundamentalists and chartists, which embed market complexity.

For each individual, the demand function depends on his own adaptive belief.

For the market as a whole, the aggregate demand function relies on both the

adaptive beliefs and the dynamic market weights. According to the collective

2Literature of HAM that consists of fundamentalists and chartists can be traced back to
Frankel and Froot (1986). This framework is then carried forward by Lux (1995), Brock and
Hommes (1998), Farmer and Joshi (2002), He and Li (2007), to list a few.
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order submitted by all fundamentalists and chartists, the market-maker constantly

quotes the price according to the aggregate demand in order to provide liquidity

and to balance inventory. When there is excess demand (supply), the market-

maker supplies from (absorbs into) his inventory to balance the collective trading

order and subsequently adjust the price up (down). As the price changes, investors

update their price expectations and cluster themselves strategically to optimize

their expected pro�ts. Such process repeats itself, which moves the price up and

down, and in the extreme case, cause �nancial crises of various types.

While Chapter 2 focuses on the theoretical modeling of �nancial crises, Chapter

3 takes a step further to evaluate the model�s solidity from the statistical and

qualitative perspectives. Applying the nonlinear deterministic HAM proposed in

Chapter 2, a wide range of stylized facts that are common across �nancial markets,

namely, fat tails, volatility clustering, long range dependence and leverage e¤ect,

can be simultaneously reproduced. Some of these stylized facts, such as long-range

dependence, are quite hard to be duplicated in current HAMs, especially within

a deterministic framework. The fact that this model is capable of generating so

many stylized facts without relying on any random process, suggests that the model

has well captured some of the essential factors underlying the complex �nancial

market. Asides from its power of matching with various stylized facts, the model

represents the phenomena of asymmetric returns, gradual bubbles and sudden

crashes. It is inferred from the model that (i) the magnitude of the most negative

return is greater than that of the most positive return as the net buying force of

fundamentalists is not comparable with the collective selling force of chartists; (ii)

the gradual bubbles and sudden crashes could origin from the fact that the upward

price movements are counterbalanced while the downward movements are always

enhanced by fundamentalists.

The model in Chapter 2 covers many aspects of investment behavior, such as

adaptive learning within and across di¤erent trading groups, continuous interac-

tion among heterogeneous agents, evolutionary switching among di¤erent strate-
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gies. The wide coverage enriches the model�s performance in various dimensions.

However, it also complicates the dynamic system, rending it hard to single out

what contributes essentially to the �nancial crisis and what distinguish the crisis

from each other. In order to complement this issue, Chapter 4 focuses on discussing

one single factor that is innovative in this thesis, the regime-dependent belief, with

investors�price expectation relying on their psychological trading regimes. To �g-

ure out the value of such a factor, we introduce the regime-dependent belief into a

simple deterministic HAM established in Day and Huang (1990) and evaluate its

marginal contribution to the model�s performance. It is found that after account-

ing for the regime-dependent belief, di¤erent types of crises can be accommodated

simultaneously, which cannot be ful�lled in Day and Huang (1990). It suggests

that the regime-dependent belief is crucial in modeling �nancial crises. Perhaps

more importantly, the simple set-up enables the model to shade light on why crisis

di¤ers from each other from a technical perspective. Besides, the performance of

HAM in capturing the salient qualitative and statistical properties in the real �-

nancial time series is improved. Speci�cally, the simulated results exhibit technical

price patterns including head-and-shoulder and double-dip, and reproduce various

stylized facts. The model in this chapter is essentially a simpli�ed version of that

in Chapter 2, which also based on Day and Huang (1990). Despite being much

more simple, its performance is not any less powerful. Like the model in Chapter

2, it is capable of replicating di¤erent types of �nancial crises and various stylized

facts. As a result of its simplicity, it presents a better view on why crisis di¤ers

from each other compared to the model in Chapter 2.

Chapter 5 summarizes the �ndings of the thesis, points the caveats and exten-

sions in methodology and outlines the promising aspects for the future research.

14
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Figure 1-1: Sudden crises example: DJIA around October 19, 1987 crash.
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Figure 1-2: Smooth crises example: DJIA during the great depression.
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Figure 1-3: Disturbing crises example: DJIA around October 1929 Crash.
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Chapter 2

Financial Crisis and Interacting

Heterogeneous Agents

2.1 Introduction

The model in this chapter builds upon the heterogeneous beliefs and the market-

maker framework of Day and Huang (1990), the evolutionary framework of Brock

and Hommes (1998), the discount mechanism of Lux and Marchesi (1999, 2000)

and the excess demand formation of Gennotte and Leland (1990). The main

di¤erences lie in the introduction of multi-phase belief system and the discounted

expected pro�t arisen from investors�forward looking behavior. Following the work

of Day and Huang (1990), Lux(1995,1998), Lux and Marchesi (1999, 2000), Farmer

and Joshi (2002), and Levy (2008) and others, our model is purely deterministic so

as to single out fundamental factors and avoid potential systematic pitfalls caused

by random disturbances. It is found that the internal price dynamics resulted from

the interactions among fundamentalists and chartists are su¢ cient to generate all

the three types of �nancial crises.

The asset pricing model introduced in Brock and Hommes (1998) is the �rst to

build a microfoundation within HAM. In the model, heterogeneous agents decide
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their demand or supply function through maximizing expected utility of wealth. At

the end of every period, market is cleared and agents update their expected price

according to a �tness measure, which is a function of past realized pro�ts. The price

dynamics driven by heterogeneous expectations are capable of explaining a range of

complex �nancial behavior. Chiarella and He (2003) releases the assumption that

market clearing price is a Walrasian equilibrium in every period and syncretizes it

with the market-maker framework1. Such synthetical framework is widely applied

in later literature such as Chiarella et al. (2009), He and Westerho¤ (2005) and

He and Li (2007, 2008).

If the market is cleared each period, pro�ts from di¤erent trading strategies are

liquidated immediately and can be compared directly, no discounting is necessary.

In contrast, if the market is not forced to clear each period, investors are allowed to

hold the risky asset for as long as they believe to be optimal. Long-term strategies,

such as what are adopted by fundamental investors - buy in when price is below

fundamental value and sell out when it is above, therefore become practical once a

market-maker is brought in to balance aggregate demand. Since the asset holding

time is no longer �xed at a single period, the agents need to discount the expected

pro�ts from various trading strategies. Lux and Marchesi (2000) raises attention

on this issue by using a �xed discount factor. We extend it to account for the

variance in expected holding periods. In our model, traders are assumed to be

forward looking (see Keswani and Stolin, 2008; Sapp and Tiwari, 2004; Zheng,

1999), the �tness measure is thus assumed to be a function of expected paper gain

instead of realized pro�t2. Investors interact with each other, evaluate discounted

expected pro�t of various trading strategies, and evolutionarily cluster to what

1The two mechanisms di¤er mainly in the the information and and formation of expectation
(Chiarella et al., 2009), which a¤ect the market clearing mechanism. As pointed out by LeBaron
(2006), the assumption of Walrasian equilibrium clears market in every period but is some
what unrealistic and di¢ cult to implement; the market maker framework does not rely on the
assumption but has to deal with issues of price setting and inventory control.

2Various �tness measures have been proposed by e.g. Brock and Hommes (1998), Lux and
Marchesi (2000), Dieci et al. (2006), Chang (2007) and Alfarano and Milakovic (2008). One
thing in common for these �tness measures is that they are functions of past realized pro�ts.
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are expected to outperform the others. As investors switch trading strategies, the

fractions of agents in a particular group �uctuate and subsequently lead to the

dynamics in excess demand and price, and in extreme, causes crises.

All the expatiation above works for the aggregate excess demand, which directly

relates to the price dynamics. Following Gennotte and Leland (1990), we normal-

ize the excess demand with aggregate risk tolerance so that price and large trading

volumes are comparable in terms of their quantities. Compared with traditional

market-maker framework that uses direct excess demand, such normalization es-

sentially captures most of the market feedback e¤ect and leaves fewer factors to be

parameterized. It makes the interpretation of dynamic in �nancial language easy

and direct.

The belief system of representative agents is consistent with current literature in

general. Fundamentalists and chartists update their price expectation according

to the latest price information. Some new elements are added to the belief of

chartists, who psychologically form multi trading windows for price movements

and update the short-term fundamental forecast every period according to the

window where the latest price locates3.

The rest of this chapter is organized as follows. Section 2 describes the model.

Section 3 focuses on the theoretical implications - mainly the relations between

price �uctuation and di¤erent factors. Section 4 simulates various types of crises

and o¤ers possible economic interpretation. Section 5 concludes.

2.2 Deterministic Dynamic Model

In the market-maker based framework, investors trade risky assets with the market-

maker or dealer, who buys in when investors place sell orders and sells out when

investors place buy orders. The net buy orders, de�ned as the number of shares

3Similar piecewise set ups are proposed by Day (1994) and Venier (2007), with di¤erent
de�nition and application though. Venier (2007) assigns each group with a �xed trading regimes
and the investors trade only when the price falls within their a¤ordable regimes.

19



demanded less the number of shares supplied from the perspective of investors, is

the aggregate demand from the market-maker�s point of view. The market-maker

constantly quotes price according to the aggregate demand in order to provide

liquidity and balance inventory. In this section, we derive the price impact function

that relates the net aggregate demand at any time to prices. We �rst construct the

general individual demand function for each investor in subsection 2.2.1, and the

types of belief in subsection 2.2.2. To better proxy the actual trading behavior,

we allow the investors to change their beliefs and evolutionarily cluster to trading

strategy to maximize their discounted expected pro�t. This leads to the dynamics

of market structure measured by the market fraction index in subsection 2.2.3. We

then derive the price impact function in subsection 2.2.4.

2.2.1 Individual Demand Function

Consider a market with N investors investing in two types of assets - one risky

and one riskfree. Let r be the interest rate of riskfree asset which is assumed to

be completely elastic and pt be the price per share of risky asset at period t4. ni;t,

the number of shares purchased by investor i (i = 1; 2; :::; N) with a mean variance

preference in expected return, is given by:

ni;t = ai
Ei;t (pt+1j
t)� (1 + r)pt

Vi;t(pt+1j
t)
. (2.1)

where ai is the degree of risk tolerance and ai > 0, 
t = fpt; pt�1; :::p0g is the
public information set available at period t, Ei (pt+1j
t) is the expected future
price and Vi(pt+1j
t) is the expected price variance.

4Note that this price is essentially cum-price, the price that has accounted for the payment
of dividend, since dividend is not explicitly considered in this model.
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2.2.2 Multi-phase Heterogeneous Beliefs

Following Day and Huang (1990), N investors are classi�ed into two broad cate-

gories according to their investment strategies - fundamentalists (�-investor) and

chartists (�-investor) as they call them. For simplicity, investors taking the same

strategy are assumed to be identical in terms of price-expectation, expected price

variance and degree of risk tolerance. Such assumptions simplify N investors to

two representative groups, distinguished by subscripts � and �, respectively.

Fundamentalists

There is x� fundamentalists, who are assumed to hold both price expectation

and variance expectation constant over time5, that is:

E� (pt+1j
t) � �p�, and V�(pt+1j
t) = �2�,

where the price expectation �p� is the fundamental value of the risky asset, to which

they believe the price would eventually converge to. If the interest rate is zero,

they buy in when the price is below �p� and sell out when it is above (see Eq.(2.1)).

As it takes time for price to return to its fundamental, impatient fundamentalists

may lose con�dence on their beliefs and switch to other group or exit market before

the price reverses.We shall discuss later in subsequent section.

Chartists

There are x� (= N � x�) chartists who hold constant expected price variance:

V�(pt+1j
t) = �2�.

5Chiarella and He (2003) shows that the conclusions are not signi�cantly di¤erent between
constant and �oating expected variance assumptions. The same argument applies for � investors.
Allowing the expected variance to �oat with price provides more dimensions in examining market
behavior, it is however out of the concern of this chapter. We therefore reserve it for our future
research.
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Chartists update their price expectation constantly according to the following

function:

E� (pt+1j
t) = pt + � � (pt � �p�;t) ,

where �p�;t is the short-term estimate of the �fundamental value�and � 2 (0; 1) is
the adjustment speed. Greater � indicates that chartists reacts more sensitively

to past estimation bias, pt � �p�;t. Chartists who believe in the persistence of the
estimation bias (trend) in the subsequent period only6, buy in when the price goes

beyond the previous short-term fundamentals and sell out when the price falls

below.

In contrast to the past literature where �p�;t is assumed to be constant across

time or to be governed by certain stochastic process (see Day and Huang, 1990; He

and Li, 2007, 2008), the short-term �fundamental value�is assumed to take di¤erent

value when the price falls in di¤erent trading windows pre-speci�ed according to

historical prices as well as trading experience. More speci�cally, assume that the

price domain P = [pmin; pmax] can be divided into n mutually exclusive regimes,

that is:

P = [nj=1Pj = [�p0; �p1) [ [�p1; �p2) [ � � � [ [�pn�1; �pn],

where �pj (j = 1; 2:::; n:) represents the psychological thresholds corresponding to

di¤erent support (resistance) levels in the chartist analysis. When price falls into

a particular window, chartists extrapolate the short-term fundamental value to

be in the middle of the window, which equals to the average of the top and the

bottom threshold of prices that enclose that regime. Speci�cally,

�p�;t = (�pj�1 + �pj) =2 if pt 2 [�pj�1; �pj), j = 1; 2:::; n: (2.2)

6Chartists are assumed to be myopic in the sense that they have no information about the
persistence in periods farther than the subsequent period.
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When pt 2 [�pj�1; �pj) is observed, chartists extrapolate that the price could have
been anywhere in the range of [�pj�1; �pj) with a short-term fundamental value - �p�;t7.

If the price pt deviates from its short-term fundamental value, �p�;t, such deviation

is expected to enlarge further in the short run. �p�;t is just like a breakpoint:

when the observed pt equals to �p�;t, the price is expected to be stable; when it

goes beyond �p�;t, the price is expected to be farther beyond �p�;t and vice versa.

In other words, chartists expect the observed trend (deviation) to persist (or the

momentum to continue) in the next period.

Without lost of generality, we assume that �pj � �pj�1 � � for j = 1; 2:::; n and
�p0 = 0. Given that P = [nj=1Pj = [0; �)[ [�; 2�)[� � �[ [(n�1)�; n�], pt 2 [�pj�1; �pj)
is identical to pt 2 [(j � 1)�; j�]. As j � 1 = bpt=�c and j = dpt=�e, which mean
the largest integer not greater than pt=� and the smallest integer not less than

pt=�, Eq.(4.1) can be simpli�ed to:

�p�;t = (bpt=�c+ dpt=�e)�=2 if pt 2 [�pj�1; �pj), j = 1; 2:::; n. (2.3)

2.2.3 Evolutionary Strategy Switch

Aside from updating expected price, investors also interact with each other and

reshu e the market structure, re�ected by the composition of various investor

groups, in every period. While some investors stick to their original strategy,

others abandon less attractive strategy for what is expected to outperform the

others. Speci�cally, the number of investors in group i, xi (i = �; �), updates

according to a �tness measure - the current value of expected pro�t per share, or

7Chartists essentially adjust their price expectation based on a time-varying reference level.
Similar idea could be found in Westerho¤ (2003), which assumes investors anchor the expected
fundamental value of the foreign exchange rate to the nearest round number and Day (1997), in
which price adjustment is bounded and will eventually lie in a trapping set given by an interval.
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discounted expected pro�t, �, depicted by:

�i;t = si;t � �i;t, i = �; �, (2.4)

where � is the expected pro�t per share before discounting, and s is the discount

factor that varies across various investor groups.

Within the framework of market-maker, market is not forced to clear every

period. Investors are allowed to hold the risky asset for as long as they believe

to be optimal. Learned from the belief speci�cations that while chartists adjust

price expectation every period, fundamentalists hold their expectation stable at

the fundamental value. Consequently, chartists capitalize asset return every period

regardless of gain or loss (see Lux and Marchesi, 1999). The same may not happen

to fundamentalists. In fact fundamentalists hold undervalued risky asset until

the price goes above the fundamental and wait to re�ll their inventory when the

price slides below the fundamental. Namely, their expected gains take time to

be realized. Their discount factor thus depends on their estimation of the time

interval for the price to return to its fundamental. The longer it takes, the smaller

the discount factor is.

Given that chartists capitalize capital gains or loss immediately, their discount

factor, s�;t is set equal to 1. For fundamentalists, the discount factor is a function

of the contemporaneous price, which is assumed to be s (pt) = (�p� � pt)2 =3�p2�. It
indicates that the farther the price deviates from its value, the more likely it is

going to reverse, and therefore the greater the discount factor is.

Before discounting, the expected pro�t per share, �, for fundamentalists and

chartists are given by:

��;t = j�p� � (1 + r) ptj � C=s (pt) and

��;t = j� � (pt � �p�;t)� rptj ,
(2.5)
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where C is the information cost. Imposing information cost implies that it costs to

become a fundamentalist. Notice that the expected pro�t here is non-negative and

measured in per share, which is di¤erent from the realized pro�t applied in earlier

literature (see Brock and Hommes, 1998 and Lux and Marchesi, 1999, 2000). Such

de�nition originates from the �nding that investors are forward-looking (Keswani

and Stolin, 2008; Sapp and Tiwari, 2004; Zheng, 1999). As they make buy or sell

decision to maximize their discounted expected pro�t, there is no reason that they

intentionally trade to lose money.

Substituting Eq.(2.5) into Eq.(2.4) leads to the simpli�ed function of discounted

expected pro�t per share:

��;t (pt) = s (pt) j�p� � (1 + r) ptj � C and (2.6)

��;t (pt) = j� � (pt � �p�;t)� rptj .

Let �i;t be the market fraction of investors in group i, i = �; �. The change

in the number of investors in group i is thus re�ected by its fractions �i;t, whose

update follows the discrete choice probability (Brock and Hommes,1998):

�i;t (pt) = xi (pt) =
X

k
xk (pt) = exp(��i;t (pt))=

X
k
exp(��k;t (pt)), (2.7)

where the parameter � measures the speed of switching to a di¤erent trading

strategy and is referred to as the intensity of choice in Brock and Hommes (1998).

The �i;t is positively related to the the discounted expected pro�t, suggesting

that investors cluster to strategy that produces higher discounted expected pro�t.

The switch is mutual with fundamentalists and chartists switching to each other

simultaneously. The switch to group with high discounted expected pro�t takes

the lead. Note however that not all investors do so. Some stick to their original

strategy even though the other strategy appears to be more attractive. This can be
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observed from Eq.(2.7) where ��;t (��;t) is always greater than 0 even if ��;t < ��;t

(��;t > ��;t).

As a measure of the market structure, we de�ne the market fraction index mt

as the di¤erence in market fraction between fundamentalists and chartists, that is:

mt = ��;t (pt)� ��;t (pt) = tanh [�=2 � (��;t � ��;t)] , (2.8)

As a function of the price, the market fraction index mt takes the value in the

range of [�1; 1]. It is positive (negative) when ��;t > ��;t (��;t > ��;t), indicating
that the group with super discounted expected pro�t dominates the market in

terms of the number of investors.

2.2.4 Price Dynamics

Following Gennotte and Leland (1990), we de�ne the relative market power of

group i, !i, as the ratio of their weighted risk tolerance to the sum of the whole

market�s weighted tolerances:

!i (pt) _=aixi (pt) =
X

k
akxk (pt) = ai�i (pt) =

X
k
ak�k (pt) . (2.9)

Write a� = �a�, where � > 0 is a parameter that measures the relative risk

tolerance of chartists against fundamentalists. One of the bene�ts of using relative

instead of absolute risk attitude is that, it allows us to account for the change in

risk attitude. This is important especially during the period of crises, when in-

vestors of di¤erent types universally become less risk tolerant (or more risk averse).

Simplifying the demand function is another consideration.

Substituting Eq.(2.7) into Eq.(2.9) produces the following:
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!�;t =
1 +mt

1 +mt + �(1�mt)
and

!�;t =
� (1�mt)

1 +mt + �(1�mt)
.

(2.10)

The relative market power is determined by the market fraction index and the

relative risk tolerance. The group with higher relative market power dominates

trading activities. Note that larger investor population does not imply higher

relative market power, which is a measure of total trading volumes, the product

of the number of investor and the size of individual trading volume. The relative

market power could be small even though the population of that group is large if

the trading volume per investor is small.

Without the loss of generality, we normalize the aggregate excess demand with

the weighted sum of all investor groups� risk tolerance following Gennotte and

Leland (1990), which yields:

Dt =
X

i
ni;txi;t=

X
k
akxk =

X
i
ni;t!i;t=ai

=
�2�(1 +mt) [�p� � (1 + r)pt] + �2��(1�mt) [� � (pt � �p�;t)� rpt]

�2��
2
� [(1 + �) + (1� �)mt]

, (2.11)

The second line is obtained by substituting Eqs.(2.1) and (2.10) into Eq.(2.11). If

Dt = 0, the market is in equilibrium and all orders are cleared; if Dt > 0, demand

exceeds supply and some bid orders cannot be �lled in; �nally, if Dt < 0, there is

excess supply where part of ask orders fails to be executed. In the market-maker

framework, all orders would be �lled up as market-maker balances market orders

by supplying from (taking into) inventories when there is excess demand (supply).

They then adjust the price up (down) according to the excess demand in the next

period. The price impact function is de�ned by:

pt+1 = pt + Dt, (2.12)
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where  measures the adjustment speed of the price. The price dynamics is es-

sentially a one-dimensional deterministic process, as �p�;t, mt and hence Dt are

nonlinear functions of pt.

2.3 Comparative Dynamics

Due to the complexity of the nonlinear chaotic model, it is important to ana-

lyze various theoretical implications comparatively8. We �rst illustrate the equi-

libria and their stabilities when the market fraction index mt is �oating with

the price, and then derive the precise steady states when mt is �xed at cer-

tain value that is of interest to previous literature. To address how various fac-

tors (external shocks) a¤ect the magnitude of price �uctuations, we proceed to

evaluate their impacts on bull and bear market independently. For the discus-

sion to be meaningful, without loss of generality, it is assumed that �2�=�
2
� 2

(rp�=rp� + ��=2;min [rp�= (rp� � ��=2) ; (r + 1) =r]), which ensures the positive-
ness of the price and facilitates the de�nition of bull and bear market in subsection

2.3.2.

2.3.1 Equilibrium and Stability

In the nonlinear chaotic model, very rich and complex dynamic behaviors such

as a unique stable or unstable equilibrium, multiple stable or unstable equilibria,

periodic cycles, non-periodic �uctuations can occur theoretically. In particular,

chaotic multi-phase switches can be observed. A typical phase-diagram is illus-

trated in Fig. 2-1 with �p� = 50,  = 2:1587, � = 10:1198, � = 0:5, r = 10�5,

� = 0:9, C = 3, � = 13:1787 and �2� = �2� = 1 (All numbers are round into 4

decimal places for the clarity of presentation. This set of paramors will be referred

8Unstable �nite cycle and quasi-periodic cycle can also arise from this model. As in the real
�nancial market, the price appears to be random, it is best captured by the chaotic aspect of
this model. We thank Volker Bohm for pointing this out.
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to as standard parameter set). It shows that when the market fraction index is

�oating with the changing price, there could be multiple equilibria. But what is

the characteristics of these equilibria?

Fig. 2-2 illustrates the interactions between the market fraction index mt and

the price pt. One can observe neither monotonic nor other simple relationship

between m and p. It is therefore impossible to get a closed-form solution for

any equilibrium, let alone to discuss its stability and to evaluate the comparative

statics. Nevertheless, at each equilibrium, the following identity must hold:

p =
�2� � (1 + �m)�p� � ���2� � (1� �m)�p�

�2� � (1 + �m)(1 + r)� �2�� � (1� �m) (� � r) , (2.13)

where �p� and �m are functions of the equilibrium price p (see Eqs.(2.3) and (2.8)).

It is straightforward to verify that such an equilibrium is stable if and only if

0 < 
�2� � (1 + �m)(1 + r)� �2�� � (1� �m) (� � r)

�2��
2
� � [(1 + �) + (1� �) �m]

< 2.

It is interesting to examine several special cases with extreme �m values.

(I) �m = 1, that is, there are only fundamentalists in the market.

A unique equilibrium exists: p = �p�=(1 + r), which is stable if

(1 + r)=�2� < 2.

The phase-diagram is characterized by a unique downward straight line, as

illustrated in Fig. 2-3. The typical dynamics is cyclical �uctuations, either

converging or diverging.

(II) �m = �1, that is, there are only chartists in the market.
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The phase-diagram is characterized by multiple straight lines with the same

slope. There are multiple equilibria with the same stability. Each equilibrium

must satisfy p = � �p�= (� � r), which is stable if and only if

0 <  (r � �) =�2� < 2.

(III) �m = 0, that is, the market consists of equal proportion of fundamentalists

and chartists.

The price dynamic diagram is again characterized with multiple straight lines

of the same slope. In contrast to (II), there exists at most one equilibrium9.

The equilibrium, if exists, is stable if and only if

0 < 
�
�2�(1 + r)� �2�� (� � r)

�
=
�
�2��

2
� (1 + �)

�
< 2.

The uniqueness of equilibrium can be proved by contradictory. Suppose

there are two equilibria p1 and p2, with p1 > p2. Given Eq.(4.1), we have

�p�;1 � �p�;2. Substituting �p�;1 and �p�;2 into Eq.(4.6) leads to a contradictory

with p1 < p2.

2.3.2 The Impact of Various Factors on Price Fluctuations

This subsection examines how various factors a¤ect the magnitude of price �uctu-

ations denoted by �tp = pt+1 � pt, which subsequently shapes crises of di¤erent

9We exclude the singular case of in�nitely many equilibria, i.e., the case in which one of the
straight-line overlaps with the 45 degree line. Such case occurs when the denominator of (4.6)
vanishes.
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types. Before moving to the impacts, we �rst de�ne

Y _= [� � (pt � �p�;t)� rpt] =�2� � [�p� � (1 + r)pt] =�2�,

which represents the scaled di¤erence between the number of shares demanded by

a chartist and a fundamentalist when they bear the same degree of risk tolerance.

To ensure Y > 0 (< 0) is always true, it requires that minY > 0 (maxY (pt) < 0),

which results in pt > pbull (pt < pbear) given that jpt � �p�;tj < �=210, where

pbull =
�2� �p�

�2� (r + 1)� �2�r
+

�2���=2

�2� (r + 1)� �2�r
and

pbear =
�2� �p�

�2� (r + 1)� �2�r
� �2���=2

�2� (r + 1)� �2�r
.

Under the assumption that

�2�=�
2
� 2 (rp�=rp� + ��=2;min [rp�= (rp� � ��=2) ; (r + 1) =r]) ,

we have pbull > �p� > pbear. De�ne the bull market by pt 2 [pbull; pmax] when the
price is overestimated. Similarly de�ne the bear market by pt 2 [pmin; pbear] when
price is underestimated11.

Since �tp = Dt (see Eq.(2.12)), di¤erentiating Dt directly with respect to

various factors gives rise to results summarized in Table 2.1. With interest in

how the price bursts (bounces) in bull (bear) market, we analyze the impacts of

factors on ��tp (�tp), the magnitude of price drops (jumps), based on Table

10Y is minimized (maximized) when pt � �p�;t = ��=2 (�=2):
11The price movement within regime (pbear; pbull) is harmless and tolerable, which is left out

of our discussion.
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2.1. Speci�cally, we focus on how various factors a¤ects the price drops (jumps)

in bull (bear) market by looking into the sign of �d�tp=dk (d�tp=dk) for k 2
fmt, �, C, �g.

Table 2.1: The impact of various factors on the price �uctuation.
pt Y d�tp=dmt d�tp=d� d�tp=dC d�tp=d�

Bull Market pt2 [pbull; pmax] + - + +
- if mt> 0
+ if mt< 0

Bear Market pt2 [pmin; pbear] - + - -
+ if mt> 0
- if mt< 0

Remarks

d�tp=dmt= �2�Y=[(1 + �) + (1� �)mt]
2

d�tp=d� = (1�m2
t )Y=[(1 + �) + (1� �)mt]

2

dmt=dC = ��(1�m2
t )=2

dmt=d� = (��;t���;t)(1�m
2
t )=2

Market fraction index, m

�d�tp=dmt is positive in bull market, suggesting that the larger the proportion

of fundamentalists is (as indicated by a larger mt), the greater the price drops.

Similarly, d�tp=dmt is positive in bear market, suggesting that, a larger fraction of

fundamentalists results in a greater price rebound. Overall, fundamentalists play

the role of bringing the price back to its fundamental.

Relative risk tolerance, �

The relative risk tolerance, which is rarely discussed in previous literature, is of

interest especially at the time of market turbulence. When the market glooms as

the panic mood spreads, investors of di¤erent types become less risk tolerant. It is

likely that investors of certain types are more sensitive that they reduce their risk

tolerance more than the others during crises, which may lead to a shrink in their

relative market power that changes aggregate demand and subsequently price. The

fact that �d�tp=d� (d�tp=d�) is negative in bull market (bear market) indicates

that the less sensitive fundamentalists are to the news compared to chartists there-

fore the smaller � is, the greater the price drops (jumps). Overall, the relative risk

tolerance moves the price in the direction opposite with the market fraction index
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in both bull and bear market. While a large proportion of fundamentalists acts

to bring the price back to its fundamental, high relative risk tolerance of chartists

against fundamentalists undermines such pulling back e¤ect. In other words, the

pulling back force of the market fraction index is enhance had the relative risk

tolerance been low.

Information cost, C

�d�tp=dC (d�tp=dC) is negative in bull market (bear market), meaning that

high information cost smooths the price drops (jumps) when the price is overesti-

mated (underestimated). Intuitively, if information is costly, then investors would

opt to be chartists, trading on limited (nearsighted) information with moderate

volumes (see Eq.(2.1)), which would not cause much price pressure, even when the

price is extremely high above (or far below) its fundamental.

Intensity of choice, �

When m > 0 (m < 0), �d�tp=d� is positive (negative) in bull market and

d�tp=d� is positive (negative) in bear market. It suggest that high intensity of

choice enhances the herding behavior and hastens the price jumps and drops if

fundamentalists dominate the market. The opposite is true if chartists govern the

market. Intuitively, when fundamentalists dominate the market, high intensity of

choice accelerates the accumulation of the number of fundamentalists (dmt=d� > 0

formt > 0), which quickly assemble great selling (buying) force that imposes great

pressure on price. If the price happens to be highly overestimated (underesti-

mated), the selling (buying) force is going to be so tremendous that it could trig-

ger catastrophic (euphoric) price drops (jumps). On the other hand, if chartists

dominate, then high intensity of choice acts to smooth the price drops (jumps)

when the price is highly overestimated (underestimated).
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2.4 Financial Crises Demonstrations

The impacts of various factors on the magnitude of price �uctuation explored in

subsection 2.3.2 help to shape price crises of various depth and length. The key

determinant, however, is the internal price dynamics. In fact, di¤erent initial

price could result in di¤erent types of crises ceteris paribus12. To show that the

di¤erences in the types of crises could be endogenous, we simulate sudden crises and

smooth crises with the same set of parameters but di¤erent initial price. Disturbing

crises could have been simulated using the same set of parameters. However, in

order to better match the simulation with the real crises and to better contrast

the disturbing crises with the smooth crises (the former exhibits a visible crash

consisted of running falls), several parameters are adjusted while simulate the

disturbing crises. The underlying dynamic mechanism however is the same. We

further test our model in capturing the essential factors of �nancial markets by

comparing simulated price series with real historical scenarios. If they match with

a variety of real crises, the model should capture some, if not all, fundamental

determinants of �nancial crises.

2.4.1 Sudden Crises

In a sudden crises, the price plunges from the peak (or very close to peak) precip-

itately down to (or very close to) the bottom. Normally for such crises, the price

decline is dramatic and the length is short. The price usually starts to rebound

consecutively and persistently immediately after touching the bottom. A typical

example is the Oct. 19, 1987 crash in the US stock market, when DJIA lost more

than 20% of its value in one day, as illustrated in Fig. 1-1. Other examples include

12Given the same set of parameters, di¤erent initial values alone could lead to di¤erent price
levels before the crises, and subsequently lead to di¤erent magnitude of price drops that char-
acterize the types of crises. In other words, the types of crises is path dependent. This part of
results is available upon request.

34



the tulip mania of 1630s and the silver price bubble of 198013.

The sudden crises is simulated using the standard parameter set described in

Section 2.3.1 with the initial price set to be po = 62:71. The upper panel of Fig. 2-

4 shows the simulated price series (asterisk marked line) and the DJIA (solid line)

from 1987=8=4 to 1987=12=24. The corresponding track of market fraction index

m is shown in the lower panel. It is interesting to note that when the simulated

price deviates high above its fundamental, investors cluster to fundamental trad-

ing strategy dramatically, which subsequently leads to a crash as fundamentalists

execute their selling order collectively. This phenomenon is consistent with the

real historical scenario before the Oct. 19 crash, when institutional investors, the

representative of fundamentalists, sold so enormously that the price was driven

down excessively (Presidential Task Force on Market Mechanisms, 1988).

As shown in Section 2.3.1, the increase in fundamentalists�share (increase in

m) enlarges the magnitude of price drop in bull market when the price is high

above the fundamental. However why should the drop be so dramatic? The main

reason is that m increases rapidly and abruptly in a large scale. Given that the

selling force of each individual fundamentalist is large at high price level, the large

number of fundamentalists accumulate such great selling forces that they trigger

price to plummet.

Why m increases so dramatically? Fig. 2-5 graphs the price dynamics around

the crash to outline the underlying mechanism. When the price is at the peak,

fundamentalists improve their discount factor as they become more certain of

price reversal. Moreover, they upgrade their expected pro�t before discounting.

All these add up to boost the discounted expected pro�t �� to an extent that

signi�cantly outweighs ��, even after accounting for the information cost. As soon

as the latest price is observed, investors interact with each other and update their

13See Rosser (2000, Chapter 5). While Rosser ascribes the 1987 crash to be of the same type
of 1929 crash, we think it as a sudden crises. It is because the price right before the plunge is
quite close to the global peak. It is in fact a local peak. We allow such approximation within a
standard deviation given the market volatility.
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beliefs, after which many of them are so attracted by the outstanding �� that they

switch to be fundamentalists all of a sudden, which forti�es the market fraction

index m signi�cantly.

Also worthy of attention is the price movement after the crash. After the price

crash, the market quickly rebound as fundamentalists step in to buy back. As the

price starts going up, �� becomes less attractive, which leads to a shrink in m.

When chartists dominate, their arbitrage continues to push the price upwards.

2.4.2 Smooth Crises

In a smooth crises, the price subsides from the peak persistently in a succession

of descending waves with no visible crash. The price decline is moderate but the

lasting period is relatively long. The fall of DJIA during the great depression as

shown in Fig. 1-2 is an example. The drop of NKY (Nikkei 225 Index) in the

Japanese recession is another.

The smooth crises is simulated using the standard parameter set described in

Section 2.3.1 with the initial price set to po = 77:41. Fig. 2-6 shows the simu-

lated price series (asterisk marked line) and the DJIA (solid line) from 1932=3=4

to 1932=7=26, a small episode of the great depression. When the price is high,

fundamentalists dominate slightly and pull the price down to a level that chartists

�nd it optimal to sell. After observing the declined price, investors update their

beliefs and cluster to chartists, whose arbitrage behavior contribute to the further

fall of price (see Fig. 2-7).

The increase in m causes a decline but not a crash. It is because the change of

m is small in magnitude as a result of the moderate di¤erence between �� and ��.

The slight increase in the proportion of fundamentalists accumulate some selling

force, but not enough to trigger a crash.
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2.4.3 Disturbing Crises

The scale of price drop and the lasting period of the disturbing crises is somewhere

between the smooth and sudden crises. The crash in this case is visible but not as

dramatic as that in the sudden crises. It lasts longer than the sudden crises but

shorter than the smooth crises. Between the general price peak and the visible

crash, there is a period when the price exhibits large clustering volatility with the

general trend of falling, the phase of which is called disturbing period, or period of

�nancial distress (Gallegati et al., 2005). Most crises are of this kind14. Perhaps

more importantly, the crash is not the end of the crises but followed by further

decline. A typical example is the fall of DJIA during the Oct of 1929.

We simulate the disturbing crises with po = 71:4171 and  = 3:0187, � =

19:3591, � = 0:6 keeping the others in line with the standard parameter set de-

scribed in Section 2.3.1. Fig. 2-8 overlaps the simulated price series (asterisk

marked line) with the DJIA (solid line) between 1929=7=23 to 1929=12=17. DJIA

�uctuated disturbingly with a downward trend before it eventually crashes. The

simulated price characterizes such disturbance from t = 1 to t = 61. At the be-

ginning of the disturbing period, m �uctuates moderately with investors switching

between fundamental and trend following strategies disturbingly. While fundamen-

talists try to pull the price down, chartists does the opposite. The battle continues

until fundamentalists eventually pull the price down to a level that chartists �nd

it optimal to sell (see the dynamics when price is high as in Fig. 1-3). Later as the

price falls, chartists dominate the market and lead the price up and down with a

downward trend.

Unlike the 1987 crash that was an event of one day, the 1929 crash stretched

from Oct 22 through Oct 29, during which the DJIA lost from 326:51 to 230:07

consecutively (see Fig. 1-3). The simulated price reproduce such crash, character-

14The subprime crises exhibits similar characteristics of those observed in the disturbing crises.
Since the length of subprime crises remains controversial when the paper is submitted, it is not
appropriate to use as an example here.
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ized by running falls (step 62 to 69), with chartists continue to place selling orders

of di¤erent magnitudes. Fig. 2-9 plots the price dynamic around the crash to

illustrate the underlying mechanism. It shows that investors update their beliefs

and stay cluster to trend following strategy. At some price level, chartists observe

downward estimation bias (underestimation) and decide to sell their shares, which

drives the price down. After observing the falling price, chartists revaluate their

short-term fundamental and start another round of selling if the downward esti-

mation bias still exists. This process continues until the estimation bias turns out

to be non-negative.

Note that the crash characterized by running falls does not bring the crises

to an end. Instead, it is followed by a bounce back as chartists start to buy in

after realizing positive estimation bias, and then another round of decline (step 70

onwards). This scenario is exactly what happened after the Oct 1929 crash.

While it is controversial on the causes of 1929 crash, our simulation suggests

that chartists could take the full responsibility. This argument is supported by the

evidence that many pools (the bank pools for example) organized like syndicates

to follow the market trend are blamed for the 1929 crash (Wigmore, 1985). As

the pools were not long-term investors, they did not wait until the price recovered

but cut losses even though the price dropped further, in the same way as chartists

behave.

2.4.4 Discussion

While the di¤erence in the types of crises is mainly endogenous, it is also subject

to external shocks such as the change of the relative risk attitude. In fact, given

the initial price, di¤erent parameter sets could lead to di¤erent types of crises. It

suggests that external shocks do matter. Their impacts are however subject to the

price level and the internal price dynamics.

From the analysis of crises together with Table 2.1, at the peak of the price,

the smaller �, the relative risk tolerance of chartists against fundamentalists is, the
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more likely the occurrence of the sudden crises, ceteris paribus. The information

cost C plays similar role. An increase in the intensity of choice � improves the

chance of sudden crises if m > 0, ceteris paribus.

If the price falls gradually but not crashes from the peak, the crises could be

either smooth or disturbing. Recall that after chartists win the battle against

fundamentalists, they pull the price down and dominate the market. Extremely,

when the market is occupied by chartists only, that is

��pt+1 = � (� � (pt � �p�;t)� rpt) =�2� �  (� � �+ rpt) =
�
2�2�

�
;

the larger �,  and � are, the greater the maximum price drop is, and the more

likely the occurrence of the disturbing crises characterized by a visible crash.

2.5 Conclusion

The interacting heterogeneous agent model is capable of generating three typical

types of �nancial crises that �t into real �nancial series. It suggests that the model

captures correctly some, if not all, key factors of �nancial crises. While most of our

�ndings are consistent with the previous HAM literature, based on the model we

provide new insights. First, not only crises but also the di¤erences of crises could

be endogenous, arising from the internal price dynamics. Second, market struc-

ture, measured by market fraction index, is the key for price dynamics. Factors

related to market fraction index are likely to play important roles in determining

crises. Third, although we do show that fundamentalists play an important role

in triggering crises, they do not take on the full responsibility. Chartists could be

responsible in some scenarios such as smooth and disturbing crises.

While the impact of market structure is directly observable, its origin is how-

ever complicated depending on a variety of combinations and interactions. In

our framework, the market fraction index is not constant but a dynamic function
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of �uctuating price. It is because investors consistently cluster to strategy that

would optimize their discounted expected pro�t. Perhaps more importantly, the

model exhibits rich complex market behavior because beliefs are not constrained

to be the same within a group: investors not only update their expected price but

also expected short-term fundamental value according to a series of psychological

windows. Such design of deterministic dynamics produces more close-to-real price

series, which, in some extent, avoid the unrealistic sudden and frequent switch

between bull and bear market, as shown in the earlier deterministic HAM. The

strategy switch between groups and short-term fundamental value update within a

group contribute to the complex dynamics of market fraction index. The intensity

of choice and information cost play an important role in determining the speed

and the threshold of switch. The direct relation between these two determinants

add some insight to the price movements. Their impacts, however, are durable,

depending on di¤erent complex scenarios.

The model focuses on the crises and leaves many dimensions unexplored. First,

we do not impose constraint on the short/margin sell in this model. By constrain-

ing such behaviors, one might be able to evaluate their impact on the depth and

length of crises. Second, the interest rate, which is constant in this chapter, can be

released to be a variable. By doing so, one might be able to address the impact of

interest policies and see whether such policies would a¤ect the depth and length

of crises. Third, the range of switching regimes in the piecewise beliefs can be

released to account for di¤erent expected �uctuation intervals. Finally, although

the relation between price �uctuations and intensity of choice as well as the infor-

mation cost, is clear on speci�ed scenarios, due to the complex dynamics of market

structure, it is hard to describe a direct ex-ante relation between these two factors

and crises. It is hard to address until after the crises, that is until after we know

the market structure.
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Appendix. Demonstration of path dependence in

price movements

Although parameters do a¤ect the types of crises, they are not the key. In fact,

a set of parameters could generate all three types of crises, suggesting that the

di¤erences in crises could be endogenous depending on the internal price dynamics

(see Fig 2-10, Fig 2-11 and Fig 2-12. In fact, given the same initial price and the

same parameter set up, di¤erent types of crises can recur in di¤erent time frames.

That is, for a long enough sample period, di¤erent types of crises can occur in the

same simulation15.

Common parameters: �p� = 50,  = 2:1585022 + 0:0001 � 3^0:5, � = 10:12 �
0:0001 � 3^0:5, � = 0:5, r = 0:00001, � = 0:9, � = 13:17871, �2� = �2� = 1 and

s (pt) = (�p� � pt)2 =3�p2�.

15We thank Volker Bohm for pointing this out.
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Figure 2-1: Price dynamics: �oating mt.
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Figure 2-2: The interaction between mt and pt.

42



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

p(t)

p(
t+

1)

m=1
m=1

m=0
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Figure 2-4: Sudden crises. The �rst panel compares the simulated price series
(asterisk marked line) with the DJIA (solid line) from 1987=8=4 to 1987=12=24.
The second panel shows the track of market fraction index m.
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Figure 2-5: Sudden crises: The price dynamics.
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Figure 2-6: Smooth crises. The �rst panel compares the simulated price series
(asterisk marked line) with the DJIA (solid line) from 1932=3=4 to 1932=7=26.
The second panel shows the track of market fraction index m.
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Figure 2-7: Smooth crises: The price dynamics.
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Figure 2-8: Disturbing crises. The �rst panel compares the simulated price series
(asterisk marked line) with the DJIA (straight line) from 1929=8=15 to 1930=1=12.
The second panel shows the track of market fraction index m.

47



0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

p(t)

p(
t+

1)

Figure 2-9: Disturbing crises: The price dynamics.

Figure 2-10: Sudden crisis (p0 = 76:41): The left panel plots the price series, the
right upper panel records the market fracition index and the right bottom panel
describes the price dynamics.
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Figure 2-11: Smooth crisis (p0 = 77:41): The left panel plots the price series, the
right upper panel records the market fracition index and the right bottom panel
describes the price dynamics.
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Figure 2-12: Disturbing crisis(p0 = 79:14): The left panel plots the price series, the
right upper panel records the market fracition index and the right bottom panel
describes the price dynamics.
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Chapter 3

Asymmetric Returns, Gradual

Bubbles and Sudden Crashes

3.1 Introduction

It has been documented that the aggregate �nancial market returns, such as re-

turns of the stock market index, are asymmetric. In other words, the largest

possible upward return movement is smaller than the absolute magnitude of the

largest drawdown, that is, max(rt; 0) < jmin(rt; 0)j (Cont, 2001, Hong and Stein,
2003). For example, during the past decades (January 1900 to January 2010), the

most positive monthly return of the Dow Jones Industry Average Indices (DJIA)

was 34% in April 1933, the scale which was not comparable with the most nega-

tive return of -37% in September 1931. Even though the understanding on return

asymmetry is important for risk management, a satisfactory economic explana-

tion is still lacking. Among many agent-based models as surveyed by Chen et

al. (2008), only a few are capable of duplicating such characteristic1. Another

interesting observation of the �nancial time series is that, price bubbles appears

1See Johansen and Sornette (2002), Westerho¤ (2003), and Hong and Stein (2003) for models
that can demonstrate asymmetric returns.
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gradually while price crashes suddenly (Veldkamp, 2005). For example, it took �ve

years for the recent price bubble to reach the top (the DJIA rise from 7,591.93 in

September 2002 to the peak 13,930.01 in October 2007), but it took less than two

years for the bubble to burse bring the DJIA down to a level (7,062.93 in February

2009) which was much lower than the bottom of the bubble. Simple modeling

of human learning and adaption enables agent-based models to reproduce bub-

bles and crashes2, which are generally ascribed to the interaction of heterogeneous

investors3. Nevertheless, only a few studies are found to address the ubiquitous

feature of �gradual�bubbles and �sudden�crashes.

The goal of this chapter is to generate the phenomena of asymmetric returns,

gradual bubbles and sudden crashes, and to explain these central qualitative at-

tributes. Ideally, if one were to build a mathematical model based on economic

forces that can duplicate such facts, it should have shade some light on these is-

sues. However, as these phenomena are sporadic, the chance of duplicating such

facts without capturing the essential fundamental factors is not impossible. For

precaution, we �rst verify the solidity of the model by checking whether it could

duplicate the most documented and frequently observed stylized facts that are

common across �nancial markets. If the model succeeds in doing so, rely on it for

origins of these sporadic phenomena shall be more convincing.

What are the most intensively discussed stylized facts that characterize the

commonality of �nancial markets? Empirical studies consistently show that the

�nancial time series of prices are random and nonstationary (or possess a unit

root), which is in line with the e¢ cient market hypothesis, under which prices

instantly and correctly adjust to re�ect new information, making arbitrage impos-

sible. However, recent empirical evidence suggests that the �nancial time series

of returns are predictable to some extent (Carhart, 1997, Avramov, 2002), which

2See, e.g. Day and Huang (1990), Frankel (2008), Gennotte and Leland (1990), Lux (1995),
He and Westerho¤ (2005).

3Kyrtsou and Terraza (2002) verify that interactions between heterogeneous investors con-
tribute to the chaotic behaviour and excess volatility of �nancial time series.
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challenges the idea that returns are random as implied by the market e¢ ciency

hypothesis. Some argue that a certain degree of predicability maybe necessary to

reward investors for bearing certain dynamic risks and for gathering and processing

information. Others suggest that returns may not fully re�ect rational evaluations

and investors could be boundedly rational. Motivated by these considerations,

various models and techniques have been proposed to address return predicabil-

ity related issues, in an attempt to beat the market. Despite the controversy on

how future returns relate to historical returns, there are several well-recognized

�ndings. First, the distribution of returns is not Gaussian. Instead, it is charac-

terized by fat tails, with extreme returns appearing more frequently than what are

predicted by Gaussian distribution. Second, there are positive autocorrelations in

absolute and square returns, resulting from the volatility clustering, with periods

of quiescence and turbulence cluster together. It means that large (small) return

�uctuations are followed by large (small) �uctuations. Even though there is a

lack of serial autocorrelation in raw returns, the volatility clustering suggests that

past returns are informative for future returns and such relationship is nonlinear.

Third, returns exhibit an unusually high degree of persistence or long-range de-

pendence - their autocorrelation functions decay slowly as a power of lags. Fourth,

most measures of the volatility are negatively correlated with past returns, which

is called leverage e¤ect.

Rich literature has contributed to the identi�cations (Cont, 2001, Pagan, 1996)

and duplications of these stylized facts, in particular the characteristics of fat

tails and volatility clustering in returns (Challet et al., 2001, He and Li, 2007,

2008, Kirchler and Huber, 2007, Lux and Marchesi, 1999, 2000, Shimokawa et

al., 2007). Agent-based models have been quite successful in the latter. Some of

them even shade light on the origins of the stylized facts (Kyrtsou and Terraza,

2002, Alfarano et al., 2008). While for early models, a close �t to some of the

statistical features is developed at the expense of a bad �t to others (Cont, 2001),

some recent models do demonstrate the capability of reproducing many stylized
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facts simultaneously (Shimokawa et al., 2007). Nevertheless, most models that

�t into the real data rely crucially on a somewhat unrealistic modeling of the

noise term4 (pt = f(pt�1) + "t, "t v N(0; �2), f(pt�1) is a function of pt�1).

Amilon (2008) shows that if the normally distributed noise is replaced with a more

proper stochastic process (pt = f(pt�1) + pt�1"t), even though the model could

generate some stylized facts, the �t is generally poor. Removing the noise term

(pt = f(pt�1)) would render the model too simple to capture the dynamics of real

markets and fail to demonstrate stylized facts. One may infer from these �ndings

that, stylized facts essentially arise from exogenous shocks. There is no doubt

that these models provide excellent dynamic mechanisms that convert random

shocks into price patterns. They, however, leave the question that, why some

properties arise in the absence of external shocks, unexplored. How do random

shocks generate consistent stylized facts across markets and over time?

If the internal dynamics play the fundamental role in determining the �nancial

market characteristics while randomness only serves as a trigger (see e.g. Farmer

and Joshi, 2002 and Sornette, 2004), stylized facts that are common across various

�nancial markets over decades ought to be endogenous, arising from the internal

price dynamics. In other words, exogenous shocks shall be able to shape stylized

facts of di¤erent magnitudes but not their fundamental characteristics. To show

this, one shall disentangle the impact of exogenous shocks in replicating stylized

facts. The safest choice is to exclude external noise terms and stochastic processes

of any forms. This is however at the cost of �tness into real data as demonstrated

by Amilon (2008). Nevertheless if a purely deterministic model are capable of

reproducing a variety of stylized facts, one shall extrapolate it to capture some, if

not all, essential of the complex market dynamics.

The structure of the chapter is organized as follows. Section 2 examines the

statistical properties of the data simulated based on the model developed in Chap-

4The dynamic modeling of the normally distributed noise term could exhibits the features of
fat tails even if the fundamental does change.
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ter 2. It shows that even without the noise term and stochastic process of any

forms, the simulated data matches with the well-documented statistical features

that characterize the �nancial time series. Speci�cally, we �nd that the simulated

returns demonstrate features such as fat tails, volatility clustering, long range de-

pendence and leverage e¤ect. In particular, we �nd that large returns follow a

power low distribution with an exponent of three. After verifying the solidity of

the model, Section 3 analyzes the underlying mechanisms of asymmetric returns

as well as gradual bubbles and sudden crashes. Section 4 concludes.

3.2 Statistical Properties of Simulated Data

In this section, we verify the solidity of the model in capturing the essential of

the complex dynamics by showing its capacity to generate the well-documented

stylized facts described in Section 1. Asides from testing the non-stationarity

of prices that supports the market e¢ ciency5, we also verify various forms of

predicability in returns that cannot be explained by the e¢ cient market hypothesis,

such as volatility clustering, long range dependence and leverage e¤ect. Without

loss of generality, we simulate the price series using a set of parameters: p0 =

85� 0:01
p
2, �p� = 50,  = 2:16 + 0:01

p
2, � = 10:12� 0:01

p
2, � = 0:5, r = 10�5,

� = 0:9, C = 5, � = 11:17871 and �2� = �
2
� = 1. The compounded single-period

return of the asset from t� 1 to t is de�ned as rt = log(pt)� log(pt�1). We could
have changed certain parameters to better capture some stylized facts, however, to

maintain the consistency of analysis and further support the solidity of the model,

we keep to the same set of simulated data throughout the chapter.

Before moving to �nancial econometric tests, we present an overview of the

simulated prices and returns in Fig.3-1. It is observed that (i) the price goes up

5The non-stationarity in price series does not necessarily imply that price is unpredictable.
The stationarity test is designed to evaluate whether shocks are permant/temporatory (Camp-
bell et al., 1997). Under the e¢ cient market, shocks are expected to be permanent, which
corresponding to a non-stationary process.
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Table 3.1: Summary statistics of prices and returns.
Sample Mean S.D Min Max N
pt 47:53 19:097 16:445 84:986 2001
rt 0:000 0:099 �0:311 0:279 2000

and down with occasional bubbles and crashes but without any trend or pattern,

and (ii) the return moves around zero and appears to cluster. The summary

statistics in Table 3.1 con�rm that the average return is zero. Note that the most

positive return is 0:279, the magnitude of which is smaller than the most negative

return of �0:311.

3.2.1 Nonstationary Prices and Stationary Returns

Literature has consistently shown that the time series of asset prices are not sta-

tionary but that of returns are. Despite the robust evidence in �nance literature,

heterogeneous agent models tend to ignore these properties in prices and returns

with a few exceptions, such as Lux and Marchesi (2000) and Alfarano et al. (2008).

We test the existence of a unit root (non-stationarity) using the Augmented Dickey-

Fuller (ADF):

�yt = a0 + byt�1 +

i=qX
i=1

ci�yt�i + �t,

where yt 2 fpt, log(pt), rtg and q is the number of lags, which is set to be 6
according to the information criteria and the law of parsimony.

Table 4.3 presents the estimation results. The ADF for price and log price

series are �2:304 and �2:498 respectively, which are signi�cantly greater than the
critical value at 10% signi�cance level. The corresponding MacKinnon p-values

for price and log price series are 0:171 and 0:116 individually, suggesting that

one cannot reject the hypothesis of a unit root process for either series even at a

signi�cance level of 10%. In the return series, the ADF test signi�cantly rejects

the hypothesis of non-stationarity at 1% signi�cance level. The simulated data
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matches with the stylized facts. There is a unit root process in prices but not in

returns.

Table 3.2: Unit root test.
Series ADF(6) MacKinnon p-value R-squared N
pt �2:304 :171 :116 1994

ln(pt) �2:498 :116 :146 1994
rt �20:37 :000 :664 1993

Notes:
Signi�cance level 1% 5% 10%
ADF critical value �3:43 �2:86 �2:57

3.2.2 Fat Tails

The summary statistics of returns in Panel A of Table 4.2 further support the

presence of fat tails: kurtosis (the fourth moments) is 3:328, which is greater

than the benchmark value when returns are normally distributed. It suggests that

returns are not normally distributed but exhibit fat tails, with extreme returns

appearing more frequently than what are predicted by the normal distribution.

The skewness (the third moment) of returns is negative, meaning that price falls

in greater scales than it rises on average.

Table 3.3: Fat tails.
Panel A: Skewness and kurtosis

Sample Skewness Kurtosis Mean S.d N
rt �:082 3:328 0 :099 2000

Panel B: Hill estimator of the tail index
'% 10% 5%
h 3:054 4:533

Skewness and kurtosis are however ambiguous in measuring the characteristics

of fat tails. As a complement to see how heavy the tail is, we estimate the tail index.

First, the return series are sorted into descending order so that r(1) > r(2)::: > r(N).

Assume Pareto-type tail in the density, we have Pr (R > r) = kr�h, where k is a

56



parameter and h is the tail index, with a lower value corresponding to a fatter tail.

Conditioning upon the '% upper tail that includes the j (= b'% �Nc) largest
observations, the Hill (1975) estimator is given by:

ĥ = 1=[
Xi=j

i=1
ln(r(i))=j � ln r(j)].

For the upper 10% and 5% tails, the Hill estimator shown in Panel B of Table 4.2

falls into [2; 6], a range reported consistently in current literature (see Cont, 2001).

Since the accuracy of Hill estimator largely depends on the number of obser-

vations fall within the speci�ed tail, we have to be cautious about the selection

of percentiles. To see whether 10% or 5% is a better choice in calculating the

tail index, we run a robustness check using the method of Mandelbrot (1997),

by representing the sample moments as a function of the sample size. If the tail

index h is larger than the moment of order c, the moment of order c exists and

settles down around a �nite value. Fig. 3-2 illustrates the behavior of skewness

(moment of order three) and kurtosis (moment of order four) in correspondence

to the sample size. As observed, while the skewness or third moment stabilizes at

a negative value as the sample size increases, the kurtosis or the fourth moment

shows no such stability. The results are in favor of a choice of 10% tail and a Hill

estimator of around 3. This is in line with the cubic-law distribution of returns

(see Gabaix et al., 2003).

3.2.3 Volatility Clustering

Except for very small trading time scales, autocorrelations function (ACF) of re-

turns are insigni�cant. The absence of linear correlation does not imply inde-

pendence of returns. In fact, nonlinear functions of returns, such as absolute or

square returns, are signi�cantly autocorrelated. Such correlation is positive and

persistent, which is a quantitative feature of volatility clustering, with periods of
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Table 3.4: NLS estimation of ACF.
coe¢ cient t-statistics R-squared Root MSE

& :604 14:35 :9134 :065
d :325 14:38

quiescence and turbulence cluster together. Panel A of Fig. 3-3 demonstrates

such properties: while the ACF of raw returns decays quickly to 0, the ACF of

absolute returns is relatively large and persistent even after 100 lags. Note that

the ACF of raw returns at the lag 1 and 2 is -0.28 and -0.13 respectively, the sim-

ilar statistics at lag 3 diminishes to 0.01 and then �uctuates around 0 with small

magnitude. The magnitude of the ACF of absolute returns remains signi�cantly

di¤erent from 0 over the 100 lags. The slow decay in the ACF of absolute returns

is a characteristic (but not su¢ cient condition) of a long memory process.

The plot of the ACF against the number of lags is however ambiguous in

measuring the decaying characteristics of volatility clustering. As a quantitative

complement, exponent of power laws is proposed to measure how fast the ACF of

absolute returns decays:

corr(jrt+qj ; jrtj) ' &=qd,

where q is the number of lags, & is a parameter, and d is the exponent, with a

smaller value corresponding to slower decay.

Nonlinear least square (NLS) estimation (see Table 3.4) shows that the ACF

of absolute returns decays with an exponent d = :325, which matches with the

real markets that typically have an exponent falling in the range of (0:2; 0:4). It

loosely suggests the presence of �long-range dependence�, which is to be discussed

in detail later.
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3.2.4 Long Range Dependence

rt is said to have long range dependence if its ACF fades away as a power of the

lag:

corr(rt; rt+q) v L(q)=q1�2
~d, 0 < ~d < 1=2, as q !1

where L(q) is any slowly varying function at in�nity, which satis�ed that, as the

number of lags q ! 1, it is true that 8a > 0, L(aq)=L(q) ! 1. Long-range

dependent time series exhibits an unusually high degree of persistence even at

the lowest frequencies, which is thought to be a common phenomenon in �nancial

variables.

To complement a comprehensive analysis of long-range dependence, we test

the hypothesis of no long-range dependence in rt using Lo modi�ed range over

standard deviation or R/S statistic (also called re-scaled range), which is robust

to short-range dependence (Lo, 1991)6. The Lo modi�ed R/S statistic over n

observations, denoted by Qn, is de�ned by:

Qn �
1

�̂n (q)

"
max
1�k�n

j=kX
j=1

(rj � �rn)� min
1�k�n

j=kX
j=1

(rj � �rn)
#
, (3.1)

where �̂n (q) is the usual sample variance:

�̂n (q) =
1

n

j=nX
j=1

(rj � �rn) +
2

n

j=qX
j=1

�
1� j

q + 1

� i=nX
i=j+1

(ri � �rn) (ri�j � �rn) .

The �rst and second terms in the bracket of Eq.(4.7) are the maximum of the

6Any incompatibility between the data and the predicted behavior of the R/S static under the
null hypothesis of no long-range dependence may merely be a symptom of short-term memory,
if conventional R/S is applied. That is, conventional R/S static is sensitive to short-range
dependence. Lo modi�ed R/S static accounts for the e¤ects of short-range dependence and is
considerably more accurate.
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partial sums of the �rst k deviations of rj from the sample mean �rn and the

minimum of the same sequence of partial sums, respectively.

We show that the estimated Lo modi�ed R/S statistic is increasing with the

lag q in the Panel B of Fig. 3-3. Despite the sensitivity of the statistics to the

selection of the number of lags, the overall results support the presence of long-

range dependence in general. At 10% signi�cance level, with the con�dence interval

of [0:861; 1:747], we reject the null hypothesis of no long-range dependence through

100 lags. At 5% signi�cance level with the con�dence interval of [0:809; 1:862], we

�nd evidence of long-range dependence as long as q 6 16.

3.2.5 Leverage E¤ect

Leverage e¤ect states that most measure of volatility of an asset are negatively

correlated with the past return of that asset. It is also called volatility asymmetry,

with the amplitude of price �uctuations or volatility having a tendency to increase

when the price drops. Represent the volatility with subsequent squared returns,

the leverage e¤ect could be measured by corr(jrt+qj2 ; rt) (Cont, 2001). We graph
corr(jrt+qj2 ; rt) as a function of the lag q in the Panel C of Fig. 3-3. It turns out
that the corr(jrt+qj2 ; rt) starts from a negative value which implies that negative

returns lead to a rise in volatility. The simulated returns exhibit leverage e¤ect as

documented in many theoretical and empirical literature7.

3.3 Numerical Analysis

After showing that the purely deterministic model are capable of generating a wide

range of well-documented stylized facts, one shall extrapolate it to capture at least

in part, if not all, fundamental factors of the complexity in �nancial market dy-

namics. At this point, we are more con�dent to take a step further to dig into such

7See Bouchaud et al. (2001) and the survey by Pagan(1996).
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a model for the origins of return asymmetry, gradual bubbles and sudden crashes.

In this section, we reproduce qualitative features and shade light on the origins

of the phenomena of asymmetric returns as well as gradual bubbles and sudden

crashes. Our analysis suggests that (i) returns are asymmetric because the most

positive returns initiated by fundamentalist is weaken by chartists while the most

negative return initiated by chartists is hardly a¤ected by fundamentalists; and (ii)

price bubbles come up gradually but crashes happen suddenly, because when the

price is above the fundamental, the upward price movements are counterbalanced

while the downward movements are enhanced by fundamentalists.

3.3.1 Asymmetric Returns

Returns are asymmetric in the sense that the largest upward return movement

is not comparable with the absolute magnitude of the largest drawdown, that

is, max(rt; 0) < jmin(rt; 0)j. As shown in Table 3.1, the most positive return

in our simulated sample is 27:8% while the most negative return is �31:1%, a
match with the documented asymmetry in returns. As the statistical properties

of returns have been studied in the previous section, we focus on the underlying

mechanism of return asymmetry in this part. In line with Johansen and Sornette

(2002) and Westerho¤ (2003), we support the idea that such asymmetry in returns

are endogenous.

Fig.3-4 plots the absolute returns against the price level, with the hollow circle

denoting the negative return and the solid circle denoting the absolute value of the

negative return. It shows that extreme returns concentrate on low price levels.

What is the driving force behind the extreme returns? When price falls below

its value, fundamentalists always buy in to shore up the asset price; chartists,

however, either buy or sell, depending on their forecast of piece-wise short-term

fundamental (see Eq. (2.3)). At low price levels, extremely negative returns arise

when the selling force of chartists outweighs the buying force of fundamentalists,

which brings the price down sharply. Extremely positive returns could be gener-
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ated if (i) chartists move in the same direction with fundamentalist to buy in the

asset; or (ii) the buying force of fundamentalists strongly exceeds the selling force

of chartists. To have a clear picture of the internal mechanism, Fig. 3-5 plots

steps of price dynamics that generate returns below 10% percentile (the extremely

negative returns) and above 90% percentile (the extremely positive returns). The

dynamic steps associated with the extremely negative returns (top panel) all locate

on the right hand side of pt�1 = 19:477 (the dash vertical line), when the market

fraction index m (dash dot line) is trivial8. It is equivalent to say that the collec-

tive selling of chartists gives rise to the extremely negative returns. The dynamic

steps associated with the extremely positive returns (bottom panel) are associated

with both trivial and non-trivial m. When m is not trivial that is pt�1 < 19:477,

chartists generally �nd it optimal to sell9, extremely positive returns are generated

because the buying force of the fundamentalists exceed that of the selling force of

chartists. When m is not trivial, extremely positive returns arise because chartists

who dominate the market buy in the asset in large volumes.

Why is the most negative return greater than the most positive return in terms

of absolute magnitude? The most negative return (�31:1%) arises when the price
falls from 22:435 to 16:445. When the price is 22:435, the market fraction of fun-

damentalists is trivial, the collective selling actions of chartists are hardly a¤ected

by fundamentalists. It is relative easy to move the price down for a large ampli-

tude. The most positive return (27:8%) arises when the price jumps from 16:705

to 22:071. At the price level of 16:705, fundamentalists that are not trivial buy

in the asset to shore up the price. Their actions are, however, counterbalanced in

some extent by the selling behavior of chartists10 that accounts for more than half

of the market fraction (see the dash-dot line), which limits the upward movement

8A trivial m (m! 0) indicates a large proportion of chartists and almost no fundamentalists.
9If there is no fundamentalists, one of the equilibria is that p(t� 1) = p(t) � 19, below which

chartists �nd it optimal to sell (see Eq.(2.11) and (2.3)). As long as the price stays within the
same trading window, the lower the price is below the equilibrium price, the greater the selling
force of chartists.
10Note that at such price level, chartists�optimal strategy is to sell.
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of the subsequent return. In sum, returns are asymmetric because the most posi-

tive returns initiated by fundamentalist is weaken by the chartists while the most

negative return initiated by chartists are hardly a¤ected by fundamentalists.

3.3.2 Gradual Bubbles and Sudden Crashes

Asset price moves up and down, accompanied with sporadic bubbles and crashes.

The bull-run of equity price in 2006 and its collapse during credit crunch in 2007

are representative episodes of the bubble and the crash. Current heterogeneous

agent models ascribe bubbles and crashes to the interaction among heterogeneous

investors. Our simulation further support this argument. Moreover, it captures the

ubiquitous feature of gradual bubbles and sudden crashes that are rarely addressed

in agent-based models. We argue that such characteristics could root in the facts

that upward price movements are counterbalanced while the downward movements

are always enhanced by fundamentalists, when the price is above the fundamental.

We �rst deviate from the conventional concept of bubble11 slightly, by focusing

on a more general phenomenon - price booms characterized by an upward trend

regardless of whether the price is above or below the fundamental. The upper left

panel of Fig. 3-6 shows that the simulated prices �uctuate randomly with booms

and crashes. The typical episode of crash is re�ected between period 174 and

306 (32 periods), when price falls from the peak, 84:184, to the bottom, 16:878

(declined by 67:306). The representative episode of price boom could be found

from period 1346 to 1493 (47 periods), when the price bounces from the lowest

point, 16:445, up to the regional peak, 83:394 (increased by 66:949). It seems

to take longer for price to rise than to decline by a similar magnitude. In other

words, the price crashes more quickly than its boom. In order to shade light on the

phenomena of slow boom and sudden crash, the right panels of Fig. 3-6 plots the

step-wise price dynamics corresponding to these episodes of crash and boom. The

11In the following context, we refer �boom�to general upward trend and �bubbles�to the upward
trend when price is above the fundamental.
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crash starts when the price is very high above its value. At that high price level,

fundamentalists sell asset to drag the price down towards its fundamental while

chartists could either buy in or sell out, depending on their expected short-term

fundamental. If the selling force of fundamentalists dominates the market, price

goes down for sure. As the price declines, m decreases, which weakens the selling

force of fundamentalists. The price stops falling if chartists �nd it optimal to buy

in and their buying force is greater than the selling force of fundamentalists. As

soon as the price is up, m increases, the collective selling force of fundamentalists

is enhanced. The rising trend reverse when the selling force of fundamentalists

exceeds the buying force of chartists. The battle between fundamentalists and

chartists continues until the price is brought down to a level that chartists �nd it

optimal to sell. That is the moment when the price starts to plunge. As the price

move closer to the fundamental, chartists dominate the market (m is trivial) and

continue to explore the trend of price, leading to a series of moderate and disturbing

declines. Similarly, the boom starts with the battle between fundamentalists and

chartists. When the price is up to a certain level, chartist dominate the market

and continue to explore the trend, which eventually push the price far beyond its

fundamental and forms a bubble12.

We now focus on the speci�c episode of the boom - the bubble, de�ned by

the price span above the fundamental. Compared the upper right and bottom

panels of Fig. 3-6, it is found from the density of the dynamic steps that, price

falls from the peak less disturbingly than it approaches the peak. Intuitively,

when the price is above the fundamental, fundamentalists always buy in while

chartists switch between buying and selling according to their latest update of

the short-term fundamental. The upward price movements initiated by chartists

are impaired while the downward movements are enhanced by fundamentalists.

Therefore, the price owes to drop much easier than it climbs. Fig.3-7 illustrates

such asymmetry by plotting the absolute price movements against the price level.

12See Chapter 2 for a technical analysis.
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It shows that, when the price is very high above the fundamental (eg, p > 70), the

downward price movements (denoted by hollow circles) are greater than the upward

movements (denoted by solid circles) in terms of their absolute magnitudes. The

former is however sparser than the latter. It implies that price drops in large scale

with low frequency while rises in relatively small amplitude with high frequency.

For a technical explanation, we turn to the dynamics of the market fraction

index, m. The bottom left panel of Fig. 3-6 states that market index, m, �uc-

tuates more disturbingly when the price falls from the peak than when the price

approaches the peak. It suggests that the battle between fundamentalists and

chartists last longer in forming bubbles than in generating crashes. When the

price is at the peak, m is large. In this case, it is easy for fundamentalists to

win the battle against chartists quickly and to drag the price down by a large

scale. Whereas when the price is on the way towards the peak, as chartists push

the price higher, m that is originally trivial increases gradually. The increased m

forti�es the selling force of fundamentalists that counterbalances and even reverse

chartists�e¤ort to push the price up further. In sum, around the peak, it is easier

for fundamentalists to win against chartists than vice versa. Therefore price goes

up easier than it falls. That is why bubbles tend to be gradual while crash tends

to be sudden.

3.4 Conclusion

We show that it is possible for a deterministic heterogenous agent model, involving

no random elements of any forms, to generate a wide range of stylized facts simul-

taneously. Speci�cally, the chaotic return series, simulated under the deterministic

model in Chapter 2, exhibits characteristics of fat tails and volatility clustering,

the two stylized facts that receive the most intensive discussions in agent-based

models. The tail index is around 3, in line with the cubic power low distribution

of large returns. The volatility clustering decays with an exponent of 0.325, the
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value of which falls within the range of the empirical �ndings, suggesting a good

match with the real data. Even without the inclusion of any normally distributed

noise term or stochastic process, the simulated data re�ect the properties of long

range dependence as well as leverage e¤ect. The good performance of the chaotic

model in reproducing stylized facts can be attributed to the nonlinear dynamics,

which is found to be important in capturing the salient feature in �nancial time

series (Kyrtsou and Terraza, 2002, Kyrtsou and Vorlow, 2009). Accounting for

the chaotic behavior through the non-linear deterministic dynamic is important in

modeling the complexity in the �nancial market.

After verifying the solidity of the model by showing its capability to duplicate

many stylized facts that are common across �nancial markets, we believe that

the model has captured some, if not all, essential features of the complex market

dynamics. So we take a step further to explore the phenomena of asymmetric

returns as well as gradual bubbles and sudden crashes. Based on the same model

and the same set of parameters, our numerical analysis suggests the followings:

(i) returns are asymmetric because the most positive return initiated by funda-

mentalists are counterbalanced by chartists who trade in the opposite direction

against fundamentalists, while the the most negative returns initiated by chartists

are hardly a¤ected by fundamentalists. In other words, the net buying force of

fundamentalists are not comparable with the collective selling forces of chartists,

rendering the magnitude of the most positive return to be smaller than that of the

most negative return, and (ii) bubbles form gradually while crashes happen sud-

denly because, when the price is above its value, fundamentalists always sell assets

to bring the price towards its fundamental, which strengthen the downward price

movement but attenuate the upward movements driven by the collective buying

force of chartists. Note again that the model is purely deterministic, our �ndings

suggest that bubbles and crashes can arise even without external shocks. It indi-

cates that regulations tend to be ine¤ective in preventing such phenomena from

happening. However, policy makers can still monitor the market to some extent by
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changing the market structure or by in�uencing behavior of market participants.

For example, they can step into the market and play the role of fundamentalists to

boost the price up when the market is depressed and to stop the price from going

too high. By doing so, they mitigate the size of bubbles and crashes.
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Figure 3-1: The time series of prices (top) and returns (bottom).
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Figure 3-2: Skewness and kurtosis as a function of sample size.
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Figure 3-4: The distribution of absolute returns across di¤erent price levels. The
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with the extreme negative returns.
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movement.
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Chapter 4

Modeling Financial Crises - The

Role of Regime-Dependent Beliefs

4.1 Introduction

In the technical analysis, chartists identify the support price level, at which buying

force is believed to be strong enough to prevent the price from dropping further,

and the resistance price level, at which selling force is thought to be large enough

to curb the price from rising further. If the price moves within the regime enclosed

by current support and resistance price levels, chartists stick to their original be-

liefs that the price will not exceed the thresholds of the regime. However, when the

price breaks through the boundaries of current regime, new support and resistance

price levels will be established, and chartists will shift their beliefs accordingly.

According to their trading experience and analysis, chartists form a series of psy-

chological trading regimes enclosed by di¤erent support and resistance price levels,

based on which they develop their beliefs of future price movements. In order to

decide optimally whether to maintain their original beliefs or shift to others, it is

important for chartists to continuously update the support and resistance price

level and to extrapolate the contemporaneous psychological trading regime from
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the latest market information. To formalize the di¤erent behavior of chartists at

distinct regimes, it is therefore valuable to account for the regime-dependent belief,

with the price expectation depending on the corresponding psychological trading

regime.

Modeling the belief as regime-dependent is supported by the empirical evidence

that the price follows a complicated process with multiple regimes and that such

non-linear process a¤ects investment decisions (Ang and Bekaert 2002; Guidolin

and Timmermann, 2007, 2008). Such concept is also backed up by the literature

of heterogeneous agent model (HAM). It is observed that, HAMs that explicitly

incorporate the regime-dependent properties into price expectations exhibit better

performance than those without, in one way or another (Manzan and Westerho¤,

2007; Tramontana et al. 2010). Manzan and Westerho¤, 2007) model the chartist

sentiment (or the degree to which chartist acts on his belief) as a two-state process

and show that their model exhibits out-of-sample forecasting power for some cur-

rencies. The model in Chapter 2 de�nes chartist�s belief to depend on the pre-

speci�ed price regime and show that such a model is capable of duplicating crises

of various types as well as a wide range of stylized facts, including gradual booms

and sudden crash, asymmetric return, fat tails, volatility clustering and long-range

dependence. Tramontana et al. (2010) describe two types of chartists and funda-

mentalist, whose sentiment follows either a two-state or three-state process. Their

model is capable of generating a relatively large set of dynamic behaviour.

Nonetheless, due to the complexity of these HAMs and the many factors that

they account for, it is di¢ cult to analyze concretely how the regime-dependent be-

lief contributes to the model performance. Can the regime-dependent belief alone

improve a model�s capability to capture the qualitative and statistical properties

in the real �nancial time series? If so, what is the underlying mechanism? The

answers to these questions remain unknown in current literature. In this chapter,

we address these questions by proposing a simple HAM that exams the impact of

the regime-dependent belief on the performance of the model. We �rst introduce
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the concept of regime-dependent belief into a basic deterministic HAM proposed

by Day and Huang (1990). Second, we test the model�s capability to produce

di¤erent types of �nancial crises simultaneously, which cannot be ful�lled by Day

and Huang (1990). As documented in Rosser (2000) and Kindleberger and Aliber

(2005), crises can be classi�ed into three categories, which are named as sudden

crisis, smooth crisis and disturbing crisis in Chapter 2. The model by Day and

Huang (1990) can duplicate the sudden crisis but not the other two. It suggests

that this model has missed some of the key factors that are essential for the for-

mation of general crises. The regime-dependent belief seem to compensate this

missing part, as it enables the model in Day and Huang (1990) to generate all

patterns of �nancial crises simultaneously. Asides from enhancing the model�s

capability to generate various �nancial crises, such regime-dependent belief also

improves the model�s performance in duplicating the salient qualitative and statis-

tical properties of the �nancial time series. Speci�cally, the simulated price series

exhibits technical trading patterns such as head-and-shoulders, double top, double

bottom, V top. Moreover, the simulated time-series reproduce a wide range of

stylized facts such as fat tails, volatility clustering, and long-range dependence,

that are common across �nancial markets.

This chapter contributes to the literature by showing that the regime-dependent

belief is crucial in modeling crises of di¤erent types. Although current HAMs that

focus on the internal factors of the market dynamics are able to capture one type

of crisis or another at a time, few are able to model the three patterns of �nan-

cial crises simultaneously within the same framework1. The model in Chapter

2 outperforms in terms of its capacity to duplicate all crisis patterns within the

deterministic HAM. This model accounts for many interlaced dynamic factors,

1He and Westerho¤ (2005) captures the sudden crisis, Chiarella et al. (2003) the smooth
crisis, and Gallegati et al. (2010) the disturbing crisis. To the best of our knowledge, the model
in Chapter 2 is the only deterministic HAM that can generate all types of crises simultaneously.
Introducing the jump di¤usion into the model may help to capture these three patterns of crisis,
but it deviates from our beliefs that crises are essentially determined by the internal dynamics
rather than external shocks.
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such as the regime-dependent belief, interaction among heterogeneous investors,

the switch among di¤erent strategy and discounting factors used to evaluate the

current value of the expected pro�t. Although this model addresses many aspects

of investment behaviour, it is too complicated to shed light on what contributes

essentially to the good performance of such a deterministic HAM. This chapter

�lls this gap by exploring a relatively simple model that focus only on the role

of regime-dependent belief. That is, it intentionally drop out factors discussed in

Chapter 2 other than the regime-dependent belief. The main driving force of the

market dynamics is investors�belief for the future price. It shows that enriching

the very basic HAM with only regime-dependent belief can easily improve the

model�s performance in capturing di¤erent types of �nancial crises.

More importantly, this chapter takes a step further to explain why crisis dif-

fers from each other. It shows that, the price dynamics is not only responsive

to di¤erent psychological trading regimes but also very sensitive to the relative

location of the latest price in the regime. Falling into di¤erent zones of the regime

leads to distinct dynamic patterns that characterize crises of various types. For

mean-variance maximizers, given the same risk attitude, the greater the price is

expected to decline, the stronger the selling force. If the latest price falls into the

zone that triggers little selling force, the price will decline a little bit and remain

in the same regime. If on the other hand, the latest price falls into the zone that

drives investors to sell the risky asset in a large volume, the price may decline by

such a large magnitude that it breaks through the initial support price level. In

this case, two scenarios can happen after investors extrapolate the regime enclosed

by the newly established support and resistance price levels. If the price declines

to such an extent that overall investors �nd it optimal to sell according to their

regime-dependent belief, the price will decline further. If, on the other hand, the

overall investors �nd it optimal to buy, the price will go up. While the �rst sce-

nario creates the impression of sudden decline, with price drooping dramatically

within a short period, the second scenario paints the episode with disturbing ups
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and downs that characterize the period of �nancial distress. This is especially true

if such a process repeats itself over time. The di¤erent price dynamic patterns

that characterize the di¤erent types of �nancial crises arise as the price falls into

di¤erent zones of the regime. By constraining the price to fall into the speci�c

zones in a series of regimes over time, various types of �nancial crises can be gen-

erated. As the chaotic model proposed in this chapter is also deterministic, one

can always set the parameters and initial value in such a way that the price series

satisfy the conditions for di¤erent crisis patterns.

The rest of this chapter is organized as follows. Section 2 describes the model.

Section 3 discusses its theoretical implications. Section 4 simulates the sudden

crisis, smooth crisis and disturbing crisis and analyze their underlying mechanism

that di¤erentiates these crises. It then shows how the model performs in captur-

ing qualitative and statistical properties of the �nancial time series. Section 5

concludes.

4.2 Model

We consider a market with one risky asset and two types of investors distinguished

by their trading strategies - fundamentalists (�-investor) and chartists (�-investor).

A market maker steps in to balance the excessive market aggregate demand from

these investors and subsequently adjusts the price up or down.

4.2.1 Fundamentalists

Fundamentalists expect the asset price to converge towards its long term funda-

mental value �p�;t, with a time-varying convergence speed #t. They buy in the asset

when the price is below �p�;t and sell out vice versa. Given the asset price pt, the

number of risky assets demanded by fundamentalists at period t, D�;t, is given by:

D�;t = #t(�p�;t � pt).
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The convergence speed #t 2 (0; 1] is a nonlinear function of pt following the de-
�nition of Day and Huang (1990), which is to be speci�ed soon. The long term

fundamental value �p�;t is determined by the real economic growth. In a stable econ-

omy with zero growth rate and no permanent exogenous shock, the fundamental

value �p�;t can be treated as a constant parameter. In the presence of economic

growth, the fundamental value �p�;t is assumed to �uctuate with the business cycle.

4.2.2 Chartists

Chartists are aware of the conditional time variation in the formation process

of the price time series. They update their short-term market value, �p�;t, every

period according to a simple process with multiple regimes. They infer the current

regime from the historical price as well as their trading experience. The short-

term fundamental value �p�;t is then extrapolated to be the midpoint of the regime.

Following what is in Chapter 2, we assume that chartists divide the price domain

P = [pmin; pmax] into n regimes so that:

P = [nj=1Pj = [�p0; �p1] [ [�p1; �p2] [ � � � [ [�pn�1; �pn],

where �pj (j = 1; 2:::; n) represents the threshold of regime j. These threshold price

can be interpreted as di¤erent support (resistance) price levels in the technical

analysis. When the regime threshold is broken, the psychology behind chartists�

expectation for stock movements is thought to have shifted. In this case, the

psychological trading regime shifts, which is encompassed by the newly established

support and resistance price levels.

The short-term fundamental value �p�;t equals to the average of the top and the

bottom threshold prices that enclose the regime, into which the current price falls:

�p�;t = �p
j
� = (�pj�1 + �pj) =2 if pt 2 [�pj�1; �pj), j = 1; 2:::; n: (4.1)
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If the market consists of chartists only, the price in the next period pt+1 will decline

if pt 2 [�pj�1; �pj�) and increase if pt 2 [�p
j
�; �pj).

Chartists do not expect the price to converge to �p�;t. Instead, they believe that

the di¤erence between the actual price and �p�;t, or the estimation bias, is going to

persist to some degree. So they update their price expectations according to the

latest price information and the most recent estimation bias:

E�;t (pt+1) = pt + � � (pt � �p�;t) , (4.2)

where � 2 (0; 1) measures the sensitivity of price expectation to the most recent
estimation bias pt � �p�;t. The larger � is, the more persistent the estimation bias
is expected to be. The value of � is non-negative, suggesting that chartists expect

the estimation bias to persist rather than reverse in the subsequent period.

The number of risky asset demanded by chartists is proportional to the ex-

pected price change:

D�;t = � [E�;t (pt+1)� pt] = �� (pt � �p�;t) , (4.3)

where � measures the extent to which chartists act on their belief. For simplicity,

the parameter � is treated as a constant. The expression of demand function

suggests that chartists buy in the risky asset when the price goes beyond the

latest estimation of short-term fundamentals �p�;t, and sell out when the price falls

below.

4.2.3 Market Maker

The order imbalance arising from the trading activities of fundamentalists and

chartists is o¤set by the market maker, who supplies from (absorbs into) his in-

ventory when there is positive (negative) excess demand. In the subsequent period,

the market maker adjusts the price up or down according to the weighted excess
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demand2 so that

pt+1 = f(pt) = pt +  (D�;t + �D�;t)

= pt + #t(�p�;t � pt) + � (pt � �p�;t) ,
(4.4)

where  measures the sensitivity of price adjustment to the excess demand and

� is the market weight of chartists relative to that of fundamentalists, which is

normalized to 1. The second line is obtained by substituting D�;t and D�;t with

Eq.(4.2) and (4.3) and by letting � = ��� . When the market gets more volatile,

the market maker may increase  to compensate the risk he is bearing. Here for

simplicity, we will assume  to be a constant parameter. Given that both #t and

�p�;t is a nonlinear function of pt, the �nal price dynamics in Eq.(4.4) is essentially

governed by a deterministic one dimensional mapping.

4.3 Theoretical Implications

In the presence of the regime-dependent belief, there are multiple equilibria, which

satisfy the condition that f(pt) = 0. This set up can result in periodic cycles or

chaos. As the price movements in the real �nancial activities show no trackable

trajectory, we focus on how the dynamic system leads to chaotic phenomena.

Speci�cally, we analyze how the price dynamics leads to the ups and downs within

the same regime and the switch among regimes. We address these properties

within the multiple-phase dynamic system in the following discussion.

2For empirical evidence on how asset prices adjust with respect to market order imbalances,
see Bouchaud, Farmer et al. (2009).
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4.3.1 Equilibrium

It is straightforward from Eq.(4.4) that �pt, the price change from period t� 1 to
t, can be written as

�pt = pt+1 � pt = #t(�p�;t � pt) + � (pt � �p�;t) . (4.5)

When the buying and selling forces balance out, the market is in equilibrium and

�pt = 0. In the presence of the regime-dependent belief, there are more than one

equilibrium price. For the equilibrium price exiting in regime j, p�j , it must satisfy

the following condition:

#t(�p�;t � p�j) + �
�
p�j � �p�

�
= 0, (4.6)

where �p� corresponds to the mid-point of the psychological trading regime that the

equilibrium price falls into. Given that p�j 2 [�pj�1; �pj], we have �p� = (�pj�1 + �pj) =2.
If the market consists of chartists only, it is always true that p�j = �p�. In the

presence of fundamentalists, the equilibrium price would deviates from chartists

estimation of the market value.

When the price is overvalued (undervalued) such that pt 2 (�p�;t; pmax] (pt 2
[pmin; �p�;t)), the market is said to be bull (bear). Note from Eq.(4.6) that in

bull (bear) market, it is always true that p�j > �p� (p�j < �p�). This is because

fundamentalists always sell out (buy in) in the bull (bear) market so as to push the

price towards its long-term fundamental value �p�;t. Compared with the scenario

when the market consists of chartists only, the presence of fundamentalists drives

the price lower (higher) across all regimes in the bull (bear) market because they

always sell out (buy in) the risky asset.
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Table 4.1: Comparing declining and rising zones.
pt p�j ZR;j ZD;j Asymmetry

Bull Market pt2 (�p�;t; pmax] p�j< �p� ZR;j�(p�j ; �pj] [�pj�1; p
�
j)� ZD;j �pmax < j�pminj

Bear Market pt2 [pmin; �p�;t) p�j> �p� (p�j ; �pj]� ZR;j ZD;j�[�pj�1; p�j) �pmax > j�pminj

4.3.2 Rising and Declining Zones

Let ZR;j (ZD;j) denote the rising (declining) zone in regime j, then we have pt 2
ZR;j (pt 2 ZD;j) if �pt > 0 (�pt < 0). We �rst analyze the properties of the

rising and declining zones when the market consists of both fundamentalists and

chartists. In the bull market, it is straightforward from Eq.(4.5) and Fig. 4-1

that the rising zone ZR;j is at most equivalent to
�
p�j ; �pj

�
and the declining zone

ZD;j is at least equivalent to
�
�pj�1; p

�
j

�
3. Note that p�j > �p�, which results in

�pj � p�j < �pj � �p� < (�pj � �pj�1) =2 and p�j � �pj�1 > �p� � �pj�1 > (�pj � �pj�1) =2, the
width of the rising zone ZR;j is smaller than that of the declining zone ZD;j. It

means that if pt falls uniformly in regime j, the probability of the price increase

is less than that of the price decrease. It suggests that the price is more likely

to fall than to rise in the bull market. Similarly, it is easy to derive that, in the

bear market, the price is more inclined to rise than to fall. The magnitude of price

change is also asymmetric in similar manners. It is easy to derive from Eq.(4.5)

that the maximum price increase �pmax is smaller (greater) than maximum price

decrease or the most negative price change, j�pminj, in bull (bear) market. These
results can be summarized in Table 4.1.

When the market consists of chartists only, following from Eq.(4.4) it is always

true that �pt > 0 (�pt < 0) if pt > �p� (pt < �p�) and pt 2 [�pj�1; �pj]. In this
case, the rising zone in regime j is ZR;j = [�pj�1; �p�) and declining zone in regime

j is ZD;j = (�p�; �pj] (see Fig.4-1). Given that �p� = (�pj�1 + �pj) =2, the width of

rising zone equals to that of the declining zone. If pt falls into the regime [�pj�1; �pj]

3Extremely, when the selling forces by fundamentalists in the bull market dominate any
buying forces by chartists, at all price levels in regime j, the whole regime becomes the declining
zone. In this case, there is not equilibrium price in regime j.
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uniformly, the price increases and decreases with the same probability. Moreover,

the maximum price increment is equal to the maximum decrement. Therefore,

one might argue that the trading behaviour of fundamentalists contribute to the

asymmetry in the rising and the declining zones and in the magnitude of price

changes. Such �nding sheds light on why return is asymmetric in the sense that

the magnitude of the most negative return is greater than that of the most positive

return. Moreover, it also helps to explain why bubbles form gradually while bust

suddenly.

4.3.3 Regime Evolution

Within the multiple-phase dynamic system, price can either stay in the same

regime or escape from one regime to another. As the price dynamics is deter-

ministic, it is possible to derive both conditions and probability statements of

within-regime dynamics and regime switching, which helps one to understand the

price moving patterns in the next section.

Within-Regime Dynamics

Proposition 1 If pt falls into the regime [�pj�1; �pj) uniformly and #t < 1, the

price in the next period stays in the same regime (f(pt) 2 [�pj�1; �pj)) with a prob-
ability of (bpj � bpj�1) = (�pj � �pj�1), where bpj�1 2 [�pj�1; �pj) and bpj 2 [�pj�1; �pj) are
solutions to f(pt) = �pj�1 and f(pt) = �pj, respectively.

The dynamics within the same regime re�ects a relatively stable market envi-

ronment, where some investors, in our example, chartists, maintain their original

beliefs for support and resistance price levels and therefore �p�. Within regime

j with pt 2 [�pj�1; �pj), the function f(pt) is monotonically increasing with pt if

#t < 1 (su¢ cient but not necessary condition). Solving for f(pt) = �pj�1 and

f(pt) = �pj yields two boundary solutions bpj�1 and bpj = pj, which enclose the price
domain whose one-step mapping will remain in the same regime j. As long as pt 2
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[bpj�1; bpj), the price in the next period will sustain in the regime j and chartists
will carry the psychological trading regime and the estimation of the short-term

fundamental value �p� from period t to t + 1. Such within-regime dynamics leads

to relative moderate price movements, especially when the width of the regime is

small. In order for the price to evolve in the same regime for n consecutive periods,

the conditions f i(pt) 2 [bpj�1; bpj) must be satis�ed for i = 1; 2; :::n. Such scenario
is more likely to happen when the market is relatively tranquil and chartists hold

the same psychological trading regime in response to relative mild price changes.

If pt = p�j , the within-regime dynamics will perpetuate. Other than that, the value

of n cannot be in�nitely large. For any pt 2 [bpj�1; bpj)\ZR;j, it is always true that
f i+1(pt) > f i(pt) for i = 1; 2; :::n. As fn(pt) is monotonically increasing with n,

the iterated dynamics will eventually lead the price to break through the upper

bound bpj�1 of the self-sustaining regime as n increases, rending the price to escape
regime j. The same conclusion is obtained if pt 2 [bpj�1; bpj) \ ZD;j.
Regime Switching

The fast growing �nancial market, is subject to various innovations, reversible

or irreversible, that cannot be encompassed by the self-sustaining within-regime

dynamics. To better understand the market, it is important to address not only

the within-regime dynamics but also the regime switching. If the price escapes

regime j, it must switch to another regime in the price domain. From Proposition

1, it is easy to derive that the probability for the price to escape regime j is

1 � (bpj � bpj�1) = (�pj � �pj�1). If pt 2 [�pj�1; bpj�1) (pt 2 [bpj; �pj)), the price in the
next period pt+1 will switch down (up) to another lower (higher) regime. Under

the nonlinear dynamics, the price could switch not only to its nearby regimes but

every possible regime if the dynamic system is well de�ned. The price in regime j

can switch to regime k, where the maximum or minimum value of k is determined

by the value of parameters as well as the current price level. Assuming the price

dynamics leads the price to switch from regime j to regime k, the probability of
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falling into di¤erent regimes can be summarized in the following proposition.

Proposition 2 Let bpk�1 2 [�pk�1; �pk) and bpk 2 [�pk�1; �pk) be solutions to f(pt) =
�pk�1 and f(pt) = �pk. If pt falls into the regime [�pj�1; �pj) uniformly and #t < 1,

the following statements are true:

(i) for pt 2 [�pj�1; bpj�1), the price in the next period pt+1 switches downward to
the regime k < j, that is f(pt) 2 [�pk�1; �pk), with a probability of

bpk �max ��pj�1; bpk�1�
�pj � �pj�1

;

(ii) for pt 2 [bpj; �pj), the price in the next period pt+1 switches upward to the
regime k > j, with a probability of

min(�pj; bpk)� bpk�1
�pj � �pj�1

.

When pt 2 [�pj�1; bpj�1) (pt 2 [bpj; �pj)), the selling (buying) is so strong that it
drives down (up) the price so much so that the price breaks through the lower

(upper) bound of regime j. As the price trajectory escapes regime j, new support

and resistance price levels are established, and chartists� psychological trading

regime shifts accordingly. If the mechanism is designed in such a way that the

price can only switch to the nearby regime, then the probability for the price

to switch from j to k = j � 1 (k = j + 1) is
bpk � �pj�1
�pj � �pj�1

(
�pj � bpk�1
�pj � �pj�1

). If the

price cannot only switch to its nearby regime but also to regimes far apart, the

situation becomes relatively complicated. The probability is derived in two steps.

First, if regime k is the lowest (highest) regime that the one-step dynamics could

reach, then the probability for the price to switch from regime j to k is
bpk � �pj�1
�pj � �pj�1

(
�pj � bpk�1
�pj � �pj�1

), where bpk 2 [�pk�1; �pk) and bpk�1 2 [�pk�1; �pk) are solutions to f(pt) = �pk
and f(pt) = �pk�1. Second, if regime k is not the lowest (highest) regime that the

one-step dynamics could reach, given that f(pt) is a monotonic increasing function

of pt for pt 2 [�pj�1; �pj), the one step dynamics governed by f(pt) can be at any
points in the regime k. Therefore, the probability for the price to switch from

regime j up or down to k equals to
bpk � bpk�1
�pj � �pj�1

. Note that �pj > bpk�1 and bpk > �pj�1,

the results from the two steps can be summarized as the probability functions in

the Proposition 2.
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Transition Probability

Let the probability for the price to switch from regime i to regime j to be

Ti;j = Pr(pt+1 2 [�pj�1; �pj)jpt 2 [�pi�1; �pi)).

Both the highest and the lowest regimes that the current price dynamics can reach

depend on the current price level as well as the value of parameters. There are

in�nite combinations that could arise from this general set-up without specifying

the value of parameters. For simplicity, the dynamic system is restricted in such

a way that the price can only switch to its nearby regime so that Ti;j = 0 for

i 2 (j + 1;+1)[ (�1; j � 1). Under the assumption that pt falls into the regime
[�pj�1; �pj) uniformly and #t < 1, following from Propositions 1 and 2, the transi-

tion probability following from the one-step price dynamics can be summarized as

below:26666666666664

bp1�bp0
�p1��p0

�p1�bp1
�p1��p0 0 0 � � � 0

bp1��p1
�p2��p1

bp2�bp1
�p2��p1

�p2�bp2
�p2��p1 0 � � � 0

...
...

. . .
...

...
...

0 0
... bpj�bpj�1

�pj��pj�1
...

...
...

...
...

...
. . .

0 0 � � � � � � bpn�bpn�1
�pn��pn�1

37777777777775
.

Speci�cally, for a price in regime j, the probability of staying in the same regime

is Tj;j =
bpj�bpj�1
�pj��pj�1 , the probability of switching to regime j+1 is Tj;j+1 =

�pj�bpj
�pj��pj�1 and

the probability of switching to regime j � 1 is Tj;j�1 = bpj�1��pj�1
�pj��pj�1 . Note that these

transition probabilities are essentially a dynamic function of pt, their value vary

with the regime j that pt falls into and the complex dynamic system that governs

values of bpj and bpj�1.
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4.3.4 Price Dynamic Patterns

The previous section analyzes how the one-step dynamics leads to the regime

evolution. In this section, we focus on the the dynamic patterns of price movements

over multiple periods. We analyze the two-step dynamics. This result can be easily

extended to multiple-step dynamics by iterations. To study the price declining

patterns during the �nancial crisis, we focus on how the price drops in the bull

market. Similarly, the alternative scenario of how the price bounces up in the bear

market can also be analyzed. For simplicity, we assume that dynamic system is

designed in such a way that the price can only switch to its nearby regime. The

scenario starts with pt falling in the declining zone of regime j, such that pt 2
[�pj�1; p

�
j). Let epj�1 2 [�pj�1; p�j) be the solution to f(pt) = p�j�1, where p�j�1 is the

equilibrium price in regime j � 1.

Proposition 3 In the bull market, under the condition that #t < 1, we have

(i) f(pt) 2 [�pj�2; p�j�1) � ZD;j�1 if pt 2 [�pj�1; epj�1);
(ii) f(pt) 2 [�pj�1; p�j) � ZD;j if pt 2 [bpj�1; p�j); and
(iii) f(pt) 2 [p�j�1; �pj�1) � ZR;j�1 if pt 2 [epj�1; bpj�1).
As illustrated in 4-2, if pt 2 [�pj�1; epj�1), the price will switch downwards to the

declining zone of a lower regime in t+1 so that pt+1 2 [�pj�2; p�j�1). The location of
pt+1 in regime j � 1 leads to further price decline in period t+ 2. The magnitude
of the price decline cumulated over the two periods is the largest among the three

scenarios analyzed. If the process continues for n consecutive periods so that

fk(pt) 2 [�pj�k; epj�k) for every value of k = 1; :::; n, the magnitude of cumulative
decline can be quite dramatic. We therefore refer to the regime [�pj�1; epj�1) as the
�sudden declining zone�.

If pt 2 [bpj�1; p�j), the price will drop and remain in the declining zone of the
same regime so that pt+1 2 [bpj�1; p�j), which triggers further price decline in period
t+2 (see Fig.4-3). If such process repeats for n period such that fn(pt) 2 [bpj�1; p�j),
there will be a succession of moderate price decline. We refer to the regime
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[bpj�1; p�j) as �smooth declining zone�. Note that n cannot be in�nitely large. As
the price continue to decline, it will eventually drop below bpj�1 and escape the
smooth declining zone. Therefore such smooth decline is not sustainable.

If pt 2 [epj�1; bpj�1), the price in period t+ 1, pt+1, will fall into the rising zone
of a lower regime j � 1, which brings the price up in the subsequent period (see
Fig.4-4). If such process repeats itself, we will observe a series of disturbing ups

and downs. We therefore refer to the regime [epj�1; bpj�1) as �disturbing declining
zone�. Under certain circumstances, the price will �uctuate up and down with a

downward trend, which characterized the period of �nancial distress that precede

the disturbing crisis.

Following the results in Proposition 3, if the price dynamics frequently falls

into smooth and disturbing declining zones in a series of regime, the price tends

to decline smoothly. If the price falls into the �sudden declining zone�frequently,

the price shall fall dramatically in a short time. Finally, if the price �rst switches

between smooth and disturbing declining zones, and then step into the �sudden

declining zone�, the price would �uctuate disturbingly with a downward trend at

the beginning and then falls precipitately afterwards.

4.4 Numerical Experiments

The previous section discusses general theoretical implications that apply for any

parameter speci�cations. In this section, we �rst specify the function of #t and

�p�;t to complete the price dynamics. We then specify parameters and conduct

numerical simulation.

Speed of Convergence #t

Let the function of convergence speed be given by:

#t = f(�p�;t; pt) := (pt � �1�p�;t)d(�2�p�;t � pt)d,
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where d < 0, �1�p�;t = min(pt), and �2�p�;t = max(pt). This is essentially a

generalized version of the chance function in Day and Huang (1990). #t is de-

creasing (increasing) with the price when pt 2 ((�1 + �2) �p�;t=2; �2�p�;t) (pt 2
(�1�p�;t; (�1 + �2) �p�;t=2)). If �2 + �1 = 1, such function indicates that the more

the price deviates from its fundamental value �p�;t, the more quickly it is going

to reverse to its value. If �1 + �2 > 1, when the price is below its fundamental

value the convergence speed #t always decreases with pt; when the price is above

its fundamental value, it �rst decreases with pt if pt 2 (�p�;t; (�1 + �2) �p�;t=2) and
then start to increase with pt as the price exceeds the threshold (�1 + �2) �p�;t=2.

Similarly, if �1 + �2 < 1, when the price is above its fundamental, the conver-

gence speed always increases with the price pt; and when the price is below its

fundamental, it decreases with pt if pt 2 ((�1 + �2) �p�;t=2; �p�;t) and decreases with
pt if the price falls below (�1 + �2) �p�;t=2. It means that investors believe that, if

the price does not deviate much from the fundamental value, it is very likely to

reverse towards fundamental in the very short-term. However, if price breaks the

point (�1 + �2) �p�;t=2, it is more likely for the price to deviate than to reverse to

the fundamental value. Such de�nition helps to address the asymmetric booms

and burst. If �1 + �2 > 1 (�1 + �2 < 1), given the same magnitude of deviation

jpt � �p�;tj, the convergence speed is greater (smaller) when the price is above its
value than when the price is below its value. Given that price declines faster than

it rebounds, we opt for the identi�cation of �1+ �2 > 1, which is in line with Day

and Huang (1990).

Regime Speci�cation

We assume that the width of the regime to be constant such that �pj� �pj�1 � C
and that �p0 = 0. Under these assumptions, Eq.(4.1) can be simpli�ed to:

�p�;t = (bpt=Cc+ dpt=Ce) � C=2 if pt 2 [�pj�1; �pj), j = 1; 2:::; n.

In such a set up, the price deviation from �p�;t cannot exceed the limit C=2. Alter-

native speci�cation of regime and its impact on our result will be discussed in the
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next section.

4.4.1 Basic Simulation

Once #t and �p�;t are de�ned, the price dynamics in Eq.(4.4) is determined. It

is a one-dimensional deterministic mapping. We �rst consider a stable economy

with zero-growth, which results in a constant fundamental value. Let the standard

parameter set be the following:

�pa;t � �p� = 50, �p0 = 55 � 1:2�10, d = �0:3, �1 = 0, �2 = 2:4,  = 0:5,

C = 10:02, � = 4:54.

Given an initial price p0 = 81:6, we simulate a price trajectory in Fig. 4-5.

There are several points that worth our attention. The price series experience

occasional booms and bursts. Moreover, the price series exhibits technical trading

patterns such as head-and-shoulders, double top, double bottom, V top (see Fig.

4-6)5.

4.4.2 Three Types of Financial Crises

Much literature has devoted to model the crisis (Day and Huang 1990; Rosser

2000; Chiarella et al. 2003; Gallegati et al. 2010). However only few are able to

present a clear mechanism of the crisis, either due to the inclusion of a random

process or the complexity of the model. The design of this simple deterministic

model aim to �ll this gap and shed light on why crisis di¤ers from each other. We

�rst demonstrate the crises of di¤erent patterns and then plot their corresponding

phase diagram to illustrate the underlying dynamic mechanism.

4As the model is essentially chaotic, the simulate price path are very sensitive to the values
of parameters as well as the initial price. The selection of these parameters is based on trial and
error. Aside from this standard parameter set, we also use di¤erent parameter values to simulate
di¤erent price series (as long as these series do not diverge) and �nd that the results discussed
below are generally robust.

5See, for example, Bulkowski (2000) and Friesen, Weller et al. (2009) for the de�nition of
head-and-shoulders pattern.
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Sudden Crisis

Let the initial price be p0 = 71:6 while keeping the other parameters the same

as in the standard set. The sudden crisis exhibits itself between t = 356 (peak)

to t = 365 (bottom), which is shown in the left panel of Fig. 4-7. Within 10

periods, the price drops from 80:6 to 14:7, losing more than 80% of its value. The

right panel of Fig. 4-7 demonstrate the underlying mechanism of such dramatic

decline. As observed, the price dynamics consecutively ends up in the declining

zone of a series of regimes during the crisis. Moreover, at the beginning of the

crisis (between t = 356 to t = 361), the price continuously falls into the sudden

declining zone of a succession of regimes that drift lower in every period, which

push the price down to precipitately. Such downward shift from one regime to

another regime lower leads to a large price decline in every single period, which

results in a dramatic accumulative decrement over a short time.

Smooth Crisis

Let the initial price be p0 = 71:6 while keeping the other parameters the same

as in the standard set. The smooth crisis is found between t = 912 to t = 962 (Fig.

4-8). During this period, the price declines from 95:5 to 5:6, shrinking by more than

90%. The overall price decline is dramatic, but the single-period drop is relatively

moderate compared to that in the sudden crisis, and is frequently followed by

price reversal. The phase diagram on the right panel of Fig. 4-8 shows that,

the price falls frequently in the �smooth declining zone�and �disturbing declining

zone�, with occasional and inconsecutive visit to the �sudden declining zone�. Such

dynamic leads to ups and downs, with occasional steep decline. As draw-downs

tend to dominate draw-ups over time, the price drifts lower after several periods�

dynamics. When the price goes down to an extent that it breaks through the

�disturbing declining zone�and enters the �sudden declining zone�, the dynamic

system shifts to a lower regime and triggers another round of ups and downs. As

such process repeats itself, the price �uctuates with a persistent downward trend,

which eventually forms smooth crisis over a relatively long time.
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Disturbing Crisis

Let the initial price be p0 = 81:6 while keeping the other parameters the same

as in the standard set. The episode of disturbing crisis is captured from t = 901

to t = 941 (Fig. 4-9). The right panel of Fig. 4-9 plots the step-wise price

dynamics for the corresponding periods. It shows that, initially, the price switches

between the �smooth declining zone� and �disturbing declining zone�within the

same regime quite disturbingly. Such dynamics leads to disturbing downward

�uctuations, which characterize the period of �nancial distress that precede the

disturbing crisis. As the price moves up and down with a downward trend, it

eventually falls into the �sudden declining zone�and shifts to a lower regime. As

the subsequent price movement happens to fall into the �sudden declining zone�

continuously with occasional visit of �smooth declining zone�, the price declines

successively. The dramatic price drop within a short-time characterizes the crash

of the disturbing crisis. The duration of such type of crisis is shorter than the

smooth crisis but longer than the sudden crisis. It is essentially a combination of

smooth and sudden crisis.

4.5 Evaluating Model Fitness

The simulated price series visually match with phenomena observed from real price

movements. Do they matches with the real data quantitatively and statistically?

To �nd out, we examine their �tness to various stylized facts that are common

across �nancial markets. Various behavioral asset pricing models have been pro-

posed to match with stylized facts, in particular the characteristics of fat tails and

volatility clustering in returns (see for example, Lux and Marchesi 1999; Lux and

Marchesi 2000; Challet et al. 2001; He and Li 2007; Kirchler and Huber 2007;

Shimokawa et al. 2007; He and Li 2008; Lux 2009). The degree of �tness and

the range of match (how many stylized facts can the model duplicate) are ways of

measuring the model performance. In addition to matching the stylized facts such
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as fat tails in return, unit root process in price and volatility clustering, which are

frequently discussed by the HAM, we also test the model�s ability to duplicate the

property of long-range dependence, which can only be generated by a few models

such as the HAM in Chapter 2. Without lost of generality, we study the statistical

properties of price series simulated with p0 = 81:6 and parameters speci�ed in the

standard set. It is worth pointing out that changing some of the parameters will

increase the model�s �tness in matching certain type of stylized fact. However,

in order to show that the model is able to match a wide range of stylized fact

simultaneously, we stick to the same price series simulated in this parameter set.

The trial tests show that simulations using di¤erent parameter sets are capable

of duplicating all these stylized facts simultaneously. This part of tests are not

reported due to space concern but sample results are available upon request.

4.5.1 Fat Tails

The statistical analysis of �nancial time series suggests that return is not normally

distributed but exhibits fat tails, with the extreme (positive and negative) returns

happen more frequently than what is predicted by normal distribution. Such

statistical properties are characterized by a kurtosis that is greater than 3. Table

4.2 presents the summary statistics of the simulated return series. The return

series in the simulation has a kurtosis of 6.

Table 4.2: Summary statistics.
Series Skewness Kurtosis Min Max Mean S.d N
rt :63 6:08 �:56 :77 0 :17 1000

4.5.2 Unit Root

The time series of price is universally found to be non-stationary (or has a unit

root) while that of (compound) return, de�ned as the log di¤erence of the price, is

shown to be stationary. Table 4.3 reports the Augmented Dicky-Fuller (ADF) test
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for the null hypothesis of no unit root. These results are in line with the stylized

fact of random price and stationary return. ADF tests of the simulated price

cannot reject the hypothesis of no unit root in pt and ln(pt) even at a signi�cance

level of 10%. The test on simulated returns rejects the hypothesis of a unit root

process in rt at a statistical signi�cance level of 1%.

Table 4.3: Unit root test.
pt ln(pt) rt

ADF �1:54 �:56 �13:73
Note: ADF critical values

1% 5% 10%
�3:43 �2:86 �2:57

4.5.3 Volatility Clustering

Empirical evidence suggests that, even though there is little evidence of autocor-

relation of raw return, volatility clustering suggests that the autocorrelation of

absolute returns and squared returns decay slowly, with periods of quiescence and

turbulence clustering together. The autocorrelation functions (ACFs) of rt, jrtj
and r2t in Fig. 4-10 con�rm such characteristics - trivial ACF in rt and relatively

persistent ACF in jrtj and r2t .

4.5.4 Long Range Dependence

Return rt is said to exhibit long range dependence or possess long memory process

if its ACF fades away as a power of the lag:

corr(rt; rt+q) v L(q)=q1�2
~d, 0 < ~d < 1=2, as q !1

where L(q) is any slowly varying function at in�nity, i.e. veri�es 8a > 0, L(aq)=L(q)!
1 as the number of lags q ! 1. Long-range dependent time series exhibits an
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unusually high degree of persistence even at the lowest frequencies. Long-range

dependence data process the feature of volatility clustering but not necessary vice

versa.

We test the hypothesis of no long-range dependence in the simulated time series

of price using Lo modi�ed range over standard deviation or R/S statistic (also

called re-scaled range), which is robust to short-range dependence (Lo, 1991)6.

The Lo modi�ed R/S statistic over n observations, denoted by Qn, is de�ned by:

Qn �
1

�̂n (q)

"
max
1�k�n

j=kX
j=1

(rj � �rn)� min
1�k�n

j=kX
j=1

(rj � �rn)
#
, (4.7)

where �̂n (q) is the usual sample variance:

�̂n (q) =
1

n

j=nX
j=1

(rj � �rn) +
2

n

j=qX
j=1

�
1� j

q + 1

� i=nX
i=j+1

(ri � �rn) (ri�j � �rn) .

The �rst and second terms in the bracket of Eq.(4.7) are the maximum of the

partial sums of the �rst k deviations of rj from the sample mean �rn and the

minimum of the same sequence of partial sums, respectively. The tests reject the

null hypothesis of no long-range dependence in simulated price at 1% signi�cance

level.

6Any incompatibility between the data and the predicted behavior of the R/S statistic under
the null hypothesis of no long-range dependence may merely be a symptom of short-term memory,
if conventional R/S is applied. That is, conventional R/S statistic is sensitive to short-range
dependence. Lo modi�ed R/S statistic accounts for the e¤ects of short-range dependence and is
considerably more accurate.
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Table 4.4: Long-range dependence
Lo modi�ed R/S Lag

0:52 1
Critical values for H0: r is not long-range dependent

90% 95% 99%
[0:86; 1:75] [0:81; 1:86] [0:72; 2:10]

4.6 Policy Implications

The model is capable of accommodating various types of �nancial crises and styl-

ized facts. It suggests the model has captured some, if not all, of the essential

factors of �nancial markets. From the purely deterministic nonlinear model that

excludes random process of any forms, we �nd that the crisis can arise endoge-

nously through the internal dynamics, even without any external shocks. The

external shocks, which serve as triggering or amplifying factors, can a¤ect the du-

ration and depth of the crisis and therefore the crisis patterns. This is because

the crisis patterns are path-dependent, in the sense that the price movement are

sensitive to previous price trajectory, external shocks can drive the crisis away

from its original path and therefore change the crisis patterns.

The fact that the crisis can arise endogenously also implies that �nancial reg-

ulation and supervision can reshape crisis pattern but cannot stop the crisis from

happening. One might argue that the some policies are able to in�uence investors�

beliefs and therefore restrain the irrational exuberance that subsequently leads to

�nancial crash. This model suggests that even though regulators can shape in-

vestors�beliefs for the time being, they cannot insulate the �nancial market from

crises unless they can restrict the investors from shifting their beliefs to a series of

downward psychological regimes. Otherwise, when the price is highly overvalued,

the dynamics accompanied with regime switching will eventually lead to crisis of

various. To further support the argument, we illustrate how the price movements

react to �circuit breaker�or �collar�, which stops the equity from trading for a period

of time if the price drops (rises) more than certain percentage. As a robustness
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check, we also check whether the results are robust after accounting for the busi-

ness cycle, which a¤ects the real economic growth and therefore fundamentalists�

expectation for the fundamental value.

4.6.1 Circuit Breaker

In China Shanghai Stock Exchange, the equity is banned from trading if its one-

day return reach �10% limit. In the New York Stock Exchange, for example, if the
Dow Jones Industrial Average falls by 10%, the market might halt trading for one

hour. There are other circuit breakers for 20% and 30% falls. The circuit breaker

enables the market makers and traders to evaluate their trading strategies and

reconsider their transactions by giving them more time. It is designed to reduce

market volatility and massive panic sell-o¤s, which often results in less trading

liquidity and market e¢ ciency.

Take into account of the circuit breaker, chartists update their price trading

regimes proportionally such that their maximum expectation for the price returns

would stay within the limits7. Speci�cally, chartists assume that �pj � ��pj�1 for

j = 1; 2:::; n, where � > 1. Under such set up, chartists�psychological return limit

is consistent. Given

P = [nj=1Pj = [�p0; ��p0] [ [��p0; �2�p0] [ � � � [ [�n�1�p0; �n�p0];

pt 2 [�pj�1; �pj) is identical to pt2
�
�j�1�p0; �

j �p0
�
. Once pt is observed, the regime

that the price falls into can be identi�ed by j � 1 = bT c and j = dT e, where
T = log (pt=�p0) = log �. In this case, Eq.(4.1) can be simpli�ed to:

�p�;t = �p0

�
�bT c + �dT e

�
=2.

7For a survey on how HAMs can be used to test the e¤ectiveness of regulatory policies, see
Westerho¤ (2008).
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Under proportional regimes, if the market consists of chartists only, the return is

given by the following:

� � (pt � �p�;t)
pt

>
� �
�
�j�1�p0 � �p0

�
�j�1 + �j

�
=2
�

�j�1�p0

= � (1� �) =2

The minimum return, as expected by chartists as if there are no other types of

traders in the market, is �� (�� 1) =2 (< 0). Similarly, the expected maximum

return is � (�� 1) =2� (> 0). Note that j� (1� �) =2j > j� (�� 1) =2�j, the pro-
portional regimes imply that chartists expect the return to be asymmetric in the

sense that the scale of the most negative return is greater than that of the most

positive return.

Let � = 1:2 and the parameter set be the following: �pa;t � �p� = 50, �p0 =

55 � 1:2�10, d = �0:3, �1 = 0, �2 = 2:4,  = 0:5, � = 4:5. Given an initial price
p0 = 61:6, the price trajectory and its phase diagram could be shown in Fig. 4-11.

As expected, the price experiences occasional booms and busts of various forms,

even though chartists�belief are reshu ed by the imposition of circuit breaker.

Moreover, the price series continue to exhibit technical trading patterns such as

head-and-shoulders, double top, double bottom, V top (see Fig. 4-12).

4.6.2 Business Cycles

So far we have assumed the economy to be steady, with zero growth, so that the

long-term fundamental value of the risky asset is constant. If instead of being

constant over time, the long term fundamental value �p�;t follows a deterministic
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cycle:

�p�;t = a+ b sin (ct)

where a is the long term average fundamental value, b and c are parameters that

guarantee the shape of the business cycle. The larger b is, the greater the swing.

The greater c is, the longer the business cycle lasts.

We check the robustness of previous �nding that �nancial crisis are endogenous

by evaluating the impact of the business cycle. Under the proportional regime, let

the parameters be the following: �p0 = 55, � = 1:2,  = 1, d = �0:3, �1 = 0:001,
�2 = 2:4, � = 2:25, a = 50, b = 20, c = 0:01 and p0 = 61:6, we obtain the price

trajectory (the left panel of Fig. 4-13). There are three points that worth our

attention. First, the simulated price is much more volatile than the fundamental

value, suggesting the existence of excessive volatility. Second, the simulated price

movements trace the business cycle closely - price is relatively low when the real

economy is in recession (e.g. �p�;t is at the trough of the business cycle) and high

when the real economy is booming. Third, the price appears to crash ahead of the

turn-around of business cycle. Under the constant regime, let C = 10:2 and keep

all the other parameters the same with above, we obtain a price trajectory that

exhibits similar features (right panel of Fig. 4-13).

4.7 Conclusion

This chapter develops a simple heterogeneous agent model that consists of funda-

mentalists and chartists. Fundamentalists forecast long-term fundamental value

based on the economic growth, while chartists extrapolate their regime-dependent

beliefs from the historical prices as well as their trading experience. As a result

of the regime-dependent belief, the deterministic model can accommodate various

types of �nancial crises within the same market-maker framework. Falling into

di¤erent parts of the same regime will result in di¤erent dynamics patterns. If

the price falls into the �sudden declining zone�consecutively (or with occasional
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visits to the �smooth declining zone�only), we expect to observe the sudden crisis,

characterized by dramatic decline over a short period of time. If the price falls

into the �smooth declining zone�and �disturbing declining zone�in a succession of

regimes, drifting lower and lower each period, the price trajectory will be relative

smooth and exhibit a persistent declining trend. Such movements characterize

the smooth crisis. Finally, if the price falls into the �smooth declining zone�and

�disturbing declining zone�disturbingly at the beginning, and then switches to the

track consists of a succession of �sudden declining zone�, we will observe the price

trajectory to move up and down disturbingly at �rst and then fall precipitately.

Such price movements is a notable manifestation of the disturbing crisis.

The fact that various types of crises can arise even without the presence of any

external shocks suggests that, �nancial crises has their internal origins. It indi-

cates that any �nancial regulation and supervision designed to curb the �nancial

crisis will eventually be captured. Although policy makers could still restrain the

irrational exuberance by imposing trading constraint, for example circuit breaker,

they cannot stop investors from updating their beliefs according to their psycho-

logical trading regime. As long as the price dynamics can switch from one regime

to another, investors�adaptive behavior will fail policy makers�attempt to rule

out the �nancial crisis. Such results are robust even after accounting for the busi-

ness cycle that a¤ects fundamentalists�expectation of the long-term fundamental

values.

The regime-dependent belief, which takes into account of gradual change as

well as sudden movements in the price series, improves the model performance

both qualitatively and statistically, compared to those that do not account for

such property, such as that in Day and Huang (1990). Compared with the model

in Chapter 2, this model is much simpler but not less powerful. Like the model

in Chapter 2, the model in this chapter is capable of generating di¤erent types of

�nancial crises and of reproducing a wide range of stylized facts that are common

across �nancial markets simultaneously, including the property of long-range de-
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pendence that are considered to be the most di¢ cult stylized fact to be duplicated.

Last but not least, it is also able to replicate price trends and patterns that are

frequently observed in technical analysis, such as bubbles, crashes and head-and-

shoulder. Perhaps what makes this simple model outperforms that in Chapter 2 is

its capability to explain why crises arise in di¤erent patterns in a more solid way.

There are several caveats in this model. First, the model is purely deterministic.

It aims to improve the basic understanding of what drives prices but ignores the

process of incorporating new-arrival news/information into the price movements.

Second, despite our e¤ort to simulate price series with various sets of parameters,

it is impossible to cover every possible outcomes of the chaotic model, which is

sensitive to the initial value and the parameter sets. Therefore, the analysis based

on simulation results is only partially representative. Third, to emphasize the role

of regime-dependent beliefs, we have �xed the market weight of fundamentalists

and chartists, which may be not the case in real life. It would be interesting to

proxy their market weights with real data, say from estimating a Markov switching

heterogeneous model.
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Figure 4-1: The impact of fundamentalists in bull market. The shaded thin
line plots the phase diagram for the price dynamics when the market consists
of chartists only. The solid bold line plots the phase diagram when there are both
fundamentalists and chartists. In the bull market, the presence of fundamental-
ists shift the equilibrium to the right. It enlarges the declining zone ZD;j and
compresses the rising zone ZR;j.

Figure 4-2: Sudden declining zone.
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Figure 4-3: Smooth declining zone.

Figure 4-4: Disturbing declining zone.
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Figure 4-5: Price trajectory under constant regime switching.
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Figure 4-6: Technical price patterns.
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Figure 4-7: Sudden crisis.
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Figure 4-8: Smooth crisis.
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Figure 4-9: Disturbing crisis.
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Figure 4-11: Price trajectory and phase diagram under proportional regimes.
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Figure 4-12: Technical price patterns under proportional regimes.
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Chapter 5

Conclusion

Historically, the three types of �nancial crises, namely sudden crisis, smooth crisis

and disturbing crisis, arise within the same market over time and across markets

at the same time. Most often, �nancial crises happen without any obvious external

shocks, at least not comparable to the depth of the crisis. It suggests that �nancial

crises have some sort of internal origins embedded in the complex market dynamic

system. The thesis supports such argument by showing that deterministic dynamic

models, that exclude random process of any forms, are able to generate di¤erent

types of �nancial crises simultaneously within the same model. Moreover, these

models can duplicate a wide range of statistical and qualitative features of the

real �nancial time series, which, in some aspects, outperform models that only

account for well-de�ned stochastic process. It suggests that these models have

done something right in capturing essential factors underlying �nancial crises.

The deterministic models developed in Chapter 2 and Chapter 4 are both able

to generate �nancial crises of various types. Moreover, they convey the same

dynamic mechanism for the gradual bubbles and sudden crashes. Bubbles form

gradually while crashes happen suddenly because, when the price is above its

value, fundamentalists always sell assets to bring the price towards its fundamen-

tal, which strengthen the downward price movement but attenuate the upward
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movements driven by the collective buying force of chartists. Both models can

successfully reproduce a wide range of stylized facts, namely, unit root process, fat

tails, volatility clustering, long-range dependence and leverage e¤ect.

The two models, however, have di¤erent implications for the �nancial crises.

The model in Chapter 2 ascribes the �nancial crisis to the interaction between

fundamentalists and chartists as well as regime-dependent belief. When the price

is over-valued so much so that the expected pro�t of fundamental trading strat-

egy signi�cantly dominates that of chartists, most investors would cluster to be

fundamentalists. The strong selling force by the large number of fundamentalists

pushes the price down dramatically, characterizing the sudden crash. In this case,

the herding behavior towards fundamental strategy leads to the sudden crisis. In

the disturbing crisis, however, the crisis starts with the battle between fundamen-

talists and chartists, which characterizes the period of �nancial distress. During

this period, investors switch disturbingly between the fundamentalists, who sell

to drag the highly over-valued price towards its long-term fundamental value, and

chartists, who can either buy or sell depending on their psychological trading

regime and the latest price. When the price is dragged down to such a low level

that chartists dominate the market and �nd it optimal to sell in large volumes con-

tinuously, the price crashes dramatically over a short period of time. Therefore,

both fundamentalists and chartists contribute to the disturbing crisis. Finally in

the case of smooth crisis, chartists are believed to hold most responsibility. When

the price is not so highly over-valued, most investors �nd it optimal to cluster to-

wards chartists�strategy. It is their continuous exploration of the price trend with

respect to their regime-dependent beliefs that lead to the moderate price decline

over a long period of time.

The model in Chapter 4 relies solely on the regime-dependent belief to ex-

plain di¤erent types of �nancial crises. The price movements are path-dependent,

within and across the psychological trading regimes. Falling into di¤erent part

of a psychological trading regime will result in totally di¤erent price trajectory.
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When the price falls into the �sudden declining zone�, it will fall with such a large

magnitude that the subsequent price falls into another sudden declining zone of

a lower regime. If such process continues, the price will drop dramatically within

only several periods, characterizing the sudden crisis. When the price falls into a

�disturbing declining zone�, it will drop with a moderate magnitude and fall into

the rising zone of a lower regime, which drives the price up subsequently. If such

process continues, the price will move up and down disturbingly, characterizing the

period of �nancial distress. When the price �nally breaks through the �disturbing

declining zone�and enters into a succession of sudden declining zone, the price will

fall suddenly, which completes the second episode of the disturbing crisis. On the

other hand, when the price falls into a �smooth declining zone�, it will decline mod-

erately and stay within the same regime. If such process repeats itself frequently

in a series of continuous regimes, the price will decline moderately and persistently

over a long period of time, characterizing the smooth crisis.

5.1 Caveats and Extensions

In this thesis, we focus on the internal dynamics that is believed to be crucial for

�nancial crises by building two purely deterministic HAMs. These models though

useful in duplicating various stylized facts that are commonly observed in �nancial

time series, they have their own limitations.

First, they may not well incorporate the newly-arrived news into the price

movements. If the market is e¢ cient in the sense that the price re�ects all relevant

information, such problem is trivial. However, given that the market is often

perceived to be ine¢ cient, it is also important to account for the latest information,

especially those that take time to be incorporated into the price by including some

random processes.

Second, due to the chaotic properties of these models, the price trajectories are

very sensitive to the initial price, it is therefore impossible to simulate every pos-
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sible outcomes. The large number of parameters further complicate this problem.

The analysis that based on simulation results is only partially representative. How-

ever, it does serve as a good starting point to study the complexity of the �nancial

market. Including a random process and conducting Monte-carlo simulation is

unlikely to solve this problem, because the price trajectories are not just a¤ected

by the random process only. It may be useful to conduct bifurcation analysis to

exam the general features of the price dynamics in response to the initial price as

well as di¤erent parameter values.

Third, the assumptions that market weights of fundamentalists and chartists

are either determined by the expected pro�t (Chapter 2) or �xed (Chapter 4) are

not quite realistic. It would be interesting to calibrate time-varying market weights

with real �nancial time series, say by estimating a Markov switching heterogeneous

model.

Fourth, the de�nition of regime-dependent belief can be more �exible. Cur-

rently, the psychological trading regimes are mutual exclusive. When the psy-

chology underlying chartists perception for the market shifts, new support and

resistance price levels will be established. However, the regime enclosed by the

new support and resistance price levels tend to overlap with the previous regime,

to some extent. It may be useful to account for such overlaps when the regime

shifts.

Finally, the psychological trading regimes are pre-speci�ed. They either con-

stant or proportional, the patterns of which are so well-de�ned that they may fail

to capture the inconsistent behavior in the dynamic trading environment. Allow-

ing these regimes to be de�ned by the technical methods, such as moving average

would be useful.

5.2 Future Research

Three main strands of this model can be further explored in the near future.
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First, we can polish the model and estimate it using various stock/bond/commodity

market indices. This could allow one to test the out-of-sample forecasting ability

of such type of model. If the out-of-sample forecasting power is promising, then we

can proceed to check whether such a model is informative in predicting crisis and

in identifying crisis patterns. Eventually, we can evaluate policies implemented

during the recent global credit crisis, such as short-sale constraint and price limit.

Ideally, as �nancial crises are endogenous, we will expect these policies to a¤ect

the timing and magnitude of the crisis, but not fundamentally, that is they will

not stop the crisis from happening.

Second, we would like to calibrate the psychological trading regimes, which

are found to be crucial in generating crises of di¤erent patterns. This could be

done in three steps. we will simplify the model and estimate it under Markov-

regime switching. Using the estimation results, we will specify the psychological

trading regimes by utilizing the transition matrix as well as the mean value. After

calibrating the model, we can proceed to explore short-term price movement and

identify the regimes that are relatively fragile to market crash. Finally, we can

test these results by comparing the �ndings to the real �nancial episodes.

Third, parameters embedded in the complex dynamic system can be estimated

using method of simulated moments (MSM) (Westerho¤, 2011), a structural esti-

mation technique that extends the generalized method of moments to estimate a

model without direct theoretical moment functions1.

1We thank Laura Guiying Wu for pointing out this aspect of future research.

112



Bibliography

[1] Alfarano, S., T. Lux, and F. Wagner, 2008. Time variation of higher moments

in a �nancial market with heterogeneous agents: An analytical approach,

Journal of Economic Dynamics and Control 32, 101-136.

[2] Alfarano, S., and M. Milakovic, 2009. Network structure and N-dependence

in agent-based herding models, Journal of Economic Dynamics and Control

33, 78-92.

[3] Amilon, H., 2008. Estimation of an adaptive stock market model with hetero-

geneous agents, Journal of Empirical Finance 15, 342-362.

[4] Ang, A., and G. Bekaert, 2002. International Asset Allocation With Regime

Shifts, Rev. Financ. Stud. 15, 1137-1187.

[5] Avramov, D. 2002. Stock return predictability and model uncertainty. Journal

of Financial Economics, 64(3): 423-458.

[6] Boswijk, H. P., C. H. Hommes, and S. Manzan, 2007. Behavioral heterogeneity

in stock prices, Journal of Economic Dynamics and Control 31, 1938-1970.

[7] Bouchaud, J.-P., J. D. Farmer, and F. Lillo, 2009. How Markets Slowly Digest

Changes in Supply and Demand(North-Holland, San Diego).

[8] Bouchaud, J.-P., A. Matacz, and M. Potters, 2001. Leverage E¤ect in Finan-

cial Markets: The Retarded Volatility Model, Physical Review Letters 87,

228701.

113



[9] Brock, W. A., and C. H. Hommes, 1997. A Rational Route to Randomness,

Econometrica 65, 1059-1095.

[10] Brock, W. A., and C. H. Hommes, 1998. Heterogeneous beliefs and routes

to chaos in a simple asset pricing model, Journal of Economic Dynamics and

Control 22, 1235-1274.

[11] Bulkowski, T. N., 2000. Encyclopedia of Chart Pattern(Wiley Trading, New

York).

[12] Campbell, J. Y., A. W. Lo, and C. A. MacKinlay, 1997. The econometrics of

�nancial markets (Princeton University Press).

[13] Carhart, M. M., 1997. On Persistence in Mutual Fund Performance, The

Journal of Finance 52, 57-82.

[14] Challet, D., M. Marsili, and Y.-C. Zhang, 2001. Stylized facts of �nancial mar-

kets and market crashes in Minority Games, Physica A: Statistical Mechanics

and its Applications 294, 514-524.

[15] Chang, S.-K., 2007. A simple asset pricing model with social interactions and

heterogeneous beliefs, Journal of Economic Dynamics and Control 31, 1300-

1325.

[16] Chen, S.-H., C.-L. Chang, and Y.-R. Du, 2008. Agent-Based Economic Models

and Econometrics, Econophysics Colloquium, Kiel.

[17] Chiarella, C., Dieci, R., He, X.-Z., 2009, Heterogeneity, Market Mechanisms,

and Asset Price Dynamics, in Hens T., and S.-H. Klaus, eds.: Handbook of

Financial Markets: Dynamics and Evolution. North-Holland, San Diego, pp.

277-344.

[18] Chiarella, C., M. Gallegati, R. Leombruni, and A. Palestrini, 2003. Asset

Price Dynamics among Heterogeneous Interacting Agents, Computational

Economics 22, 213-223.

114



[19] Chiarella, C., and X.-Z. He, 2003. Dynamics of beliefs and learning under

aL-processes � the heterogeneous case, Journal of Economic Dynamics and

Control 27, 503-531.

[20] Cont, R., 2001. Empirical properties of asset returns: stylized facts and sta-

tistical issues, Quantitative Finance 1, 223 - 236.

[21] Day, R. H., 1994. Complex economic dynamics(MIT Press, Cambridge,

Mass.).

[22] Day, R. H., 1997. Complex dynamics, market mediation and stock price be-

haviour. North American Actuarial Journal 1: 6-21.

[23] Day, R. H., and W. Huang, 1990. Bulls, bears and market sheep, Journal of

Economic Behavior & Organization 14, 299-329.

[24] Dieci, R., I. Foroni, L. Gardini, and X.-Z. He, 2006. Market mood, adaptive

beliefs and asset price dynamics, Chaos, Solitons & Fractals 29, 520-534.

[25] Farmer, J. D., and S. Joshi, 2002. The price dynamics of common trading

strategies, Journal of Economic Behavior & Organization 49, 149-171.

[26] Frankel, J. A., and K. A. Froot, 1986. Understanding the U.S. Dollar in

the Eighties: The Expectations of Chartists and Fundamentalists, Economic

Record, 24-38.

[27] Frankel, D. M., 2008. Adaptive Expectations and Stock Market Crashes, In-

ternational Economic Review 49(2): 595-619.

[28] Franke, R. and F. Westerho¤, 2011. Structural stochastic volatility in as-

set pricing dynamics: estimation and model contest. BERG Working Paper

No.78, University of Bamberg.

115



[29] Friesen, G. C., P. A. Weller, and L. M. Dunham, 2009. Price trends and pat-

terns in technical analysis: A theoretical and empirical examination, Journal

of Banking & Finance 33, 1089-1100.

[30] Gallegati, M., A. Palestrini, and J. B. Rosser, 2010. The period of Finan-

cial Distress in Speculative Markets: Interacting Heterogeneous Agents and

Financial Constraints, Macroeconomic Dynamics FirstView, 1-20.

[31] Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H.E., 2003. A theory of

power-law distributions in �nancial market �uctuations. Nature, 423, 267-270.

[32] Gennotte, G., and H. Leland, 1990. Market Liquidity, Hedging, and Crashes,

The American Economic Review 80, 999-1021.

[33] Guidolin, M., and A. Timmermann, 2007. Asset Allocation under Multivariate

Regime Switching, Journal of Economic Dynamics and Control 31, 3503-3544.

[34] Guidolin, M., and A. Timmermann, 2008. International Asset Allocation Un-

der Regime Switching, Skew, and Kurtosis Preferences, Review of Financial

Studies. 21, 889-935.

[35] Hart, M. L., D. Lamper, and N. F. Johnson, 2002. An investigation of crash

avoidance in a complex system, Physica A: Statistical Mechanics and its Ap-

plications 316, 649-661.

[36] He, X.-Z., and Y. Li, 2007. Power-law behaviour, heterogeneity, and trend

chasing, Journal of Economic Dynamics and Control 31, 3396-3426.

[37] He, X.-Z., and Y. Li, 2008. Heterogeneity, convergence, and autocorrelations,

Quantitative Finance 8, 59 - 79.

[38] He, X.-Z., and F. H. Westerho¤, 2005. Commodity markets, price limiters

and speculative price dynamics, Journal of Economic Dynamics and Control

29, 1577-1596.

116



[39] Hill, B. M., 1975. A Simple General Approach to Inference About the Tail of

a Distribution, The Annals of Statistics 3, 1163-1174.

[40] Hommes, C., 2001. Financial markets as nonlinear adaptive evolutionary sys-

tems, Quantitative Finance 1, 149 - 167.

[41] Hommes, C., 2006. Heterogeneous Agent Models in Economics and Finance,

Handbook of Computational Economics 2, 1109-1186.

[42] Hong, H., and J. C. Stein, 2003. Di¤erences of Opinion, Short-Sales Con-

straints, and Market Crashes, Rev. Financ. Stud. 16, 487-525.

[43] Jegadeesh, N., and S. Titman, 1993. Returns to Buying Winners and Selling

Losers: Implications for Stock Market E¢ ciency, The Journal of Finance 48,

65-91.

[44] Johansen, A., and D. Sornette, 2002. Large stock market price drawdowns are

outliers Journal of Risk 4, 69-110.

[45] Keswani, A., and D. Stolin, 2008. Which Money Is Smart? Mutual Fund Buys

and Sells of Individual and Institutional Investors, The Journal of Finance 63,

85-118.

[46] Kindleberger, C. P., and R. Z. Aliber, 2005. Manias, panics, and crashes : a

history of �nancial crises, 5th edition.(John Wiley & Sons, Hoboken, N.J.).

[47] Kirchler, M., and J. Huber, 2007. Fat tails and volatility clustering in ex-

perimental asset markets, Journal of Economic Dynamics and Control 31,

1844-1874.

[48] Kyrtsou, C., and M. Terraza, 2002. Stochastic chaos or ARCH e¤ects in stock

series?: A comparative study, International Review of Financial Analysis 11,

407-431.

117



[49] Kyrtsou, C., and C. Vorlow, 2009. Modelling non-linear comovements between

time series, Journal of Macroeconomics 31, 200-211.

[50] LeBaron, B., 2006. Agent-based Computational Finance, Handbook of Com-

putational Economics 2, 1187-1233.

[51] Levy, M., 2008. Stock market crashes as social phase transitions, Journal of

Economic Dynamics and Control 32, 137-155.

[52] Lo, A. W., 1991. Long-Term Memory in Stock Market Prices, Econometrica

59, 1279-1313.

[53] Lux, T., 1995. Herd Behaviour, Bubbles and Crashes, The Economic Journal

105, 881-896.

[54] Lux, T., 1998. The Socio-economic Dynamics of Speculative Markets: Inter-

acting Agents, Chaos, and the Fat Tails of Return Distributions, Journal of

Economic Behavior & Organization 33, 143-165.

[55] Lux, T., and M. Marchesi, 1999. Scaling and criticality in a stochastic multi-

agent model of a �nancial market, Nature 397, 498-500.

[56] Lux, T., and M. Marchesi, 2000. Volatility Clustering in Financial Markets:

A Microsimulation of Interacting Agents, International Journal of Theoretical

& Applied Finance 3, 675.

[57] Mandelbrot, B. B., 1997. Fractals and Scaling in Finance:Discontinuity, Con-

centration, Risk, (Berlin: Springer).

[58] Manzan, S., and F. H. Westerho¤, 2007. Heterogeneous expectations, ex-

change rate dynamics and predictability, Journal of Economic Behavior &

Organization 64, 111-128.

[59] Pagan, A., 1996. The econometrics of �nancial markets, Journal of Empirical

Finance 3, 15-102.

118



[60] Presidential Task Force on Market Mechanisms, 1988. Report of the Presi-

dential Task Force on Market Mechanisms, U.S. Government Printing O¢ ce,

Washington.

[61] Rosser, J. B. J., 2000. From Catastrophe to Chaos: A General Theory of

Economic Discontinuities, Boston, Kluwer Academic Publishers.

[62] Sapp, T., and A. Tiwari, 2004. Does Stock Return Momentum Explain the

"Smart Money" E¤ect?, The Journal of Finance 59, 2605-2622.

[63] Shimokawa, T., K. Suzuki, and T. Misawa, 2007. An agent-based approach to

�nancial stylized facts, Physica A: Statistical Mechanics and its Applications

379, 207-225.

[64] Sornette, D., 2004. Critical phenomena in natural sciences : chaos, fractals,

selforganization, and disorder : concepts and tools, 2nd edition.(Springer,

Berlin ; New York).

[65] Tramontana, F., F. Westerho¤, and L. Gardini, 2010. On the complicated

price dynamics of a simple one-dimensional discontinuous �nancial market

model with heterogeneous interacting traders, Journal of Economic Behavior

& Organization 74, 187-205.

[66] Veldkamp, L. L., 2005. Slow boom, sudden crash, Journal of Economic Theory

124, 230-257.

[67] Venier, G., 2007. A new Model for Stock Price Movements, MPRA Paper,

Online at http://mpra.ub.uni-muenchen.de/9146/ No. 9146.

[68] Watanabe, K., H. Takayasu, and M. Takayasu, 2007. A mathematical de�n-

ition of the �nancial bubbles and crashes, Physica A: Statistical Mechanics

and its Applications 383, 120-124.

119



[69] Westerho¤, F., 2003. Bubbles and Crashes: Optimism, Trend Extrapolation

and Panic, International Journal of Theoretical and Applied Finance 6, 829-

837.

[70] Westerho¤, F.,2003. Anchoring and Psychological Barriers in Foreign Ex-

change Markets. Journal of Behavioral Finance 4(2): 65 - 70.

[71] Westerho¤, F.,2008. The use of agent-based �nancial market models to test

the e¤ectiveness of regulatory policies. Journal of Economics and Statistics

228: 195-227.

[72] Wigmore, B. A., 1985. The crash and its aftermath : a history of securities

markets in the United States, 1929-1933(Greenwood Press).

[73] Zheng, L., 1999. Is Money Smart? A Study of Mutual Fund Investors�Fund

Selection Ability, The Journal of Finance 54, 901-933.

[74] Zhu, M., C. Chiarella, X.-Z. He, and D. Wang, 2009. Does the market maker

stabilize the market?, Physica A: Statistical Mechanics and its Applications

388, 3164-3180.

120


