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 Chapter 7 Sintering Behavior of RF Plasma Synthesized 

and Spray Dried Calcium Phosphate Powders Assessed by a 

Dilatometer 

Introduction 

Studies on the spark plasma sintered bioceramic have been highlighted the problem 

of achieving high densities with enhanced bio-mechanical properties and without 

excessive grain growth. The main effective parameter for spark plasma sintering was 

sintering temperature. However, for conventional sintering of compacted powders, it 

had not been clearly illustrated the effects of sintering temperatures, sintering duration 

and heating rates on the sintering abilities of the used powders that experienced spray 

drying and/or RF plasma steps. This chapter aimed at establishing baseline conditions 

that allowed more thorough assessments of the effects of several parameters on the 

pressureless densification behavior using a dilatometer.  

7.1 Processing of samples 

High green body density would improve the sintering ability of powders. While, 

too high pressing pressures leave residual stresses in the green compacts that could led 

to cracking before sintering. Thus, the RF plasma processed and spray dried green 

compacts for the dilatometer were prepared by a hydraulic under moderate pressures 

of 200 MPa and 130 MPa, respectively, for 1 min at room temperature. Compaction 

was performed without binder or other sintering aids, to minimize the effects of 

additives. The linear shrinkage of these green bodies, measured from room 

temperature to preset sintering temperature at a constant heating rate, was studied 

using a push rod type dilatometer.  
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7.2 RF plasma processed powders  

7.2.1 Results 

7.2.1.1 Effects of sintering temperature 

To investigate the micro-structural evolution during the densification steps, R15 

powder, which was prepared at 15 kW in the RF plasma, was sintered at various 

temperatures for 2 hrs. Figure 7.1 presented the SEM images of these sintered samples. 

As shown, all these obtained ceramics were quite porous. The measurement of grain 

sizes was difficult due to these fine grain sizes and high porosity levels. 

At the sintering temperature of 1100 , ℃ a non-uniform sintering was observed. It 

was found that the formation and growth of neck occurred between the ultrafine 

particles. The larger particles remained undensified or with limited densification. 

When the sintering temperature was increased to 1200 , the micron particles beg℃ an 

to sinter. To decrease the numbers of boundaries as well as the free surface areas, the 

fine grains formed from the nano particle were merged into the micron sized ones 

(shown in Figure 7.1 (b)). The pores were diminished gradually by the driving force 

of temperature. They existed in the form of continuous open porosity. 

Further increasing in sintering temperature to 1300 ℃ resulted in an apparent rise 

in densification. But the pores still existed in the form of continuous open porosity. 

Sintering at 1400 ℃ led to relatively denser microstructure compared with the 

samples sintered at low temperature. The linked pores became relatively smaller. They 

were partially reduced to closed pores. These images indicated that the RF plasma 

processed particles were difficult to be sintered within 2 hrs through the traditional 

sintering. 

Actually, the sintering temperature for dense bioceramic depended strongly on the 
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powder properties and powder packing. Different agglomerate properties could result 

in variable compaction/densification behavior for individual agglomerates as shown in 

Figure 7.1. Due to the complex relationship between agglomerate packing and the 

coexistence of inter- and intra-agglomerate pores, the green density of the compact 

was important to determine the shrinkage behavior. In the compact of spherical 

particles, before the neck formation started, pores had the shape of the space among 

the particles with the sharp edges. After the formation of necks between particles as 

shown in Fig. 7.1 (a-b), the spheroid pores with smooth corners were formed between 

the particles. Due to the particle size distribution in the powder (finer particles 

sintered first) and the presence of agglomerates, differential densification resulted in 

inhomogeneous densification. In macro scale, higher shrinkage in lateral dimension 

changed the spheroid shape of pores to tubular (elongated). Tubular pores shrank in 

the length, when the shrinkage increased in thickness by further increase in sintering 

temperature or holding time.  

Also, due to the relatively low sintering activation energy caused by low surface 

area of the RF plasma processed powders, it was quite difficult to obtain high green 

density compacts for the solid particles processed through RF plasma. Thus the green 

compacts with low green densities led to the formation of porous structured ceramic 

as observed in Figure 7.1. 

In addition, as discussed in the previous Chapter 5, there were several calcium 

phosphate phases in the RF plasma processed powder, which included HA, α-TCP 

and TTCP. It has also found the presence of oxyhydroxyapatite (Ca10(PO4)6(OH)2-2xOx) 

or even oxyapatite (Ca10(PO4)6O) in this RF plasma processed powder. These phases 

behaved as composite systems during sintering. The TCP would act as a limiting 
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agent of the sintering of the HA matrix by standing in the way of diffusion on account 

for the decrease of the densification ratio of the material.  

Besides the temperature effects, the final sintered properties also depended largely 

on the phase content of the starting powder. Large amounts of secondary calcium 

phosphate phases such as TCP, TTCP might hinder the sintering process. Figure 7.2 

presented the XRD patterns of the ceramic sintered at various temperatures. HA, 

TTCP and a mixture of both α- and β-TCP were observed in the obtained ceramic 

samples that were fired below 1200℃. Upon increasing sintering temperature to 

above 1300 ℃, α-TCP and TTCP were mainly detected in the sintered samples. 

Referring to the maximum peak intensities, the relative concentration was defined 

as the ratio of the maximum intensity of different CaP phase to that of the maximum 

peak of HA. Thus, the relative contents of TTCP, HA, and α/β-TCP in the ceramics 

could be determined. As presented in Figure 7.2, the relative intensities of the TTCP 

peaks increased gradually as the sintering temperature increased. At above 1100 , ℃

the peak intensities of TTCP were obviously predominant. The relative intensities of 

TCP changed slightly. 

The Raman spectra provided additional information on the phase transformation of 

calcium phosphate at various sintering temperatures (Figure 7.3). Shoulders and main 

band observed in the υ1 mode region (at ~960 cm-1) of phosphate in the ceramics were 

assigned to different environments of the phosphate groups. With the increase in 

sintering temperature, the main υ1 vibration of phosphate at around 960 cm-1 slightly 

shifted to the higher vibrational positions. While, the shoulder peak at about 950 cm-1 

shifted toward to the lower vibrational positions. This finding might be caused by the 

amount of various calcium phosphate phases in the ceramic. The υ2, υ4 and υ3 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Sintering behavior of RF plasma synthesized CaP and SD powders                              Chapter 7 

 159 

domains of the ceramic were difficult to assess the phosphate groups due to the low 

intensities of the peaks. No obvious peaks belong to hydroxyl modes were detected, 

which indicated the final products were dehydrated calcium phosphates.  

Both the XRD patterns and Raman spectra confirmed that the final products 

sintered using the dilatometer were made of a complicated mixture of different 

calcium phosphate phases. Though most of these calcium phosphates have been 

proved to be bioactive, the microstructure observed under SEM indicated many pores 

existed in the bioceramic samples, which were detrimental to the mechanical 

properties in the future application. Considering the SEM images presented in Figure 

7.1 and XRD results shown in Figure 7.2, the sintering temperature of 1200  should ℃

be an appropriate sintering parameter. However, the sintering duration should be 

extended till near fully dense ceramics could be produced. 
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(a) 1100℃ 

   

(b) 1200℃ 

  

(c) 1300℃ 

  

(d) 1400℃ 

Figure 7.1 SEM images of R15 sintered at various temperatures: (a)1100 ℃,(b)1200 ℃, (c)1300 ℃, 

and (d)1400 ℃. 
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Figure 7.2 XRD patterns of sintered of R15 powders in the dilatometer at various temperatures with a 

heating rate of 5 ℃/min. 
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Figure 7.3 Raman spectra of sintered of R15 powders in the dilatometer at various temperatures at a 

heating rate of 5 ℃/min. 
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7.2.1.2 Effects of sintering duration and heating rates 

For the further investigation on the densification, the green compacts were sintered 

at 1200  for ℃ various dwell times. The duration was set for 5, 10 and 20 hrs. Figure 

7.4 presented the SEM microstructure of sample sintered for various durations. The 

effect of holding time to remove the porosity was pronounced. The pores existed in 

the form of continuous open porosity when the dwell time was less than 5 hrs (shown 

in Figure 7.1). When the duration increased to 5 hrs, it was found that the 

inter-agglomerate joining increased. The linked pores were reduced in size to closed 

pores, which indicated the sintering had reached an intermediate or the second 

sintering stage. After extending to 10 hrs, the effect of holding time to remove the 

porosity was not obviously pronounced. For longer duration of 20 hrs, as shown in 

Figure 7.4 (e-f), few pores were detected in the ceramic. The sintering was able to 

reach the final stage. The intra-agglomerate pores reduced in size, and eventually were 

eliminated at this stage. The grain size was only about 2-3 µm. Such a small grain size 

after sintered for 20 hrs should be attributed to the dense structure of starting powder. 

Normally, green compact with a dense structure fabricated under very high pressure 

showed neither rapid densification nor rapid grain growth even at high sintering 

temperature. However, green compact with a loose structure exhibited a rapid increase 

in the sintered density and grain size as the sintering temperature increased [168]. As 

shown in Figure 7.1 (d), the second stage of sintering was reached in even shorter 

time at higher temperatures (such as 1400 ). ℃ At even higher temperature and longer 

dwelling time, the remaining closed pores would be eliminated when grain growth 

became a predominant phenomenon. This behavior could be explained by Lange’s 

theory [169]. It was suggested [41] that the pores could not remain along the 
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boundaries until they were eliminated at higher sintering temperature. This 

pore-boundary separation formed closed pores as shown in Figure 7.1 (d). 

  

(a)                               (b) 

  

(c)                               (d) 

  

(e) (f) 

Figure 7.4 Microstructure images of R15 sintered at 1200  under the heating rate of 5℃  /min for: ℃

(a-b) 5 hrs, (c-d) 10 hrs; (e-f) 20hrs. 

Figure 7.5 showed the influence of heating rates (5, 10, and 20 ℃/min) on the 

SEM microstructures of the ceramic sintered at 1200  for 5 hrs.℃  It was obvious that 

denser disks were obtained at higher heating rates. The grain size was around 1-2 µm 
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at the heating rate of 5 /min℃ . While, the grain size increased to ~4 and ~5 µm at the 

rate of 10 /min℃  and 20 /min℃ , respectively. The slowest heating rate was expected 

to correspond to more advanced sintering as the samples spent longer time at high 

temperatures. The density variation of sintered samples of the present composition 

fabricated using various sintering parameters were given in Table 7.1. The maximum 

density of 2.86 g/cm3 was obtained at a heating rate of 10 /min.℃  Compared with the 

sample sintered at a heating rate of 10 ℃/min, the sample density obtained at a 

heating rate of 20 ℃/min dropped slightly to 2.77 g/cm3. This was attributed to that a 

low heating rate could increase the degree of sintering resulting in a higher density.  

Table 7.1 Densities of the ceramics at various sintering conditions. 

Sintering 
Temperature ( )℃ - 

Dwell time 
(hrs) 

Heating rate 
( /min)℃  

Density  
(g/cm3) 

1000 2 5 2.51 

1100 2 5 2.48 

1200 2 5 2.62 

1300 2 5 2.53 

1400 2 5 2.31 

1200 5 5 2.73 

1200 5 10 2.86 

1200 5 20 2.77 

1200 10 5 2.77 

1200 20 5 2.96 

Three measurements were averaged for each sample. 
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(a) 

  
(b) 

Figure 7.5 Influence of the heating rate on the microstructures of the ceramics sintered at 1200 ℃ 

for 5 hrs: (a) 10℃/min; (b) 20℃/min. 
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Figure 7.6 XRD patterns of the ceramics sintered at 1200  for 5 hrs ℃ at various heating rates. 
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7.2.1.3 Shrinkage behavior 

Figure 7.7 (a) showed the densification characteristics through the dilatometer 

during heating to 1300 . ℃ It was observed that the transition from expansion to 

shrinkage of R15 powders started at around 510 .℃  This observation was very 

important in that the existing structure must display self-consistent behavior on both 

sides of the transition. Structural features that led to macroscopic expansion at low 

temperatures should be influential in triggering shrinkage.  

The rate of sintering was very slow up to 1080 . A℃ bove this temperature, 

shrinkage rate increased significantly showing a maximum around 1300 ℃. The 

shrinkage rate decreased at above 1300 ℃. It was due to the contribution of a grain 

growth mechanism.  

In the initial stage of sintering below 1080 ℃, the crystallites in each agglomerate 

were sintered first, and densified at a low rate due to the energetic, sinteractive 

nano-sized crystallites [170], as shown in Figure 7.1 (a). The low sintering rate 

observed should contribute to the small amount of nano-particles. Small particles 

between the hard agglomerates were consumed via grain growth providing additional 

shrinkage. These nano-scaled features constituted contact points that could inhibit 

smaller center-to-center distances between relatively large particles. There was little 

difference, energetically, between the surface smoothing of a nano-sized peak and the 

surface consumption of a nano-sized particle. Via the elimination of pinning fine 

particles, surface diffusion could result in densification in real systems containing a 

poly-disperse range of particle sizes. 

Likely neck formation at relatively low temperatures corresponding to the observed 
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macroscopic change suggested that, taken globally, the formation of small sinter neck 

overcame the continuing thermal expansion of the particles. The subsequent 

macroscopic result was a dimensional decrease due to repacking. 

Shrinkage accompanying sintering of the agglomerates would produce tensile stress 

between adjacent agglomerates. This stress, if sufficiently large, could break away the 

sintered agglomerates from the surrounding matrix, leaving a gap that could not be 

closed by subsequent sintering. An increased temperature was required to drive the 

sintering further to produce an increased densification. 

As could be seen from Fig 7.7 (b), the densification rate showed a maximum at 

around 1280 . Above 1300℃  , the shrinkage rate decrease℃ d. The shrinkage curve 

was uniform. It did not show obvious steps as a function of temperature at above 

1100 . The presence of ℃ a sharp peak in the shrinkage rate indicated a uniform 

removal of pores and the development of a mono-modal pore size distribution in the 

sample, as observed under SEM. Different ranges of pore sizes, e.g. in bimodal pore 

size distribution, resulted in steps in the shrinkage curve. It was ascribed to the 

different nature of the size distribution of the pores due to the presence of 

agglomerates in the powder. Shrinkage in porous body first started in agglomerates 

since the driving force was higher due to the high pore coordination number inside 

agglomerates. At high temperatures, inter agglomerate densification would follow. 

The formed linking pores would be gradually diminished by the driving of 

temperature. If the sintering duration was extended longer than 2 hrs, the pores would 

be reduced to closed pores. Relatively dense ceramics would then be obtained. While, 

less favorable agglomerate bonding or more internal agglomerate fractures could 

result in either large gap along the inter-agglomerate interface or within the 
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agglomerates themselves as sintering proceeds. Also from the XRD patterns, it 

indicated that the sintering temperature at 1300 ℃ was too high, and the 

decomposition of HA into secondary phases were detected.  
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Figure 7.7 Densification curves of R15 during heating to 1300℃:  

(a) shrinkage behavior; and (b) densification rate, d(dL/L0)/dt. 
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7.2.2 Discussion 

To assess the pressureless sintering behavior of the RF plasma processed powders, 

the whole sintering process should be investigated in terms of powder characters and 

sintering conditions. 

Densification in pressureless sintering was related to the system itself. The 

densification theory in pressureless sintering had been a fundamental theme for 

several decades [171]. Full densification was a prerequisite for the achievement of the 

intrinsic properties of advanced bioceramic. According to Coble [172], the solid state 

sintering could be divided into three stages. 

The first or initial stage of sintering involved the interface formation and the neck 

growth between primary particles (the contact area between the particles increase 

from ideally point zero) to a certain extent. The neck growth would cease when an 

equilibrium configuration was reached. The initial stage of sintering involved no grain 

growth and no appreciable shrinkage. 

The second or intermediate stage of sintering started when grain growth began. 

During this stage, grain boundaries formed extensively. While, pores were still 

connected with each other, and formed a continuous pore network, i.e., pore channel 

existed, whereas the grain boundaries were isolated. No continuous grain boundary 

networks were formed. Most densification and microstructure changes took place in 

this stage. This stage took place normally at a temperature 1/4-3/4 of the melting point 

in Kelvin degrees [171]. In this study, the sintering reached the intermediate stage at 

all the sintering temperatures within the duration of 2 hrs. 

After sintered for 20 hrs at the temperature of 1200 ℃, nearly dense ceramic was 
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obtained as presented in Figure 7.4. As shown, the pores became isolated. Grain 

boundaries formed a continuous network, indicating that the third or final stage of 

sintering started. Isolated pores located at grain boundaries, or linear junctures of 

three grains or point junctures of four grains, and/or entrapped in grains. At this final 

stage, density increased slightly but the grains grew rapidly.  

The sintering ability of ceramic was closely related to the particle size of the 

starting powders. It was important to get as small particle size and agglomeration free 

particles as possible at reasonable cost. As it was well known, the general driving 

force at the ceramic sintering was the surface free energy of particles. The smaller the 

particle size, the higher the surface free energy, the easier surface atom diffusion 

between neighboring particles, and the lower the sintering temperature. The large 

surface area of nano powders provided a strong driving force for both sintering and 

grain coarsening. Correspondingly, sintering temperature of these nano particles was 

lower than that of larger particles. As observed, the nano sized particles in the RF 

plasma processed powders initially started to sinter at a temperature of 510 ℃, which 

was quite low when compared with micrometer sized powders. 

The stability of HA had been discussed in Chapters 5 and 6. It was reported that HA 

decomposed within the temperature range 1200-1450 , which℃  depended strongly on 

the characteristics of the HA powders [173].  

In a moisture-filled environment, TCP would react with TTCP or CaO in the 

starting powder to revert back to HA coupled with the reduction of the CaO phase. 

This could be postulated in the following reactions: 

2 Ca3(PO4)2 + Ca4P2O9 + H2O → Ca10(PO4)6(OH)2              [7-1] 

3 Ca3(PO4)2+ CaO+ H2O → Ca10(PO4)6(OH)2              [7-2] 
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However, the present sintering was conducted in the atmosphere of nitrogen. The 

moisture was too low to promote the hydrolytic reaction to HA but to TTCP and 

oxyapatite (Ca10(PO4)6O). The transformations could be explained as follows: 

          2 Ca3(PO4)2 + Ca4P2O9 → Ca10(PO4)6O                  [7-3] 

Ca3(PO4)2 + CaO → Ca4P2O9                      [7-4] 

Both the above two chemical reactions might occur at the sintering temperature 

below 1200 ℃, while the reaction of TCP and CaO controlled mainly the sintering. 

Thus, the reduction of CaO and increase in TTCP were observed in the sintered 

samples.  

At temperature higher than 1200 , oxyapatite decompose℃ d in two compounds: 

α-TCP and TTCP according to the reaction: 

Ca10(PO4)6O → 2 Ca3(PO4)2 + Ca4P2O9            [7-5] 

Therefore, from the above analysis, the detected apatite structure in the samples 

sintered below 1200 ℃ was actually a compound of oxyhydroxyapatite and/or 

oxyapatite. Further increase in sintering temperature to 1300 ℃, the relative density 

of the sample declined to 2.53 g/cm3. This was attributed to the decomposition of 

dehydrated apatite into TTCP and α-TCP phases. Almost no apatite could be traced at 

the sintering temperature of 1400 ℃. 

Considering the densities listed in Table 7.1, it was possible to reduce the sintering 

temperature by prolonging sintering time. While, it should be prohibited to use the 

long sintering time because the consequent risk of over firing, excessive grain growth 

and possible high production cost.  

As shown in Figure 7.5, the heating rates also influenced the microstructure of the 
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present samples. A noticeable difference in the grain size was observed. The grain size 

decreased, and became more uniform with increasing heating rates. A faster heating 

rate may produce densification with a smaller grain size due to the activation energy 

for densification being significantly greater than that for grain growth. Thus, the effect 

of heating rate on density (Table 7.1) was likely to be due to the differences in the 

relative rates of grain growth and densification. However, the smallest grain size in all 

samples was about half a micron. For the traditional sintering, too fast heating rate 

would damage the heating elements, which should be considered in the industrial 

production. Also, slow heating was detrimental to rearrangement of particles in the 

compacts [174]. 

Kim et al [175] illustrated the effects of sintering rates on the densification. It was 

reported that the higher sintering rate accompanied higher thermal gradient between 

the surface and the center of a sample. It was likely that the outmost region of the 

sample sintered much faster than the core region. When the outside of the sample was 

well densified, the inside of the sample was not able to densify because the outer 

skeleton constrained the densification geometrically. Thus, many large pores would be 

left inside the densified ring. Therefore, the drop in density at heating rate of 20 ℃

/min was dominantly attributed to the presence of large pores inside the sample. 

As proposed by Ryu et al [176], the densification at high heating rate in the solid 

phase occurred by rearrangement of the primary particles instead of the surface area 

change mechanism. This mechanism would result in insufficient shrinkage of the 

sintered sample as well as the decrease in density. 

However, due to the increased sintering degree, the decomposition of the starting 

powder would also be enhanced at the low heating rate of 5 ℃/min leading to the 
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relative low density of 2.73 g/cm3. The high sintering temperature could help to 

accelerate fully dense ceramic within a short dwell time. However, as shown in Figure 

7.2, decomposition occurred predominantly at high sintering temperature, which was 

detrimental to the final products in the future medical application. The disadvantages 

of using a high sintering temperature also included high production cost, high 

maintenance fee, difficulty in quality control and high equipment cost. 

7.3 Effect of silica to the densification 

7.3.1 Results 

The effect of silica to the densification was also studied using the dilatometer. 

Figure 7.8 (a) exhibited the shrinkage curves of HA as a function of sintering time for 

various silica contents. The densification curves presented a sigmoidal shape. The 

onset temperature of shrinkage curves depended on silica contents and shifted to 

lower temperatures with increasing silica. It was found that the onset sintering 

temperature of spray dried HA began at 841 ℃. The total shrinkage (22%) was similar 

to that of 1SiHA (23%), whose curve also showed a sharp fall. The sintering process 

of SD HA specimen completed at about 1180 . ℃ But slight swelling was observed in 

the isothermal heating stage of 1300 ℃. At the final temperature, there were distinct 

differences in the total shrinkage, with the 1SiHA specimen displaying the greatest 

shrinkage. For the samples prepared with 1SiHA and 3SiHA powder, they began to 

shrink at lower temperature (onset temp=600 ) and stop℃ ped to shrink later than that 

of SD HA. The dilatometry curve of 1SiHA sample approached to a near constant 

value towards the end of the shrinkage process. On the other hand, for the 3SiHA 

sample, the shrinkage decreased during the isothermal heating stage at 1300 ℃. 

Sintering seemed to progress at a much slower rate and did not complete within the 
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holding time, as the dilatometry curve was unable to progress to a constant value 

before the dynamic cooling takes place. 

  In order to investigate the shrinkage behavior of the spray dried powders in detail, 

the sintering shrinkage rate, i.e., the first derivative (dL/dt) with respect to time was 

calculated. Figure 7.8 (b) showed the curves of the compacts doped with different 

amount of silica as a function of sintering time. Compacts without silica exhibited a 

highest shrinkage rate. Compared with that of pure HA compacts, the maximum 

shrinkage rates of these silica doped samples occurred at higher temperatures which 

were 930 ℃, 1143 ℃ and 1250 ℃ for HA, 1SiHA and 3SiHA, respectively. 

Several peaks were also observed in the shrinkage rate curves. These steps of the 

densification behavior might be attributed to the different nature of the size 

distribution of pores.  

From the above data, it was evident that the presence of silica increased the onset 

sintering temperature, but retarded the finishing of densification. The increase in the 

onset sintering temperature should be attributed to the melting of amorphous silica 

doped in the HA powders that caused a localized increase of the temperature. The 

presence of a liquid phase bonded the different powder particles together, and 

accelerated the sintering. Whereas after the formation of the liquid phase, the silica 

converted into crystalline silicon dioxide that retarded the mobility of hydroxyl groups 

in the apatite powders, and thus limited the sintering procedures. 
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Figure 7.8 Dilatometer results of green compacts with a heating rate of 5 ℃/min:  

(a)densification behavior; (b) shrinkage rates. 

7.3.2 Discussion 

Shrinkage was governed by the rate of densification and through reduction in 
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porosity. It was therefore important to mention any correlation between porosity and 

shrinkage, and also if additional factors such as secondary phases correlated with 

changes observed for shrinkage. The differences in the microstructure of SD HA and 

3SiHA were shown in Figure 7.9. It was found that grain sizes within the 3SiHA 

specimen were around 2-3 µm, while the grain sizes of the HA specimen were less 

than 1 µm. Low grain growth indicated that the mobility of pores was higher than that 

of grain boundaries. The grain size of the silica-containing ceramic was slightly larger 

than that of HA compact, which might be due to the enhancement of the sintering rate 

by providing a path for rapid atomic diffusion in the presence of a liquid phase. 

A homogeneous distribution of silica in the grain boundaries was very important 

because the inhomogeneous presence of small amounts of liquid phases gave rise to 

the abnormally exaggerated grain growth. The segregation of silica into grain 

boundaries was found to deteriorate the mechanical properties. When silica was added, 

an amorphous phase was formed in competition with the crystalline material. The 

amorphous phase locating at the grain boundaries and triple point of the sintered 

ceramics would impede the transport of oxygen ions from grain to grain. Figure 7.9 (a) 

showed clearly the impedance effect. 

The effects of silica of the densification of apatite should be differentiated from the 

traditional sintering and spark plasma sintering. During spark plasma processing, 

silicate was substituted into the apatite structure by the high energy plasma caused 

between the particle gaps. The particles were heated from both inside and outside of 

the particles. While, the dilatometer sintered samples were heated from outside to 

inside, so the thermal energy for compaction could not be as effectively transmitted to 

the sample as SPS processing. Thus the effect of silica to the densification of apatite 
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in the dilatometer was different from those obtained from SPS system. In the 

dilatometer, the significant particle rearrangement caused by the presence of silica 

would lead to local grain growth during sintering. The preferential sintering of 

agglomerates would contribute to the coarsening of grain sizes in the silica doped HA 

ceramic.  

  
(a)                              (b) 

  
(a)                               (b) 

  
(a)                              (b) 

 

Figure 7.9 Microstructures of 3SiHA (a) and SD HA (b) after sintered in the dilatometer. 
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7.4 Chapter summary 

This chapter discussed the effects of various sintering parameters (temperatures, 

durations, and heating rates) on the densification behavior of RF plasma processed 

powders. The ultrafine particles in the RF plasma processed powders sintered first at 

around 500 . ℃ The sintering temperature influenced the decomposition of HA into 

TCP and TTCP. The decomposition was detrimental to the densification of the final 

products. The influence of the silica to the shrinkage behavior of the spray dried 

powders was also evaluated. Silica was found to have a different role to the 

densification in the traditional sintering and spark plasma sintering steps. From the 

results and discussion, not only the densification steps of these powders were 

concluded definitely, but also the advantages of spark plasma sintering procedure 

were indirectly revealed. 
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Chapter 8 In vitro tests of SPS ceramic 

Introduction 

In vitro and in vivo studies indicated the biologic apatite deposited on the surface of 

Ca-containing implants [176, 177]. This apatite layer served as a substrate for 

subsequent protein adsorption and bone cell attachment. The formation of apatite 

layers depended on direct interactions of bone matrix and osteoblasts with 

biomaterials. The proteins (cell receptors) adsorbed to the material surface (cell 

ligands), resulting in cell attachment on the material surface. The surface chemistry 

and physical factors such as crystallinity, particle size, porosity, topography and 

surface energy, would directly influence cell attachment, proliferation and 

differentiation of the cells [178]. It was reported that osteoblasts appeared to be very 

sensitive to minor variations in surface composition and topography [176]. The 

evaluation of cell-material (CaP) interactions was of main importance when 

developing new materials for biomedical application. The inductive response of 

apatite was complex, and not fully understood. Moreover, the in vitro 

biocompatibility of the material component had already been assessed by a cell line in 

order to test cytotoxicity of the materials [179]. 

Bioceramic structures made of HA were capable of inducing bone growth. 

However, the main limitation of HA was its poor mechanical properties, which 

included low fracture toughness and poor strength. Spheroidized HA powder obtained 

through RF plasma spraying had been sintered using a SPS system with the aim of 

enhancing its mechanical properties [180].  
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 In the present study, RF plasma processed CaP powders, spray dried silica doped 

HA powders and HA powders had been employed as feedstock in the sintering 

process. The biological properties of these sintered compacts had been evaluated in 

vitro immersion in SBF and cell culture work.  

8.1 In vitro tests through simulated body fluids 

8.1.1 Results of SBF 

The starting powder was prepared at the working plate power level of 10 kW in the 

RF plasma. This powder (R10) was sintered in the SPS system at 1000 ℃, 1100 ℃, 

and 1200 ℃ for 3 min. After polishing, the SPS compacts with a diameter of 12 mm 

were soaked in 15 ml of SBF, and kept at 37 ℃ in a water bath for various immersion 

times. 

After immersion, the SPS disks were immediately cleaned with deionized water, 

and dried in air. The ion concentrations of the solutions were measured through the 

ICP atomic emission spectrometer. An average of three measurements was taken for 

each solution sample. 

The surface morphology of the samples after immersion in SBF was shown in 

Figure 8.1. The micrograph (a) in Figure 8.1 corresponded to the sample surface 

before immersion.  
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 (a)                                                                             (b) 

    
(c)                                                                                  (d) 

   
(e) (f) 

   
(g)                                                                           (h) 

Figure 8.1 Bone-like apatite layers on the surface of SPS samples sintered at 1100 ℃ for 3 min 

after immersion different periods in SBF: (a) 0 day; (b) 1 day; (c) 3 days; (d) cross-section view of 

the apatite layer (c); (e) 2 weeks; (f) 4 weeks; and (g-h) high magnification of apatites. 
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After 1 day of immersion, randomly occurring spherical structures were seen on the 

sample surface. After 3 days of immersion, the surface was covered with a layer. This 

thin layer (~5 µm) showed some cracks. No obvious morphological changes in the 

layer could be distinguished with an increase in the soaking time. Another common 

characteristic was the formation of cracks of a tortoiseshell character. The 

morphology of these cracks was similar to those formed naturally on a mud deposit 

upon drying. 

The high magnification SEM micrograph revealed a layer made of a network of 

plate-like structures, which were in fact re-precipitated apatite. The re-precipitated 

apatite layer on bioactive materials, known as hydroxy-carbonated apatite, had been 

extensively studied [181].  
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Figure 8.2 Thin film XRD patterns of apatite layers on SPS compacts sintered at 1100 ℃ for 3 

min after immersion for various periods in SBF. 

The formed apatite layers were examined by thin film XRD method. The results 

were shown in Figure 8.2. The peaks from the XRD patterns matched the peaks of the 
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HA structure. Comparatively, the intensity of these peaks gradually decreased with 

the immersion time, which indicated that a partially amorphous Ca-P layer was being 

formed. The anomalous high intensity peak corresponding to the [0002] reflection 

revealed that the apatite layer was growing with a preferential orientation along 

[0002]. With an increase in the immersion time, the orientation was more obvious.  
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Figure 8.3 The curves of Ca and P concentration versus immersion periods in SBF. 

Three measurements were averaged for each sample. 
 

 

The calcium (Ca) and phosphorous (P) concentrations after immersion in the SBF 

were tested using ICP. Figure 8.3 presented the concentration changes in the SBF 
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solutions as a function of immersion time. Ca and P concentrations decreased in the 

solution, which suggested that precipitation of Ca and P was taking place leading to 

the formation and growth of the Ca-P layer. This decrease was more evident in the 

first two weeks of immersion (known as induction period). During this induction 

period, the apatite nuclei were growing to form a continuous layer by consuming 

higher amounts of Ca and P. 

8.1.2 Discussion of SBF 

According to Kokubo et al [182], the in vitro immersion of bioactive materials in 

SBF was thought to reproduce in vivo surface structure changes in materials such as 

bioactive glass and glass-ceramic. The grown layer was sometimes called a bone-like 

apatite. The formation of biological apatite on the surface of implanted synthetic 

calcium phosphate ceramic had been reported to go through a sequence of chemical 

reactions [183].  

The nucleation of apatite at a given temperature could be increased by the 

following two ways: increasing the supersaturation or lower the interfacial energy at a 

given supersaturation. Though SBF was supersaturated to apatite, the interfacial of 

crystalline HA was not low enough to form nuclei of apatite. However, the samples 

used in this study had been subjected to RF plasma and SPS, which had resulted in the 

formation of secondary calcium phosphate phases such as amorphous phase, TCP as 

discussed in Chapter 5. Whereas due to the small amount level, these secondary 

phases were not obviously detected in the samples. When these samples were 

immersed in the SBF, dissolution would occur from these secondary calcium 

phosphates within 24 hrs. Ca2+ and PO4
3- were released leading to the higher 

supersaturation of Ca2+ and PO4
3- in the SBF. The first nuclei formed on the surface of 
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the sample, where the relatively high supersaturation could be maintained steadily. 

The surface roughness due to the scratches was favorable for the nuclei to anchor. The 

favorable micro-environment for nucleation of bone-like apatite must be that 

concentrated with calcium and phosphate ions in the immediate vicinity of the surface 

upon which the apatite anchored. The morphological evolution of the apatite layer 

grown from the rough surface to the smooth hillocks indicated a poly-nuclear growth 

process, during which new nuclei started rapidly before the proceeding layer growth 

was completed by the consumption of calcium and phosphate ions in SBF.  

Carbonate ions together with other electrolytes, which were from the SBF solution, 

would also be incorporated in the new apatite micro-crystals forming on the sample’s 

surface [183]. 

Along with the formation of HCA, cracks of tortoiseshell character appeared on the 

newly-formed layer (shown in Figure 8.1). This was probably due to the release of 

growth strains induced during its formation. As the apatite nano-crystals grew and 

increased in size, its lattice parameters would be a little different from those of 

compacts due to the incorporation of new atoms. This difference would result in 

strains formed within the new apatite. The roughness of sample surface would also 

contribute to the presence of growth strains to make the new apatite layer connected 

together. All these growth strains built up gradually, and increased with immersion 

time. If the new apatite layer could not release them through plastic deformation, it 

would crack even peel off to release the growth strains. 

As observed, the new formed apatite layer had a preferential orientation along 

[0002] direction in the apatite structure. This could be attributed to the changes of 

surface zeta potential. The zeta potential was the electrical voltage difference between 
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the surface of colloid and the suspension liquid. It was caused by the surface charge. 

Kokubo et al [184] discussed that the zeta potential of the surface of HA varied with 

soaking time in the SBF solution. When HA was immersed in the SBF, it initially had 

a negative zeta potential that increased to a maximum positive value within 3 hrs. 

Then this value decreased rapidly to a negative value within 6 hrs and finally would 

gradually converge to a constant negative value. The transport of chemical ions to a 

solid/liquid interface always happened by ionic diffusion through the Nernst diffusion 

layer. After being delivered by diffusion to the interface, ions were absorbed onto the 

surface of apatite. There was an adsorption resistance for ions to be adsorbed onto the 

surface. In order to overcome the resistance, the ions made a diffusive jump toward 

the surface to a distance corresponding to their size [185]. As shown in Figure 8.4, 

due to higher concentration of OH- (when compared with PO4
3-), adsorption of 

protons would occur easily. If OH- from SBF solution bonded to the sample’s surface 

in such a way that the O-H bond direction was perpendicular to the sample surface 

and parallel to that O-H on the (000l) planes of HA (c-axis of HA structure). It would 

lead to the oriented nucleation. The HA crystals would tend to grow along the [000l] 

direction, which was the fastest growth direction for HA, resulting in a plate-like 

morphology. 

There were two advantages for such an orientated structure as a bone implant in the 

medical application. First, the orientation was the same as that of HA in natural bone 

where the apatite was highly oriented with (000l) planes perpendicular to the collagen 

axis, that was, the [000l] direction was parallel to the collagen axis. Second, the 

formed apatite was a precursor in the biomineralization of natural bone to enhance 

biointergration between the ceramic and surrounding bone tissue. 
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These SBF in vitro results presented the biological properties of SPS ceramic. The 

ceramic could be used in the following characterization through osteoblastic cell lines 

to investigate the cellular reactivities on the ceramic surfaces. 

 

Figure 8.4 A schematic showing the formation of preferential apatite along [000l] on the SPS 

ceramic surface in the SBF. 

8.2 Cell culture 

The previous study showed that a biological apatite layer was formed when SPS 

sample was soaked in SBF [180]. However, despite its importance in the bioceramic 

field, there remained a need to correlate the chemical and physical composition of 

hydroxyapatite with cellular interaction. In this study, the cellular activities of bone 

cells on these disks were studied. These SPS disks were seeded with human 

osteoblast-like cells to investigate surface-dependent responses of bone-forming cells. 

The cell morphology was assessed using SEM. The cell proliferation and 

differentiation was assessed using biochemical techniques. 

8.2.1 Sample characterization 

Cell culture tests were used to study cell attachment, proliferation on SPS disks. 

The cell attachment and cell proliferation were observed under SEM. A colorimetric 
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assay (MTT) was also used to quantitatively determine cell proliferation and viability 

on the ceramic. Using the standard curve, the MTT results were converted to living 

cell number. Before cell seeding, the surfaces nature that could influence the cellular 

activity and proliferation were characterized through XRD method, contact angle 

analysis and roughness tester.  

Table 8.1 Powder feedstock used and surface roughness of SPS disks. 

Powder feedstock ID of ceramic Surface roughness (Ra; nm) 

Pure HA 

RF plasma processed at  15kW 

RF plasma processed at  21kW 

H 

R15 

R21 

64.5 

172 

198.3 

 

The surfaces of the SPS disks before cell culture were characterized for roughness 

using Surfpak Roughness Tester. The feedstock used for the SPS were listed in Table 

8.1. The roughness results exhibited in Table 8.1 provided evidence of increased 

surface roughness in R15 and R21 compared with H. Webster et al [210] discussed 

that the dimensions of nanometer or fine surface features gave rise to larger amounts 

of interparticulate voids(with fairly homogeneous distribution). The increase in the 

surface roughness led to increased surface area. The previous result [176] had shown 

better cell attachment on rougher surfaces. 

The dispersive components and polar component of SPS ceramic surface energies 

were listed in Table 8.2. It was found that the polar components of R15 and R21 were 

slightly lower than that of sample H. According to wettability criteria [211], the 

decrease in polar species was not favored for interaction between ceramic and bone 

cells or proteins.  
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Whereas, not only the polar components of ceramic surfaces but also the surface 

topography and chemical composition should be taken into account the influence of 

the cell response. The increase in the surface roughness led to the increased surface 

area. An increase in surface area correlated to an increase in osteoblast adhesion and 

proliferation. Thus, the combined effect of surface energies and surface roughness 

would contribute to the cell attachment on the ceramic surface. 

Table 8.2 Surface energies of different SPS disks. 

Ceramic Dispersive 
component (mJ/m2) 

Polar component 
(mJ/m2) 

Total surface 
energy (mJ/m2) 

H 32.23 15.81 48.04 

R15 31.88 15.35 47.23 

R21 33.75 15.17 48.92 
Five measurements were averaged for each sample. 

 

8.2.2 Cell culture results and discussions 

8.2.2.1 Morphology of osteoblasts 

After 2 days culture on the disks, it was found that the cells had attached on the 

sample surface. The typical osteoblast morphologies under SEM were exhibited in 

Figure 8.5 after fixing. The majority of the cells had a flattened appearance with a 

predominantly polygonal morphology. A rough texture was observed due to the 

presence of numerous blebs on the surface of the cells. The cells were attached to the 

biomaterials exhibiting filopodia-like with various lengths and lamelliapodia-like 

extensions. Close contact between the cells and the substrate was established through 

extending filopodia, which initiated cellular anchorage on the substrate. This result 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



 In vitro tests of SPS ceramic                                                                                                                       Chapter 8 

 190 

indicated that a bioactive surface provided preferential sites for cell attachment and in 

return, recruited proteins and other growth factors to enhance cellular activity. 

Osteoblasts were anchorage-dependent cells, and their morphology was determined 

by the properties of the substrate. The flatten appearances indicated a high affinity to 

the substrate surface. The more flatten cells would produce more collagen than those 

less flattened cells. Depending on cell types, filopodia developed from lamelliapodia 

provided cell a more defined direction to migrate [186].  

The initial point of contact between the cell and the substrate has been shown to be 

a random process that was largely determined by the distribution of adhesion proteins 

adsorbed onto the surface of the biomaterials [187]. Serum was known to contain the 

glycoproteins fibronectin and vitronectin, and these were known to adsorb onto the 

surfaces of biomaterials [188]. Furthermore, exclusion of these proteins from cell 

culture had shown to cause a decrease in the total number of cellular attachments on 

biomaterials [189]. Cells used these proteins as anchoring points that enabled them to 

attach to the substrate through extending filopodia, followed by the ‘zipping-up’ of 

the cytoplasm between the filopodia to form flattened regions. 

Cells interacted with the adsorbed proteins through membrane integral proteins 

(integrins) localized at the region of focal contacts. Integrins acted as signal 

transducers linking the extracellular matrix to the intracellular protein, in particular 

cytoskeleton actin (a protein in muscle) filaments forming stress fibers, which in 

return regulated cellular morphology and gene expression.  
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Figure 8.5 SEM images of human osteoblast-like cells on the SPS disks. 

8.2.2.2 Cell proliferation on SPS compacts from RF plasma processed powders 

The recruitment of osteoblastic cells played a crucial role in osteogenesis (bone 

growth) [179] since the bone formation depended mainly on the number of 

osteoblastic cells rather than the osteoblast activity. The data from MTT assay 

reflected the ability of cell proliferation and cytotoxicity on the ceramic. A total of 
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five points were averaged for the MTT data. The higher the MTT results, the more the 

viable cells.  

As shown in Figure 8.6, the RF plasma processing samples could effectively 

increase the cell proliferation rate compared with the sample H. The higher the RF 

plasma power level, the higher the cell proliferation.  

It was known that the physicochemical features of the ceramic surface could affect 

the reorganization of proteins on ceramic specimen and change the profile of adsorbed 

proteins. The differences in protein adsorption could result in very different initial 

cellular behavior. Surface roughness improved surface wetting properties. This could 

affect directly cell attachment via enhanced formation of focal contacts or through 

selective adsorption of serum proteins required for cell attachment. The rougher R21 

ceramic surface helped adsorb more proteins compared with HA and R15 samples. 

Thus, it enhanced osteoblast functions and cell proliferation. 

It had been demonstrated that osteoblast-like cell behavior such as cell attachment 

efficiency, spreading as well as cell migration was also dependent on the materials 

surface chemistry [187] and the concentration of Ca ions in the culturing medium 

[190].  

The instability of TCP and TTCP in the R15 and R21 disks was thought to be a 

factor that accelerated osteoconductivity, and improved the chemical affinity and 

connectivity with the bone tissue in vivo [190]. Referred to the peaks intensities in 

XRD patterns as shown in Figure 8.7, there were larger amount TTCP, α-TCP and 

CaO in R21 than those in R15. The comparative dissolution behavior [104] of TTCP, 

HA, β-TCP and α-TCP in increasing order was shown below: 
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HA<β-TCP< α-TCP<CaO<TTCP 

In the present study, the dissolution of Ca ions from the ceramic surfaces, resulted 

in an interfacial supersaturated condition with the already present Ca ions in the 

medium. The supersaturation of Ca ions stimulated consequently the proliferation of 

osteoblasts [190] when compared with sample H. While, no obvious precipitation of 

carbonated apatite was observed on the sample surface after the cell culture. This may 

be ascribed to the more acidic micro-environment produced by osteoblasts, in which 

the amorphous phase dissolved at an accelerated rate [191]. 

However, excessively high solubility and reactivity of bioceramic surfaces might 

result in damage to adherent cells, which might stimulate correspondingly 

inflammatory responses in surrounding tissues [190]. The high solubility of the TTCP 

and TCP was found to be the dominant factor. They would decrease the viability of 

the cells by causing their rupture during initial anchoring phase. The failure of the 

initial attachment between the surrounding tissues and the implant materials might 

cause acute inflammation, and thus delay wound repair.  
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Figure 8.6 MTT results of the SPS disks after cell culture for 2 and 4 days. Cell seeding density: 

2x104/cm2. Four measurements were averaged for each sample. 
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Figure 8.7 XRD patterns of SPS ceramic surfaces. 

8.2.2.3 Effects of silica on the cell proliferation and cell differentiation 

It had been reported that nucleation of bioacitve apatite around silicate-substituted 

HA was enhanced by increased dissolution of calcium and phosphate ions from the 

implant [192]. It was also important to emphasize the effect of silica on cell behavior 

on SPS disks. This study investigated the cell attachment, proliferation, differentiation 

and cytotoxicity assessment on these silica dope HA in vitro. The cells cultured on the 

sterile plastic Petri dish were used as a positive control group that confirmed the assay 

conditions were accurate. 

    As shown in Figure 8.8, MTT results provided the evidence of increased osteoblast 

viability on the silica doped disks. It was also found that the osteoblast viability on the 

disks was slightly higher than those cultured in the Petri dish after culturing for 2 days. 

While after 4 days culture, the results from sample HA and 1wt% silica doped HA 

(1SiHA) were lower than that of reference number.  
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Figure 8.8 Relative osteoblast viability on the SPS disks doped with different amount of silica. Cell 

seeding density: 2x104/cm2. Five measurements were averaged for each sample. 

    The secretion of AKP was analyzed and presented in Figure 8.9, it was found that 

similar amount of AKP was secreted in the medium after culture for 2 days. An 

increase in cell proliferation was detected with an increase in the dopant level of silica. 

While, the highest cell differentiation levels were detected in the 1SiHA sample after 

6 days culture.  

    The presence of silica played an integral role during the bone mineralization 

processes. It was a fundamental constituent of collagen and as being an essential 

element in the formation in the formation of collagen. Other study had elaborated the 

role of silicon or silica in osteoblast function [194]. The effects of orthosilicic acid on 

collagen type I synthesis had demonstrated the enhanced differentiation of 

osteoblastic cell lines exposed to orthosilicic acid. As discussed in chapter 6, the 

presence of soluble silicate caused the rapid release of silicate and Ca2+ ions leading 

to rapid bone cell proliferation. Silicon release, when compared with pure HA ceramic, 

had shown to raise AKP expression in human osteoblast-like cells. However, as 
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discussed previously, too much release of Ca2+ caused by the presence of TCP would 

also result in the increased inflammatory effect to the osteoblasts, which would 

suppress the secretion of AKP, as shown in Figure 8.9. 
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Figure 8.9 Effect of silica to the relative secretion of AKP on the silica dope HA disks. Cell 

seeding density: 2x104/cm2. Four measurements were averaged for each sample. 

 

8.3 Chapter summary 

In the simulated body environment, these SPS sintered compacts showed excellent 

bioactivity. A plate-like apatite layer was formed on the surface of compacts. These 

apatite crystals grew with the (000l) planes. Their c-axes were roughly consistent with 
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the assembled state of bone. Cell culture results indicated that osteoblasts grew well 

on the sample surfaces with cells appearing well-flattened and maintaining their 

polygonal morphology. Furthermore, the results indicated that ceramic surface 

chemistry contributed mainly to the cellular attachment on the SPS disks. In addition, 

highest cell growth was observed on the SiHA disks that also displayed relatively high 

cell differentiation compared with the samples without doping silica. In conclusion, 

the in vitro results demonstrated that the presence of silica improved generally the cell 

proliferation and differentiation. This behavior could be explained by the surface 

characteristics affecting the selective adsorption of serum proteins. 
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Chapter 9 General Discussion 

 HA and generally bioactive calcium phosphate materials have received 

considerable attention as materials for implants and bone augmentation procedures, 

because they chemically bonded directly to bone when implanted, resulting in the 

formation of a strong bone-implant interface [4, 26, 27, 30]. The plasma sprayed HA 

and other calcium phosphate materials were the major applications in the load-bearing 

conditions. The nanometer characteristics, necessary to create an optimal implant, 

have not yet been fully investigated and used in the industry. The successful industrial 

application of the RF induction plasma process helped to transfer the technology from 

laboratory to industrial scale application. The present work was a project aiming at 

studying the RF induction plasma sprayed HA that had a nanometer characteristic. 

The results presented in Chapter 5 indicated that the RF plasma spray was capable of 

developing nano-structured powder particles from starting spray dried HA with 

attractive properties.  

 Figure 9.1 presented the HA powder, before and after application of the RF 

induction plasma spheroidisation processing. The particle size of RF plasma 

processed powder became smaller compared with the starting powder, which was 

caused by powder densification via plasma processing. Many ultrafine particles were 

also detected on the surfaces of the spherical particles. The presence of these ultrafine 

particles was attributed to the vaporization and condensation of melting part of the 

surface materials of starting powder. 

The RF plasma processing removed preferentially the lower melting point 

component in the starting HA, with the amount depending upon the heat transfer. The 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



General Discussion                                                                   Chapter 9 

 199 

change in chemistry occurred on the outside of the molten particles where the heating 

conditions were the most intense and phosphate removal was easiest. Thus, a partial 

decomposition of the starting HA occurred in this study, which was due to the 

combined effect of high temperature and the residence time in the plasma. It was 

found that HA had decomposed into different calcium phosphate phases that 

contained TTCP, TCP and CaO. The amount of these phases depended on the extent 

of heat transfer and was dictated by particle size, particle velocity, and location within 

the flame of the traversing particles. The relatively small particle size (~20 µm) of the 

starting powder in the dehydroxylated state promoted the decomposition.  

 

   
Before                                After 

Figure 9.1 HA powder became dense and spherical after treatment by RF induction plasma spray. 

Many nano particles were obtained in the RF plasma sprayed powder, as shown in 

Figure 9.1. These nano particles were examined using TEM. Figure 9.2 presented the 

diffraction pattern from these particles. The diffuse scattered ring around the bright 

central spot and distinct diffraction maxima indicated that the predominant phase in 

the ultrafine particles was amorphous. The presence of amorphous phase was 

attributed to the rapid cooling rate after plasma processing and it played an important 

role in the formation of biominerals [109, 130]. This amorphous phase could be 

converted into apatite structures whereas apatitic structure of HA crystals remained 
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unchanged even the implantation periods were prolonged. The rate of new bone 

formation on the apatites converted from amorphous calcium phosphate implants was 

much greater than that on HA crystals implanted directly into the body.  

  

(a)                     (b) 

Figure 9.2 A TEM morphology (a) and a selected area diffraction pattern of nano particles prepared in 
RF plasma.   

We have investigated the spark plasma sintering ability of the RF plasma 

spheroidized HA powders. The results showed that the RF plasma sprayed powder 

could be effectively sintered to high densities within 3 minutes by a SPS system. The 

highest relative density was around 97% to the theoretical density of stoichiometric 

HA. Gu et al [148] commended that the short duration required for SPS sintering was 

presumably due to the cleaning of the particle surface prior to sintering. The high 

current input also contributed to the activation of the powder particle surface that 

enhanced diffusion during subsequent densification. 

 Due to the high surface energy of the nano particles, the ultrafine particles in the 

RF plasma sprayed powder started to sinter at lower temperature than the large 

particles. Additional information on sintering ability was provided by a dilatometer 

sintering system, as discussed in Chapter 7. The results indicated that the nano 

particles in the RF plasma processed powder began to sinter at around 500 ℃ 

whereas the large particles started to densify at around 1100 ℃. The different calcium 
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phosphate phases experienced complicated chemical reactions during sintering at low 

water pressure level. TCP and CaO reacted together to form TTCP. Also, a chemical 

reaction between TCP and TTCP occurred to form the oxyapatite whose chemical 

structure was similar to that of stoichiometric HA. α-TCP (monoclinic) transformed 

to β-TCP (orthorhombic) after sintering in the temperature range of 1000-1100 ℃. 

β-TCP changed at approximately 1120 ℃ to the high temperature phase α-TCP. 

These combined chemical reactions contributed to the different phases in the final 

ceramic after sintering. 

 It was also found that the densification of RF plasma sprayed powder started at 

higher temperature than the spray drying powders. The difference of sintering ability 

should be attributed to the different characters of starting feedstock used for SPS. 

Spray dried powder were loose particles whereas the RF plasma spheroidized HA 

powder were dense particles. The intra-agglomerate pores formed dominantly in the 

spray dried powder. This type of pore was similar to the particle size, which was 

readily eliminated at low sintering temperature. Since the low fraction of fine particles 

in the RF plasma sprayed powders, the inter-agglomerate pores in these denser 

particles would control predominately the sintering. Therefore, these pores could not 

be removed immediately, and needed to be sintered at high temperature. 

 The present investigation on the in vitro behavior of the ceramic prepared using the 

RF plasma sprayed powder suggested the improved bioactivity by way of facilitating 

the formation of apatite layer with a preferential orientation along [0002] direction. 

The high bioactivity of HA ceramic prepared by SPS might be ascribed to result from 

a OH- and/or Ca2+ ion deficiency caused by (i) a localized increase in the temperature 

at grain boundary of the matrix; (ii) a small presumably electric poling effect by 
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resulting a weak polarization during the spark plasma sintering treatment.  

The osteoblast cells cultured on the various SPS calcium phosphate surface 

displayed normal morphological features. They had attached and undergone spreading 

on all the surfaces. The relationship between the osteoblast cells and the ceramic 

surface was influenced by the surface characters, such as surface topography and 

surface chemistry. The instability of TCP and TTCP in the ceramic prepared from the 

RF plasma sprayed powder stimulated the cell proliferation rates compared with the 

pure HA ceramic. Thus, the adhesion on pure HA ceramic surface was slower than on 

the ceramic prepared from RF plasma sprayed powder. 

 The similarity of HA to bone mineral led to the extensive use of HA as a bone 

grafting material in hard tissue implants. Silicon levels up to 0.5 wt % were observed 

in the active growth areas of rats, such as the osteoid. The current study was carried 

out to introduce different amount of silica (0, 1, 3, and 5 wt %) into the starting HA 

slurry to get homogenous distributed silica. It has been expected that the high energy 

source, such as RF plasma and spark plasma, was able to promote the silicon 

substitution possibility into the apatite structure. The results indicated that silicate 

substitution in apatite was obtained, while not all of the silica reacted with apatite. 

Around 30 atomic% of the silica has substituted into the apatite structure. To maintain 

the charge balance, some hydroxyl vacancies must be also introduced in the silicate 

substituted apatite. The release of hydroxyl group resulted in the formation of pores in 

the ceramics. The higher the dopant level, the more the presence of pores. 

 Additionally, it was found that the presence of silica destabilized the thermal 

stabilities of HA accelerated the decomposition into other calcium phosphate phases. 

The main secondary calcium phosphate phase was β-TCP. A local increase in 
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temperature resulted in the formation of some liquid phase of silica, which 

corresponded to reduce interfacial energy. Therefore, the transformation of apatite into 

TCP was promoted. This meta-stable β-TCP would exist near to the pores. 

The in vitro tests with regard to osteoblast cell proliferation and differentiation were 

performed to evaluate the biocompatibility of the silica doped HA ceramic. The 

results from Chapter 8 suggested that rapid bone cell proliferation was obtained, 

which was due to the rapid release of SiO4
4- and Ca2+ from the ceramic. This was 

attributed to that the incorporation of silicate ions into the HA structure increased the 

number of defect structures. The defect structures were the specific sites that were 

most favorable to dissolution. Therefore, by increasing the number of defect sites, the 

solubility of the HA in a biological fluid is increased, as was its rate of cell 

proliferation.  

Finally, to conclude, the most important research contributions made by this study 

were that it provided evidences in the following three aspects: 

1. Confirmation that RF plasma spray could be used to produce nano-structured 

calcium phosphate powder that had great potentials for industrial applications; 

2. Establishment of evidence that spark plasma sintering could be used to produce 

bioceramic with enhanced bio-mechanical properties;  

3. Explanation of the effect of doping silica (~5 wt %) in affecting the 

densification behavior and biocompatibility of dense calcium phosphate 

ceramic. 
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Chapter 10 Conclusions and Recommendations 

10.1 Conclusions 

The present work was a project aimed at studying and characterizing the 

nano-structured bioceramic products through a spark plasma sintering system. 

Generally, the results have demonstrated that the nano-structured calcium phosphate 

(CaP) powder was synthesized through an inductively coupled radio frequency (RF) 

plasma system that employed spray dried powder as feedstock. This powder can be 

densified to high density (98% to theoretical density) using an SPS system. The final 

bioceramic products were analyzed through mechanical and biological properties to 

evaluate the potential biomedical applications in the future. Therefore, five 

conclusions can be drawn from this study: 

 
1. The RF plasma technique showed its capability of spraying nano-structured 

calcium phosphate powders with suitable phase composition. The RF plasma sprayed 

powder exhibited different particle size distribution arising from the imperfect 

evaporation of feedstock in the plasma flame. It was found that the characteristics and 

residence time of the feedstock in the RF plasma flame determined ultimately the 

extent of starting HA decomposition. 

 

2. The Rietveld analysis revealed that there was around 75 wt % of amorphous 

phase in the RF plasma sprayed ultrafine particles. The effect of the working plate 

power of the RF plasma system on the various decomposition trends was suggested to 

be due to the combined influence of the plasma flame temperature and flame velocity.  
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3. The recrystallization behavior of the amorphous phase in the ultrafine powder 

was determined by DSC to be ~650 ℃. After heat treatment at 800 ℃ in air, β-DCP 

and HA phases were found to be dominant in the ultrafine powder. The presence of 

β-DCP was attributed to the direct decomposition of HA feedstock in the RF plasma 

flame followed by the rapid cooling rate. 

 

4. The spark plasma sintering technique demonstrated its capacity to densify 

effectively the calcium phosphate powder to high densities with enhanced 

bio-mechanical properties. The introduction of silica (~ 5 wt %) resulted in the 

decomposition of HA into other phases after sintering. The Raman spectra, lattice 

parameters and XPS results proved the possibility of silicate substitution in these SPS 

ceramic and the RF plasma processed silica doped powder. 

 
5. The in vitro test revealed the excellent bioactivity of the SPS compacts immersed 

in the simulated body environment. A plate-like apatite layer was precipitated on the 

surface of compacts during the in vitro ageing. These apatite crystals grow with the 

(000l) planes assembling the state of natural bone, which could regulate the 

biomineralization in vitro. In addition, the in vitro cell culture results claimed that 

osteoblast cells displayed cellular attachment and proliferation on the ceramic surface. 

In addition to surface roughness, the ceramic surface chemistry affected mainly 

cellular responses, enhancing cell adhesion and proliferation. Moreover, the in vitro 

cell culture results also revealed that the introduction of silica into apatite structure 

enhanced the cell proliferation and differentiation. 

 

10.2 Recommendations 

This project has successfully prepared nano-structured biomaterials using a radio 
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frequency plasma technique. On the basis of information presented in this thesis, the 

author concentrated on the assessment of the new nano-structured bioceramic using 

traditional analysis methods. There were several recommendations for the future 

studies in this field: 

 
1. Future researchers should give careful consideration to the working plate 

power levels of the RF plasma system. The judicious selection of the working 

parameters of RF plasma and SPS systems may influence significantly the 

bio-mechanical properties of the final products. 

 
2. In addition to the currently required characterization, broad assessments should 

be conducted of the silicate substitution possibilities in these new biomaterials.  

 
3. The further analysis of medium after cell culture need to be carried out, which 

will provide information on the in vitro behaviors of these SPS ceramics. 

 
4. An evaluation of the strengths and weaknesses, short-term and long-term 

successes and failures through the in vivo study would be extremely helpful for the 

medical application in the human bodies.  
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