
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Essays on the complexity of voting manipulation

Obraztsova, Svetlana

2012

Obraztsova, S. (2012). Essays on the complexity of voting manipulation. Doctoral thesis,
Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/50841

https://doi.org/10.32657/10356/50841

Downloaded on 20 Mar 2024 16:57:06 SGT



E
S
S
A
Y
S
O
N

T
H
E
C
O
M
P
L
E
X
IT

Y
O
F
V
O
T
IN

G
M
A
N
IP

U
L
A
T
IO

N
S
.
O
B
R
A
Z
T
S
O
V
A

2012

ESSAYS ON THE COMPLEXITY OF

VOTING MANIPULATION

SVETLANA OBRAZTSOVA

DIVISION OF MATHEMATICAL SCIENCES

SCHOOL OF PHYSICAL AND MATHEMATICAL

SCIENCES

2012



S
V
E
T
L
A
N
A

O
B
R
A
Z
T
S
O
V
A

ESSAYS ON THE COMPLEXITY OF

VOTING MANIPULATION

SVETLANA OBRAZTSOVA

DIVISION OF MATHEMATICAL SCIENCES

SCHOOL OF PHYSICAL AND MATHEMATICAL

SCIENCES

A thesis submitted to Nanyang Technological University

in partial fulfillment of the requirement for the degree of

Doctor of Philosophy in Mathematical Sciences

2012



Abstract

In their groundbreaking paper, Bartholdi, Tovey and Trick [6] argued that
many well-known voting rules, such as Plurality, Borda, Copeland and Max-
imin are easy to manipulate. Following the direction proposed by this paper
we examine the influence of features to which attention was not paid pre-
viously, namely, tie-breaking rules, and additional constraints, namely, the
distance to the manipulator’s true preferences, on the complexity of manip-
ulating elections.

In Chapter 3 we show that all scoring rules, (simplified) Bucklin and Plu-
rality with Runoff are easy to manipulate if the winner is selected from all tied
candidates uniformly at random. This result extends to Maximin under an
additional assumption on the manipulator’s utility function that is inspired
by the original model of [6]. In contrast, we show that manipulation under
randomized tie-breaking is hard for Copeland, Maximin, STV and Ranked
Pairs. In Chapter 4 we demonstrate that Plurality, Maximin, Copeland and
Borda, as well as many families of scoring rules, become hard to manipulate
if we allow arbitrary polynomial-time deterministic tie-breaking rules.

In Chapter 5, we investigate the complexity of optimal manipulation, i.e.,
finding a manipulative vote that achieves the manipulator’s goal yet deviates
as little as possible from her true ranking. We study this problem for three
natural notions of closeness, namely, swap distance, footrule distance, and
maximum displacement distance, and a variety of voting rules, such as scoring
rules, Bucklin, Copeland, and Maximin. For all three distances, we obtain
polynomial-time algorithms for all scoring rules and Bucklin and hardness
results for Copeland and Maximin.

1



2



Acknowledgments

I am very grateful to my supervisors Dmitrii Pasechnik and Edith Elkind. I
am especially thankful to Edith for her friendly support and endless patience

which helped me to survive through the program

3



4



Contents

1 Introduction 1
1.1 Tie-breaking rules . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Minimizing the distance to the true preferences . . . . 5
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Voting rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 The model and the algorithm of Bartholdi, Tovey and
Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 McGarvey theorem . . . . . . . . . . . . . . . . . . . . . . 15
2.4 The Gibbard-Satterthwaite Theorem . . . . . . . . . . . 17

3 Randomized Tie-Breaking Rules 19
3.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Scoring rules . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Bucklin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Simplified Bucklin . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Classic Bucklin . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Maximin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 General utilities . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 A tractable special case . . . . . . . . . . . . . . . . . . 33

3.5 Copeland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Iterative rules . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5



6 CONTENTS

4 Deterministic Tie-Breaking Rules 47
4.1 Borda and other scoring rules . . . . . . . . . . . . . . . . 49
4.2 Maximin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Copeland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Optimal Voting Manipulation 61
5.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Swap distance . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Scoring rules and Bucklin . . . . . . . . . . . . . . . . 64
5.2.2 Maximin and Copeland . . . . . . . . . . . . . . . . . 69

5.3 Footrule distance . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Scoring rules and Bucklin . . . . . . . . . . . . . . . . 74
5.3.2 Maximin and Copeland . . . . . . . . . . . . . . . . . . 75

5.4 Maximum displacement distance . . . . . . . . . . . . . . 76
5.4.1 Scoring rules and Bucklin . . . . . . . . . . . . . . . . 76
5.4.2 Copeland and Maximin . . . . . . . . . . . . . . . . . . 77

5.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.1 Optimal manipulability and swap bribery . . . . . . . . 82

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Future Work 85
6.1 Tie-breaking rules . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Minimizing the distance to the true preferences . . . . 86



Chapter 1

Introduction

Social choice studies the aggregation of individual preferences to determine
an overall collective decision. The history of social choice theory begins
from the voting paradox, which was found by Marquis de Condorcet. He
pointed out that transitivity, which exists for individual preferences, can be
easily lost in the aggregation process. Another person who influenced social
choice a lot almost at the same time as Marquis de Condorcet, was Chevalier
de Borda (for example, he proposed the voting rule that is now named after
him). They both considered elections as the most natural tool for aggregating
individual preferences. More recently, Arrow stated his famous theorem,
which is now known as Arrow’s impossibility theorem (see [2]). He proved
that it is impossible to design a voting rule that satisfies some very appealing
properties. This theorem is often taken as a beginning of modern social choice
theory.

Evidently, voting is not the only possible method for preference aggre-
gation. For the survey and discussion of the other approaches we refer the
reader to [32] and [8]. However, there are many settings where voting is the
most appropriate approach to aggregating preferences, and in this thesis we
will focus on voting, and, more specifically, algorithmic properties of vari-
ous voting procedures. For a detailed description of voting procedures and
mechanisms see [1].

Commonly, in an election we have some set of candidates and preferences
(or votes), i.e., linear orders over the entire set of candidates, of all voters.
A voting rule takes these preferences and gives us the winner of the election.
Mostly, voting rules grant points to the candidates and the winner of an
election is someone who has the highest score. Still, procedures of granting

1



2 CHAPTER 1. INTRODUCTION

points can have very different nature. For example, the widely used Plurality
rule gives each candidate one point for every vote where he is ranked in the
first position. On the other hand, Copeland is based on a completely different
principle: In this case we consider all possible pairwise elections over the set
of candidates and a candidate obtains a point for every pairwise elections
that he wins.

It is easy to construct preferences that give us different outcomes of the
election under different voting rules. For example, consider the set of candi-
dates {Putin, Zuganov,Mironov,Medvedev} and the following set of votes:

Putin ≻ Zuganov ≻ Mironov ≻ Medvedev

Putin ≻ Zuganov ≻ Mironov ≻ Medvedev

Zuganov ≻ Mironov ≻ Medvedev ≻ Putin

Mironov ≻ Zuganov ≻ Medvedev ≻ Putin

Medvedev ≻ Zuganov ≻ Mironov ≻ Putin

Clearly, if we use Plurality to determine the winner then it would be Putin.
In case of Copeland the victory would be shifted to Zuganov.

Therefore, we can see that careful choice of voting rule is really important.
Understanding weak points of different voting rules as well as properties of
election outcomes under these voting rules can help us make an optimal
choice of voting method.

The example above also illustrates that under Plurality the last voter
has a great incentive to lie about his real preferences, at least assuming his
knowledge about the votes of others. If the last voter submits a vote with
Zuganov at the first place and ties are broken in favor of Zuganov then he can
change the outcome of the election. We can see that he prefers this outcome
to the original one. That gives us an example of possibility of manipulating
the election.

Evidently, it would be a great advantage for the voting rule to be resis-
tant to manipulation. Unfortunately, such voting rules do not exist. It was
proved by Gibbard [26] and Satterthwaite [39] that for elections with at least
3 candidates any non-dictatorial and surjective voting rule is manipulable.
Even after this result hope remains that voting rules can withstand manipu-
lation in practice if it is computationally difficult to find a manipulative vote.
That was the motivation of one of the most influential early contributions



1.1. TIE-BREAKING RULES 3

to computational social choice, namely the paper by Bartholdi, Tovey, and
Trick entitled “The computational difficulty of manipulating an election” [6].
In this paper, the authors suggested that computational complexity can serve
as a barrier to dishonest behavior by the voters, and proposed classifying vot-
ing rules according to how difficult it is to manipulate them. In particular,
they argued that such well-known voting rules as Plurality, Borda, Copeland
and Maximin are easy to manipulate, yet a variant of the Copeland rule
known as second-order Copeland is computationally resistant to manipula-
tion. In a subsequent paper, Bartholdi and Orlin [5] showed that another
well-known voting rule, namely, STV, is NP-hard to manipulate as well.

Since then, the computational complexity of manipulation under various
voting rules, either by a single voter or by a coalition of voters, received
considerable attention in the literature, both from the theoretical and from
the experimental perspective (see, in particular, [49, 48] and the recent sur-
vey [21, 23] for the former, and [44, 12] for the latter). While it has been ar-
gued that worst-case complexity does not provide adequate protection against
malicious behavior (see, e.g. [37, 46, 24, 29]), determining whether a given
voting rule is NP-hard to manipulate is still a natural first step in evaluating
its resistance to manipulation in realistic scenarios.

This thesis continues and refines this line of research. We examine the
influence of features to which attention was not paid previously, namely,
tie-breaking rules, and additional constraints, namely, the distance to the
manipulator’s true preferences, on the complexity of manipulating elections.

1.1 Tie-breaking rules

Many common voting rules operate by assigning scores to candidates, so
that the winner is the candidate with the highest score. Now, in elections
with a large number of voters and a small number of candidates there is
usually only one candidate that obtains the top score. However, this does
not necessarily hold when the alternative space is large, as may be the case
when, e.g., agents in a multiagent system use voting to decide on a joint plan
of action [20]. This does not hold in the elections where the number of voters
is small and the number of alternatives is not large either. If, nevertheless,
a single outcome needs to be selected, such ties have to be broken. In the
context of manipulation, this means that the manipulator should take the tie-
breaking rule into account when choosing his actions. Much of the existing



4 CHAPTER 1. INTRODUCTION

literature on voting manipulation circumvents the issue by assuming that
the manipulator’s goal is to make some distinguished candidate p one of the
election winners, or, alternatively, the unique winner. The former assumption
can be interpreted as a tie-breaking rule that is favorable to the manipulator,
i.e., given a tie that involves p, always selects p as the winner; similarly,
the latter assumption corresponds to a tie-breaking rule that is adversarial
to the manipulator. In fact, most of the existing algorithms for finding
a manipulative vote work for any tie-breaking rule that selects the winner
according to a given ordering on the candidates (such tie-breaking rules are
known as lexicographic); the two cases considered above correspond to this
order being, respectively, the manipulator’s preference order or its inverse.

In Chapter 3 we study an equally appealing approach to breaking ties,
namely, selecting the winner among all tied candidates uniformly at random.
Note that under randomized tie-breaking the outcome of the election is a
random variable, so it is not immediately clear how to compare two outcomes:
is having your second-best alternative as the only winner preferable to the
lottery in which your top and bottom alternatives have equal chances of
winning? In this thesis we propose to deal with this issue by augmenting the
manipulator’s preference model: we assume that the manipulator assigns a
numeric utility to all candidates, and his goal is to vote so as to maximize his
expected utility, where the expectation is computed over the random choices
of the tie-breaking procedure; this approach is standard in the social choice
literature (see, e.g., [27]) and has also been used in [14]. We show that in
this setting any scoring rule and Bucklin are easy to manipulate, and so is
the Maximin rule, assuming that the manipulator assigns 1 unit of utility to
one candidate and utility 0 to all other candidates. In contrast, we provide
NP-hardness results on the complexity of manipulating Maximin for general
utilities as well as Copeland and several iterative voting rules. Our results
for randomized tie-breaking can be summarized by Table 1.1.

In Chapter 4, we focus on deterministic tie-breaking rules. The easiness
results obtained in [6] after careful examination can be extended to arbitrary
lexicographic tie-breaking rules. Given these easiness results, it is natural
to ask whether all (efficiently computable) deterministic tie-breaking rules
produce easily manipulable rules when combined with the voting correspon-
dences considered in [6]. Now, paper [6] shows that for Copeland this is
not the case, by proving that the second-order Copeland rule is hard to ma-
nipulate. However, prior to our work, no such result was known for other
rules considered in [6]. We demonstrate that Maximin and Borda, as well



1.2. MINIMIZING THE DISTANCE TO THE TRUE PREFERENCES5

P NP-hard
Scoring rules Copeland
Maximin (restricted) Maximin (general)
simplified Bucklin STV
classic Bucklin Ranked Pairs
Plurality w/Runoff

Table 1.1: Summary of results of Chapter 3.

as many families of scoring rules, become hard to manipulate if we allow
arbitrary polynomial-time deterministic tie-breaking rules. This holds even
if we require that the tie-breaking rule only depends on the set of the tied
alternatives, rather than the voters’ preferences over them; we will refer to
such tie-breaking rules as simple. Our proof also works for Copeland, thus
strengthening the hardness result of [6] to simple tie-breaking rules. We re-
mark, however, that our hardness result is not universal: Plurality and other
scoring rules that correspond to scoring vectors with a bounded number of
non-zero coordinates are easy to manipulate under any polynomial-time sim-
ple tie-breaking rule, However, if non-simple tie-breaking rules are allowed,
Plurality can be shown to be hard to manipulate as well.

1.2 Minimizing the distance to the true prefer-
ences

In Chapter 5 we study a refinement of the question asked by Bartholdi,
Tovey and Trick. We observe that, while the manipulator is willing to lie
about her preferences, she may nevertheless prefer to submit a vote that
deviates as little as possible from her true ranking. Indeed, if voting is public
(or if there is a risk of information leakage), and a voter’s preferences are at
least somewhat known to her friends and colleagues, she may be worried that
voting non-truthfully can harm her reputation—yet hope that she will not be
caught if her vote is sufficiently similar to her true ranking. Alternatively, a
voter who is uncomfortable about manipulating an election for ethical reasons
may find a lie more palatable if it does not require her to re-order more
than a few candidates. Finally, a manipulator may want to express support
for candidates she truly likes, even if these candidates have no chances of



6 CHAPTER 1. INTRODUCTION

winning; while she may lie about her ranking, she would prefer to submit a
vote where her most preferred candidates are ranked close to the top.

These scenarios suggest the following research question: does a voting rule
admit an efficient algorithm for finding a manipulative vote that achieves the
manipulator’s goals, yet deviates from her true ranking as little as possible?
To make this question precise, we need to decide how to measure the dis-
crepancy between the manipulator’s true preferences and her actual vote.
Mathematically speaking, votes are permutations of the candidate set, and
there are several distances on permutations that one can use. In our work,
we consider what is arguably the two most prominent distances on votes,
namely, the swap distance [30] (also known as bubble-sort distance, Kendall
distance, etc.) and the footrule distance [42] (also known as the Spearman
distance), as well as a natural variation of the footrule distance, which we
call the maximum displacement distance.

In more detail, the swap distance counts the number of candidate pairs
that are ranked differently in two preference orderings. Thus, when the
manipulator chooses her vote based on the swap distance, she is trying to
minimize the number of swaps needed to transform her true ranking into
the manipulative vote. We remark that for swap distance, our problem can
be viewed as a special case of the swap bribery problem [18]; however, our
question is not addressed by existing complexity results for swap bribery [18,
17, 16, 40]. The footrule distance and the maximum displacement distance
are based on computing, for each candidate, the absolute difference between
his positions in the two votes; the footrule distance then computes the sum
of these quantities, over all candidates, while the maximum displacement
distance returns the largest of them. We believe that each of these distances
captures a reasonable approach to defining what it means for two votes to be
close to each other; therefore, we are interested in analyzing the complexity
of our manipulation problem for all of them.

We study our problem for several classic voting rules, namely, Bucklin,
Copeland, Maximin, as well as all scoring rules. For all these rules, the al-
gorithm of Bartholdi et al. [6] finds a successful manipulation if it exists.
However, this algorithm does not necessarily produce a vote that is opti-
mal with respect to any of our distance measures: in particular, it always
ranks the manipulator’s target candidate first, even if this is not necessary to
achieve the manipulator’s goal. Thus, we need to devise new algorithms—or
prove that finding an optimal manipulation is computationally hard.

We investigate the complexity of optimal voting manipulation for three



1.3. THESIS STRUCTURE 7

distance measures on votes and four types of voting rules. For all three
distances, we obtain the same classification of these rules with respect to
the complexity of finding an optimal manipulation: our problem is easy for
Bucklin and all polynomial-time computable families of scoring rules (see
Chapter 2 for definitions), but hard for Copeland and Maximin. For swap
distance and footrule distance, we strengthen these hardness results to show
that our problem is, in fact, hard to approximate up to a factor of Ω(logm),
where m is the number of candidates.

Our results can be summarized by the following table:

Sc. rules Bucklin Copeland Maximin
dswap P P Ω(logm)-inapp. Ω(logm)-inapp.

dfr P P Ω(logm)-inapp. Ω(logm)-inapp.
dmd P P NPC NPC

Table 1.2: Summary of results of Chapter 5

1.3 Thesis structure
This thesis is organized as follows. Chapter 2 contains the preliminaries
and consists mostly of definitions and discussion of different approaches to
defining manipulation problems in social choice. Chapter 3 and Chapter
4 describe the influence of tie-breaking rules on the complexity of voting
manipulation. In Chapter 3 we focus on randomized tie-breaking. Arbitrary
deterministic polynomial-time computable tie-breaking rules are analyzed
in Chapter 4. Chapter 5 describes algorithms and hardness results for the
optimal manipulation problem. In Chapter 6 we discuss directions for future
work.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

An election is given by a set of candidates C = {c1, . . . , cm} and a vector
R = (R1, . . . , Rn), where each Ri, i = 1, . . . , n, is a linear order over C;
Ri is called the preference order (or, vote) of voter i. We denote the space
of all linear orderings over C by L(C). The vector R = (R1, . . . , Rn) is
called a preference profile. For readability, we will sometimes denote Ri by
≻i. When a ≻i b for some a, b ∈ C, we say that voter i prefers a to b.
We denote by r(cj, Ri) the rank of candidate cj in the preference order Ri:
r(cj, Ri) = |{c ∈ C | c ≻i cj}|+ 1.

A voting rule F is a mapping that, given a preference profile R over
C, outputs a candidate c ∈ C; we write c = F(R). Many classic voting
rules, such as the ones defined below, are, in fact, voting correspondences,
i.e., they map a preference profile R to a non-empty subset S of C. Voting
correspondences can be transformed into voting rules using tie-breaking rules.

A tie-breaking rule for an election (C,R) is a mapping T = T (R, S) that
for any S ⊆ C, S ̸= ∅, outputs a candidate c ∈ S. A tie-breaking rule
T is called simple if it does not depend on R, i.e., the value of T (R, S) is
uniquely determined by S. Such rules have the attractive property that if a
manipulator cannot change the set of tied candidates, he cannot affect the
outcome of the election. Further, we say that T is lexicographic with respect
to a preference ordering ≻ over C if for any preference profile R over C and
any S ⊆ C it selects the most preferred candidate from S with respect to ≻,
i.e., we have T (S) = c if and only if c ≻ a for all a ∈ S \ {c}.

A composition of a voting correspondence F and a tie-breaking rule T
is a voting rule T ◦ F that, given a preference profile R over C, outputs
T (R,F(R)). Clearly, T ◦ F is a voting rule and T ◦ F(R) ∈ F(R).

9



10 CHAPTER 2. PRELIMINARIES

2.1 Voting rules

We will now describe the voting rules (correspondences) considered in this
thesis. All these rules assign scores to candidates; the winners are the can-
didates with the highest scores.

Scoring rules Any vector α = (α1, . . . , αm) ∈ Rm with α1 ≥ · · · ≥ αm

defines a scoring rule Fα. Under this rule, each voter grants αi points
to the candidate it ranks in the i-th position; the score of a candidate is
the sum of the scores it receives from all voters. The vector α is called
a scoring vector. A scoring rule is said to be faithful if α1 > · · · > αm.
We are interested in scoring rules that are succinctly representable;
therefore, throughout this paper we assume that the coordinates of α
are nonnegative integers given in binary. We remark that scoring rules
are defined for a fixed number of candidates. Therefore, we will often
consider families of scoring rules, i.e., collections of the form (αm)∞m=1,
where αm = (αm

1 , . . . , α
m
m). We require such families to be polynomial-

time computable, i.e., we only consider families of voting rules (αm)∞m=1

for which there exists a polynomial-time algorithm that given an m ∈
N outputs αm

1 , . . . , α
m
m. A well-known example of a polynomial-time

computable family of scoring rules is Borda, given by αm = (m −
1, . . . , 1, 0).

k-approval, Plurality and Bucklin Under the k-approval rule, a candi-
date gets one point for each voter that ranks him in the top k positions;
1-approval is also known as Plurality. It is easy to see that k-approval
and Plurality are examples of families of scoring rules. Let k∗ be the
smallest value of k such that some candidate’s k-approval score is at
least ⌊n/2⌋+ 1; we will say that k∗ is the Bucklin winning round. Un-
der the simplified Bucklin rule, the winners are all candidates whose
k∗-approval score is at least ⌊n/2⌋ + 1; under the Bucklin rule, the
winners are all k∗-approval winners. A candidate’s Bucklin score is his
k∗-approval score.

Copeland and second-order Copeland We say that a candidate a wins
a pairwise election against b if more than half of the voters prefer a to
b; if exactly half of the voters prefer a to b, then a is said to tie his
pairwise election against b. Given a rational value α ∈ [0, 1], under the



2.1. VOTING RULES 11

Copelandα rule each candidate gets 1 point for each pairwise election
he wins and α points for each pairwise election he ties.

A candidate’s second-order Copeland score is the sum of the Copeland
scores of the competitors he defeats. Under the second-order Copeland
rule, the winner is chosen among the candidates with the highest Co-
peland scores, breaking ties according to the second-order Copeland
score. We follow the definition of second-order Copeland voting rule in
[6]. In the latter the examples of using second-order Copeland can also
be found.

Maximin and Ranked Pairs

For every pair of candidates (c, d) ∈ C, we define s(c, d) as |{i | c ≻i d}|.
The Maximin score of a candidate c ∈ C is equal to the number of
votes he gets in his worst pairwise election; in other words, his score
equals mind∈C\{c} s(c, d).

Ranked Pairs was firstly considered by T. N. Tideman in [43]. For
Ranked Pairs the election proceeds in several steps. This rule first cre-
ates an entire ranking of all the candidates, as follows. In each step, we
consider a pair of candidates c, d that we have not previously considered
(as a pair): specifically, we choose the remaining pair with the highest
s(c, d) (note that there may be several such pairs; we will comment on
this issue in Chapter 3). We then fix the order c, d, unless this contra-
dicts previous orders that we fixed (that is, it violates transitivity). We
continue until we have considered all pairs of candidates (hence, in the
end, we have a full ranking). The candidate at the top of the ranking
wins.

Plurality with Runoff and STV Under the STV rule, the election
proceeds in rounds. During each round, the candidate with the lowest
Plurality score is eliminated, and the candidates’ Plurality scores are
recomputed. The winner is the candidate that survives till the last
round. Plurality with Runoff can be thought of as a compressed version
of STV: we first select two candidates with the highest Plurality scores,
and then output the winner of the pairwise election between them. Note
that these definitions are somewhat ambiguous, as several candidates
may have the lowest/highest Plurality score; we will comment on this
issue in Section 3.6.



12 CHAPTER 2. PRELIMINARIES

2.2 Manipulation
Given a preference profile R over a set of candidates C, for any preference
order L over C we denote by (R−i, L) the preference profile obtained from R
by replacing Ri with L. We say that a voter i ∈ {1, . . . , n} can successfully
manipulate an election (C,R) with a preference profile (R1, . . . , Rn) with
respect to a voting rule F if F(R−i, L) ≻i F(R). We will now define the
computational problem that corresponds to this notion.

All voting rules defined in Section 2.1 are anonymous, so, we can fix any
candidate as the manipulator. Thus, we fix voter n as the manipulator and
we will make this assumption throughout the thesis.

Definition 2.2.1. Let F be a voting rule. An instance of the F-Manipula-
tion≻ problem is given by a set of candidates C and a preference profile R.
The question is whether there exists a vote L ∈ L(C) such that F(R−n, L) ≻n

F(R).

Our definition of F-Manipulation≻ is modeled after the standard so-
cial choice definition, see, e.g. [26, 39]. However, in the computational social
choice literature it is usual to consider the decision problem where a manipu-
lator focuses on a candidate p and his goal is to make p elected; we will refer
to this problem as F-Manipulation (see, e.g., [6]).

These problems are closely related. First, a polynomial-time algorithm
for F-Manipulation can be converted into a polynomial-time algorithm
for F-Manipulation≻ if the number of candidates is polynomial in the
size of the output: we can simply run F-Manipulation on all candidates
ranked by the manipulator above the current winner, and pick the best
among the candidates for which F-Manipulation outputs “yes”. Thus,
if F-Manipulation≻ is hard, F-Manipulation is hard, too.

On the other hand, having a polynomial-time algorithm for the opti-
mization version of F-Manipulation≻, in which we ask who is the best
candidate (from the manipulator’s perspective) that can be made a win-
ner, is sufficient for solving F-Manipulation. Indeed, suppose that we
are given an instance of F-Manipulation. Consider the election in which
the manipulator n submits an arbitrary vote L that ranks p first. If p wins
in this election, then we are done. Otherwise, let w be the election win-
ner. If w is ranked second in L, then p can be made the winner if and
only if our election is a “yes”-instance of F-Manipulation≻. Otherwise,
consider the election obtained by promoting w into the second position in



2.2. MANIPULATION 13

L, i.e., one where voter n ranks p first and w second. We know that the
manipulator can make w the winner by voting L. Thus, n’s favorite can-
didate that can be made the winner is either p or w, and therefore we can
solve F-Manipulation using an algorithm for the optimization version of
F-Manipulation≻. Further, if F is monotone, i.e., the election winner con-
tinues to win if we move him up in all voters’ preferences without changing
the relative order of other candidates, then it suffices to have an algorithm
for the decision version of F-Manipulation≻: in this case, w remains the
winner after we push him upwards in L, and hence the resulting instance
is a “yes”-instance of F-Manipulation≻ if and only if n can make p the
winner. However, it remains unclear if in general F-Manipulation can be
reduced to F-Manipulation≻ and hence the existing NP-hardness results
for second-order Copeland [6] and STV [5] do not directly imply that second-
order Copeland-Manipulation≻ and STV-Manipulation≻ are NP-hard.

Both problems stated above are defined for voting rules. The manipula-
tion problems for voting correspondences are also widely discussed. There are
two standard approaches to extending the manipulation problem to voting
correspondences. Under the first approach, we assume that the manipulator’s
goal is to make the specific candidate p the only winner of the election.

Definition 2.2.2. Let F be a voting correspondence. In the F-Unique-
WinnerManipulation problem, we are given an election E = (C,R) with
a preference profile R = (R1, . . . , Rn), and a preferred candidate p ∈ C. The
question is whether there exists a vote L ∈ L(C) such that the preference
profile R′ = (R1, . . . , Rn−1, L) satisfies {p} = F(R′).

Under the second approach, it is assumed that it is enough for the ma-
nipulator to make candidate p one of the election winners.

Definition 2.2.3. Let F be a voting correspondence. In the F-CoWin-
nerManipulation problem, we are given an election E = (C,R) with a
preference profile R = (R1, . . . , Rn), and a preferred candidate p ∈ C. The
question is whether there exists a vote L ∈ L(C) such that the preference
profile R′ = (R1, . . . , Rn−1, L) satisfies p ∈ F(R′).

It is easy to see that F -UniqueWinnerManipulation is equivalent to
F ′-Manipulation, where the voting rule F ′ is obtained by combining F
with the lexicographic tie-breaking rule that is adversarial to manipulator,
i.e., breaks ties according to the ordering obtained by reversing Rn. Similarly,



14 CHAPTER 2. PRELIMINARIES

in the case of F -CoWinnerManipulation we take the composition of F
with the lexicographic tie-breaking rule that favors the manipulator, i.e.,
breaks ties according to the preference order Rn.

2.2.1 The model and the algorithm of Bartholdi, Tovey
and Trick

We will now describe the algorithm for F -CoWinnerManipulation pro-
posed in [6]. This algorithm can be used for any voting correspondence F
that assigns scores to candidates, so that the winners are the candidates with
the highest scores. The algorithm places the manipulator’s preferred candi-
date p first, and then fills in the remaining positions in the vote from top to
bottom, searching for a candidate that can be placed in the next available
position in the n-th vote so that his score does not exceed that of p. This
approach works as long as the voting correspondence F is monotone and we
can determine a candidate’s final score given his position in the manipula-
tor’s vote and the identities of the candidates that the manipulator ranks
above him. It is not hard to show that Plurality and Borda (and, in fact, all
scoring rules), as well as Plurality with Runoff, Copeland and Maximin have
this property. Simplified Bucklin and Bucklin do not satisfy this property,
but they are easy to manipulate as well. For example, the algorithm for
(dswap,Bucklin)-OptManipulation described in Chapter 5 can be used for
proving the easiness of the manipulation problem.

We can easily modify this algorithm to make it work for F -UniqueWin-
nerManipulation: in that case, when the manipulator fills a position j in
his vote, j > 1, he needs to ensure that the score of the candidate in that
position is strictly less than that of p. Generally, if ties are broken according
to a lexicographic ordering ≻ over the candidates, when placing a candidate
c with c ≻ p, the manipulator needs to make sure that c’s score is less than
that of p, and when placing a candidate c with c ≺ p, he needs to make sure
that c’s score does not exceed that of p.

In the same paper Bartholdi, Tovey and Trick argued that second-order
Copeland is computationally resistant to manipulation. In a subsequent
paper, Bartholdi and Orlin [5] showed that another well-known voting rule,
namely, STV, is NP-hard to manipulate as well. In [49] Xia et al. showed
that Ranked Pairs is hard to manipulate (for the defenition of Ranked Pairs
given in this thesis).



2.3. MCGARVEY THEOREM 15

2.3 McGarvey theorem
Many proofs in this thesis make use of McGarvey theorem. We will now
state this theorem and give a sketch of its proof.

Let C be a set of candidates and let R = (R1, . . . , Rn) be a preference
profile.

Definition 2.3.1. We say that a candidate ci wins the pairwise election
against a candidate cj if more that half of the voters in R rank ci above cj.

Definition 2.3.2. The digraph H is said to be induced by R if C is a set of
vertices of digraph H and H contains an arc (ci, cj) if and only if ci is the
winner of the pairwise election between ci and cj.

Now we can state McGarvey theorem (see also [33] or [35]).

Theorem 2.3.3. For any digraph Hm on m vertices without cycles of length
2 there exists a preference profile R such that R consists of at most m(m−1)
votes and Hm is induced by R.

Proof. We give only a sketch of the proof of this theorem. Let the vertex set
of digraph Hm be C = {c1, . . . , cm}.

First consider the preference profile that consists of votes described as
follows. For every arc (ci, cj) of Hm we take votes ci ≻ cj ≻ c1 ≻ . . . ≻ cm
and cm ≻ . . . ≻ c1 ≻ cj ≻ ci. For this profile we have ties in every pairwise
election. It is easy to see that we can make either ci or cj the winner of their
pairwise election by swapping these candidates in the suitable vote. As a
result, the score of the winner in the pairwise election would exceed the score
of the loser by exactly 2.

Consider the a simple example of using McGarvey theorem. We construct
the preference profile with candidates {c1, c2, c3, c4} for the graph on 4 vertices
with adjacency matrix defined as follows:

(ai,j) =


0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0.


At the first step of algorithm we obtain the preference profile which gives tie
in every pairwise election. We set



16 CHAPTER 2. PRELIMINARIES

R1,2 = c1 ≻ c2 ≻ c3 ≻ c4
R2,1 = c4 ≻ c3 ≻ c2 ≻ c1
R1,3 = c1 ≻ c3 ≻ c2 ≻ c4
R3,1 = c4 ≻ c2 ≻ c3 ≻ c1
R1,4 = c1 ≻ c4 ≻ c2 ≻ c3
R4,1 = c3 ≻ c2 ≻ c4 ≻ c1
R2,3 = c2 ≻ c3 ≻ c1 ≻ c4
R3,2 = c4 ≻ c1 ≻ c3 ≻ c2
R2,4 = c2 ≻ c4 ≻ c1 ≻ c3
R4,2 = c3 ≻ c1 ≻ c4 ≻ c2
R3,4 = c3 ≻ c4 ≻ c1 ≻ c2
R4,3 = c2 ≻ c1 ≻ c4 ≻ c3
Then following the algorithm we swap ci, cj in Rj,i for all ai,j = 1. For

example, consider a1,2 = 1 we obtain R2,1 = c4 ≻ c3 ≻ c1 ≻ c2 instead of
R2,1 = c4 ≻ c3 ≻ c2 ≻ c1. Thereby we come up with the following profile as
a result of the algorithm.

R1,2 = c1 ≻ c2 ≻ c3 ≻ c4
R2,1 = c4 ≻ c3 ≻ c1 ≻ c2
R1,3 = c1 ≻ c3 ≻ c2 ≻ c4
R3,1 = c4 ≻ c2 ≻ c1 ≻ c3
R1,4 = c1 ≻ c4 ≻ c2 ≻ c3
R4,1 = c3 ≻ c2 ≻ c1 ≻ c4
R2,3 = c2 ≻ c3 ≻ c1 ≻ c4
R3,2 = c4 ≻ c1 ≻ c2 ≻ c3
R2,4 = c2 ≻ c4 ≻ c1 ≻ c3
R4,2 = c3 ≻ c1 ≻ c2 ≻ c4
R3,4 = c3 ≻ c4 ≻ c1 ≻ c2
R4,3 = c2 ≻ c1 ≻ c3 ≻ c4
It is easy to see that the following corollary can be proved similarly to

Theorem 2.3.3.

Corollary 2.3.4. For any digraph Hm with vertex set C = {c1, . . . , cm} that
does not have cycles of length 2 there exists an election E = (C,R) with a
preference profile R = (R1, . . . , Rn), where n is even and polynomial in m,
such that if Hm contains the arc (ci, cj) candidate ci obtains exactly n

2
+ 1

points in the pairwise election against cj, and if Hm does not contain an arc
between ci and cj then there is a tie in the pairwise election.

Also we can derive the following corollary from the proof of Theorem 2.3.3.



2.4. THE GIBBARD-SATTERTHWAITE THEOREM 17

Corollary 2.3.5. For any digraph Hm with vertex set C = {c1, . . . , cm} and
any set of numbers {ki,j | i, j : 1, . . . ,m} there exists an election E = (C,R)
with a preference profile R = (R1, . . . , Rn) where n is even and polynomial
in m and maxi,j=1...m ki,j, such that for any arc (ci, cj) candidate ci obtains
exactly n

2
+ ki,j points in the pairwise election against cj and if Hm does not

contain an arc between ci and cj then there is a tie in the pairwise election.

Better bounds on the number of voters needed to construct a profile that
induces a given digraph can be found in [35]. In [13] author have considered
the case of some given preorders for the voters and gave the upper bound for
the number of voter which we need to add to the election due to obtaining a
given digraph. this result also fall into the realm of corollaries above.

2.4 The Gibbard-Satterthwaite Theorem
One of justifications of interest in computational complexity of voting ma-
nipulation is the famous the Gibbard-Satterthwaite theorem. Informally, the
latter theorem says that a manipulation almost always exists. To give an
exact formulation we need few definition first.

Definition 2.4.1. A voting rule F is dictatorial if there is a voter i (the
dictator) such that F(R) ≻i cj for all cj ∈ C \ {F(R)}.

Definition 2.4.2. A voting rule F is onto if for each a candidate ci there
exists a preference profile R such that F(R) = ci.

Now we can state the Gibbard-Satterthwaite theorem (see [26, 39]).

Theorem 2.4.3. A non-manipulable onto voting rule for an election with at
least three candidates is dictatorial.



18 CHAPTER 2. PRELIMINARIES



Chapter 3

Randomized Tie-Breaking Rules

3.1 The model

In this chapter we discuss the complexity of manipulating elections under a
very common approach to tie-breaking, namely, choosing the winner uni-
formly at random among all tied candidates. In this case, knowing the
manipulator’s preference ordering is not sufficient to determine his optimal
strategy. For example, suppose that voter n prefers a to b to c, and by voting
strategically he can change the output of the voting correspondence from b to
{a, c}. It is not immediately clear if this manipulation is beneficial. Indeed,
if voter n strongly prefers a, but is essentially indifferent between b and c,
then the answer is probably positive, but if voter n strongly dislikes c and
slightly prefers a to b, the answer is likely to be negative (of course, this also
depends on n’s risk attitude).

Thus, to model this situation appropriately, we need to know the utilities
that the manipulator assigns to all candidates. Under the natural assumption
of risk neutrality, the manipulator’s utility for a set of candidates is equal
to his expected utility when the candidate is drawn from this set uniformly
at random, or, equivalently, to his average utility for a candidate in this set.
Since we are interested in computational issues, it is reasonable to assume
that all utilities are rational numbers; by scaling, we can assume that all
utilities are positive integers given in binary.

Formally, given a set of candidates C, we assume that the manipulator is
endowed with a utility function u : C → N. This function can be extended
to sets of candidates by setting u(S) = 1

|S|
∑

c∈S u(c) for any S ⊆ C.

19



20 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

Definition 3.1.1. Given a voting correspondence F and an election (C,R),
we say that a vote L is optimal for a manipulating voter n with a utility
function u : C → N with respect to F combined with the randomized tie-
breaking rule if u(F(R−n, L)) ≥ u(F(R−n, L

′)) for all L′ ∈ L(C). We say
that the manipulator has a successful manipulation if his optimal vote L
satisfies u(F(R−n, L)) > u(F(R)).

Now we can state the problem of finding a successful manipulation.

Definition 3.1.2. An instance of the F-RandManipulation problem is a
tuple (E, u, q), where E = (C,R) is an election, u : C → N is the manipula-
tor’s utility function such that u(c) ≥ u(c′) if and only if c ≻n c′, and q is a
non-negative rational number. It is a “yes”-instance if there exists a vote L
such that u(F(R−n, L)) ≥ q and a “no”-instance otherwise.

In the optimization version of F-RandManipulation, the goal is to
find an optimal vote.

We remark that F-RandManipulation is in NP for any polynomial-
time computable voting correspondence F : it suffices to guess the manipu-
lative vote L, determine the set S = F(R−n, L), and compute the average
utility of the candidates in S.

In the rest of this chapter, we will explore the complexity of finding an
optimal vote with respect to scoring rules, Bucklin, Maximin, Copeland and
several iterative rules under the randomized tie-breaking rule.

3.2 Scoring rules
All scoring rules turn out to be easy to manipulate under randomized tie-
breaking.

Theorem 3.2.1. For any scoring vector α = (α1, . . . , αm) Fα-RandMani-
pulation is in P.

Proof. Recall that we assume that the manipulator is the last voter n with
a utility function u, and let R′ denote the preference profile consisting of all
other voters’ preferences. Let si denote the score of candidate ci after all
voters other than n have cast their vote. Let us renumber the candidates
in order of increasing score, and, within each group with the same score,
in order of decreasing utility. That is, under the new ordering we have



3.2. SCORING RULES 21

s1 ≤ · · · ≤ sm and if si = sj for some i < j then u(ci) ≥ u(cj). We say
that two candidates ci, cj with si = sj belong to the same level. Thus, all
candidates are partitioned into h ≤ m levels H1, . . . , Hh, so that if ci ∈ Hk

and cj ∈ Hℓ, k < ℓ, then si < sj.
Consider first the vote L0 given by c1 ≻ . . . ≻ cm, and let T be the

number of points obtained by the winner(s) in (R′, L0). We claim that for
any L ∈ L(C), in the preference profile (R′, L) the winner(s) will get at least
T points. Indeed, let ci be the last candidate to get T points in (R′, L0),
and suppose that there exists a vote L such that ci gets less than T points
in (R′, L). By the pigeonhole principle, this means that L assigns at least αi

points to some cj with j > i, and we have sj + αi ≥ si + αi = T , i.e., some
other candidate gets at least T points, as claimed. We will say that a vote
L is conservative if the winners’ score in (R′, L) is T .

We will now describe possible optimal votes for the manipulator.

Lemma 3.2.2. If L maximizes the utility of voter n, then either L is con-
servative or it can be chosen so that Fα has a unique winner under (R′, L).

Proof. Suppose that this is not the case, i.e., any vote L that maximizes the
manipulator’s utility is such that the set S = Fα(R′, L) is of size at least
2, and all candidates in S get T ′ > T points. Let ci be n’s most preferred
candidate in S; we have u(ci) ≥ u(S). Suppose that L grants αj points
to ci. Since we have si + αj > T , it follows that j < i. Now, consider
the vote obtained from L0 by swapping ci and cj. Clearly, all candidates in
C \ {ci, cj} get at most T points, and ci gets T ′ > T points. Further, cj gets
sj + αi ≤ sj + αj ≤ T points. Thus, in this case ci is a unique winner and
u(ci) ≥ u(S), a contradiction.

Therefore, to find an optimal manipulation, it suffices to (i) check for
each candidate c ∈ C whether c can be made the unique winner with a
score that exceeds T and (ii) find an optimal conservative vote. The optimal
manipulation can then be selected from the ones found in (i) and (ii).

Step (i) is easy to implement. Indeed, a candidate cj can be made the
unique winner with a score that exceeds T if and only if si + α1 > T . To
see this, observe that if si + α1 > T , we can swap c1 and ci in L0: ci will
get more than T points, and all other candidates will get at most T points.
Conversely, if si + α1 ≤ T , then the score of ci is at most T no matter how
voter n votes.



22 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

Thus, it remains to show how to implement (ii). Intuitively, our algorithm
proceeds as follows. We start with the set of winners produced by L0; we
will later show that this set is minimal, in the sense that if it contains x
candidates from some level, then for any vote the set of winners will contain
at least x candidates from that level. Note also that due to the ordering of
the candidates we select the best candidates from each level at this step. We
then try to increase the average utility of the set of winners. To this end, we
order the remaining candidates by their utility, and try to add them to the
set of winners one by one as long as this increases its average utility. We will
now give a formal description of our algorithm and its proof of correctness.

Let S0 = Fα(R′, L0). We initialize S and L by setting S = S0, L = L0.
Let ≻∗ be some ordering of the set C that ranks the candidates in S0 first,
followed by the candidates in C\S0 in the order of decreasing utility, breaking
ties arbitrarily. We order the candidates from C \ S0 according to ≻∗, and
process the candidates in this ordering one by one. For each candidate cj, we
check if u(cj) > u(S); if this is not the case, we terminate, as all subsequent
candidates have even lower utility. Otherwise, we check if we can swap cj
with another candidate that is currently not in S and receives T − sj points
from L (so that cj gets T points in the resulting vote). If this is the case, we
update L by performing the swap and set S = S ∪ {cj}. We then proceed to
the next candidate on the list.

We claim that the vote L obtained in the end of this process is optimal
for the manipulator, among all conservative votes. We remark that at any
point in time S is exactly the set of candidates that get T points in (R′, L).
Thus, we claim that any conservative vote L̂ satisfies u(Fα(R′, L̂)) ≤ u(S).

Assume that this is not the case. Among all optimal conservative votes,
we will select one that is most “similar” to L in order to obtain a contradiction.
Formally, let L0 be the set of all optimal conservative votes, and let L1 be
the subset of L0 that consists of all votes L′ that maximize the size of the
set Fα(R′, L′) ∩ S. The ordering ≻∗ induces a lexicographic ordering on the
subsets of C. Let L̂ be the vote such that the set Fα(R′, L̂) is minimal with
respect to this ordering, over all votes in L1. Set Ŝ = Fα(R′, L̂); by our
assumption we have u(Ŝ) > u(S).

Observe first that our algorithm never removes a candidate from S: when
we want to add cj to S and search for an appropriate swap, we only consider
candidates that have not been added to S yet. Also, at each step of our
algorithm the utility of the set S strictly increases. These observations will
be important for the analysis of our algorithm.



3.2. SCORING RULES 23

We will first show that Ŝ \ S is empty.

Lemma 3.2.3. We have Ŝ \ S = ∅.

Proof. Suppose that the lemma is not true, and let ci be a candidate in Ŝ \S.
Suppose that ci appears in the j-th position in our ordering of C \S0. If our
algorithm terminated at or before the j-th step, we have u(ci) < u(S) < u(Ŝ),
and hence u(Ŝ \{ci}) > u(Ŝ). Also, it is easy to see that if we swap ci and cj
in L̂ than we obtain S \ {ci} as a set of winners. So, this is a contradiction
with the optimality of L̂.

Thus, when our algorithm considered ci, it could not find a suitable swap.
Since ci ∈ Ŝ, it has to be the case that there exists an entry of the scoring
vector that equals T − si; however, when our algorithm processed ci it was
unable to place ci in a position that grants T − si points. This could only
happen if all candidates that were receiving T−si points from L at that point
were in S at that time; denote the set of all such candidates by Bi. Note
that all candidates in Bi belong to the same level as ci. Also, all candidates
in Bi ∩ S0 have the same or higher utility than ci, because initially we order
the candidates at the same level by their utility, so that L0 grants a higher
score to the best candidates at each level. On the other hand, all candidates
in Bi \ S0 were added to S at some point, which means that they have
been processed before ci. Since at this stage of the algorithm we order the
candidates by their utility, it means that they, too, have the same or higher
utility than ci.

Now, since L̂ grants T −si points to ci, it grants less than T −si points to
one of the candidates in Bi. Let ck be any such candidate, and consider the
vote L̂′ obtained from L̂ by swapping ci and ck. Let Ŝ ′ = Fα(R′, L̂′); we have
Ŝ ′ = (Ŝ \ {ci}) ∪ {ck}. By the argument above, we have either u(ck) > u(ci)
or u(ck) = u(ci). In the former case, we get u(Ŝ ′) > u(Ŝ). In the latter
case, we get u(Ŝ ′) = u(Ŝ) and |Ŝ ′ ∩ S| > |Ŝ ∩ S|. In both cases, we obtain a
contradiction with our choice of L̂.

Thus, we have Ŝ ⊆ S, and it remains to show that S ⊆ Ŝ. We will first
show that Ŝ contains all candidates in S0.

Lemma 3.2.4. We have S0 ⊆ Ŝ.

Proof. Suppose that |S0 ∩ Hk| = mk for k = 1, . . . , h. We will first show
that |Ŝ ∩Hk| ≥ mk for k = 1, . . . , h. Indeed, fix a k ≤ h, and suppose that
the first candidate in the k-th level is ci. Then in (R′, L0) the scores of the



24 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

candidates in Hk are si + αi, . . . , si + αj for some j ≥ i. If si + αi < T , then
mk = 0 and our claim is trivially true for this value of k. Otherwise, by the
pigeonhole principle, if it holds that in (R′, L̂) less than mk voters in Hk get
T points, it has to be the case that at least one candidate in Hk+1 ∪ · · · ∪Hh

receives at least αi points from L̂. However, for any cℓ ∈ Hk+1 ∪ · · · ∪Hh we
have sℓ > si, so sℓ + αi > T , a contradiction with our choice of L̂.

Now, suppose that S0 ∩ Hk ̸⊆ Ŝ ∩ Hk for some k ≤ h, and consider a
candidate cℓ ∈ (S0∩Hk)\(Ŝ∩Hk). Since we have argued that |Ŝ∩Hk| ≥ mk,
it must be the case that there also exists a candidate cj ∈ (Ŝ∩Hk)\(S0∩Hk).
It is easy to see that S0 contains the mk best candidates from Hk, so u(cℓ) ≥
u(cj). The rest of the proof is similar to that of Lemma 3.2.3: Consider the
vote L̂′ obtained from L̂ by swapping cℓ and cj and let Ŝ ′ = Fα(R′, L̂′). Since
cℓ and cj belong to the same level, we have Ŝ ′ = (Ŝ \ {cℓ}) ∪ {ck}. Thus,
either u(Ŝ ′) > u(Ŝ) or u(Ŝ ′) = u(Ŝ) and |Ŝ ′ ∩S| > |Ŝ ∩S|. In both cases we
get a contradiction. Thus, we have S0 ∩ Hk ⊆ Ŝ ∩ Hk. Since this holds for
every value of k, the proof is complete.

Given Lemma 3.2.3 and Lemma 3.2.4, it is easy to complete the proof.
Suppose that Ŝ is a strict subset of S. Observe first that for any subset
S ′ of S there is a vote L′ such that Fα(R′, L′) = S ′: we can simply ignore
the candidates that are not members of S ′ when running our algorithm, as
this only increases the number of “available” swaps at each step. Now, order
the candidates in C \ S0 according to ≻∗. Let ci be the first candidate in
this order that appears in S, but not in Ŝ. If there is a candidate cj that
appears later in the sequence and is contained in both S and Ŝ, consider
the set S ′ = Ŝ \ {cj} ∪ {ci}. As argued above, there is a vote L′ such that
Fα(R′, L′) = S ′. Now, if u(ci) > u(cj), this set has a higher average utility
that Ŝ. Thus, this is a contradiction with our choice of L̂. On the other hand,
if u(cj) = u(ci), then we have u(S ′) = u(Ŝ), |S∩S ′| = |S∩Ŝ|, and S ′ precedes
Ŝ is the lexicographic ordering induced by ≻∗, a contradiction with the choice
of L̂ again. Therefore, none of the candidates in S that appear after ci in the
ordering belongs to Ŝ. Now, when we added ci to S, we did so because its
utility was higher than the average utility of S at that point. However, by
construction, the latter is exactly equal to u(Ŝ). Thus, u(Ŝ ∪ {ci}) > u(Ŝ),
a contradiction again. Therefore, the proof is complete.

Example 1. It can be easily seen from the algorithm of finding manipula-
tion for scoring rules under randomized tie-breaking that for the initializing



3.3. BUCKLIN 25

of algorithm we do not need to know R, it suffices to know the scores of
candidates before submission of n-th vote and the utility function of the last
voter. Thus, consider the following example with 5 candidates and Borda rule
for determination of the winner. Recall that si denotes the score of candidate
i before last voter votes.

s1 = 10, s2 = 6, s3 = 12, s4 = 4, s5 = 10,

u(c1) = 2, u(c2) = 3, u(c3) = 1, u(c4) = 7, u(c5) = 4.

Step 1. We renumber the candidates in order of increasing score. For the
candidates of the same score we use the order of decreasing utility. After this
step candidate c

′
1 has score 4 and u(c

′
1) = 7, c′2 has score 6 and u(c

′
2) = 3,

c
′
3 and c

′
4 have scores 10, u(c′3) = 4 and u(c

′
4) = 2 and c

′
5 has score 12 and

u(c
′
5) = 1.
Step 2. Consider the vote L0 = (c

′
1, c

′
2, c

′
3, c

′
4, c

′
5). After this vote candidates

have scores as follows.

s(c
′

1) = 8, s(c
′

2) = 9, s(c
′

3) = 12, s(c
′

4) = 11, s(c
′

5) = 12.

Here we also found T = 12.
Step 3. Now we determine the best candidate who can become the only

winner. The set of candidates whose scores can exceed 12 is {c′3, c
′
4, c

′
5}. The

candidate c
′
3 has the largest utility among these candidates. By swapping c

′
1

and c
′
3 in L0 we obtain the vote L. If the last voter submits L then c

′
3 is the

only winner of the election and the utility of last voter is 4.
Step 4. Now we find the optimal conservative vote. It is easy to see that

candidates from the first and second levels (i.e. c
′
1, c

′
2) cannot be among the

tied candidates and c
′
5 is always among the tied candidates. On the level

3, exactly one candidate who received 2 points from the last voter is in the
set of tied candidates. Thus, L0 is the optimal conservative vote. After the
submitting L0 the set of tied candidates is {c′3, c

′
5} and utility of last voter is

2.5.
Thus, vote L maximizes utility of manipulator. In the original notation

the best manipulative vote is (c5, c2, c4, c1, c3).

3.3 Bucklin
In this section, we describe a polynomial-time algorithm for Bucklin-Rand-
Manipulation. In the first subsection we will focus on the simplified Buck-



26 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

lin rule, and omit the term “simplified” throughout this section; in the second
subsection, we will explain how to extend our algorithm to the classic Bucklin
rule.

3.3.1 Simplified Bucklin

We first need some additional notation. Consider an election E = (C,R)
with |C| = m and the preference profile R = (R1, . . . , Rn), and suppose
that the manipulating voter has utility function u. Set E ′ = (C,R′) and
R′ = (R1, . . . , Rn−1). For any c ∈ C, let sk(c) denote c’s k-approval score in
R′. Given an L ∈ L(C), let S(L) be the set of Bucklin winners in (R−n, L).

Let ℓ = min{k | sk(c) ≥ ⌊n
2
⌋+ 1 for some c ∈ C}, and set

D = {c ∈ C | sℓ(c) ≥ ⌊n
2
⌋+ 1}.

Clearly, for any L ∈ L(C), if k is the Bucklin winning round in (R−n, L),
then k ≤ ℓ. For each i = 1, . . . ,m, let

Ci = {c ∈ C | si(c) = ⌊n
2
⌋, si−1(c) < ⌊n

2
⌋},

and set C<i =
∪

j<i Cj if i < ℓ and C<ℓ = (
∪

j<ℓ Cj) \D.
Suppose that i ≤ ℓ. If the manipulator ranks a candidate c ∈ Ci in

position i or higher, and ranks each candidate in C<i in position i or lower,
in the resulting election i is the Bucklin winning round, and c is a Bucklin
winner. Conversely, if i ≤ ℓ is the Bucklin winning round in (R−n, L) and a
candidate c is a Bucklin winner, then one of the following conditions holds:
(a) c ∈ Ci and c is ranked in position i or higher in L, or (b) c ∈ C<i and c
is ranked in position i in L, or (c) i = ℓ and c ∈ D.

For i ≤ ℓ and s ≤ m, let Li,s denote the set of all votes L ∈ L(C) such
that (a) i is the Bucklin winning round in (R−n, L) and (b) |S(L) ∩Ci| = s.
Also, let L∗

i,s = argmax{u(S(L)) | L ∈ Li,s} be the set of utility-maximizing
votes in Li,s.

We will now explain how to find a vote in L∗
i,s. First, we will show that

if L∗ ∈ L∗
i,s and the set S(L∗) contains some candidate c ∈ C<i, then c is the

top candidate in C<i.

Lemma 3.3.1. If L∗ ∈ L∗
i,s for some i ≤ ℓ and s ≤ m and S(L∗)∩C<i ̸= ∅,

then |S(L∗) ∩ C<i| = 1 and S(L∗) ∩ C<i ∈ argmax{u(c) | c ∈ C<i}.



3.3. BUCKLIN 27

Proof. Fix a vote L∗ ∈ L∗
i,s, and let c be a candidate in S(L∗) ∩ C<i. Since

i is the Bucklin winning round for L∗ and c ∈ C<i, c cannot be ranked in
position i− 1 or higher in L∗. Further, since c ∈ S(L∗) and i is the Bucklin
winning round for L∗, c cannot be ranked in position i + 1 or lower in L∗

(here, for i = ℓ it is crucial that the set C<ℓ does not contain candidates
in D). Hence, c is ranked in position i in L∗, so |S(L∗) ∩ C<i| = 1. Now,
if c ̸∈ argmax{u(c) | c ∈ C<i}, consider the vote L′ obtained from L∗ by
swapping c with some candidate b ∈ argmax{u(c) | c ∈ C<i}. We have
L′ ∈ Li,s. Further, the argument above shows that b ̸∈ S(L∗), so S(L′) =
(S(L∗) \ {c}) ∪ {b} and hence u(S(L′)) > u(S(L∗)), a contradiction.

Now, we use Lemma 3.3.1 to find a vote in L∗
i,s.

Lemma 3.3.2. For any i ≤ ℓ and any s ≤ |C|, there is a polynomial-time
algorithm that checks whether Li,s is non-empty, and, if so, identifies a vote
L∗ ∈ L∗

i,s.

Proof. Let L1
i,s be the set of all votes L in Li,s such that S(L) ∩ C<i ̸= ∅,

and let L2
i,s = Li,s \ L1

i,s. We will identify the best vote in L1
i,s and L2

i,s and
output the better of the two. Observe that either or both of L1

i,s and L2
i,s can

be empty: if both are empty, then so is Li,s, and if Lj
i,s is empty, but L3−j

i,s is
not, we output the best vote in L3−j

i,s .
If C<i ̸= ∅, let bi be some candidate in argmax{u(c) | c ∈ C<i}. By

Lemma 3.3.1, to find the best vote in L1
i,s, we place bi in position i. Now, we

need to place s candidates from Ci in top i− 1 positions. Clearly, if |Ci| < s
or if s > i−1, this is impossible, so L1

i,s = ∅. Otherwise, we pick s candidates
in Ci with the highest utility, breaking ties arbitrarily, and rank them in top
s positions in the vote. We then fill the remaining i− 1− s positions above i
with candidates from C \ (Ci∪C<i); again, if |C \ (Ci∪C<i)| < i−1−s, then
L1

i,s = ∅. The remaining candidates can be ranked arbitrarily. It is easy to
see that the resulting vote L1 is in L1

i,s, and, moreover, u(S(L1)) ≥ u(S(L′))
for any L′ ∈ L1

i,s.
The procedure for finding the best vote in L2

i,s is similar. By the same
argument as in the previous case, if |Ci| < s or s > i or |C \ C<i+1| < i− s,
then L2

i,s is empty. Otherwise, we pick s candidates in Ci with the highest
utility, rank them in top s positions in the vote, rank some candidates from
C \ (Ci ∪ C<i) in the next i − s positions, and then rank the remaining
candidates arbitrarily. The resulting vote L2 satisfies u(S(L2)) ≥ u(S(L′))
for any L′ ∈ L2

i,s.



28 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

Using Lemma 3.3.2, we can simply find the best vote in Li,s for all i = 1, . . . , ℓ,
s = 0, . . . ,m; while for many values of i and s the set Li,s is empty, we have
Li,s ̸= ∅ for some i ≤ ℓ, s ≤ m. We obtain the following result.

Theorem 3.3.3. Simplified Bucklin-RandManipulation is in P.

Example 2. Suppose R′
=


a a b b d
b d a c c
d b d d a
c c c a b

 and u(d) = 10, u(b) = 5, u(c) =

2, u(a) = 1.
It is easy to see that

⌊
n
2

⌋
= 3 and l = 3 as well. Clearly, C1 = C<2 =

C3 = ∅, C2 = {a, b} and D = {a, b, d}. Therefore, C<3 = C2 \D = ∅.
Step 1. Evidently, L1,s = ∅.
Step 2. Clearly, L2,s = ∅ if s > 2. It follows from C<2 = ∅ that L1

2,s = ∅
for s = 1, 2. Now we will identify the best votes in L2

2,1 and L2
2,2. First we

consider L2
2,1. We take the candidate with highest utility from C2 and this

candidate is b. Then we take an arbitrary candidate from C \ (C2 ∪ C<2) =
{c, d}, for example, c. The remaining candidates can be placed in an arbitrary
order. Thus, we obtain (b, c, d, a) ∈ L∗

2,1. Similarly we find (b, a, d, c) ∈ L∗
2,2.

It is easy to see that (b, c, d, a) gives a better outcome of the election.
Step 3. It follows from C<3 = C3 = ∅ that only L2

3,0 can be non-empty.
Similarly to the previous step we obtain (c, d, b, a) ∈ L∗

3,0.
Comparing (b, c, d, a) and (c, d, b, a) we can see that (c, d, b, a) gives the

best outcome of the election.

3.3.2 Classic Bucklin

To extend our algorithm to the classic Bucklin rule, observe that if L ∈ Li,s

for some i < ℓ, then each Bucklin winner in (R−n, L) has the same i-approval
score (namely, ⌊n

2
⌋+1), therefore, any simplified Bucklin winner in (R−n, L) is

also a Bucklin winner in (R−n, L). Thus, only the case i = ℓ has to be handled
differently. In this case, it matters which candidates in D are ranked in top ℓ
positions by the manipulator, as this affects their ℓ-approval score. Therefore,
for this case we denote by L̂ℓ,s the set of all votes L ∈ L(C) such that (a)
ℓ is the Bucklin winning round in (R−n, L) and (b) |S(L) ∩ (Cℓ ∪ D)| = s.
As in the previous case, we define the set of votes L̂∗

ℓ,s as the set of utility-
maximizing votes in L̂ℓ,s, and let L̂∗ be a vote in L̂∗

ℓ,s.



3.3. BUCKLIN 29

Lemma 3.3.4. There is a polynomial-time algorithm that checks whether
L̂ℓ,s is non-empty, and, if so, identifies a vote L∗ ∈ L̂∗

ℓ,s.

Proof. Divide the set L̂∗
ℓ,s into three subsets as follows:

• let L1 be the set of all votes L in L̂∗
ℓ,s such that S(L) ⊂ D;

• let L2 be the set of all votes L in L̂∗
ℓ,s such that S(L) ∩ C<ℓ ̸= ∅;

• let L3 = L̂∗
ℓ,s \ (L1 ∪ L2).

Let d = max{sℓ(c) | c ∈ D}. Evidently, the Bucklin winning score in
(R−n, L) for a L ∈ L̂∗

ℓ,s is either d or d+ 1.
If d > ⌊n

2
⌋ + 1 then S(L) ⊂ D for any L ∈ L̂∗

ℓ,s and, so, L2 = ∅ and
L3 = ∅. Therefore, in this case our algorithm needs to check whether L1 = ∅
and if it is not the case then find L∗ ∈ L1. If d = ⌊n

2
⌋+ 1, all three sets can

be nonempty, and the algorithm will identify the best vote in L1, L2 and L3

and output the better of the three. Thus, we divide proof into two cases:
d > ⌊n

2
⌋+ 1 and d = ⌊n

2
⌋+ 1.

Denote the set of candidates whose score sℓ(c) is equal to d by Dd, and
the set of candidates whose score sℓ(c) is equal to d− 1 by Dd−1.

Case d > ⌊n
2
⌋+ 1. It is easy to see that L1 = ∅ if |C<ℓ| > m − (ℓ − 1).

Therefore, we can consider only the case |C<ℓ| ≤ m− (ℓ− 1). Now we
will construct the best vote L1 such that the Bucklin winning score in
(R−n, L1) is equal to d+ 1 and the best vote L2 such that the Bucklin
winning score in (R−n, L2) is equal to d, and output the better of the
two. If both votes do not exist then L1 = ∅.
First suppose that the Bucklin winning score is d + 1. In this case
S(L1) ⊂ Dd. It is easy to see that the utility of any s-element subset
of Dd is at most the sum of utilities of s most valuable candidates.
Thus, if |Dd| − s ≤ m− ℓ−max{|C<ℓ| − 1, 0} and s < ℓ then we rank
s most valuable (ties is broken arbitrary) candidates from Dd at top
s positions, rank one of the candidates from C<ℓ at place ℓ, and rank
all other candidates in Dd and C<ℓ at the |Dd|+ |C<ℓ| − s− 1 bottom
places; the remaining candidates can be ranked arbitrarily. The output
is the vote L1. In this case ℓ is the Bucklin winning round in (R−n, L1)
and only the s candidates from Dd who are ranked above ℓ-th position



30 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

have score d+1 in this round, while other candidates have lower scores.
So, they are the only winners and the utility of this set of candidates
is larger than the utility of any subset of Dd. If s = ℓ the procedure
will be almost the same excluding the placement of one candidate from
C<ℓ at position ℓ.

Suppose |Dd| − s > m− ℓ−max{|C<ℓ| − 1, 0}. Then all candidates in
Dd ∪ C<ℓ cannot be ranked at places ℓ (this position can be allocated
to a candidate in C<ℓ only) and below. Therefore L1 = ∅.

Now consider a vote L2 such that d is the Bucklin winning score for
(R−n, L2). Evidently, if |Dd| > s then there are no such votes, because
Dd ⊂ S(L2). So, we can assume |Dd| ≤ s. By our assumption d >
⌊n
2
⌋ + 1, so, it is evident that L2 can be obtained almost exactly as

in the previous case with two modifications: We will rank s − |Dd|
candidates from Dd−1 above ℓ instead of candidates from Dd and place
all remaining candidates from Dd−1 and the candidates from Dd ∪C<ℓ

below ℓ. One candidate from C<ℓ can still be ranked at position ℓ.

Case d = ⌊n
2
⌋+ 1. Notice that Dd−1 = ∅ in this case.

It is easy to see that in this case the best vote L1 such that the Bucklin
winning score in (R−n, L1) is equal to d+ 1 can be found exactly as in
the previous case. Now we will find an optimal vote L̂∗ such that the
Bucklin winning score in (R−n, L̂

∗) is equal to d.

First consider L1. Obviously, Dd ⊂ S(L1). By definition of L1 we
also have S(L1) ⊂ Dd. Therefore, either S(L1) = Dd and |Dd| =
s, or L1 = ∅. If S(L1) = Dd then neither the candidates from Cℓ,
nor those from C<ℓ can be among the winners of the election and,
therefore, all candidates Dd∪Cℓ∪C<ℓ are ranked below ℓ. Therefore, if
|Dd|+|Cℓ|+|C<ℓ| ≤ m−ℓ then we can put candidates from Dd∪Cℓ∪C<ℓ

at bottom places, and all others can be ranked arbitrary. Otherwise,
L1 = ∅.

Second consider L2. By definition of L2 one candidate from C<ℓ and at
least one candidate from Cℓ can be among the winners of the election.
Thus, at most s − 2 winners can be from the set Dd. Therefore, all
candidates from Dd and |C<ℓ|−1 candidate from C<ℓ are ranked below ℓ
as well as |Dd|+|Cℓ|−s candidates from Cℓ. So, if |Cℓ|+|C<ℓ|+|Dd|−s ≤
m − ℓ + 1 then put |Dd| + |Cℓ| − s best candidates from Cℓ (ties are



3.4. MAXIMIN 31

broken arbitrary) at top places, the best candidate from C<ℓ at the
place ℓ, all remaining candidates from Cℓ ∪ C<ℓ and candidates from
Dd at bottom places, and all others candidates can be ranked arbitrary.
Otherwise, L2 = ∅.
The third vote L3 can be handled almost exactly as L2.

Using this lemma we can easily obtain the following theorem.

Theorem 3.3.5. Bucklin-RandManipulation is in P.

Proof. Using Lemmas 3.3.2 and 3.3.4, we can simply find the best vote in
Li,s and in L̂ℓ,s for all i = 1, . . . , ℓ− 1, s = 0, . . . ,m; while for many values of
i and s the sets Li,s and L̂ℓ,s are empty, we have either Li,s ̸= ∅ or L̂ℓ,s ̸= ∅
for some i ≤ ℓ, s ≤ m.

3.4 Maximin

3.4.1 General utilities

In this section, we show that Maximin-RandManipulation is NP-hard. In
fact, our hardness result holds even for a fairly simple utility function, namely
if we set u(w) = 0, u(c) = 1 for c ∈ C\{w}, then Maximin-RandManipula-
tion becomes NP-complete. Observe that if the manipulator has this utility
function, and w is the Maximin winner irrespective of manipulator’s vote,
then the manipulator’s goal is to maximize the overall number of Maximin
winners.

Our hardness proof proceeds by a reduction from Feedback Vertex
Set [25]. Recall that an instance of Feedback Vertex Set is given by
a directed graph G with s vertices {ν1, . . . , νs} and a parameter t ≤ s; it is
a “yes”-instance if it is possible to delete at most t vertices from G so that
the resulting graph contains no directed cycles and a “no”-instance otherwise.
It will be convenient to assume that G contains no directed cycles of length
2. It is easy to see that Feedback Vertex Set remains NP-hard under
this assumption. Indeed, given an arbitrary instance (G, t) of Feedback
Vertex Set with r arcs, we can introduce r new vertices ν ′

1, . . . , ν
′
r and

replace each arc of the form ei = (νj, νℓ) with a path of length 2 that consists



32 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

of arcs (νj, ν
′
i) and (ν ′

i, νℓ); denote the resulting graph by G ′. Clearly, G ′

contains no directed cycles of length 2, and if (G, t) is a “yes”-instance of
Feedback Vertex Set, so is (G ′, t): if the removal of a vertex set X
eliminates all directed cycles in G, its removal also eliminates all directed
cycles in G ′. Conversely, if we can eliminate all directed cycles in G ′ by
removing a set of vertices Y , consider the set Y ′ obtained from Y by replacing
each vertex ν ′

i ∈ Y with a vertex νj such that (νj, ν ′
i) is an arc of G ′. It is easy

to see that removing Y ′ eliminates all directed cycles in G and |Y ′| ≤ |Y |.
Thus, from now on, we will assume that G contains no directed cycles of
length 2.

Theorem 3.4.1. Maximin-RandManipulation is NP-complete.

Proof. We have argued that Maximin-RandManipulation is in NP. For
the hardness proof, suppose that we are given an instance (G, t) of Feedback
Vertex Set, where G is an s-vertex graph with the vertex set {ν1, . . . , νs}
that has no directed 2-cycles. We will now construct an instance of our
problem with C = {c1, c2, . . . , cs, w}.

By Corollary 2.3.4, there exists an election E = (C,R′) with a preference
profile R′ = (R1, . . . , Rn−1), where n is odd, such that

• for i = 1, . . . , s, if the indegree of νi in G is at least 1, then exactly n−1
2

voters rank w above ci; otherwise, exactly n−1
2

+1 voter ranks w above
ci.

• if (νi, νj) ∈ G (and hence, since G contains no directed cycles of length
2, (νj, νi) ̸∈ G), exactly n−1

2
+ 1 voters rank ci above cj.

• if (νi, νj) ̸∈ G and (νj, νi) ̸∈ G, exactly n−1
2

voters rank ci above cj.

Moreover, R′ = (R1, . . . , Rn−1) can be constructed in time polynomial in s.
We will say that ci is a parent of cj if exactly n−1

2
+ 1 voter ranks ci above

cj. Observe that in the resulting election the Maximin score of w is n−1
2

, and
the Maximin score of any other candidate is n−1

2
− 1.

Recall that n is the manipulator, and consider the election E ′′ = (C,R′′)
with a preference profile R′′ = (R′, L) = (R1, . . . , Rn−1, L), where L is the
manipulator’s vote. Since w is the unique Maximin winner before the ma-
nipulator votes, and w’s score exceeds the score of any other candidate by 1,
a candidate ci is a winner of (R′, L) if and only if (a) the manipulator ranks
ci above all of her parents and (b) w’s Maximin score does not increase;



3.4. MAXIMIN 33

on the other hand, w will remain the Maximin winner no matter how the
manipulator votes.

Let the manipulator’s utility be given by u(w) = 0, u(c) = 1 for any
c ∈ C \ {w}. Under this utility function, the manipulator’s utility is 0 if
w is the only Maximin winner, 1 if w is not among the Maximin winners,
and r/(r + 1) if the Maximin winners are w and r candidates from C \ {w}.
Let Rn be some preference order over C that is consistent with u, and set
R = (R1, . . . , Rn−1, Rn) and E ′ = (C,R). We claim that (G, t) is a “yes”-
instance of Feedback Vertex Set if and only if (E ′, u, (s− t)/(s− t+1))
is a “yes”-instance of Maximin-RandManipulation.

Suppose (G, t) is a “yes”-instance of Feedback Vertex Set. Then we
can delete t vertices from G so that the resulting graph G ′ is acyclic, and hence
can be topologically sorted. Let νi1 , . . . , νis−t be the vertices of G ′, listed in
the sorted order, i.e., so that any edge of G is of the form (νij , νiℓ) with j < ℓ.
Consider the vote L obtained by ranking the candidates that correspond to
vertices of G ′ first, in reverse topological order (i.e., cis−t , . . . , ci1), followed
by the remaining candidates in C \ {w}, followed by w. By construction,
each of the first s − t candidates is ranked above all of its parents, so its
Maximin score in (R′, L) is n−1

2
. On the other hand, w’s score remains equal

to n−1
2

. Thus, the manipulator’s utility in the resulting election is at least
(s− t)/(s− t+ 1).

Conversely, suppose the manipulator submits a vote L′ so that in the
preference profile (R−n, L

′) his utility is at least (s− t)/(s− t+1). We have
argued that w is a Maximin winner in (R−n, L

′), and therefore (R−n, L
′) has

at least s−t+1 Maximin winners (including w). Let C ′ be a set of some s−t
candidates in C \ {w} that are Maximin winners in (R−n, L

′), and suppose
they appear in L′ ordered as ci1 , . . . , cis−t . Let G ′ be the induced subgraph of
G with the set of vertices νi1 , . . . , νis−t . Each of the candidates in C ′ appears
in L′ before all of its parents. Therefore, in the ordering νi1 , . . . , νis−t of
the vertices of G ′ all arcs are directed from right to left, i.e., G ′ contains
no directed cycles. Since G ′ has s − t vertices, this means that (G, t) is a
“yes”-instance of Feedback Vertex Set.

3.4.2 A tractable special case

In the previous section, we have shown that Maximin with randomized tie-
breaking does not admit an efficient algorithm for finding an optimal ma-
nipulation in the general utility model. However, we will now present a



34 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

polynomial-time algorithm for this problem assuming that the manipulator’s
utility function has a special structure. Specifically, recall that in the model
of [6] the manipulator’s goal is to make a specific candidate p a winner. This
suggests that the manipulator’s utility can be modeled by setting u(p) = 1,
u(c) = 0 for all c ∈ C \ {p}. We will now show that for such utilities there
exists a polynomil-time algorithm for finding an optimal manipulation under
Maximin combined with the randomized tie-breaking rule.

Theorem 3.4.2. If the manipulator’s utility function is given by u(p) = 1,
u(c) = 0 for c ∈ C \ {p}, the problem of finding an optimal manipulation
under Maximin combined with the randomized tie-breaking rule is in P.

Proof. Consider an election E = (C,R) with the candidate set C = {c1, . . . , cm}
and recall that n is the manipulating voter. In this proof, we denote by s(ci)
the Maximin score of a candidate ci ∈ C in the election E ′ = (C,R′), where
R′ = R−n. Let s = maxci∈C s(ci).

For any ci ∈ C, the manipulator’s vote increases the score of ci either by
0 or by 1. Thus, if s(p) < s − 1, the utility of the manipulator will be 0
irrespective of how he votes.

Now, suppose that s(p) = s− 1. The manipulator can increase the score
of p by 1 by ranking p first. Thus, his goal is to ensure that after he votes
(a) no other candidate gets s + 1 point and (b) the number of candidates
in C \ {p} with s points is as small as possible. Similarly, if s(p) = s, the
manipulator can ensure that p gets s + 1 points by ranking him first, so his
goal is to rank the remaining candidates so that in C \ {p} the number of
candidates with s+1 points is as small as possible. We will now describe an
algorithm that works for both of these cases.

We construct a directed graph G with the vertex set C that captures the
relationship among the candidates. Namely, we have an edge from ci to cj
if there are s(cj) votes in R′, where cj is ranked above ci. Observe that, by
construction, each vertex in G has at least one incoming edge. We say that
ci is a parent of cj in G whenever there is an edge from ci to cj. We remark
that if the manipulator ranks one of the parents of cj above cj in his vote,
then cj’s score does not increase. We say that a vertex ci of G is purple if
s(ci) = s(p) + 1, red if s(ci) = s(p) and ci ̸= p, and green otherwise; note
that by construction p is green. Observe also that if s(p) = s, there are no
purple vertices in the graph. We will say that a candidate cj is dominated
in an ordering L (with respect to G) if at least one of cj’s parents in G
appears before cj in L. Thus, our goal is to ensure that the set of dominated



3.4. MAXIMIN 35

candidates includes all purple candidates and as many red candidates as
possible.

Our algorithm is based on a recursive procedure A, which takes as its
input a graph H with a vertex set U ⊆ C together with a coloring of U
into green, red and purple; intuitively, U is the set of currently unranked
candidates. It returns “no” if the candidates in U cannot be ranked so that
all purple candidates in U are dominated by other candidates in U with
respect to H. Otherwise, it returns an ordered list L of the candidates in U
in which all purple candidates are dominated, and a set S consisting of all
red candidates in U that remain undominated in L with respect to H.

To initialize the algorithm, we call A(G). The procedure A(H) is de-
scribed below.

1. Set L = ∅.

2. If H contains p, set L = [p], and remove p from H.

3. While H contains a candidate c that is green or has a parent that has
already been ranked, set L :: [c] (where :: denotes the list concatenation
operation) and remove c from H.

4. If H is empty, return (L, ∅).

5. If there is a purple candidate in H with no parents in H, return “no”.

6. If there is a red candidate c in H with no parents in H, let H ′ be the
graph obtained from H by coloring c green. Compute A(H ′). If A(H ′)
returns “no”, return “no”. Otherwise, if A(H ′) returns (L′, S ′), return
(L :: L′, S ′ ∪ {c}).

7. At this point in the algorithm, each vertex of H has a parent. Hence, H
contains a cycle. Let T be some such cycle. Collapse T , i.e., (a) replace
T with a single vertex t, and (b) for each y ̸∈ T , add an edge (t, y) if
H contained an edge (x, y) for some x ∈ T and add an edge (y, t) if H
contained a vertex z with (y, z) ∈ H. Color t red if T contains at least
one red vertex, and purple otherwise. Let H ′ be the resulting graph
and call A(H ′). If A(H ′) returns “no”, return “no”. Now, suppose that
A(H ′) returns (L′, S ′).

Suppose that t ∈ S ′. At any point in the algorithm, we only put a
vertex in S if it is red, so t must be red, and hence T contains a red



36 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

vertex. Let c be some red vertex in T , and let L̂ be an ordering of the
vertices in T that starts with c and follows the edges of T . Let L′′ be the
list obtained from L′ by replacing t with L̂ (i.e., if L′ = L1 :: [t] :: L2,
then L′′ = L1 :: L̂ :: L2). Return (L :: L′′, (S ′ \ {t}) ∪ {c}).
If t ̸∈ S ′, then by Lemma 3.4.3 (see below) t is dominated in H ′. Let
a be a parent of t that precedes it in L′. Then T contains a child of
a. Let c be some such child, and let L̂ be an ordering of the vertices
in T that starts with c and follows the edges of T . Let L′′ be the list
obtained from L′ by replacing t wish L̂. Return (L :: L′′, S ′).

We will now argue that our algorithm outputs “no” if and only if no
matter how manipulator n votes, some candidate in C \ {p} gets s(p) + 2
points. Moreover, if A(G) = (L, S) and the set S contains r red candidates,
then whenever manipulator n votes so that after his vote all other candidates
have at most s(p)+1 points, there are at least r red candidates with s(p)+1
points.

We will split the proof into several lemmas.

Lemma 3.4.3. At any point in the execution of the algorithm, if A(H) =
(L, S), then each candidate in U \ S is dominated in H.

Proof. The proof is by induction on the recursion depth. Consider a candi-
date x ∈ U \ S. Clearly, if there are no recursive calls, A ranks x at Step 3,
and the claim is obviously true.

For the induction step, suppose that the claim is true if we have d nested
recursive calls, and consider an execution that makes d+1 nested calls. Again,
consider a candidate x ∈ U \ S. As in the base case, if x has been ranked
in Step 3 the claim is clearly true. If x was ranked in Step 6, it follows that
x ̸∈ S ′, and the claim follows by the inductive assumption. Now, suppose
that x was ranked in Step 7 when we collapsed some cycle T . If x ̸∈ T , then
x ̸∈ S ′ and the claim follows by the inductive assumption. In particular, if
x was ranked after t before the expansion, there is some vertex y in T such
that H contains the edge (y, x), so after expansion x will be dominated by y.

Now, suppose that x ∈ T . If t was in S ′, but x was not added to S, it
means that x was not the first vertex of T to appear in the ranking, i.e., x
was ranked after its predecessor in T . If t was not in S ′, then by the inductive
assumption t was ranked after its parent in H ′, i.e., there is a z ∈ H ′ \ {t}
such that z is ranked before t in L′ and there is an edge (z, t) in H ′. By



3.4. MAXIMIN 37

construction of t, this means that there is a vertex y ∈ T such that there
is an edge (z, y) in H. Thus, when we expanded t into T , the first vertex
of T to be ranked was placed after its parent, and all subsequent vertices of
T were placed after their predecessors in T . Thus, all vertices in T and, in
particular, x, are dominated.

We are now ready to prove that our algorithm correctly determines whether
the manipulator can ensure that no candidate gets more than s(p)+1 points.

Lemma 3.4.4. The algorithm outputs “no” if and only if for any vote L
there is a purple candidate that is undominated.

Proof. Observe that the algorithm only outputs “no” if it finds a purple can-
didate with no parents. Let c be some such candidate. Now, in the original
graph G each vertex has a parent. Further, if there was an edge from some
x to c, and we collapsed a cycle T that contains x, but not c, there is still
an edge from the resulting vertex t to c. Thus, the only way to obtain a
purple vertex with no incoming edges is by collapsing a cycle T such that
T contains purple vertices only, and no vertex of T has an incoming edge.
By induction on the execution of the algorithm, it is easy to see that if we
obtained a purple vertex with no incoming edges at some point, then in the
original graph there was a group of purple vertices such that there was no
edge from any red or green vertex to any of the vertices in the group. Now,
in any ordering on C one of the candidates in this group would have to be
ranked first. By construction, this candidate would be ranked before all its
parents, so it is undominated.

Conversely, suppose that the algorithm does not answer “no”, and outputs
a pair (L, S) instead. We have observed that S consists of red vertices only.
Thus, by Lemma 3.4.3 each purple vertex is dominated.

It remains to show that the set S output by the algorithm contains as
few candidates as possible.

Lemma 3.4.5. At any point in the execution of the algorithm, if A(H) =
(L, S), then in any ordering of the candidates in U in which each purple
vertex in U is dominated, at least |S| red vertices in U are undominated.

Proof. The proof is by induction on the recursion depth. Suppose first that
we make no recursive calls. Then our algorithm outputs S = ∅, and our
claim is trivially true. Now, suppose that our claim is true if we make d



38 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

nested calls. Consider an execution of A which makes d+ 1 nested call, and
suppose that when we call A(H ′) within this execution, it returns (L′, S ′).

Suppose first that we made the recursive call in Step 6 of the algorithm,
and therefore set S = S ′ ∪ {c}. Suppose for the sake of contradiction that
there exists a ranking of the candidates in U such that at most |S| − 1
candidate is undominated. Since c has no parents in H, there are at most
|S| − 2 other red candidates that are undominated. In other words, if we
recolor c green, in the resulting instance (which is exactly the instance passed
to A during the recursive call), there are at most |S| − 2 undominated red
candidates. Since |S ′| = |S| − 1, this is a contradiction with the inductive
assumption.

Now, suppose that we made the recursive call in Step 7 of the algorithm,
and collapsed a cycle T into a vertex t. Again, assume for the sake of contra-
diction that there exists a ranking L̄ of the candidates in U such that at most
|S| − 1 candidates are undominated. Let c be the first vertex of T to appear
in L̄. Consider the ranking of U ′ obtained by removing all vertices of T \ {c}
from L̄ and replacing c with t; denote this ranking by L̄′. We claim that in
L̄′ at most |S| − 1 vertices of H ′ are undominated. Indeed, any parent of c
in H is a parent of t in H ′, so t is undominated if and only if c was. On the
other hand, if for some vertex x the only parent that preceded it in L̄ was a
vertex y ∈ T \ {c}, then in H ′ there is an edge from t to x, i.e., x is preceded
by its parent t in L̄′. For all other vertices, if they were preceded by some
parent z in L̄, they are preceded by the same parent in L̄′. Since |S| = |S ′|,
we have shown that U ′ can be ordered so that at most |S ′| − 1 vertices are
undominated, a contradiction with the inductive assumption.

Combining Lemma 3.4.4 and Lemma 3.4.5, we conclude that if our algo-
rithm outputs (L, S), then L is the optimal vote for the manipulator and if
our algorithm outputs “no”, then the manipulator’s utility is 0 no matter how
he votes. Also, it is not hard to see that the algorithm runs in polynomial
time. Thus, the proof is complete.

Example 3. In this example we begin from the graph G, which we obtain
from the profile R−n. This graph can be seen at picture 3. We suppose that
all vertices except p are red in this graph and p is green.

Step 1-6. The only thing which algorithm does at these steps is adding p
to L and deleting it from G. Step 7. After collapsing the cycle (c, d, f) to the
single vertex cdf we obtain the graph at picture 3. Color of vertex cdf is red.



3.4. MAXIMIN 39

Figure 3.1: Graph G

Figure 3.2: Graph G after contracting the cycle (c, d, f)



40 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

Now we return to the step 6 and color cdf green. Vertex cdf is the only
green vertex in the graph, thus, add it to L. Now, both vertex a and b have
parent in L and therefore can be added to L in arbitrary order (say, a, b). All
vertices c, d, f are red, therefore we can replace cdf in L by vertices c, d, f in
arbitrary order. For example, c, d, f .

Now we obtain the vote (p, c, d, f, a, b) and it is easy to see that there are
2 winners p and c. The utility of manipulator is 1

2
.

3.5 Copeland
For the Copeland rule, we give an NP-hardness reduction from the Inde-
pendent Set problem [25]. An instance of this problem is given by an
undirected graph G and a positive integer t. It is a “yes”-instance if G con-
tains an independent set of size at least t, i.e., if G has at least t vertices such
that no two of them are connected by an edge; otherwise, it is a “no”-instance.

Our reduction makes use of a technical lemma, which essentially shows
that any undirected graph G can be obtained as a graph of ties in an election
whose size is polynomial in the size of G; a similar result appears in [22]
(Lemma 2.4).

Lemma 3.5.1. Let G be an undirected graph with the vertex set ν1, . . . , νs,
s ≥ 3. Let d(νi) denote the degree of vertex νi. Then there exists a directed
graph G ′ with the vertex set G ∪ Z ∪ {w}, where G = {g1, . . . , gs}, Z =
{z1, . . . , z4s+1}, such that the outdegree dout and the indegree din of each vertex
of G ′ satisfy

• dout(w) = 4s+ 1, din(w) = s;

• dout(gi) = 4s+ 1− d(νi), din(gi) = s for i = 1, . . . , s;

• din(z) + dout(z) = 5s+ 1 and dout(z) ≤ 3s+ 1 for all z ∈ Z,

G ′ contains no 2-cycles, and, furthermore for i, j ∈ {1, . . . , s}, gi and gj are
not connected by an arc in G ′ if and only if there is an edge between νi and
νj in G.

Proof. The graph G ′ is constructed as follows. First, we add an arc (g, w) for
each g ∈ G and an arc (w, z) for each z ∈ Z. Further, for any i, j ∈ {1, . . . , s},
i < j, we add an arc (gi, gj) if and only (νi, νj) ̸∈ G. Also, we add an arc



3.5. COPELAND 41

(zi, zj) for any i, j ∈ {1, . . . , 4s+ 1} such that j ∈ {i+ 1, . . . , i + 2s}, where
summation is taken modulo 4s+1. At this point, w has the required indegree
and outdegree, dout(g), din(g) ≤ s for any g ∈ G, and din(z) = dout(z) = 2s
for any z ∈ Z.

Now, for i = 1, . . . , s, we pick an arbitrary subset Zi ⊆ Z of size 4s+1−
d(νi) − di, where di is the current outdegree of gi, add an arc (gi, z) for all
z ∈ Zi, and add an arc (z, gi) for all z ∈ Z \ Zi. After this step, the vertices
in G have the desired indegree and outdegree. Moreover, for each z ∈ Z and
each x ∈ (Z ∪G∪{w}) \ {z} we have either (x, z) ∈ G or (z, x) ∈ G. Finally,
we have din(z) ≥ 2s, so dout(s) ≤ 3s + 1. Therefore, G ′ has the requested
properties.

We are now ready to present the main result of this subsection.

Theorem 3.5.2. Copelandα-RandManipulation is NP-complete for any
rational α ∈ [0, 1].

Proof. Fix a rational α ∈ [0, 1]. We have argued that Copelandα-RandMa-
nipulation is in NP. For the hardness proof, suppose that we are given an
instance (G, t) of Independent Set, where G is a graph with the vertex set
{ν1, . . . , νs}. We will now construct an instance of our problem with a set of
candidates C = G∪Z∪{w}, where G = {g1, g2, . . . , gs}, Z = {z1, . . . , z4s+1}.

Given two candidates x, y ∈ C in an n-voter election, we say that x safely
wins a pairwise election against y (and y safely loses a pairwise election
against x) if at least ⌊n/2⌋+2 voters prefer x to y. For any candidate x ∈ C,
let SW(x) and SL(x) denote the number of pairwise elections that x safely
wins and safely loses, respectively.

Let d(νi) denote the degree of the vertex νi in G. By Lemma 3.5.1 and
Corollary 2.3.5, we can construct an election E ′ = (C,R′) with a preference
profile R′ = (R1, . . . , Rn−1) that has the following properties:

• SW(w) = 4s+ 1, SL(w) = s;

• SW(gi) = 4s+ 1− d(νi), SL(gi) = s for i = 1, . . . , s;

• SW(z) + SL(z) = 5s+ 1 and SW(z) ≤ 3s+ 1 for any z ∈ Z;

• there is a tie between two candidates c and c′ if and only if c = gi,
c′ = gj for some i, j ∈ {1, . . . , s} and there is an edge between νi and
νj in G.



42 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

Consider an election E = (C,R) with R = (R1, . . . , Rn−1, R), where R
is a preference ordering that is consistent with the utility function u given
by u(w) = 0, u(z) = 0 for any z ∈ Z, u(g) = 1 for any g ∈ G. For any
L ∈ L(C), in the preference profile (R−n, L) the Copelandα score of w is
4s + 1, and the Copelandα score of each candidate z ∈ Z is at most 3s + 1.
Moreover, the Copelandα score of each gi ∈ G is at least 4s + 1− d(νi) and
at most 4s+1; to ensure that gi’s score is 4s+1, the manipulator must rank
gi above all of the candidates that gi is tied with in E ′ (note that for α = 1
all candidates in G are currently tied with w, but some of them will lose
points after the manipulator votes). We claim that (G, t) is a “yes”-instance
of Independent Set if and only if (E, u, t/(t + 1)) is a “yes”-instance of
Copelandα-RandManipulation.

Indeed, let J = {νi1 , . . . , νit} be an independent set in G. Consider a
vote L that ranks the candidates gi1 , . . . , git first (in any order), followed by
the remaining candidates in G ∪ Z, followed by w. Clearly, in the resulting
election the Copelandα score of the top t candidates in L is 4s + 1, so the
manipulator’s utility is at least t/(t+ 1).

Conversely, suppose that for some L′ ∈ L(C) the manipulator’s utility is
at least t/(t+ 1). Let S ′ be the set of all candidates in G whose Copelandα

score in (R−n, L
′) is 4s + 1; we have |S ′| ≥ t. As argued above, the manip-

ulator ranks each candidate g ∈ S ′ above all candidates that g is tied with
in E ′. This implies that two candidates in S ′ cannot be tied in E ′, i.e., S ′

corresponds to an independent set in G.

3.6 Iterative rules

Some of the common voting rules, such as, e.g., STV, do not assign scores to
candidates. Rather, they are defined via multi-step procedures. When one
computes the winner under such rules, ties may have to be broken during each
step of the procedure. A natural approach to winner determination under
such rules is to use the parallel universes tie-breaking [9]: a candidate c is an
election winner if the intermediate ties can be broken so that c is a winner
after the final step. Thus, any such rule defines a voting correspondence in
a usual way, and hence the corresponding RandManipulation problem is
well-defined. In this section, we consider three rules in this class, namely,
Plurality with Runoff, STV, and Ranked Pairs.

For Plurality with Runoff, RandManipulation turns out to be in P.



3.6. ITERATIVE RULES 43

The main idea of the proof is that if Lc is the set of all votes that rank a
candidate c ∈ C first, then the best vote in Lc ranks all candidates other
than c according to their utility.

Theorem 3.6.1. Plurality with Runoff-RandManipulation is in P.

Proof. Consider an election E = (C,R) and a manipulating voter n with a
utility function u.

Evidently, if we know the optimal vote in Lc for all c ∈ C we can find
the manipulative vote in linear time. To complete the proof, we will now
show that the best vote in Lc ranks all candidates other than c according
to their utility. Consider the vote L ∈ Lc that ranks all candidates other
than c according to their utility. We will prove that the utility that the
manipulator obtains in election (C, (R−n, L)), is at least the utility, that
the manipulator obtains in election (C, (R−n, L

′)) for any other vote L′. It
is easy to see that all candidates have the same score in both elections at
the first step. Therefore, a pair of candidates c1, c2 can be obtained as the
pair of candidates at the second step in election (C, (R−n, L

′)) if and only if
they can be obtained as a pair of candidates at the second step in election
(C, (R−n, L)).

Now, consider the second step. Suppose, candidates c1, c2 remain at this
stage. Evidently, if they are ranked in the n-th vote in the same way in both
elections, then the utility obtained by the manipulator is the same in both
cases. Therefore, we only need to consider the case when c does not survive
until the second step and c1, c2 are ranked differently with respect to each
other in L and L′. Without loss of generality we can assume u(c1) > u(c2).
Denote the scores of c1 and c2 at the second step of the election (C, (R−n, L))
by s1 and s2, respectively. Thus, the scores of c1 and c2 at the second step
of the election (C, (R−n, L

′)) are s1 − 1 and s2 +1, respectively. It is easy to
see that the score of the candidate of larger utility increases in (C, (R−n, L))
compared to (C, (R−n, L

′)). Therefore, the manipulator’s utility is at least
as large in (C, (R−n, L)) as in (C, (R−n, L

′)).

For STV and Ranked Pairs, RandManipulation is NP-hard. The proof
of this fact hinges on an observation that allows us to inherit hardness results
from the standard model of voting manipulation.

For STV and Ranked Pairs CoWinnerManipulation is known to be
NP-hard (see, respectively, [5] and [49]). It is easy to see that this implies
that for these rules RandManipulation is hard as well.



44 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES

Proposition 3.6.2. For any voting correspondence F , the problems F-
CoWinnerManipulation many-one reduces to F-RandManipulation.

Proof. Given an instance (E ′, p) of F -CoWinnerManipulation with E ′ =
(C,R′), where R′ = (R1, . . . , Rn), we construct an instance (E, u, q) of F -
RandManipulation as follows. Set E = (C,R) with R = (R′

−n, R), where
R ranks p first, followed by all other candidates in an arbitrary order. Also,
set u(p) = 1, u(c) = 0 for c ∈ C \ {p}, and q = 1/|C|. It is easy to
see that a “yes”-instance of F -CoWinnerManipulation corresponds to a
“yes”-instance of F -RandManipulation and vice versa.

Corollary 3.6.3. STV-RandManipulation and Ranked Pairs-RandMa-
nipulation are NP-hard.

We remark that it is not clear if these problems are in NP, since the
respective winner determination problem is not known to be polynomial-time
solvable; in fact, for STV it is known to be NP-hard [9].

For iterative rules one can also use randomness to break the intermediate
ties. The manipulator’s goal is then to maximize the expected utility with
respect to the resulting distribution. Generally speaking, this problem is dif-
ferent from RandManipulation: while the set of candidates that win with
non-zero probability is the same in both settings, the probability distribution
on these candidates can be different.

3.7 Related work

In this chapter we assume that the manipulator assigns utilities to all can-
didates, and his goal is to vote so as to maximize his expected utility. This
approach is standard in the social choice literature (see, e.g.,[27]) and has
also been used in [14].

Also, randomized tie-breaking has been considered in the context of con-
vergence to equilibria under Plurality voting [34].

There exists very recent results on Maximin under randomized tie-breaking.
In [51] it was proved that when the manipulator’s utilities for the candidates
are given by the vector (1, . . . , 1, 0, . . . , 0), with k ones and m−k zeros, then
the problem of finding an optimal vote for the manipulator is fixed-parameter
tractable when parameterized by k.



3.8. SUMMARY 45

3.8 Summary
We have determined the complexity of finding an optimal manipulation under
the randomized tie-breaking rule for several prominent voting rules, namely,
scoring rules, Maximin, Copelandα for any rational α ∈ [0, 1], two variants
of the Bucklin rule, Plurality with Runoff, STV, and Ranked Pairs. This
provides an essentially complete picture of the complexity of RandManip-
ulation for commonly studied voting rules (Table 3.1).

P NP-hard
Scoring rules Copeland
Maximin (restricted) Maximin (general)
simplified Bucklin STV
classic Bucklin Ranked Pairs
Plurality w/Runoff

Table 3.1: Complexity of RandManipulation for classic voting rules.

To compare the results for manipulation problem under randomized tie-
breaking and lexicographic tie-breaking consider the following table.

Lexicographic tie-breaking Randomized tie-breaking
Scoring rules P P
(classic) Bucklin P P
Plurality w/Runoff P P
Maximin (restricted) P P
Maximin (general) P NP -hard
Copeland P NP -hard
STV NP -hard NP -hard
Ranked Pairs NP -hard NP -hard

Table 3.2: Complexity of Manipulation for classic voting rules under lexi-
cographic and randomized tie-breaking.



46 CHAPTER 3. RANDOMIZED TIE-BREAKING RULES



Chapter 4

Deterministic Tie-Breaking Rules

In [6] it was proved that several well-known voting correspondences are easy
to manipulate if ties are broken in manipulator’s favor. In Chapter 2, we have
argued that the algorithm of [6] can be modified to work for an arbitrary lex-
icographic tie-breaking rule. Given these easiness results, it is natural to ask
whether all (efficiently computable) tie-breaking rules produce easily ma-
nipulable rules when combined with the voting correspondences considered
in [6]. In this chapter we show that Maximin and Borda, as well as many
families of scoring rules, become hard to manipulate if we allow arbitrary
computable deterministic tie-breaking rules. This holds even if we require
that the tie-breaking rule only depends on the set of the tied alternatives,
rather than the voters’ preferences over them; we refer to such tie-breaking
rules as simple. Now we give a formal definition of simple tie-breaking.

As it was defined in the preliminaries, a tie-breaking rule for an election
(C,R) is a mapping T = T (R, S) that for any S ⊆ C, S ̸= ∅, outputs a
candidate c ∈ S.

Definition 4.0.1. A tie-breaking rule T is called simple if it is polynomial-
time computable and the value of T (R, S) is uniquely determined by S .

Our proof also works for Copeland, thus strengthening the hardness result
for second-order Copeland proved in [6] to simple tie-breaking rules. We re-
mark, however, that our hardness result is not universal: Plurality and other
scoring rules that correspond to scoring vectors with a bounded number of
non-zero coordinates are easy to manipulate under any polynomial-time sim-
ple tie-breaking rule, However, if non-simple tie-breaking rules are allowed,
Plurality can be shown to be hard to manipulate as well.

47



48 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULES

We will first present a specific simple tie-breaking rule T . We will then
show that manipulating the composition of this rule with Borda and Maximin
is NP-hard. We then show that by tweaking this tie-breaking rule a little,
we can also obtain an NP-hardness result for Copeland.

Recall that an instance C of 3-SAT is given by a set of s variables
X = {x1, . . . , xs} and a collection of t clauses Cl = {c1, . . . , ct}, where each
clause ci ∈ Cl is a disjunction of three literals over X, i.e., variables or their
negations; we denote the negation of xi by xi. It is a “yes”-instance if there
is a truth assignment for the variables in X such that all clauses in Cl are
satisfied, and a “no”-instance otherwise. This problem is known to be hard
even if we assume that all literals in each clause are distinct, so from now
on we assume that this is the case. Now, given d variables x1, . . . , xd, there
are exactly ℓ =

(
2d
3

)
3-literal clauses that can be formed from these vari-

ables (this includes clauses of the form x1 ∨ x1 ∨ x2). Ordering the literals
as x1 < x1 < · · · < xd < xd induces a lexicographic ordering over all 3-literal
clauses. Let ϕi denote the i-th clause in this ordering. Thus, we can encode
an instance C of 3-SAT with d variables as a binary string σ(C) of length ℓ,
where the i-th bit of σ(C) is 1 if and only if ϕi appears in C.

We are ready to describe T . Given a set S ⊆ C of candidates, where
|C| = m, T first checks if m = ℓ + 2s + 4 for some s > 0 and ℓ =

(
2s
3

)
. If

this is not the case, it outputs the lexicographically first candidate in S and
stops. Otherwise, it checks whether cm ∈ S and for every i = 1, . . . , s, the
set S satisfies |S ∩ {cℓ+2i−1, cℓ+2i}| = 1. If this is not the case, it outputs
the lexicographically first candidate in S and stops. If the conditions above
are satisfied, it constructs an instance C = (X,Cl) of 3-SAT by setting
X = {x1, . . . , xs}, Cl = {ϕi | 1 ≤ i ≤ ℓ, ci ∈ S}. Next, it constructs a truth
assignment (ξ1, . . . , ξs) for C by setting ξi = ⊤ if cℓ+2i−1 ∈ S, cℓ+2i ̸∈ S and
ξi = ⊥ if cℓ+2i−1 ̸∈ S, cℓ+2i ∈ S. Finally, if C(ξ1, . . . , ξs) = ⊤, it outputs cm
and otherwise it outputs the lexicographically first candidate in S. Clearly,
T is simple and polynomial-time computable, and hence the problem T ◦ F -
Manipulation is in NP for any polynomial-time computable rule F (and,
in particular, for Borda, Maximin and Copeland). In the rest of this section,
we will show that T ◦ F -Manipulation is NP-hard for all these rules.



4.1. BORDA AND OTHER SCORING RULES 49

4.1 Borda and other scoring rules
We will first consider the Borda rule. We will then show that essentially the
same proof works for a large class of scoring rules. To simplify notation, in
the proof of Lemma 4.1.1 and Theorem 4.1.2 we will denote the Borda score
of a candidate x in a preference profile R by s(R, x).

Lemma 4.1.1. For any set of candidates C = {c1, . . . , cm} with m ≥ 4 and
any vector (β1, . . . , βm−1) with βi ∈ {0, 1, . . . ,m} for i = 1, . . . ,m − 1 and
β1 > 0, we can efficiently construct a preference profile R = (R1, . . . , Rn′)
with n′ = m(m − 1) voters such that for some K ≥ m2 + m + 1 and some
u ≤ m(m − 1) the Borda scores of all candidates satisfy s(R, ci) = K + βi

for i = 1, . . . ,m− 1 and s(R, cm) = u.

Proof. For convenience, we will reformulate our problem as a bin-packing
problem by associating the candidates with bins, and scores distributed by
each voter with items. We will first argue that if we have m(m− 1) items of
size i for each i = 0, . . . ,m− 1, then we can place the same number of items
in each bin so that the size of the i-th bin is the desired value of s(R, ci).
We will then show that given any assignment of items into bins such that
every bin holds the same number of items, we can construct a corresponding
preference profile (i.e., match items to the voters so that no voter places
two items in the same bin). We remark that the latter result has also been
proved in Theorem 3.1 in [12]; however, we provide a much simpler proof
that generalizes easily to arbitrary scoring rules.

Let us assume that we have m(m− 1) items of each size. First, for each
i = 2, . . . ,m − 1, let us place m items of size i into each of the first m − 1
bins. At this point, each of these bins contains m(m− 2) items and its size
is m2(m−1)

2
−m. We now place βi items of size 1 and m − βi items of size 0

into the i-th bin for i = 1, . . . ,m − 1, bringing each of the first m − 1 bins
to its target size. We are left with m(m− 1) items of size 0 and 1, which we
will place in the last bin. Clearly, at this point each bin contains m(m− 1)

item. Set K = m2(m−1)
2

− m, and let u be the current size of the last bin.
Clearly, this placement of items satisfies our constraints.

We will now show how to extract a preference profile from this assignment
of items to bins. Our proof works for any assignment in which the number
of items in each bin is the same. We proceed in stages: at each stage we
construct one voter and remove the respective items from all bins. We need
to argue that at each stage we can construct a new voter, i.e., pick one



50 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULES

item from each bin so that all these items have different sizes. Then, after
m(m− 1) stages this algorithm produces the target preference profile.

The proof proceeds by induction. The basis of induction is easy: we can
pick one item of size 0 from the last bin, one item of size 1 from the first bin
(recall that we assume that β1 > 0), and each other item size is guaranteed
to appear in all bins, so we can pick the remaining items easily.

For the induction step, suppose that we have already constructed i voters.
Then currently we have m(m−1)−i items of each size, and each bin contains
m(m− 1)− i items. We construct a bipartite graph whose vertices are item
sizes and bins, and there is an edge from an item size to a bin if this bin
currently contains an item of that size. We claim that this graph satisfies
the conditions of Hall’s theorem [45]. Indeed, pick a k ≤ m and consider a
collection of k different item sizes. If all items with these sizes appear in at
most k− 1 bins, then these bins contain k(m(m− 1)− i) items, so some bin
must contain at least k

k−1
(m(m − 1) − i) items, a contradiction. Thus, by

Hall’s theorem, this graph contains a complete bipartite matching. Clearly,
any such matching corresponds to a voter. Thus, we construct the (i+ 1)-st
voter and remove the corresponding items from the bins.

Theorem 4.1.2. T ◦ Borda-Manipulation≻ is NP-hard.

Proof. Suppose that we are given an instance C of 3-SAT with s variables.
Note that this instance can be encoded by a binary vector (σ1, . . . , σℓ), where
ℓ =

(
2s
3

)
, as described in the construction of T : σi = 1 if and only if C con-

tains the i-th 3-variable clause with respect to the lexicographic order. We
will now construct an instance of our problem with m = ℓ + 2s + 4 candi-
dates c1, c2, . . . , cm. For readability, we will also denote the first ℓ candidates
by u1, . . . , uℓ, the next 2s candidates by x1, y1, . . . , xs, ys, and the last four
candidates by d1, d2, w, and c.

Let U = {u1, . . . , uℓ}, let Q = {ci ∈ U | σi = 1}, and let q = |Q|. For
convenience, we renumber the candidates in U so that Q = {u1, . . . , uq}.

We will now use Lemma 4.1.1 to construct a preference profile R′ =
(R1, . . . , Rn−1) with the following scores:

• s(R′, w) = K +m, s(R′, c) = K + 1;

• s(R′, ui) = K +m− i for i = 1, . . . , q;

• s(R′, ui) = K for i = q + 1, . . . , ℓ;

• s(R′, xi) = s(R′, yi) = K + i+ 1 for i = 1, . . . , s;



4.1. BORDA AND OTHER SCORING RULES 51

• s(R′, d1) = K, s(R′, d2) = u,

where K > m2 +m+ 1 and u ≤ m(m− 1).
Now, consider an election with the set of candidates C and the preference

profile R1, . . . , Rn, where R1, . . . , Rn−1 are constructed above and the pref-
erences Rn of the last voter (who is also the manipulating voter) are given
by

c ≻ w ≻ x1 ≻ y1 ≻ . . . ≻ xs ≻ ys ≻ u1 ≻ . . . ≻ uℓ ≻ d1 ≻ d2.

Observe that if the manipulator votes truthfully, then w wins. Thus, a
manipulation is successful if and only if voter n manages to vote so that c
gets elected.

Suppose first that we have started with a “yes”-instance of 3-SAT, and
let (ξ1, . . . , ξs) ∈ {⊤,⊥}s be the corresponding truth assignment. For i =
1, . . . , s, set zi = xi if ξi = ⊤ and zi = yi if ξi = ⊥. Suppose that the
manipulator submits a vote L in which he ranks c, z1, . . . , zs in the top s+1
positions (in this order), uq, . . . , u1, w in the bottom q + 1 positions (in this
order), and all other candidates in the remaining positions in between.

It is not hard to see that in this case the candidates c, w, z1, . . . , zs and
all candidates in Q get K+m points, while all other candidates get less than
K + m points. Thus, the set of tied candidates S is Q ∪ {c, w, z1, . . . , zs}.
Therefore, given the set S, our tie-breaking rule will reconstruct C, check
whether z1, . . . , zs encode a satisfying truth assignment for C (which is in-
deed the case), and output cm = c. Thus, in this case L is a successful
manipulation.

Conversely, suppose that n submits a vote L so that c gets elected. Since
we have s(R′, w) − s(R′, c) = m − 1, it follows that L ranks c first and w
last, and hence both of them get K +m points. Similarly, we can show by
induction on i that for all i = 1, . . . , q it holds that n ranks ui in the (m− i)-
th position; thus, each candidate in Q also gets K +m points. Moreover, all
other candidates in U \Q get less than K +m points, i.e., the manipulator
cannot change the formula encoded by the set of tied candidates. Let S be
the set of all candidates with the top score. Since c wins the election, it has
to be the case that the set S ∩ {x1, y1, . . . , xs, ys} encodes a satisfying truth
assignment for C, i.e., C is satisfiable. Thus, the proof is complete.

It is not hard to generalize the result of Theorem 4.1.2 to all families of
scoring vectors (αm)∞m=1, where αm = (αm

1 , . . . , α
m
m) ∈ Nm, and the coordi-

nates of each scoring vector satisfy the following conditions:



52 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULES

(1) αm
1 > · · · > αm

m;
(2) αm

m−1 = 1, αm
m = 0;

(3) there exists a polynomial p = p(m) such that αm
i ≤ p(m) for all m ≥ 1

and all i ≤ m.

That is, we require each scoring vector to be faithful and polynomially
bounded, as well as to satisfy αm

m−1 = 1, αm
m = 0.

Indeed, in the proof of Theorem 4.1.2, we can modify the construction of
the non-manipulators’ preference profile R′ by requiring

• s(R′, w) = K + αm
1 + 1;

• s(R′, c) = K + 1;

• s(R′, ui) = K + αm
1 − αm

m−i + 1 for i = 1, . . . , q;

• s(R′, ui) = K for i = q + 1, . . . , ℓ;

• s(R′, xi) = s(R′, yi) = K + αm
1 − αm

i + 1 for i = 1, . . . , s;

• s(R′, d1) = K;

• s(R′, d2) = u,

where K − u > αm
1 , and s(R′, z) denotes the score of a candidate z with

respect to the scoring rule Fα. Assuming that such a profile can be con-
structed in polynomial time, the rest of the proof of Theorem 4.1.2 goes
through as long as the scoring vector is faithful. To construct R′, we modify
the statement of Lemma 4.1.1 by requiring 0 ≤ βi ≤ αm

1 +1 and K−u > αm
1 ,

and set the number of voters to (αm
1 + 1)(m − 1) (which is polynomial by

condition (3)). This version of Lemma 4.1.1 can be proved in essentially the
same way as the original Lemma 4.1.1; the proof uses condition (2) and the
observation that condition (1) implies αm

i ≥ m − i. Thus, we obtain the
following corollary.

Corollary 4.1.3. For any family of scoring rules (Fαm)∞m=1 such that the
corresponding family of scoring vectors (αm)∞m=1 satisfies conditions (1)–(3)
it holds that T ◦ Fαm-Manipulation≻ is NP-complete.

Theorem 4.1.2 can also be extended to scoring rules with non-faithful
scoring vectors that satisfy conditions (2) and (3), as long as they have suf-
ficiently many non-zero coordinates. However, the proof will have to be



4.1. BORDA AND OTHER SCORING RULES 53

modified by adding dummy candidates. In particular, we can show that ma-
nipulating the composition of T and k-approval is NP-hard as long as k and
m are polynomially related (i.e., m ≤ q(k) for some polynomial q). Similarly,
we can remove condition (2) by altering the tie-breaking rule T . We omit
the formal proofs of these statements, as they are tedious, yet conceptually
similar to the proof of Theorem 4.1.2.

On the other hand, while condition (3) does not seem essential, in the
sense that it is plausible that scoring rules with exponentially large coordi-
nates are also hard to manipulate under suitable polynomial-time computable
tie-breaking rules, the current proof strategy will not work for this case. In-
deed, for such scoring vectors the preference profiles constructed in the proof
of (an analogue of) Lemma 4.1.1 may have exponentially many voters.

Note, however, that we cannot hope to prove an analogue of Theo-
rem 4.1.2 for all scoring rules as long as we insist that the tie-breaking rule
is simple: we have to require that the scoring vector has a superlogarithmic
number of non-zero coordinates. Indeed, if the number of non-zero coordi-
nates k satisfies k = O(logm), the manipulator can simply try all possible
placements of the candidates into the top k positions in polynomial time.
This strategy works for any simple polynomial-time tie-breaking rule, since
the set of tied candidates only depends on the top k positions in the manipu-
lator’s vote. This remark can be applied, for instance, to k-approval. On the
other hand, if we drop the simplicity requirement, there exists a tie-breaking
rule T ′ for which even Plurality is hard to manipulate. Informally, T ′ inter-
prets the set of winners as a boolean formula and views the manipulator’s
vote as a truth assignment.

Theorem 4.1.4. There exists a tie-breaking rule T ′ such that T ′ ◦Plurality-
Manipulation≻ is NP-complete.

Proof. Suppose |C| = m. First we will construct the tie-breaking rule T ′.
Given a set S ⊆ C of candidates, T ′ first checks if m = ℓ + s + 2 for some
s > 0 and ℓ =

(
2s
3

)
. If this is not the case, it outputs the lexicographically

first candidate in S and stops. After that T ′ checks whether cm ∈ S and if
this is not the case, it outputs the lexicographically first candidate in S and
stops. Otherwise, it considers the n-th (last) vote Rn. Set S ′ consists of all
candidates that are ranked before cm−1 with the exception of the candidate
at the first position.

Recall that an instance C of 3-SAT with s variables can be encoded by
a binary vector (σ1, . . . , σℓ) as described in Theorem 4.1.2. If cm ∈ S, then



54 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULES

T ′ constructs an instance C = (X,Cl) of 3-SAT where X = {x1, . . . , xs} and
Cl is encoded by the string {σi = 1 | 1 ≤ i ≤ ℓ, ci ∈ S}. Next, it constructs
a truth assignment (ξ1, . . . , ξs) for C by setting ξi = ⊤ if cℓ+i ∈ S ′ and
ξi = ⊥ otherwise. Finally, if C(ξ1, . . . , ξs) = ⊤, it outputs cm and otherwise
it outputs the lexicographically first candidate in S. This completes the
description of T ′.

Given an instance C of 3-SAT with s variables such that (⊥, . . . ,⊥) is
not a satisfying assignment for C we construct an instance of T ′ ◦ Plurality-
Manipulation≻ with ℓ + s + 2 candidates as follows. For readability, we
denote the first ℓ candidates by u1, . . . uℓ, the next s candidates by x1, . . . , xs,
and the last two candidates by w and c.

Let U = {u1, . . . , uℓ}, let Q = {ci ∈ U | σi = 1}, and let q = |Q|. For
convenience, we renumber the candidates in U so that Q = {u1, . . . , uq} and
u1 precedes u2, . . . , uq in the lexicographic ordering of the candidates.

Using at most 3ℓ + 2 votes we can obtain a profile R′ = (R1, . . . , Rn−1)
such that the scores of candidates in Q are equal to 3, the score of c is equal
to 2 and the scores of all other candidates are 0. Let the manipulator’s
preference order Rn be

c ≻ w ≻ x1 ≻ . . . ≻ xs ≻ u1 ≻ . . . ≻ uℓ.

The instance of T ′ ◦Plurality-Manipulation≻ is (C,R) with R = (R′, Rn).
Suppose that the manipulator submits his truthful vote. In this case the

set of tied candidates is Q∪{c} and S ′ = ∅. Therefore, u1 is the winner of the
election. Evidently, for any vote L the winner of the election (C, (R−n, L))
has at least 3 points and, thus, he is a candidate from the set Q∪{c}. Thus,
our election is a “yes”-instance of T ′ ◦Plurality-Manipulation≻ if and only
if c can be made the winner.

Suppose first that we have started with a “yes”-instance of 3-SAT, and let
(ξ1, . . . , ξs) ∈ {⊤,⊥}s be the corresponding truth assignment. Set X ′ = {xi |
ξi = ⊤}. Suppose that the manipulator submits a vote L in which he ranks
c in top position followed by candidates from X ′ in positions 2, . . . , |X ′|+ 1
(ranked according to his preference order), w in position |X ′| + 2, and all
other candidates in the remaining positions in arbitrary order.

It is not hard to see that in this case candidate c and all candidates in
Q get 3 points, while all other candidates get 0 points. Thus, the set of tied
candidates S is Q ∪ {c}. Therefore, given the set S, our tie-breaking rule
will reconstruct C, check whether X ′ encodes a satisfying truth assignment



4.2. MAXIMIN 55

for C (which is indeed the case), and output cm = c. Thus, in this case L is
a successful manipulation.

Conversely, suppose that n submits a vote L so that c gets elected. Since
the score of c in R′ is 2 and the score of each candidate in Q is equal to
3, it follows that L ranks c first and hence all candidates in Q ∪ {c} get 3
points in (R′, L). All other candidates in C \ (Q∪ {c}) get 0 points, i.e., the
manipulator cannot change the formula encoded by the set of tied candidates.
Let X ′ be the set of all candidates who are ranked between c and w. Since
c wins the election, it has to be the case that the set X ′ encodes a satisfying
truth assignment for C, i.e., C is satisfiable. Thus, the proof is complete.

4.2 Maximin

We will now show that T ◦Maximin is hard to manipulate using essentially
the same construction as in the proof of Theorem 4.1.2.

Theorem 4.2.1. T ◦Maximin-Manipulation≻ is NP-hard.

Proof. Given a 3-SAT formula C, we construct an election E = (C,R) where
C, U , Q and q are as in the proof of Theorem 4.1.2.

We can encode an election over a set of candidates C as a matrix {a(i, j)}i,j∈C ,
where for all i ̸= j the entry a(i, j) equals the number of voters that prefer i
to j. By Corollary 2.3.5, for some n = poly(m) we can efficiently construct a
preference profile R′ = (R1, . . . , Rn−1) corresponding to the following matrix:

• a(ui, ui+1) = b+ 1 for i = 1, . . . , q;

• a(ui, ui+1) = b− 1 for i = q + 1, . . . , ℓ;

• a(xi, yi) = a(yi, ui) = b for i = 1, . . . , s;

• a(c, w) = a(d1, c) = b, a(w, d1) = b+ 1;

• a(c, d2) = g + 1;

• a(x, y) = g + b− a(y, x) if a(y, x) has been defined above;

• a(x, y) = b+g
2

for all other pairs (x, y) ∈ C × C,



56 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULES

where uℓ+1 := u1, b < m, g > 2m, and b + g = n − 1. Now, consider an
election with the set of candidates C and n voters, where for i ≤ n − 1 the
preferences of the i-th voter are given by Ri, and the preferences of the last
voter (who is also the manipulating voter) are given by

c ≻ w ≻ d1 ≻ d2 ≻ x1 ≻ y1 ≻ . . . ≻ xs ≻ ys ≻ uℓ ≻ . . . ≻ u1.

Observe that if voter n votes truthfully, then a(w, d1) = b+2, a(w, x) > b+2
for all x ∈ C \ {d1}, while the Maximin score of any other candidate is at
most b + 1, so w is the election winner. Hence, a manipulation is successful
if and only if n manages to vote so that c gets elected. We will now show
that this is possible if and only if we have started with a “yes”-instance of
3-SAT. Suppose first that we have started with a “yes”-instance of 3-SAT,
and let (ξ1, . . . , ξs) ∈ {⊤,⊥}s be the corresponding truth assignment. For
i = 1, . . . , s, set zi = xi if ξi = ⊤ and zi = yi if ξi = ⊥. Suppose that voter n
submits a vote L given by

c ≻ z1 ≻ . . . ≻ zs ≻ uℓ ≻ . . . ≻ u1 ≻ . . . ≻ w,

where the candidates in C \ (U ∪{c, w, z1, . . . , zs}) are ranked in an arbitrary
order between u1 and w. It is easy to see that after this vote the Max-
imin scores of c, w, z1, . . . , zs and the candidates in Q are b + 1, while all
other candidates have at most b Maximin points. As argued in the proof of
Theorem 4.1.2, this implies that L is a successful manipulation.

Conversely, suppose that voter n submits a vote L so that c gets elected.
Before the manipulator votes, there are candidates whose Maximin score is
b + 1. Therefore, the manipulator needs to ensure that c’s Maximin score
is b + 1, and the set of the tied candidates includes all candidates whose
Maximin score is b+1 prior to n’s vote. That is, w, u1, . . . , uq will be among
the winners and uq+1, . . . , uℓ will not, because their scores prior to n’s vote
do not exceed b − 1. Hence, c is not the unique winning candidate. Let S
be the set of tied candidates. Since c wins the election, it has to be the case
that the set S ∩ {x1, y1, . . . , xs, ys} encodes a satisfying truth assignment for
the formula encoded by Q, i.e., C, and thus C is satisfiable. Thus, the proof
is complete.

4.3 Copeland
For our proof for Copelandα we need to change the tie-breaking rule a little.
The tie-breaking rule T ′′ differs from T in the number of dummy candidates.



4.3. COPELAND 57

T ′′ checks whether the number of candidates equals to ℓ+2s+6 and afterwards
it works exactly as T .

Now we prove the following technical lemma, which is needed for the
proof of the hardness result for Copeland.

Lemma 4.3.1. Let m = ℓ + 2s + 6, ℓ =
(
2s
3

)
and s ≥ 3. Then for any

0 < q ≤ ℓ
2
− 5 there exists a directed graph G with the vertex set G ∪ X ∪

Y ∪ {w, c, d1, d2, d3, d4}, where G = {g1, . . . , gℓ}, X = {x1, . . . , xs}, Y =
{y1, . . . , ys}, such that the outdegree dout and the indegree din of each vertex
of G satisfy

• dout(gi) =
m
2
+ 2, din(gi) =

m
2
− 3 for i = 1, . . . , q;

• dout(gi) =
m
2
, din(gi) =

m
2
− 1 for i = q + 1, . . . , ℓ;

• dout(x) = dout(y) = m
2
+ 1 and din(x) = din(y) = m

2
− 3 for all x ∈

X, y ∈ Y ;

• dout(w) =
m
2
+ 2, din(w) =

m
2
− 8;

• dout(c) =
m
2
+ 2, din(c) =

m
2
− 3;

• dout(d1) = dout(d2) =
ℓ
2
− q, din(d1) = din(d2) =

ℓ
2
+ q + 2s+ 4;

• dout(d3) =
ℓ
2
, din(d3) =

ℓ
2
+ 2s+ 4;

• dout(d4) = 1, din(d3) = m− 2.

Also, G does not contain arcs between xi and yi for any i = 1, . . . , s as
well as arcs between w and c, d1, d2, d3, d4 and G does not contain cycles
of length 2.

Proof. Order the vertices in G ∪X ∪ Y ∪ {c} as

g1 ≺ · · · ≺ gℓ ≺ x1 ≺ y1 ≺ · · · ≺ xs ≺ ys ≺ c

For each vertex u in this order, add arcs to the next ℓ
2
+ s mod ℓ + 2s + 1

vertices. Then for each j = 1, . . . , s remove the arc (xj, yj).
We obtain dout(gi) = dout(yj) = dout(c) = ℓ

2
+ s for all i = 1, . . . , ℓ,

j = 1, . . . , s and dout(xj) =
ℓ
2
+ s− 1 for all j = 1, . . . , s.

Next, we add arcs from w to y for all y ∈ Y and to gi for i = ℓ
2
− 4, . . . , ℓ

and from each remaining vertex of G ∪ X to w. Now the indegree and the
outdegree of w are as in the statement of the lemma.



58 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULES

Next, we add arcs from all x ∈ X and y ∈ Y to d1, d2, d3, d4. Now all the
vertices in X ∪ Y have desired properties.

At this stage we only need to set arcs between G ∪ {c} and d1, d2, d3, d4
and within the set d1, d2, d3, d4. First, we add arcs from all vertices of G∪{c}
to d4. Second, we add arcs from gi for i = 1, . . . , q and i = ℓ

2
+ 1, . . . , ℓ to

d1, d2; from gi for i = 1, . . . , ℓ
2

to d3. Also, we add arcs from g ℓ
2
−4, g ℓ

2
−3, g ℓ

2
−2

to d1 and from g ℓ
2
−1, g ℓ

2
to d2. (These arcs were not set earlier, because by

our assumption q < ℓ
2
− 5.) For all remaining pairs gi, dj for i = 1, . . . , ℓ and

j = 1, 2, 3 we add arcs from dj to gi. Also, we add arcs from c to d1, d2, d3.
Now, the vertices in G ∪ {c} have the requested properties.

The remaining arcs are set as follows. We add arcs from d1 to d2, d3, d4,
from d2 to d3, d4 and from d4 to d3. It is easy to see that d1, d2, d3, d4 have
the desired degrees.

Therefore, G has the requested properties.

Theorem 4.3.2. T ′′ ◦Copelandα-Manipulation≻ is NP-hard for any α ∈
[0, 1].

Proof. Given a 3-SAT formula C, we construct an election E = (C,R) where
C, U , Q and q are the same as in the proof of Theorem 4.1.2. Without loss
of generality we assume that q ≤ ℓ

2
− 5. We say that x safely wins a pairwise

election against y (and y safely loses a pairwise election against x) if at
least n

2
+ 2 voters prefer x to y. For any candidate x ∈ C, let SW(x) and

SL(x) denote the number of pairwise elections that x safely wins and safely
loses, respectively. By Corollary 2.3.5 and Lemma 4.3.1, we can construct a
preference profile R′ = (R1, . . . , Rn−1) with the following properties:

• SW(ui) =
m
2
+ 2, SL(ui) =

m
2
− 3 for i = 1, . . . , q;

• SW(ui) =
m
2
, SL(ui) =

m
2
− 1 for i = q + 1, . . . , ℓ;

• SW(xi) = SW(yi) =
m
2
+ 1 for i = 1, . . . , s;

• SL(xi) = SL(yi) =
m
2
− 3 for i = 1, . . . , s;

• SW(c) = m
2
+ 1, SL(c) = m

2
− 3;

• SW(w) = m
2
+ 2, SL(w) = m

2
− 8;

• SW(d1) = SW(d2) =
ℓ
2
− q, SL(d1) = SL(d2) =

ℓ
2
+ q + 2s+ 4;

• SW(d3) =
ℓ
2
, SL(d3) = ℓ

2
+ 2s+ 4;



4.4. RELATED WORK 59

• SW(d4) = 1, SL(d4) = m− 3;

• there is a tie between c and w, w and d1, d2, d3, d4, and xi and yi for
i = 1, . . . , s.

Now, consider an election with the set of candidates C and a set of n voters,
where for i ≤ n− 1 the preferences of the i-th voter are given by Ri, and the
preferences of the last voter (who is also the manipulating voter) are given
by

c ≻ w ≻ d1 ≻ d2 ≻ d3 ≻ d4 ≻ x1 ≻ y1 ≻ . . . ≻ xs ≻ ys ≻ uℓ ≻ . . . ≻ u1.

If the manipulator votes truthfully, then w wins. Hence, a manipulation is
successful if and only if n manages to vote so that c gets elected. We will
now show that this is possible if and only if we started with a “yes”-instance
of 3-SAT.

Suppose first that we have started with a “yes”-instance of 3-SAT, and
let (ξ1, . . . , ξs) ∈ {⊤,⊥}s be the corresponding truth assignment. For i =
1, . . . , s, set zi = xi if ξi = ⊤ and zi = yi if ξi = ⊥. Suppose that the
manipulator submits a vote L in which he ranks c, z1, . . . , zs in top s + 1
positions and places w last. It is easy to see that in the resulting election
c, w, z1, . . . zs, u1, . . . , uq have m

2
+ 2 points and all others candidates have at

most m
2
+1 points. Thus, the set of tied candidates S is Q∪{c, w, z1, . . . , zs}.

Therefore, given the set S, our tie-breaking rule will reconstruct C, check
whether z1, . . . , zs encode a satisfying truth assignment for C (which is in-
deed the case), and output cm = c. Thus, in this case L is a successful
manipulation.

Conversely, suppose that c wins. Since prior to the manipulator’s vote c
has m

2
+1 points and w and the candidates in Q have m

2
+2 points, it follows

that voter n ranks c above w and the set of tied candidates S contains c, w,
and all candidates in Q. On the other hand, it cannot contain any candidates
in U \ Q, as n’s vote cannot affect their scores. Thus, for c to win it has to
be the case that S ∩ {x1, y1, . . . , xs, ys} encodes a satisfying assignment for
the formula that corresponds to Q, i.e., C.

4.4 Related work
One can view the results in this chapter as a continuation of the line of work
suggested in [10, 19], namely, identifying minor tweaks to voting rules that



60 CHAPTER 4. DETERMINISTIC TIE-BREAKING RULES

make them hard to manipulate. Indeed, here we propose to “tweak” a voting
rule by combining it with an appropriate tie-breaking rule; arguably, such a
tweak affects the original rule less than the modifications proposed in [10]
and [19] (i.e., combining a voting rule with a preround or taking a “hybrid”
of the rule with itself or another rule).

4.5 Summary
We have explored the complexity of manipulating many common voting rules
under arbitrary polynomial-time tie-breaking procedures. We have shown
that Borda (and a large class of scoring rules), Maximin and Copeland
are NP-hard to manipulate under simple tie-breaking. Moreover, all of our
hardness reductions directly show hardness of both variants of the problem,
namely, F-Manipulation≻ and F-Manipulation. Also we have demon-
strated that there exists voting rules which are manipulable in polynomial
time under any simple tie-breaking rule, namely, Plurality. However, there
exists a (non-simple) tie-breaking rule such that its combination with Plu-
rality is NP-hard to manipulate.



Chapter 5

Optimal Voting Manipulation

5.1 The model
In this chapter, we study the problem of finding a successful manipulative
vote that minimizes the distance to the manipulator’s true preference order.
We consider this problem for three distances on votes, namely, the swap dis-
tance, the footrule distance and the maximum displacement distance (defined
below) and the following voting rules: scoring rules, Bucklin, Copeland, and
Maximin.

We begin by giving the definition of a distance.

Definition 5.1.1. A distance on a space X is a mapping d : X × X → R
that has the following properties for all x, y, z ∈ X:

(1) non-negativity: d(x, y) ≥ 0;

(2) identity of indiscernibles: d(x, y) = 0 if and only if x = y;

(3) symmetry: d(x, y) = d(y, x);

(4) triangle inequality: d(x, y) + d(y, z) ≥ d(x, z).

In this thesis, we will be interested in distances over votes, i.e., mapping of
the form d : L(C)×L(C) → R. In fact, since we are interested in asymptotic
complexity results, we will consider families of distances (dm)m≥1, where dm

is a distance over the space of all linear orderings of the set {c1, . . . , cm}.
Specifically, we will consider three such families (in the following definitions,
C = {c1, . . . , cm} and R and L are two preference orders in L(C), also denoted
as ≻R and ≻L):

61



62 CHAPTER 5. OPTIMAL VOTING MANIPULATION

Swap distance. The swap distance dswap(L,R) is given by

dswap(L,R) = |{(ci, cj) | ci ≻L cj and cj ≻R ci}|.

This distance counts the number of swaps of adjacent candidates needed
to transform L into R.

Footrule distance. Recall that r(cj, Ri) denotes the rank of candidate cj
in the preference order Ri: r(cj, Ri) = |{c ∈ C | c ≻i cj}|+ 1.
The footrule distance dfr(L,R) is given by

dfr(L,R) =
m∑
i=1

|r(ci, L)− r(ci, R)|.

This distance calculates by how much each candidate needs to be shifted
to transform L into R, and sums up all shifts.

Maximum displacement distance. The maximum displacement distance
dmd(L,R) is given by

dmd(L,R) = max
i=1,...,m

|r(ci, L)− r(ci, R)|.

This distance is similar to the footrule distance; the only difference is
that instead of summing up all shifts it only considers the maximum
shift.

It is not hard to verify that the swap distance, the footrule distance,
and the maximum displacement distance fulfill all distance axioms. It is
also known [15] that the swap distance and the footrule distance are always
within a factor of two from each other: we have dswap(L,R) ≤ dfr(L,R) ≤
2dswap(L,R) for any space of candidates C and any L,R ∈ L(C).

Recall that we assume that voter n is the manipulator. In this chapter
we assume that ties are broken adversarially, i.e., against the manipulator’s
wishes.

We will now formally describe our computational problem.

Definition 5.1.2. Let D = (dm)m≥1 be a family of integer-valued distances,
where dm is a distance over L({c1, . . . , cm}). Let F be a voting rule. An
instance of (D,F)-OptManipulation is given by an election (C,R) with
C = {c1, . . . , cm}, R = (R1, . . . , Rn), a candidate p ∈ C, and a positive
integer k. It is a “yes”-instance if there exists a vote L ∈ L(C) such that
F(R−n, L) = {p} and dm(Rn, L) ≤ k, and a “no”-instance otherwise.



5.1. THE MODEL 63

A few remarks are in order.

Remark 5.1.3. The problem (D,F)-OptManipulation is in NP as long
as all distances in D and the rule F are polynomial time computable: one
can guess a vote L and check that F(R−n, L) = {p} and dm(Rn, L) ≤ k. In
particular, it is in NP for all distance families and voting rules considered in
this thesis.

Remark 5.1.4. We formulated OptManipulation as a decision problem.
However, it also admits a natural interpretation as an optimization problem:
in this case, we are given an election (C,R) and a candidate p, and the goal
is to find the smallest value of k such that there exists a vote L ∈ L(C) at
distance at most k from Rn that satisfies F(R−n, L) = {p} (k is assumed to
be +∞ if there is no vote L with F(R−n, L) = {p}). In this version of the
problem, one can relax the optimality condition, and ask for an approximately
optimal manipulative vote: an algorithm is said to be a ρ-approximation
algorithm for (D,F)-OptManipulation, ρ ≥ 1, if, given an instance of
the problem for which the correct answer is k ∈ R ∪ {+∞}, it outputs
a value k′ that satisfies k ≤ k′ ≤ ρk. We will consider the optimization
version of OptManipulation (and prove hardness of approximaton results)
for Copeland and Maximin under swap distance (Sections 5.2) and footrule
distance (Section 5.3).

Remark 5.1.5. In our definition of OptManipulation, the manipulator
wants to make a specific candidate elected; the identity of this candidate is
given as a part of the instance description. An alternative approach would be
to ask if the manipulator can obtain what he considers a better outcome by
submitting a non-truthful vote, i.e., whether there is a vote L ∈ L(C) such
that dm(Rn, L) ≤ k and F(R−n, L) ≻n F(R); we will refer to this problem
as OptManipulation≻ (see discussion in Chapter 2). Clearly, an efficient
algorithm for OptManipulation can be used to solve OptManipula-
tion≻, by determining the winner w under truthful voting, and then running
the OptManipulation algorithm for all candidates that the manipulator
ranks above w. Hence, OptManipulation is at least as hard as OptMa-
nipulation≻, In what follows, we will provide polynomial-time algorithms
for the “harder” problem OptManipulation. On the other hand, all our
NP-hardness results apply to the “easier” problem OptManipulation≻: in
fact, in all our hardness proofs the manipulator’s goal will be to make his
favorite candidate the election winner. Using OptManipulation as our



64 CHAPTER 5. OPTIMAL VOTING MANIPULATION

base problem allows for a direct comparison between the problem of finding
the optimal manipulation and the swap bribery problem (see Section 5.5).

5.2 Swap distance

We start by considering optimal manipulability with respect to what is per-
haps the best known distance on votes, namely, the swap distance dswap.

5.2.1 Scoring rules and Bucklin

The main result of this section is a simple polynomial-time algorithm that
solves OptManipulation for swap distance and an arbitrary scoring rule;
we then show that this algorithm can be adapted to work for the Bucklin
rule.

An observation that will be important for our analysis of scoring rules
in this and subsequent sections is that once we select the position of the
candidate p whom manipulator tries to make the winner, we know the final
score of p. Thus, once p’s position is fixed, it remains to rank other candidates
so that their scores remain strictly lower than that of p (recall that we use
adversarial tie-breaking). More formally, let sα(c) be the total number of
points a candidate c receives from non-manipulators under a voting rule Fα;
we will say that a position j is safe for a candidate cℓ given that p is ranked
in position f if sα(cℓ) + αj < sα(p) + αf . Clearly, for a manipulation to be
successful, all candidates other than p should be ranked in positions that are
safe for them.

Fix a scoring rule Fα with α = (α1, . . . , αm). Our algorithm relies on a
subroutine A that given an election (C,R) with |C| = m, a candidate p, and
a position f in n’s vote, finds an optimal manipulation for n among all votes
that rank p in position f . More formally, let

Lf (α) = {L ∈ L(C) | Fα(R−n, L) = {p}, r(p, L) = f};

our subroutine outputs

• ⊥ if Lf (α) is empty;

• a vote L̂ such that dswap(L̂, Rn) ≤ dswap(L,Rn) for all L ∈ Lf (α) oth-
erwise.



5.2. SWAP DISTANCE 65

Given A, we can easily solve (dswap,Fα)-OptManipulation: we run A for
all values of f between 1 and m and output “yes” if at least one of these
calls returns a vote L̂ with dswap(L̂, Rn) ≤ k. Thus the running time of our
algorithm is m times the running time of A. It remains to describe A.

Theorem 5.2.1. For any α = (α1, . . . , αm) ∈ Z+
m there exists a procedure

A that takes an n-voter m-candidate election (C,R), a candidate p ∈ C, and
a position f ∈ {1, . . . ,m} as its input, outputs ⊥ if Lf (α) = ∅ and a vote
L̂ that satisfies dswap(L̂, Rn) ≤ dswap(L,Rn) for all L ∈ Lf (α) otherwise, and
runs in time O(m2 log(nαmax)).

Proof. For convenience, let us renumber the candidates in C so that cm = p
and c1 ≻n . . . ≻n cm−1. Our algorithm proceeds in m − 1 rounds. In the
ℓ-th round, ℓ = 1, . . . ,m− 1, we determine the final position of candidate cℓ;
we then say that this candidate is pinned to that position, and the position
becomes unavailable. Initially, all candidates are unpinned and all positions
are available.

Initialization: We pin p to position f (thus f becomes unavailable), and
then fill the remaining positions with the candidates in C \ {p}, in the order
of n’s preferences, i.e., placing c1 in the highest available position and cm−1

in the lowest available position. In what follows, we will shift the candidates
around in order to make p the winner.

Round ℓ, ℓ = 1, . . . ,m − 1 Suppose that in the beginning of the round
candidate cℓ is ranked in position j. If j is safe for cℓ, we pin cℓ to position j
(which then becomes unavailable) and proceed to the next round. Otherwise,
we find the smallest value of h such that position h is available and safe for
cℓ; if no such value of h can be found, we terminate and return ⊥. If a
suitable value of h has been identified (note that h > j), then cℓ gets pinned
to position h, and all unpinned candidates in positions j+1, . . . , h are shifted
one available position upwards.

If A does not abort (i.e., return ⊥), it terminates at the end of the (m−1)-
st round and returns the vote obtained at that point. Each round involves
O(m) score comparisons and shifts, and each comparison can be performed in
time O(log(nα1)); this implies the bound of O(m2 log(nα1)) on the running
time. It remains to argue that A works correctly.

The following observation will be useful for our analysis.



66 CHAPTER 5. OPTIMAL VOTING MANIPULATION

Lemma 5.2.2. Suppose that at the beginning of round ℓ candidate cℓ is
ranked in position j. Then positions 1, . . . , j − 1 are not available at that
point.

Proof. An easy inductive argument shows that the set of candidates ranked
above cℓ at the beginning of round ℓ is a subset of {c1, . . . , cℓ−1}. For each
t = 1, . . . , ℓ − 1, candidate ct is pinned in round t and therefore by the
beginning of round ℓ his position is unavailable. As this holds for all positions
above j, the lemma is proved.

We split the rest of proof into two lemmas.

Lemma 5.2.3. If the subroutine A(C,R, p, f) outputs a vote L̂ then L̂ ∈
Lf (α), and if it outputs ⊥ then Lf (α) = ∅.

Proof. By construction, if A outputs a vote L̂, then r(p, L̂) = f . Moreover,
every other candidate cj can only be pinned to a position that is safe for
him. Since A returns L̂ only when all candidates in C are pinned, we have
Fα(R−n, L̂) = {p}, and hence L̂ ∈ Lf (α).

Now, suppose that A(C,R, p, f) =⊥. This means that for some candidate
cℓ, ℓ ≤ m − 1, our algorithm was unable to find an available safe position.
Let L̂ be the vote constructed by the algorithm by the beginning of round ℓ,
and let h be the lowest available position at the beginning of round ℓ.

Suppose for the sake of contradiction that Lf (α) ̸= ∅, and let L be some
vote in Lf (α). Since the algorithm has output ⊥, position h is not safe for cℓ.
Thus, in L candidate cℓ is ranked in position h + 1 or lower. Consequently,
some candidate ct that is ranked in position h + 1 or lower in L̂ must be
ranked in position h or higher in L. Since positions h + 1, . . . ,m are not
available at the beginning of round ℓ, they are occupied by candidates who
were pinned to these positions in earlier rounds (and, possibly, by p), i.e.,
t < ℓ. This means that position h was available when ct was processed, but
the algorithm chose not to place ct in position h. By Lemma 5.2.2, it was
not the case that ct was pinned to the position it was in at the beginning of
round t. Hence, the reason why ct was ranked in position h+ 1 or lower was
that h (and, a forteriori, any position above h) was not safe for ct. On the
other hand, we have argued that ct is ranked in position h or higher in L, a
contradiction with L ∈ Lf (α). Thus it has to be the case that Lf (α) = ∅.

Lemma 5.2.4. If A(C,R, p, f) = L̂, then dswap(L̂, Rn) ≤ dswap(L,Rn) for
all L ∈ Lf (α).



5.2. SWAP DISTANCE 67

Proof. We will prove a somewhat stronger statement: there is a unique op-
timal vote in Lf (α), and this vote coincides with L̂. Suppose for the sake of
contradiction that there exists a vote L ∈ Lf (α) such that dswap(L,Rn) ≤
dswap(L

′, Rn) for all L′ ∈ Lf (α) and L ̸= L̂. Let cℓ be the first candidate
ranked differently by L and L̂, i.e., ℓ = min{j | r(cj, L) ̸= r(cj, L̂)}.

Suppose first that r(cℓ, L̂) > r(cℓ, L). It cannot be the case that cℓ remains
in place during round ℓ: by Lemma 5.2.2 all positions above cℓ in L̂ are filled
with candidates in {c1, . . . , cℓ−1}, and r(cj, L̂) = r(cj, L) for j < ℓ. Hence, cℓ
has to move during round ℓ. Now, r(cℓ, L̂) is the highest available position
that is safe for cℓ. Since r(cℓ, L) is necessarily safe, it follows that r(cℓ, L)
must be unavailable at the beginning of round ℓ. However, this means that
there is a candidate cj, j < ℓ, pinned to this position in L̂, and all such
candidates are ranked in the same positions in L and L̂, a contradiction.

Thus, it has to be the case that r(cℓ, L̂) < r(cℓ, L). Let cj be the candidate
ranked in position r(cℓ, L̂) in L; we have j > ℓ by our choice of ℓ. Let L′ be
the vote obtained from L by swapping cℓ and cj. We claim that L′ ∈ Lf (α)
and dswap(L

′, Rn) < dswap(L,Rn), thus contradicting our choice of L.
To see that L′ ∈ Lf (α), observe that after the swap the scores of all

candidates other than cℓ do not go up, and r(cℓ, L
′) = r(cj, L) = r(cℓ, L̂),

so position r(cℓ, L
′) is safe for cℓ. It remains to prove that dswap(L

′, Rn) <
dswap(L,Rn). To this end, we need and additional definition: we say that a
pair of candidates (c, c′) is an inversion in a vote R if r(c, Rn) < r(c′, Rn),
but r(c, R) > r(c′, R). Clearly, the swap distance from R to Rn is simply
the number of inversions in R. Thus, our goal is to show that L′ has fewer
inversions than L.

Observe first that (cj, cℓ) is an inversion in L, but not in L′. Among all
other pairs of candidates, it suffices to consider pairs of the form (cj, c) and
(c, cℓ), where c is ranked between cj and cℓ in L; any other pair of candidates
is an inversion in L if and only if it is an inversion in L′.

Since j > ℓ, we have three possibilities:

cℓ ≻n c ≻n cj. In this case, both (cj, c) and (c, cℓ) are inversions in L, but
neither of them is an inversion in L′.

cℓ ≻n cj ≻n c. In this case, (c, cℓ) is an inversion in L, but (cj, c) is not.
On the other hand, (c, cj) is an inversion in L′, but (cℓ, c) is not.

c ≻n cℓ ≻n cj. In this case, (cj, c) is an inversion in L, but (c, cℓ) is not. On
the other hand, (cℓ, c) is an inversion in L′, but (c, cj) is not.



68 CHAPTER 5. OPTIMAL VOTING MANIPULATION

Thus, for any candidate c ranked between cj and cℓ in L the pairs involving
c contribute at least as much to the inversion count of L as to that of L′. By
taking into account the pair (cj, cℓ) itself, we conclude that dswap(L

′, Rn) <
dswap(L,Rn), a contradiction.

It follows that L̂ is the optimal vote in Lf (α) and the proof of the lemma
is complete.

The theorem now follows easily from Lemmas 5.2.3 and 5.2.4.

We have already explained how to convert the subroutine A into an al-
gorithm for OptManipulation. Thus, we obtain the following corollary.

Corollary 5.2.5. For every polynomial-time computable family
F̂ = (Fm

α )m=1,... of scoring rules, the problem (dswap, F̂)-OptManipulation
is in P.

For the Bucklin rule, the algorithm is essentially the same; the only dif-
ference is in the definition of a safe position.

Theorem 5.2.6. (dswap,Bucklin)-OptManipulation is in P.

Proof. Consider an election (C,R). Just as in the proof of Theorem 5.2.1,
it suffices to design a procedure that, for a given value of f ∈ {1, . . . ,m},
searches for the best manipulative vote that ranks p in position f and returns
⊥ if no such vote can make p the unique winner.

Fix a particular value of f , and let Lf = {L ∈ L(C) | r(p, L) = f}.
Let Lf be an arbitrary vote in Lf . Let r∗ be the smallest value of r such
that p’s r-approval score in (C, (R−n, Lf )) is greater than n/2; note that r∗

does not depend on the choice of Lf . For every candidate c ∈ C, and every
r = 1, . . . ,m, let sr(c) denote c’s r-approval score in (C,R−n), and let s be
p’s r∗-approval score in (C, (R−n, Lf )); note that s > n/2.

To make p the winner, we need to ensure that r∗ is the Bucklin winning
round and that the r∗-approval score of any candidate c ∈ C \ {p} does not
exceed s. Thus, if there is a candidate c ∈ C \ {p} such that sr(c) > n/2
for some r < r∗ or sr∗(c) ≥ s, then there is no vote in Lf that makes p the
unique election winner, so we return ⊥ and stop.

Now, suppose that this is not the case. Set

C1 = {c ∈ C \ {p} | sr∗(c) = s− 1},



5.2. SWAP DISTANCE 69

C2 = {c ∈ C \ (C1 ∪ {p}) | sr(c) = ⌊n
2
⌋ for some r < r∗}.

Intuitively, candidates from C1 can prevent p from winning by receiving the
same r∗-approval score as p, which happens if they are ranked in the top
r∗ positions. Similarly, candidates from C2 can prevent p from winning by
receiving a strict majority vote in an earlier round; this happens if they are
ranked in the top r∗ − 1 positions. Thus, p is the unique Bucklin winner in
the election where the manipulator submits a vote L ∈ Lf if and only if

• r(c, L) > r∗ for all c ∈ C1 and

• r(c, L) ≥ r∗ for all c ∈ C2.

We will say that a position j is safe for a candidate c ∈ C \ {p} if

• c ̸∈ C1 ∪ C2 or

• c ∈ C1 and j > r∗ or

• c ∈ C2 and j ≥ r∗.

The argument above shows that p is the unique Bucklin winner in the election
(C, (R−n, L)) if and only if in L each candidate c ̸= p is ranked in a position
that is safe for him.

Given this definition of a safe position, we can apply the algorithm for
scoring rules described in the proof of Theorem 5.2.1; note that this algorithm
operates in terms of safe positions rather than actual scores. The proofs
of correctness and optimality are identical to those for scoring rules (these
proofs, too, are phrased in terms of safe positions).

5.2.2 Maximin and Copeland

For both Maximin and Copeland, finding an optimal manipulation with re-
spect to the swap distance turns out to be NP -hard. In fact, we will prove
that the optimization versions of these problems (see Remark 5.1.4) cannot
be approximated up to a factor of δ log |C| for some δ > 0 unless P=NP;
this implies, in particular, that the decision versions of these problems are
NP-hard (and hence, by Remark 5.1.3, NP-complete).

We provide reductions from the optimization version of the Set Cover
problem [25]. Recall that an instance of Set Cover is given by a ground



70 CHAPTER 5. OPTIMAL VOTING MANIPULATION

set G = {g1, . . . , gt} and a collection S = {S1, . . . , Sr} of subsets of G. In the
optimization version of the problem, the goal is to find the smallest value of
h such that G can be covered by h sets from S; we denote this value of h by
h(G,S). More formally, we are interested in the smallest value of h such that
G = ∪S′∈S′S ′ for some collection of subsets S ′ ⊆ S with |S ′| = h. A ρ-app-
roximation algorithm for Set Cover is a procedure that, given an instance
(G,S) of set cover, outputs a value h′ that satisfies h(G,S) ≤ h′ ≤ ρ·h(G,S).
There exists a δ > 0 such that Set Cover does not admit a polynomial-time
δ log t-approximation algorithm unless P=NP [38]. The inapproximability
result still holds if we assume that (1) G = ∪S∈SS; (2) t ≤ r; and (3) r ≤ tK

for some positive constant K. Indeed, if (1) fails, the instance does not admit
a solution, (2) can be achieved by duplicating sets in S, and (3) follows by a
careful inspection of the proof in [38]. Thus, in what follows, we only consider
instances of Set Cover that satisfy conditions (1)–(3).

Theorem 5.2.7. There exists a δ > 0 s. t. (dswap,Maximin)-OptManipu-
lation does not admit a polynomial-time δ log |C|-approximation algorithm
unless P=NP.

Proof. Suppose that we are given an instance (G,S) of Set Cover with
G = {g1, . . . , gt}, S = {S1, . . . , Sr} that satisfies conditions (1)–(3).

In our election, the candidate set is C = {p} ∪ G ∪ X ∪ S, where X =
{x1, . . . , x2r} and S = {s1, . . . , sr}.

Corollary 2.3.5 implies that we can construct a preference profile R′ with
n′ voters, where n′ is polynomially bounded in t and r, so that n′ is even
and:

• For any c ∈ C \ {p} exactly n′/2− 2 voters prefer p to c.

• For any Sj ∈ S and any gℓ ∈ Sj exactly n′/2− 2 voters prefer gℓ to sj.

• For any other pair of candidates (c, c′) ∈ G ∪ S × G ∪ S, exactly n′/2
voters prefer c to c′.

• For j = 1, . . . , 2r − 1 exactly n′/2 − 4 voters prefer xj to xj+1, and
n′/2− 4 voters prefer x2r to x1.

• For any gj ∈ G and any x ∈ X exactly n′/2 voters prefer gj to x.

• For any sj ∈ S and any x ∈ X exactly n′/2− 4 voters prefer sj to x.



5.2. SWAP DISTANCE 71

Denote the Maximin score of candidate c in election (C,R′) by s(c). We
have s(p) = n′/2 − 2, s(gj) = n′/2 − 2 for any gj ∈ G (this follows from
condition (1)), s(sj) = n′/2− 4 for any sj ∈ S, and s(xj) = n′/2− 4 for any
xj ∈ X.

We let n = n′+1, i = n and set our preference profile to be R = (R′, Rn),
where voter n ranks the candidates as

p ≻ g1 ≻ . . . ≻ gt ≻ x1 ≻ . . . ≻ x2r ≻ s1 ≻ . . . ≻ sr.

This completes the description of our (dswap,Maximin)-OptManipulation
instance (as we consider the optimization version of the problem, we need
not specify k).

Observe that p’s final Maximin score is n′/2−1 if and only if the manipu-
lator ranks p first. Further, the final Maximin score of any candidate in X∪S
is at most n′/2− 3. Finally, the final Maximin score of a candidate gj ∈ G is
n′/2− 1 if in the manipulator’s vote gj appears above all candidates sℓ such
that gj ∈ Sℓ and n′/2− 2 otherwise. Thus, to make p the unique winner, the
manipulator should rank him first, and rank each candidate gj ∈ G below a
candidate representing a set that covers gj.

Suppose that h(G,S) = h, i.e., there exists a collection of subsets S ′ =
{Si1 , . . . , Sih} with i1 < . . . < ih such that ∪S′∈S′S ′ = G. Consider a vote L
that ranks p first, followed by candidates si1 , . . . , sih (in this order), followed
by candidates in X ∪ G (in the order of their appearance in Rn), followed
by the remaining candidates in S (in the order of their appearance in Rn).
By the argument above, p is the unique Maximin winner of (C, (R′, L)).
Furthermore, we have dswap(L,Rn) ≤ h(t + 2r + (r − h)): to transform Rn

into L, we swap each of the candidates sij , j = 1, . . . , h, with (a) t candidates
in G, (b) 2r candidates in X and (c) at most r − h candidates in S. By
condition (2), we obtain dswap(L,Rn) ≤ 4hr.

On the other hand, consider an arbitrary vote L′ such that p is the unique
Maximin winner of (C, (R′, L′)). Construct a bipartite graph with the vertex
set G ∪ S in which there is an edge between gj and sℓ if and only if sℓ is
ranked above gj in L′. We claim that this graph contains a matching of
size h. To see this, consider a greedy algorithm that constructs a matching
by inspecting the vertices in G one by one and matching each vertex to
one of its previously unmatched neighbors in S; if some vertex in G cannot
be matched, the algorithm proceeds to the next vertex. If this algorithm
terminates without finding h edges, it means that the matched vertices in



72 CHAPTER 5. OPTIMAL VOTING MANIPULATION

S correspond to a cover of size at most h − 1, a contradiction. Consider
a pair of candidates (gj, sℓ) that corresponds to an edge of this matching,
and an arbitrary candidate x ∈ X. It cannot be the case that L′ ranks gj
above x and x above sℓ: otherwise, by transitivity, L′ would rank gj above
sℓ. Therefore, at least one of the pairs (gj, x) and (x, sℓ) is ordered differently
in Rn and L′, and therefore each edge of the matching contributes at least
2r to the swap distance between L′ and Rn. Summing over all edges of the
matching, we obtain that dswap(Rn, L

′) ≥ 2hr.
Now, suppose that there is a polynomial-time ρ-approximation algo-

rithm M for (dswap,Maximin)-OptManipulation: given an instance of
(dswap,Maximin)-OptManipulation that admits a successful manipulative
vote L with dswap(L,Ri) = k, this algorithm outputs a value k′ that satisfies
k ≤ k′ ≤ ρk. Consider the following algorithm M′ for Set Cover: given
an instance (G,S) of Set Cover with |G| = t, |S| = r, M′ transforms it
into an instance of (dswap,Maximin)-OptManipulation as described above,
applies M, and divides the returned value by 2r. Clearly, M′ runs in poly-
nomial time. We claim that it provides a 2ρ-approximation algorithm for
Set Cover.

Indeed, let h = h(G,S). In this case for the corresponding instance of
(dswap,Maximin)-OptManipulation there exists a successful manipulative
vote L with dswap(L,Ri) ≤ 4hr and hence M outputs a value k′ that satisfies
k′ ≤ 4ρhr. On the other hand, for any successful manipulative vote L′

we have dswap(L
′, Ri) ≥ 2hr, and hence the value k′ output by M satisfies

k′ ≥ 2hr. Thus, M produces a value h′ that satisfies h ≤ h′ ≤ 2ρh.
Since |C| = O(t + r) and, by condition (3), r ≤ tK , we have log |C| ≤

γ log t for a suitable constant γ > 0. Therefore, if there exists a polynomial-
time δ log |C|-approximation algorithm for (dswap,Maximin)-OptManipu-
lation for some constant δ > 0, then there exists a polynomial-time δ′ log t-
approximation algorithm for Set Cover for some constant δ′ > 0, and,
by [38], this implies P=NP.

The argument for Copeland is similar.

Theorem 5.2.8. There exists a δ > 0 such that for any α ∈ Q ∩ [0, 1],
(dswap,Copeland

α)-OptManipulation does not admit a polynomial-time
δ log |C|-approximation algorithm unless P=NP.

Proof. Suppose that we are given an instance (G,S) of Set Cover with
G = {g1, . . . , gt}, S = {S1, . . . , Sr} that satisfies conditions (1)–(3); we will



5.2. SWAP DISTANCE 73

additionally assume that t and r are odd.
In our election, the candidate set is C = {p} ∪ G ∪ X ∪ S, where X =

{x1, . . . , x6r} and S = {s1, . . . , sr}.
It is easy to see that using a variant of the construction in the proof of

Lemma 3.5.1 (with summation modulo t for adding the arcs between vertices
of G and summation modulo 7r for adding the arcs between vertices of X∪S),
we can construct a graph that induces the following outcomes of pairwise
elections between the candidates:

• Candidate p beats all candidates in G∪S as well as (t−1)/2 candidates
in X, and loses to all other candidates in X.

• Every candidate gi ∈ G is tied with all candidates sℓ such that gi ∈ Sℓ

and beats all other candidates in X ∪ S.

• Every candidate in G beats exactly (t− 1)/2 other candidates in G.

• Every candidate in X ∪ S beats exactly (7r− 1)/2 other candidates in
X ∪ S.

By Corollary 2.3.5, we can construct a preference profile R′ with n′

voters, where n′ is polynomially bounded in t and r, so that n′ is even and
the outcomes of pairwise elections between candidates are as described above.

We let n = n′+1 and set our preference profile to be R = (R′, Rn), where
voter n (the manipulator) ranks the candidates as

c ≻ g1 ≻ . . . ≻ gt ≻ x1 ≻ . . . ≻ x6r ≻ s1 ≻ . . . ≻ sr.

This completes the description of our (dswap,Copeland
α)-OptManipula-

tion instance; note that n is odd and therefore the value of α is unimportant
for our analysis.

Observe that in R the Copeland score of p is (t−1)/2+7r, the Copeland
score of each gj ∈ G is (t − 1)/2 + 7r, and the Copeland score of each
candidate in X ∪ S is at most (7r − 1)/2 + 1 < 4r. Thus, under truthful
voting p is not the unique winner; indeed, for p to be the unique winner, in
the manipulator’s vote every candidate gj ∈ G must be ranked below some
candidate sℓ such that gj ∈ Sℓ. Note also that the manipulator’s vote can
only affect the outcomes of pairwise elections for candidate pairs of the form
(gj, sℓ), gj ∈ Sℓ. Thus, no matter how the manipulator votes, the Copeland
score of every candidate x ∈ X is at most 4r < (t − 1)/2 + 7r, and the



74 CHAPTER 5. OPTIMAL VOTING MANIPULATION

Copeland score of every candidate sℓ ∈ S is at most 4r + t < (t− 1)/2 + 7r
(recall that we assume t < r), and hence candidates in X ∪S are not among
the election winners. We conclude that L is a successful manipulative vote
if and only if it ranks each candidate gj ∈ G below a candidate representing
a set that covers gj. This condition is almost identical to the one in the
proof of Theorem 5.2.7, and, from this point on, the proof repeats the proof
of Theorem 5.2.7 almost verbatim; the reader can verify that the analysis is
not negatively impacted by the fact that the set X contains 6r candidates
(rather than 2r candidates, as in the proof of Theorem 5.2.7).

5.3 Footrule distance

For the footrule distance our analysis turns out to be much easier than for the
swap distance: for scoring rules and Bucklin, we design a simple matching-
based algorithm, and for Copeland and Maximin we can use the fact that the
swap distance and the footrule distance are always within a factor of 2 from
each other, as this allows us to inherit the hardness results of the previous
section.

5.3.1 Scoring rules and Bucklin

The overall structure of our argument is similar to the one in Section 5.2:
for any scoring rule Fα with α = (α1, . . . , αm) we will design a procedure A′

that, given an election (C,R) with |C| = m, the preferred candidate p, a
target position f for the preferred candidate, and a bound k on the distance,
constructs a vote L such that (a) F(R−n, L) = {p}; (b) r(p, L) = f ; (c)
dfr(L,Rn) ≤ k, or returns ⊥ if no such vote exists. We then run this procedure
for f = 1, . . . ,m and return “yes” if at least one of these calls does not return
⊥.

We assume without loss of generality that the manipulator ranks the
candidates as c1 ≻n . . . ≻n cm (note that this is different from the assumption
we made in Section 5.2), and denote by sα(c) the score of a candidate c ∈ C
in election (C,R−n) under the voting rule Fα. Let r be the rank of p in n’s
truthful vote, i.e., p = cr.

A′ proceeds by constructing a bipartite graph G with parts X = C \ {p}
and Y = {1, . . . ,m} \ {f}; there is an edge from cj to ℓ if and only if
position ℓ is safe for cj, i.e., sα(cj) + αℓ < sα(p) + αf , Each edge has a



5.3. FOOTRULE DISTANCE 75

weight: the weight of the edge (cj, ℓ) is simply |j − ℓ|. Clearly, there is a
one-to-one correspondence between votes L that rank p in position f and
satisfy Fα(R−n, L) = {p} and perfect matchings in this graph. Furthermore,
the cost of a matching M is x if and only if the corresponding vote LM

satisfies dfr(LM , Rn) = x + |r − f |. Thus, it suffices to find a minimum cost
perfect matching in G; our algorithm returns the vote L that corresponds to
this matching if its cost does not exceed k − |r − f | and ⊥ otherwise. The
graph G can be constructed in time O(m2 log(nαmax)), and a minimum-cost
matching can be found in time O(m3) [11].

We summarize these observations as follows.

Theorem 5.3.1. For every polynomial-time computable family
F̂ = (Fm

α )m=1,... of scoring rules, the problem (dfr, F̂)-OptManipulation
is in P.

For the Bucklin rule, it suffices to combine the matching-based algorithm
given above with the definition of a safe position given in the proof of Theo-
rem 5.2.6. We obtain the following corollary.

Corollary 5.3.2. (dfr,Bucklin)-OptManipulation is in P.

5.3.2 Maximin and Copeland

In Section 5.1 we have mentioned that for any candidate set C and any pair
of votes L,R ∈ L(C) we have dswap(L,R) ≤ dfr(L,R) ≤ 2dswap(L,R) [15].

Now, suppose that there exists a ρ-approximation algorithm Afr for (dfr,F)-
OptManipulation for some voting rule F . Consider an instance (C,R, p)
of (the optimization version of) this problem, and let

L′ = {L ∈ L(C) | F(R−n, L) = {p}}.

If L′ ̸= ∅, let k = min{dfr(L,Rn) | L ∈ L′}. On this instance Afr outputs a
value k′ that satisfies k ≤ k′ ≤ ρk; this value corresponds to a vote L ∈ L′

such that dfr(L,Rn) = k′.
Now, for any vote L′ ∈ L′ we have

dswap(L
′, Rn) ≥

1

2
dfr(L

′, Rn) ≥
k

2
.

On the other hand, for L we obtain

dswap(L,Rn) ≤ dfr(L,Rn) = k′ ≤ ρk.



76 CHAPTER 5. OPTIMAL VOTING MANIPULATION

Now, consider an algorithm Aswap for (dswap,F)-OptManipulation that,
given an instance of the problem, runs Afr on it and returns the value reported
by Afr. The computation above proves that Aswap is a 2ρ-approximation
algorithm for (dswap,F)-OptManipulation (note that Aswap returns +∞
if and only if L′ = ∅). Combining this observation with Theorems 5.2.7
and 5.2.8, we obtain the following corollaries.

Corollary 5.3.3. There exists a δ > 0 s. t. (dfr,Maximin)-OptManipu-
lation does not admit a polynomial-time δ log |C|-approximation algorithm
unless P=NP.

Corollary 5.3.4. There exists a δ > 0 such that for any α ∈ Q ∩ [0, 1],
(dfr,Copeland

α)-OptManipulation does not admit a polynomil-time δ log |C|-
approximation algorithm unless P=NP.

5.4 Maximum displacement distance
Maximum displacement distance is fairly generous to the manipulator. In-
deed, the optimal manipulation problems for swap distance and footrule dis-
tance become trivial if the maximum distance k is bounded by a constant:
in this case, there are only polynomially many possible manipulative votes,
and the manipulator can try all of them. In contrast, for the maximum dis-
placement distance, there are exponentially many votes even at distance 2
from the true vote (to see this, cut the manipulator’s vote into segments of
length 3; within each segment, the candidates can be shuffled independently).
Nevertheless, from the algorithmic perspective maximum displacement dis-
tance exhibits the same behavior as swap distance and footrule distance: we
can design efficient algorithms for all scoring rules and the Bucklin rule, and
derive NP-hardness results for Copeland and Maximin.

5.4.1 Scoring rules and Bucklin

For scoring rules, we can use a simplified variant of the min-cost matching
argument given in Section 5.3.1. Again, suppose that we are given a scoring
rule Fα with α = (α1, . . . , αm), an election (C,R) with |C| = m, a preferred
candidate p and a distance bound k. We assume that the manipulator ranks
the candidates as c1 ≻n . . . ≻n cm. For each f = 1, . . . ,m we try to find a
successful manipulative vote L with dmd(L,Rn) ≤ k that ranks p in position



5.4. MAXIMUM DISPLACEMENT DISTANCE 77

f ; in fact, it suffices to consider only values of f that satisfy |f−r(p,Rn)| ≤ k.
For each such f , we construct a bipartite graph G with parts C \ {p} and
{1, . . . ,m} \ {f}. In this graph, there is an edge from cj to ℓ if and only if ℓ
is safe for cj (we use the same definition of a safe position as in Section 5.3.1)
and |ℓ − j| ≤ k. In contrast to the construction in Section 5.3.1, the graph
is unweighted. It is immediate that there is a one-to-one correspondence
between perfect matchings in G and successful manipulative votes at distance
at most k from Rn. Thus, we obtain the following result.

Theorem 5.4.1. For every polynomial-time computable family
F̂ = (Fm

α )m=1,..., of scoring rules, the problem (dmd, F̂)-OptManipulation
is in P.

For the Bucklin rule, we use the same approach as in Section 5.3, i.e.,
combine the matching-based algorithm with the definition of a safe position
given in the proof of Theorem 5.2.6. This results in the following corollary.

Corollary 5.4.2. (dmd,Bucklin)-OptManipulation is in P.

5.4.2 Copeland and Maximin

Theorem 5.4.3. (dmd,Maximin)-OptManipulation is NP-hard.

Proof. We provide a reduction from Set Cover to (dmd,Maximin)-OptMa-
nipulation. Suppose that we are given an instance (G,S, k) of Set Cover
with G = {g1, . . . , gt} and S = {S1, . . . , Sr} that satisfies conditions (1)
G = ∪S∈SS; (2) t ≤ r.

We will now construct an instance of (dmd,Maximin)-OptManipula-
tion with a set of candidates C = {p} ∪B ∪G ∪X ∪ S, where

B = {b1, . . . , bt+1}, S = {s1, . . . , sr},

X = {x1,1, . . . , x1,2r, . . . , xt+1,1, . . . , xt+1,2r}.
Corollary 2.3.5 implies that we can construct a preference profile R′ with n′

voters, where n′ is polynomially bounded in t and r, so that n′ is even and:

• For any c ∈ C \ {p} exactly n′/2− 2 voters prefer p to c.

• For any Sj ∈ S and any gℓ ∈ Sj exactly n′/2− 2 voters prefer gℓ to sj.

• For any xj,1 and gj exactly n′/2− 2 voters prefer xj,1 to gj.



78 CHAPTER 5. OPTIMAL VOTING MANIPULATION

• For any xj,i+1 and xj,i exactly n′/2− 2 voters prefer xj,i+1 to xj,i.

• For any xj,2r and bj+1 where j = 1, . . . , t exactly n′/2− 2 voters prefer
xj,2r to bj+1, and exactly n′/2− 2 voters prefer xt+1,2r to b1.

• For any other pair of candidates (c, c′) ∈ B ∪ G ∪ X × B ∪ G ∪ X,
exactly n′/2 voters prefer c to c′.

• For any sj ∈ S and any c ∈ B ∪ G ∪X exactly n′/2 − 4 voters prefer
sj to c.

Denote the Maximin score of candidate c in election (C,R′) by s(c). We have
s(p) = n′/2 − 2, s(bj) = n′/2 − 2 for any bj ∈ B, s(gj) = n′/2 − 2 for any
gj ∈ G (this follows from condition (1)), s(xi,j) = n′/2− 2 for any xi,j ∈ X,
and s(sj) = n′/2− 4 for any sj ∈ S.

We let n = n′ + 1, and set our preference profile to be R = (R′, Rn),
where the manipulator ranks the candidates as

p ≻ b1 ≻ . . . ≻ bt+1 ≻ g1 ≻ . . . gt ≻

≻ x1,1 ≻ . . . ≻ x1,2r ≻ . . . ≻ xt+1,1 ≻ . . . ≻ xt+1,2r ≻ s1 ≻ . . . ≻ sr.

We set K = (t + 1)(2r + 1) + k − 1. That completes the description of
our (dmd,Maximin)-OptManipulation instance.

Observe that p’s final Maximin score is n′/2− 1 if and only if the manip-
ulator ranks p first. Further, the final Maximin score of any candidate in S
is at most n′/2− 3.

Here we will use same “parent”-terminology as in Section 3.4.2 (i.e., we
say that ci is a parent of cj whenever cj obtains exactly n′/2− 2 points in his
pairwise election against ci.)

It can be easily seen that a candidate in the set B∪G∪X has score n′/2−2
only if at least one of his parents is ranked above him in the manipulator’s
vote. Each candidate in the set B∪X has exactly one parent. Therefore, if p
is the winner of the election then for i = 1, . . . , t candidates {gi, xi,1, . . . , xi,2r}
are ranked higher than bi+1 and candidates {xt+1,1, . . . , xt+1,2r} are ranked
higher than b1.

Suppose that h(G,S) = k, i.e., there exists a collection of subsets S ′ =
{Si1 , . . . , Sik} with i1 < . . . < ik such that ∪S′∈S′S ′ = G.

Consider a vote L that ranks p first,

• followed by candidates xt+1,1, . . . , xt+1,2r, b1,



5.4. MAXIMUM DISPLACEMENT DISTANCE 79

• followed by candidates si1 , . . . , sik (in this order),

• followed by candidates in G and remaining candidates in X (in the
order of their appearance in Rn),

• followed by candidates b2, . . . , bt+1 (in this order),

• followed by the remaining candidates in S (in the order of their ap-
pearance in Rn).

By the argument above, p is the unique Maximin winner of (C, (R′, L)).
It is easy to see that dmd(R,L) = (2r + 1)(t+ 1) + k − 1.

On the other hand, suppose h(G,S) > k and consider an arbitrary vote
L′ such that p is the unique Maximin winner of (C, (R′, L′)).

Consider a candidate bℓ such that r(bℓ, L′) ≥ p(bi, L
′) for i = 1, . . . , t+ 1.

Consider candidates who are ranked higher than bℓ in L′. All candidates in
the set B have position in L′ which is at least as high as the position of bℓ.
Therefore, all candidates in the set X ∪ G are ranked above the respective
elements of B, because p is the only winner of the election. Also p occupies the
first place. We assume that h(G,S) > k, so, at least k + 1 elements of S are
ranked above elements of G, because every element of G has to be preceded by
at least one of his parents. Therefore, r(bℓ, L′) ≥ 1+(k+1)+|B|+|G|+|X| =
2+k+t+(2r+1)(t+1). It is evident that the lowest position that is achievable
for bℓ in R is t+ 2. Thus, dmd(R,L′) ≥ (2r + 1)(t+ 1) + k.

Thus, we have constructed an election (C,R) and a positive integer K =
(2r+1)(t+1)+k−1 so that (C,R, K) is a “yes”-instance of (dmd,Maximin)-
OptManipulation if and only if (G,S, k) is a “yes”-instance of Set Cover.

Theorem 5.4.4. (dmd,Copeland
α)-OptManipulation is NP-hard for any

rational α ∈ [0, 1].

Proof. We provide a reduction from Set Cover to (dmd,Copeland
α)-OptMa-

nipulation. Suppose that we are given an instance (G,S, k) of Set Cover
with G = {g1, . . . , gt} and S = {S1, . . . , Sr} that satisfies conditions (1)
G = ∪S∈SS; (2) t ≤ r; (3) t is odd.

We will now construct an instance of (dmd,Copeland
α)-OptManipula-

tion with a set of candidates C = {p} ∪ {b} ∪ G ∪ X ∪ S ∪ D, where
X = {x1, . . . , x2r+1}, D = {d1, . . . , d11r} and S = {s1, . . . , sr}.

It is easy to see that we can construct a digraph that induces the following
outcomes of pairwise elections.



80 CHAPTER 5. OPTIMAL VOTING MANIPULATION

• Candidate p is tied with all candidates in {b}∪G∪X, beats 9r− t− 2
candidates in D, and loses to all other candidates.

• Candidate b beats all candidates in S ∪ D and is tied with all other
candidates.

• Every candidate gi ∈ G is tied with all candidates sℓ such that gi ∈ Sℓ

and beats all other candidates in X∪S as well as 8r− t−1
2
−1 candidates

in D and t−1
2

in G.

• Every candidate in X∪S beats exactly 7r other candidates in X∪S∪D.

• Every candidate in d1, . . . , d t−1
2

beats all candidates in {p} ∪ G and
exactly 7r other candidates in X ∪ S ∪D. Every candidate in d t−1

2
+

1, . . . , d2r+t+2 beats {p} and exactly 7r other candidates in X ∪ S ∪D.
All other candidates in D beat exactly 7r candidates in X ∪ S ∪D.

The only thing that is not described among the results of pairwise elec-
tions is how to obtain the outdegrees 7r for the induced subgraph on vertices
X ∪ S ∪ D. Evidently, |X ∪ S ∪ D| = 14r + 1 and we can use a construc-
tion with summation modulo 14r + 1 similar to the one used in the proof of
Lemma 3.5.1.

By Corollary 2.3.5, we can construct a preference profile R′ with n′ voters,
where n′ is even and polynomially bounded in t and r and the outcomes of
pairwise elections between candidates are as described above.

We let n = n′+1 and set our preference profile to be R = (R′, Rn), where
voter n (the manipulator) ranks the candidates as

c ≻ g1 ≻ . . . ≻ gt ≻ x1 ≻ . . . ≻ x2r+1 ≻ s1 ≻ . . . ≻ sr ≻ d1 ≻ . . . ≻ d11r.

Set K = 2r+1+t+k. This completes the description of our (dmd,Copeland
α)-

OptManipulation instance; note that n is odd and therefore the value of
α is unimportant for our analysis.

Observe that in R the Copeland score of p is 12r, the Copeland score of
b is 14r + t+ 1 the Copeland score of each gj ∈ G is 12r, and the Copeland
score of each candidate in X ∪S ∪D is at most 7r+ t+1 ≤ 9r. Thus, under
truthful voting p is not among the winners at all. For p to be the unique
winner, in the manipulator’s vote every candidate gj ∈ G must be ranked
below some candidate sℓ such that gj ∈ Sℓ or below b and b must be ranked
below all candidates in {p} ∪G ∪X.



5.4. MAXIMUM DISPLACEMENT DISTANCE 81

Note also that the manipulator’s vote can only affect the outcomes of
pairwise elections for candidate pairs of the form

• (gj, sℓ), gj ∈ Sℓ;

• (b, gi);

• (p, x), where x is any candidate in {b} ∪G ∪X.

Thus, no matter how the manipulator votes, the Copeland score of every
candidate x ∈ X ∪ S ∪ D is at most 7r + t ≤ 8r, and hence candidates in
X ∪ S ∪D are not among the election winners.

So, we can conclude that L is a successful manipulative vote if and only
if it ranks each candidate gj ∈ G below a candidate representing a set that
covers gj, candidate b below all candidates in {p} ∪ G ∪X and candidate p
higher than all candidates in {b} ∪G ∪X.

Suppose that h(G,S) = k, i.e., there exists a collection of subsets S ′ =
{Si1 , . . . , Sik} with i1 < . . . < ik such that ∪S′∈S′S ′ = G.

Consider a vote L that ranks p first, followed by candidates x1, . . . , x2r+1,
followed by candidates si1 , . . . , sik (in this order), followed by candidates
in G and followed by the remaining candidates in S and candidates in D
(in the order of their appearance in Rn).By the argument above, p is the
unique Copeland winner of (C, (R′, L)). It is easy to see that dmd(R,L) =
2r + 1 + t+ k.

On the other hand, suppose h(G,S) > k and consider an arbitrary vote
L′ such that p is the unique Copeland winner of (C, (R′, L′)). Consider
candidates who are ranked higher than b. All candidates in the set {p}∪X∪G
are ranked above candidate b, because p is the only winner of the election.
We assume that h(G,S) > k, so, at least k + 1 elements of S are ranked
above elements of G, because every element of G has to be preceded by
at least one of the elements sℓ such that gj ∈ Sℓ. Therefore, r(b, L′) ≥
k+1+1+ |G|+ |X|+1 = 4+ k+ t+2r. In R candidate b occupies position
2. Thus, dmd(R,L′) ≥ 2r + 1 + t+ k + 1.

Thus, we have constructed an election (C,R) and a positive integer K =
2r+1+t+k so that (C,R, K) is a “yes”-instance of (dmd,Copeland

α)-OptMa-
nipulation if and only if (G,S, K) is a “yes”-instance of Set Cover.



82 CHAPTER 5. OPTIMAL VOTING MANIPULATION

5.5 Related work

Our work can be placed in the broader context of mechanism design with
verification [28, 41, 36]. This research area deals with the design of mecha-
nisms (voting rules, auctions, etc.) for selfish agents in settings where agents
cannot misrepresent their private information (type) arbitrarily, but rather
are restricted to submit a report that is in some way related to their true
type. In some settings (most notably, mechanism design for scheduling prob-
lems) imposing natural restrictions on possible misreports enables one to
circumvent known impossibility results [4, 3]. We remark, however, that the
Gibbard–Satterthwaite theorem has been recently shown to be very robust
with respect to restrictions on misreporting: every non-dictatorial voting
rule for 3 or more candidates remains manipulable even if we only allow the
manipulative votes that only differ by a single swap of adjacent candidates
from the manipulator’s true preference ranking [7]. Viewed from the per-
spective of mechanism design with partial verification, the hardness results
in this thesis provide a complexity-theoretic separation between the unre-
stricted manipulation problem for Copeland and Maximin and its version
with partial verification (where the permissible misreports are required to be
within a certain distance from the manipulator’s true ranking). To the best
of our knowledge, this is a first result of this type in the mechanism design
with partial verification literature.

5.5.1 Optimal manipulability and swap bribery

The problem of finding an optimal manipulation with respect to the swap
distance can be viewed as a special case of the swap bribery problem [18].
In the swap bribery model, there is an external party that wants to make a
particular candidate the election winner. This party can pay the voters to
change their preference orders, with a price assigned to swapping each pair of
candidates in each vote. The goal is to decide whether the manipulator can
achieve his goal given a budget constraint. Clearly, our problem is a special
case of swap bribery, where for one voter each swap has unit cost, and for the
remaining voters the prices are set to +∞. Swap bribery is known to be hard,
even to approximate, for almost all prominent voting rules, including such
relatively simple rules as 2-approval. Thus, the easiness results of Section 5.2
identify a new family of easy instances of the swap bribery problem, thus
complementing the results of [17, 16, 40]. It would be interesting to see if a



5.6. SUMMARY 83

somewhat more general variant of the swap bribery problem for scoring rules,
where only one voter can be bribed but swap bribery prices can be arbitrary,
remains tractable; it is not clear if the algorithm given in Section 5.2 can be
adapted to handle this setting.

On the other hand, one may wonder if the hardness results of Section 5.2
are implied by the existing hardness results for swap bribery. However, this
does not seem to be the case: the hardness (and inapproximability) of swap
bribery for Copeland and Maximin follows from the hardness results for the
possible winner problem [47], and the latter problem is easy if all but one
voter’s preferences are fixed (it can be verified that the algorithm of Bartholdi
et al. ([6]) works even if the positions of some candidates in the vote are
already fixed). Thus, the hardness results for Copeland and Maximin given
in Section 5.2 strengthen the existing hardness results for swap bribery with
respect to these rules.

5.6 Summary
We have considered the problem of finding a successful manipulative vote
that differs from the manipulators’ preferences as little as possible, for three
distance measures on votes and four types of voting rules. Our results
are summarized in Table 5.1 (where “NPC” stands for “NP-complete” and
“Ω(logm)-inapp.” stands for “inapproximable up to a factor of Ω(logm)”).

Sc. rules Bucklin Copeland Maximin
dswap P P Ω(logm)-inapp. Ω(logm)-inapp.

dfr P P Ω(logm)-inapp. Ω(logm)-inapp.
dmd P P NPC NPC

Single-voter manip. P P P P

Table 5.1: Summary of results and comparing with single-voter manipulation



84 CHAPTER 5. OPTIMAL VOTING MANIPULATION



Chapter 6

Future Work

6.1 Tie-breaking rules

We have determined the complexity of finding an optimal manipulation under
the randomized tie-breaking rule for several prominent voting rules, namely,
scoring rules, Maximin, Copelandα for any rational α ∈ [0, 1], two variants
of the Bucklin rule, Plurality with Runoff, STV and Ranked Pairs. This
provides an essentially complete picture of the complexity of RandManip-
ulation for commonly studied voting rules.

Still there is a number of open questions left by our work. For instance,
it would be interesting to see whether the easiness results for coalitional ma-
nipulation under lexicographic tie-breaking proven by [50, 49] extend to ran-
domized tie-breaking, or whether our algorithmic results hold under a more
general definition of randomized tie-breaking, where different candidates may
be selected with different probabilities; the latter question includes, in par-
ticular, the setting considered in the end of Section 3.6. Another promising
research direction is designing approximation algorithms for the optimization
version of RandManipulation. We conjecture that for Copeland it can be
shown that this problem does not admit a constant-factor approximation al-
gorithm, it is not the clear if this is the case for Maximin, STV, or Ranked
Pairs.

Other interesting questions include identifying natural tie-breaking rules
that make manipulation hard and extending our results to multi-winner elec-
tions.

85



86 CHAPTER 6. FUTURE WORK

6.2 Minimizing the distance to the true prefer-
ences

We have considered the problem of finding a successful manipulative vote
that differs from the manipulator’s preferences as little as possible, for three
distance measures on votes and four types of voting rules.

A natural direction for future work is extending our results to other
distances on votes; for instance, it should not be too hard to generalize
our results to weighted variants of swap and footrule distances; such dis-
tances play an important role in several applications of rank aggregation,
and have received considerable attention in the literature (see [31] and ref-
erences therein). At a more technical level, we remark that for maximum
displacement distance we only have NP-hardness results for Copeland and
Maximin; it would be interesting to see if this variant of our problem admits
efficient approximation algorithms.



Bibliography

[1] K. Arrow, A. Sen, and K. Suzumura. Handbook of Social Choice and
Welfare. North Holland, 2002. (1)

[2] K. J. Arrow. A difficulty in the concept of social welfare. Journal of
Political Economy, 58:328–346, 1950. (1)

[3] V. Auletta, R. D. Prisco, P. Penna, and G. Persiano. The power of
verification for one-parameter agents. Journal of Computer and System
Sciences, 75(3):190–211, 2009. (82)

[4] V. Auletta, R. D. Prisco, P. Penna, G. Persiano, and C. Ventre. New
constructions of mechanisms with verification. In Proceedings of the 33rd
International Colloquium on Automata, Languages and Programming
(ICALP’06), pages 596–607, 2006. (82)

[5] J. J. Bartholdi, III and J. B. Orlin. Single transferable vote resists
strategic voting. Social Choice and Welfare, 8(4):341–354, 1991. (3, 13,
14, 43)

[6] J. J. Bartholdi, III, C. Tovey, and M. Trick. The computational difficulty
of manipulating an election. Social Choice and Welfare, 6(3):227–241,
1989. (1, 3, 4, 5, 6, 11, 12, 13, 14, 34, 47, 83)

[7] I. Caragiannis, E. Elkind, M. Szegedy, and L. Yu. Mechanism design:
from partial to probabilistic verification. In Proceedings of the 13th
ACM Conference on Electronic Commerce (ACM EC’12), pages 266–
283, 2012. (82)

[8] V. Conitzer. Making decisions based on the preferences of multiple
agents. Communications of the ACM, 53:84–94, 2010. (1)

87



88 BIBLIOGRAPHY

[9] V. Conitzer, M. Rognlie, and L. Xia. Preference functions that score
rankings and maximum likelihood estimation. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJCAI’09),
pages 109–115, 2009. (42, 44)

[10] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make
manipulation hard. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI’03), pages 781–788, 2003. (59,
60)

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT Press, 2001. (75)

[12] J. Davies, G. Katsirelos, N. Narodytska, and T. Walsh. An empirical
study of Borda manipulation. In Proceedings of the 3rd International
Workshop on Computational Social Choice (COMSOC’10), pages 91–
102, 2010. (3, 49)

[13] B. Debord. Caractérisation des matrices des préférences nettes et méth-
odes d’agrégation associées. Mathématiques et Sciences Humaines, 97:5–
17, 1987. (17)

[14] Y. Desmedt and E. Elkind. Equilibria of plurality voting with absten-
tions. In Proceedings of the 11th ACM Conference on Electronic Com-
merce (ACM EC’10), pages 347–356, 2010. (4, 44)

[15] P. Diakonis and R. Graham. Spearman footrule as a measure of disarray.
Journal of the Royal Statistical Society B (Methodological), 39(2):262–
268, 1977. (62, 75)

[16] B. Dorn and I. Schlotter. Multivariate complexity analysis of swap
bribery. In Proceedings of the 5th International Symposium on Param-
eterized and Exact Computation (IPEC’10), pages 107–122, 2010. (6,
82)

[17] E. Elkind and P. Faliszewski. Approximation algorithms for campaign
management. In Proceedings of the 6th Workshop on Internet and Net-
work Economics (WINE’10), pages 473–482, 2010. (6, 82)



BIBLIOGRAPHY 89

[18] E. Elkind, P. Faliszewski, and A. Slinko. Swap bribery. In Proceedings of
3rd International Symposium on. Algorithmic Game Theory (SAGT’09),
pages 299–310, 2009. (6, 82)

[19] E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of ma-
nipulation. In Proceedings of the 16th Annual International Symposium
on Algorithms and Computation (ISAAC’05), pages 206–215, 2005. (59,
60)

[20] E. Ephrati and J. Rosenschein. A heuristic technique for multi-agent
planning. Annals of Mathematics and Artificial Intelligence, 20(1–4):13–
67, 1997. (3)

[21] P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Using com-
plexity to protect elections. Communications of the ACM, 53:74–82,
2010. (3)

[22] P. Faliszewski, E. Hemaspaandra, and H. Schnoor. Copeland voting:
Ties matter. In Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS’08), pages
983–990, 2008. (40)

[23] P. Faliszewski and A. Procaccia. AI’s war on manipulation: Are we
winning? AI Magazine, 31:53–64, 2010. (3)

[24] E. Friedgut, G. Kalai, and N. Nisan. Elections can be manipulated often.
In Proceedings of the 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’08), pages 243–249, 2008. (3)

[25] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
(31, 40, 69)

[26] A. F. Gibbard. Manipulation of voting schemes. Econometrica,
41(4):587–601, 1973. (2, 12, 17)

[27] A. F. Gibbard. Manipulation of schemes that mix voting and chance.
Econometrica, 45:665–681, 1977. (4, 44)

[28] J. Green and J.-J. Laffont. Partially verifiable information and mecha-
nism design. Review of Economic Studies, 53:447–456, 1986. (82)



90 BIBLIOGRAPHY

[29] M. Isaksson, G. Kindler, and E. Mossel. The geometry of manipulation—
a quantitative proof of the Gibbard–Satterthwaite theorem. In Proceed-
ings of the 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS’10), pages 319–328, 2010. (3)

[30] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1-
2):81–93, 1938. (6)

[31] R. Kumar and S. Vassilvitskii. Generalized distances between rankings.
In Proceedings of the 10th International World Wide Web Conference
(WWW’10), pages 571–580, 2010. (86)

[32] C. List and C. Puppe. Judgment aggregation: A survey. Oxford Hand-
book of Rational and Social Choice, pages 84–94, 2009. (1)

[33] D. McGarvey. A theorem on the construction of voting paradoxes.
Econometrica, 21(4):608–610, 1953. (15)

[34] R. Meir, M. Polukarov, J. S. Rosenschein, and N. R. Jennings. Con-
vergence to equilibria in plurality voting. In Proceedings of the 24th
Conference on Artificial Intelligence (AAAI’10), pages 823–828, 2010.
(44)

[35] J. W. Moon. Topics on Tournaments. Holt, Rinehart and Winston,
1968. (15, 17)

[36] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and
Economic Behavior, 35:166–196, 2001. (82)

[37] A. Procaccia and J. Rosenschein. Junta distributions and the average-
case complexity of manipulating elections. Journal of AI Research,
28:157–181, 2007. (3)

[38] R. Raz and S. Safra. A sub-constant error-probability low-degree test,
and a sub-constant error-probability PCP characterization of NP. In
Proceedings of the 29th Annual ACM Symposium on Theory of Comput-
ing (STOC’97), pages 475–484, 1997. (70, 72)

[39] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence
and correspondence theorems for voting procedures and social welfare
functions. Journal of Economic Theory, 10(2):187–217, 1975. (2, 12,
17)



BIBLIOGRAPHY 91

[40] I. Schlotter, P. Faliszewski, and E. Elkind. Campaign management under
approval-driven voting rules. In Proceedings of the 25th Conference on
Artificial Intelligence (AAAI’11), pages 726–731, 2011. (6, 82)

[41] N. Singh and D. Wittman. Implementation with partial verification.
Review of Economic Design, 6:63–84, 2001. (82)

[42] C. Spearman. The proof and measurement of association between two
things. The American Journal of Psychology, 15(1):72–101, 1904. (6)

[43] T. N. Tideman. Independence of clones as a criterion for voting rules.
Social Choice and Welfare, 4:185–206, 1987. (11)

[44] T. Walsh. Where are the really hard manipulation problems? The phase
transition in manipulating the veto rule. In Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence (IJCAI’09), pages
324–329, 2009. (3)

[45] D. West. Introduction to Graph Theory. Prentice Hall, 2001. (50)

[46] L. Xia and V. Conitzer. A sufficient condition for voting rules to be
frequently manipulable. In Proceedings of the 9th ACM Conference on
Electronic Commerce (ACM EC’08), pages 99–108, 2008. (3)

[47] L. Xia and V. Conitzer. Determining possible and necessary winners
given partial orders. Journal of Artificial Intelligence Research, 41:25–
67, 2011. (83)

[48] L. Xia, V. Conitzer, and A. Procaccia. A scheduling approach to coali-
tional manipulation. In Proceedings of the 11th ACM Conference on
Electronic Commerce (ACM EC’10), pages 275–284, 2010. (3)

[49] L. Xia, M. Zuckerman, A. Procaccia, V. Conitzer, and J. Rosenschein.
Complexity of unweighted coalitional manipulation under some common
voting rules. In Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI’09), pages 348–352, 2009. (3, 14, 43,
85)

[50] M. Zuckerman, A. Procaccia, and J. Rosenschein. Algorithms for
the coalitional manipulation problem. Artificial Intelligence Journal,
173:392–412, 2009. (85)



92 BIBLIOGRAPHY

[51] M. Zuckerman and J. S. Rosenschein. Manipulation with randomized
tie-breaking under maximin (extended abstract). In The 11th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), pages 1315–1316. (44)


