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Abstract

This thesis is concerned about statistical inference for high dimensional data
based on large dimensional random matrix theory, especially, independence
tests for high dimensional data.

The first problem we discussed is an independence test between two
high dimensional random vectors x : p; X 1 and y : ps X 1, each of which
has n random samples, i.e. {xi,Xs,...,X,} and {y1,y2,...,¥yn} respec-
tively. A statistic is proposed based on the sum of squares of sample
canonical correlation coefficients. Fortunately, the squares of the sample
canonical correlation coefficients r?, 73, . .. ,rgl are eigenvalues of the ma-
trix Sy, = (XX IXYT(LYYT)1LYXT where X = (x1,Xo, ..., X,)
and Y = (y1,¥2,...,¥n). From this point, the proposed statistic is a
linear spectral statistic for the matrix S,,(This matrix is called canonical
correlation matrix). For this matrix, we investigate its limiting spectral dis-
tribution(LSD) and the central limit theorem(CLT) for its linear spectral
statistics.

Under the case of X and Y being Gaussian distributed and independent,
the LSD of S,, has been provided in Wachter (1980). By using the Stieltjes
transform method and Lindeberg’s method, under the finite second moment
condition, we derive that the LSD of S,, under the general case is the same
as that under the Gaussian case. The CLT for linear spectral statistics of
Sz, is also provided by a similar approach. Under the Gaussian case, the
empirical spectral distribution(ESD) of the matrix S,, can be related to the
ESD of an F-matrix. Under the general case, by the interpolation method
and the general Stein’s equation provided in |Lytova and Pastur| (2009)), we

conclude that the CLT is the same as that under the Gaussian case with

the assumption EX}, = 3.



Apparently, the matrix S,, only can be used under the restricted con-
dition of p;,p» < n in order to make the matrices XX’ and 1YY’
invertible. To overcome this drawback, we propose regularized canonical
correlation coefficients whose squares are eigenvalues of the regularized ma-
trix Ty, = (%XXT + tIpl)*liXYT(%YYT)*%YXT, where t > 0, I, is a
p1 % 1 identity matrix and (+Y'Y?)~ denotes the Moore-Penrose pseudoin-
verse matrix of %YYT. The LSD and CLT for the matrix T,, have been

provided in a similar way to those of S, .

Moreover, in order to derive the asymptotic theorem for the matrix T,
we develop a CLT for linear spectral statistics of a kind of random matrix

which is a sample covariance matrix plus a nonnegative definite matrix.

The second independence test is about testing independence among a
large number of high dimensional random vectors, i.e. detecting indepen-
dence among X1, X, ..., X,, where X; is a p-dimensional random vector and
p is comparable to n. For this test, we propose a linear spectral statistic of
the sample covariance matrix S = %XXT with X = (x1,Xg,...,X,).

When each random vector x;,7 = 1,2, ..., n consists of independent and
identical distributed(i.i.d.) components, based on the idea of the LSD of S
being Marcenko-Pastur law under the null hypothesis, we use the character-
istic function of the ESD of S to capture dependence between x1, X, ..., X,.
Moreover, since the characteristic function contains a parameter t, we pro-
vide the asymptotic theorem for the linear spectral statistic process with
respect to the parameter ¢ in any closed interval.

We also deal with this problem for random vectors which have relatively
more complicated structures. Each random vector x;,2 = 1,2, ..., n has the
linear dependent structure x; = Tw; or x; is a covariance stationary linear

process, where T is a nonnegative definite Hermitian matrix and w; is a p-



dimensional random vector with i.i.d. components. We utilize the first two
moments of the ESD of the matrix S to construct test statistics. The CLT
for linear spectral statistics of S when x; = Tw; has been provided in Bai
and Silverstein (2004) while the CLT for those when each x; is covariance
stationary is provided in this thesis by the interpolation trick proposed in
Lytova and Pastur| (2009)).

In summary, this thesis proposes some linear spectral statistics for inde-
pendence tests for high dimensional data and develop the asymptotic the-
oretical results. Some simulation results are also provided to demonstrate

the effectiveness of the proposed test statistics.






Chapter

Introduction

Recent technological innovations have brought explosion of data into many
scientific disciplines, including genomics, image processing, microarray, pro-
teomics and finance, to name but a few. In these areas the dimensionality
of the data p can be much larger than or at least comparable to the sample
size n. We focus on the scenario of p/n tending to a constant. This type of
data poses great challenges because traditional multivariate approaches do
not necessarily work, which were established for the case of the sample size
n tending to infinity and the dimension p remaining fixed (See |Anderson
(1984)). There have been a substantial body of research work dealing with
high dimensional data, e.g. Bai and Saranadasa (1996)), [Fan et al.| (2012)),
Huang et al. (2008)), Fan and Fan| (2008), Bai and Ng| (2002), Birke and
Dette| (2005), etc.

The importance of the independence assumption for inference arises in
many aspects of multivariate analysis. For example, it is often the case in
multivariate analysis that a number of variables can be rationally classified
into several mutually exclusive categories. When variables can be grouped

in such a way, a natural question is whether there is any significant relation-
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ship between the groups of variables. In other words, can we claim that the
groups are mutually independent so that further statistics analysis such as
classification and testing hypothesis of equality of mean vectors and covari-
ance matrices could be conducted 7 When the dimension p is fixed, |Wilks
(1935) used the likelihood ratio statistic to test independence for k sets of
normal distributed random variables and one may also refer to Chapter 12
of |Anderson| (1984) regarding to this point.

In this thesis, we will investigate the independence test for high dimen-
sional data, including testing independence for any two large dimensional
random vectors and independence test between a large number of high di-
mensional random vectors. Large dimensional random matrix theory pro-
vides us with good tools to construct novel test statistics and develop their
asymptotic theory for high dimensional independence test. Thus we come

to the main purpose of the thesis in detail.

1.1 Canonical Correlation Analysis
The aim is to test the hypothesis
Ho : x and y are independent; against Hy : x and y are dependent, (1.1)

where x = (z1,...,2,,)" andy = (y1,...,Yp,)" . Without loss of generality,
suppose that p; < ps.

It is well known that canonical correlation analysis (CCA) deals with
the correlation structure between two random vectors (see Chapter 12 of
Anderson| (1984))). Draw n independent and identically distributed (i.i.d.)
observations from these two random vectors x and y, respectively and group

them into p; x n random matrix X = (x1,- -+ ,X,) = (Xij)pxn and pa X n
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random matrix Y = (y1,- - ,¥n) = (Yij)p,xn respectively. CCA seeks the
linear combinations a’x and b’y that are most highly correlated, that is
to maximize

a’S,,b
VvalY,a\/b’ Eyyb

v = Corr(a’x,bly) = (1.2)

where 3, and 3y, are the population covariance matrices for x and y
respectively and Xy is the population covariance matrix between x and y.
After finding the maximal correlation r; and associated vectors a; and by,
CCA continues to seek a second linear combination alx and bly that has

the maximal correlation among all linear combinations uncorrelated with

alx and bly. This procedure can be iterated and successive canonical
correlation coefficients 7, ..., 7,, can be found.
It turns out that the population canonical correlation coefficients 71, . .., v,

can be recast as the roots of the determinant equation
det(Eyy By Bty — 7 kx) = 0. (1.3)

About this point, one may refer to page 284 of Mardia et al. (1979). The
roots of the determinant equation above go under many names, because they
figure equally in discriminant analysis, canonical correlation analysis, and
invariant tests of linear hypotheses in the multivariate analysis of variance.

Traditionally, sample covariance matrices flm, ﬁ]xy and f]yy are used
to replace the corresponding population covariance matrices to solve the

nonnegative roots pi, pa, ..., pp, to the determinant equation
~ A1 ~T ~
det(Zyy 2y, 3y, — p72xx) =0
where

%Z = X)(x; —%)T, X,y %Z —X)(yi — )7,
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2yy =

SRS

DNy -9 x=-d %y =) v
i=1 i=1 i=1
However, it is inappropriate to use these types sample covariance matrices

to replace population covariance matrices to test ((1.1)) in some cases. We

demonstrate such an example in Section 3.4.4.

Therefore, in this part we instead consider the nonnegative roots ry, o, . ..

of an alternative determinant equation as follows

det(Axy Ayy AL — r*Asy) =0, (1.4)

y

where

1 1 1
A = - XX, Ay = -YY?, A, = —XY7
n n n

We also call Ayx, Ay, and Ay, sample covariance matrices, as in the ran-
dom matrix community. However, whichever sample covariance matrices
are used they are not consistent estimators of population covariance ma-
trices, which is called ‘curses of dimensionality’, when the dimensions p;
and py are both comparable to the sample size n. As a consequence it is
conceivable that the classical likelihood ratio statistic (see Wilks (1935) and
Anderson (1984)) does not work well in the high dimensional case (in fact,
it is not well defined and we will discuss this point in the later section).
Moreover, from , one can see that 77,73,...,72 are the eigenvalues

of the matrix
Say = A Ay A AL (1.5)

Evidently ALy and A} do not exist when p; > n and p; > n. For this
reason, we also consider the eigenvalues of the regularized matrix

Tyy = A Axy A AL (1.6)

Xy
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where A" = (1XXT 4 tI,,)7', t is a positive constant number and I, is
a p1 X pp identity matrix, and Aj  denotes the Moore-Penrose pseudoin-
verse matrix of Ayy. Since Ty, is not a symmetric matrix we consider its

symmetric version
B, = P,PPy, (1.7)

where Py = LYT(1YY”)"Y and Py, = LXT(1XXT + #1,,)"'X. The
projection matrix f’y is unique when p, > n . Hence Ty, is well defined
even in the case of pi, ps > n. Moreover Ty, reduces to S;, when p;, p, are
both smaller than n and t = 0. Here a natural question may be asked: why
we use a regularized version in P, and a generalized inverse in f’y? This
choice totally comes from technical convenience. In the proofs of asymptotic
theorems, we will need treat f’y as a project matrix and wonder an identity
matrix from multiplying %XXT by its inverse.

We now look at CCA from another perspective. The original random
vectors x and y can be transformed into new random vectors & and n as

()= ()= ) 0

y n
such that

A 0 Yo 2. A0 I, P
A TG | G B (D AL

P2

where P = (P1,0), P1 = diag(71,...,7%,) and A = 2;/le7 B =
E;;/2Q2, with Q1 : p1 X p1 and Q2 : ps X ps being orthogonal matrices
satisfying

Y8 B0 = QPQs.
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Hence testing independence between x and y is equivalent to testing in-
dependence between & and 7. The covariance between & and 1 has the
following simple expression
var(S)= (2 P, (1.10)
n P I,

In view of this, independence between x and y is equivalent to asserting
that the population canonical correlations all vanish: v, = --- = 7,, =0
if the joint distribution of x and y is Gaussian. Details can be referred to
Chapter 11 of Fujikoshi et al.| (2010). A natural criteria for this test should
be 37177

As pointed out, r; is not a consistent estimator of the corresponding
population version <; in the high dimensional case. However, fortunately,
the classical sample canonical correlation coefficients rq,7q,...,7p, or its
regularized analogous still contain important information so that hypothesis
testing for is possible although the classical likelihood ratio statistic
does not work well in the high dimensional case. This is due to the fact
that the limits of the empirical spectral distribution (ESD) of ry,--- 7y,
under the null and the alternative are different so that we may use it to
distinguish dependence from independence (one may see the next section).
Our approach essentially makes use of the integral of functions with respect
to the ESD of canonical correlation coefficients. The proposed statistic
turns out a trace of the corresponding matrices, i.e. Y 7t 77,

In addition to proposing a statistic for testing , another contribu-
tion of this part is to establish the limit of the ESD of regularized sample
canonical correlation coefficients and central limit theorems (CLT) of lin-

ear functionals of the classical and regularized sample canonical correlation

coefficients 7,79, ...,7,, respectively. This is of an independent interest
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in its own right in addition to providing asymptotic distributions for the

proposed statistics.

To derive the CLT for linear spectral statistics of classical and regular-
ized sample canonical correlation coefficients, the strategy is to first estab-
lish the CLT under the Gaussian case, i.e. the entries of X are Gaussian
distributed. In the Gaussian case, the CLT for linear spectral statistics
of the matrix S, can be linked to that of an F-matrix, which has been
investigated in [Zheng| (2012). We then extend CLT to the general distri-
butions by bounding the difference between the characteristic functions of
the respective linear spectral statistics of S;, under the Gaussian case and
nonGaussian case. To bound such a difference and handle the inverse of a
random matrix we use an interpolation approach and a smooth cutoff func-
tion. The approach of developing the CLT for linear spectral statistics of
the matrix T, is similar except we first have to develop CLT of perturbed
sample covariance matrices in another chapter for establishing CLT of the

matrix S,, when the entries of X are Gaussian.

One point to be stressed is that, in order to derive the asymptotic the-
orem for the matrix T,,, we need the CLT for linear spectral statistics of
a kind of random matrix which is the sum of one sample covariance matrix
and a nonnegative definite matrix. This kind of matrix plays an important

role in random matrix theory and we have also provided it in this thesis.

Here we would point out some works on canonical correlation coefficients
under high dimensional scenario. In the high dimensional case Wachter
(1980) investigated the limit of the empirical spectral distribution function
of the classical sample canonical correlation coefficients ry,79,...,7,, and
Johnstone (2008) established the Tracy-Widom law of the maximum of

sample correlation coefficients when Axx and Ay, are Wishart matrices
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and x, y are independent.

1.2 Independence test for random vectors

with i.i.d components

Suppose that {X;;,j =1,...,n;i=1,...,p} are real-valued random vari-
ables. For 1 < i < p, let x; = (Xy;,--+, X,;)7 denote the i—th vector of
random variables and (x1,-- - ,X,) be a matrix of p vectors of random vari-
ables, where n usually denotes the sample size in each of the time series
data. In both theory and practice, it may be unrealistic to assume that
X1,Xg, "+ ,X, are independent or even uncorrelated. This is because there
is no natural ordering for cross—sectional indices. There are such cases in
various disciplines. In economics and finance, for example, it is not un-
reasonable to expect that there is significant evidence of cross—sectional
dependence in output innovations across p countries and regions in the
world. In the field of climatology, there is also some evidence to show that
climatic variables at different stations may be cross—sectionally dependent
and the level of cross—sectional dependence may be determined by some
kind of physical distance. Moreover, one would expect that climatic vari-
ables, such as temperature and rainfall variables, in a station in Australia
have higher—level dependence with the same type of climatic variables in a

station in New Zealand than those in the United States.

In such situations, it may be necessary to test whether x;,xs, -+ ,x,
are independent before a statistical model is used to fit such data. In the
econometrics and statistics literature, several papers have basically consid-

ered testing for cross—sectional uncorrelatedness for the residuals involved
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in some specific regression models. Such studies include Pesaran (2004) for
the parametric linear model case, Hsiao, Pesaran and Pick (2007) for the
parametric nonlinear case, and Chen, Gao and Li (2012) for the nonpara-
metric nonlinear case. Other related papers include Su and Ullah (2009) for
testing conditional uncorrelatedness through examining a covariance matrix
in the case where p is fixed. The main purpose of this part is to propose
using an empirical spectral distribution function based test statistic for in-

dependence of x;,Xa, - ,X,.

The aim is to test

Hy : x31,--- ,x, are independent; against H; : x4, - -+, x,, are not independent,
(1.11)
where x; = (X1, ..., X)) fori=1,...,p.

In time series analysis, mutual independence test for multiple time series
has long been of interest. Moreover, time series always display various kinds
of dependence. For example, an autoregressive conditional heteroscedastic
(ARCH(1)) model involves a martingale difference sequence (MDS); a non-
linear moving average (MA) model is not a MDS, but its autocorrelations
are zero; a linear moving average (MA) model and an autoregressive (AR)
model are both models with correlated structures. In this part, we also
employ the proposed statistic to test dependence for multiple time series.
Section 8.5 of Anderson (1984) also considers a similar problem but with the
dimensionality being fixed. His problem and approach are as follows. Let
the pm-component vector x be distributed according to N(u, ). Partition
x into p subvectors with m components respectively, that is, (hf,- -, hZ)T,
and partition 3 as p? submatrices, that is, ¥ = (3;;) with each X;; being

m X m.
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To tackle the problem above, draw n observations from the population x
to form a sample covariance matrix. The likelihood ratio criterion proposed
is

Q"

L 1Qule

where Q = (Qu) with Qg being the sample covariance matrix of the ran-

dom vectors h; and hy,.

Our approach essentially uses the characteristic function of the empiri-
cal spectral distribution of sample covariance matrices in large dimensional
random matrix theory. Unlike the Anderson’s test, we need not re-draw
observations from the set of vectors of xi,---,x, due to the high dimen-

sionality.

1.3 Independence test for linear dependent
structures and covariance stationary pro-
cesses

Testing cross-sectional dependence between a large number of high—dimensional
random vectors attracts great interest in high dimensional statistical anal-
ysis, especially in longitudinal data and panel data analysis (Frees (1995);
Mundlak (1978)); |Hsiao et al. (2009); Sarafidis et al.| (2009); Chen et al.
(2012)). In longitudinal data or panel data analysis, one of the key rea-
sons of pooling the data together is to overcome the aggregation problems
that arise with dependent data in modelling the behaviour of heterogenous
agents on the basis of the representative assumption. In multivariate time
series analysis, elucidation of various causalities between time series is vital

to forecasting and prediction. Compared with the literature focusing on



1.3 Independence test for linear dependent structures and
covariance stationary processes 15

detecting serial dependence within a univariate time series, relatively few
studies have been done to capture dependence between time series (Haugh
(1976)); |Geweke| (1993)); [Hong| (1996))). Moreover, the goal of these papers
is restricted to investigating dependence between two covariance stationary

time series.

Mutual independence is difficult to test while nonlinear dependence is
also not easy to detect. Mutual independence is more demanded than pair-
wise independence. One conventional measure of linear dependence is the
correlation function, which may overlook nonlinear dependent structures
that have zero correlations, e.g. Hong (1996]). Another useful tool is to
utilize the equivalence of the joint distribution and the product of the cor-
responding marginal distributions under independent case (see Hong (2000);
Hong (2005])). Of course, this method can capture all kinds of dependence
types since it is a sufficient and necessary condition of independence. How-
ever, it is just applicable to pairwise independence test rather than mutual
independence test for a large number of high—dimensional random vectors.
Hong| (1999) developed a generalized spectral density approach via the em-
pirical characteristic function for serial independence test of one time series.
This method is also applicable to some types of linear and nonlinear depen-

dencies but only works for detecting pairwise dependence.

In this part, we propose a novel test statistic to test mutual indepen-
dence for n random vectors of length p when n and p are comparable.
Since there are n x p observed data available, we pool them together to
form a data matrix so that some features of the data matrix to investigate
independence among the initial n random vectors can be utilized. Large
dimensional random matrix theory then serves as a powerful tool to inves-

tigate such a matrix. Specifically speaking, we group the n random vectors
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into a matrix X = (xy, X, ...,X,) and then consider the empirical spectral
distribution (ESD) of the eigenvalues of the corresponding sample covari-
ance matrix S = %XXT, where x;,7 = 1,2...,n are the observed n time
series, each being of length p, i.e. x; = (Xy;, Xos, - .. ,Xm-)/. Here we would
like to point out that there have been a substantial set of research works
dealing with high dimensional data by random matrix theory (see, for ex-
ample, Ledoit and Wolf (2002), Johnstone (2001), Birke and Dette (2005)
and Yao (2012)). Our approach essentially uses the ESD of the sample
covariance matrix S for n random vectors to distinguish dependence from
independence. Our discussion covers both the case where the random vec-
tors are n covariance stationary time series and the case where the random

vectors are vectors of linear combinations of independent random variables.

To study the size of the proposed test we first establish the limiting
spectral distribution(LSD), i.e. the limit of the ESD of the sample covari-
ance matrix S under the finite second moment condition on the components.
This generalizes the result of [Yao| (2012), which obtained the LSD under the
finite fourth moment condition. Moreover, for the first time we establish
a central limit theorem (CLT) for linear spectral statistics of the sample
covariance matrices whose columns are covariance stationary time series
under the finite fourth moment condition on the time series components.
This CLT complements the classical result of linear spectral statistics of the
sample covariance matrices of the independent random vectors with i.i.d.
components or linear independent structure (see [Bai and Silverstein| (2009))

and |Lytova and Pastur| (2009)).

As stated above, correlation functions are useful enough for describing
linear dependence but can not detect all sorts of nonlinear dependencies.

To some extent, our proposed test statistic is also based on a correlation
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structure, i.e. the sample covariance matrix. A natural question is how
our test performs under all sorts of dependent structures. For the Gaussian
case, the sample covariance matrix of a linear covariance stationary time
series can be written in the form of S; = %T}/QYY/T}/Q, where Ty is a
p X p nonnegative positive Hermitian deterministic matrix and Y isa p xn
random matrix with i.i.d. components. If the cross—sectional dependence
can be described as %Ti/QYTgYIT1/2 with Ty being an n X n Hermitian
deterministic matrix, the limit of its ESD is then given in Theorem 1.2.1
of Zhang| (2006), which is different from the limit of the ESD of S; corre-
sponding to the independent case. In view of this, our test is able to capture
this type of dependent structure. In panel data analysis, the issue of how
to characterize cross—sectional dependence attracts great attention among
researchers. Spatial models and factor models are two commonly used de-
pendent structures. The simulation given in Section 4 below shows that
the proposed test can be applied to these two types of dependence. Finite
sample simulations illustrate that the proposed test can also detect some
kinds of nonlinear dependence with zero correlations except the “ARCH”
dependence. To detect the ARCH dependence we use high power of entries

Xj; instead of X;; so that the test statistic still works.

1.4 Thesis Outline

The main content of the thesis is organized as follows.

e In Chapter 2, we provide the LSD of the canonical correlation matrix

as the dimensions pq, p» are comparable to the sample size n.

e In Chapter 3, the CLT for the linear spectral statistics of the classical



18

Chapter 1. Introduction

canonical correlation matrix is provided. Moreover, the regularized
canonical correlation matrix is proposed. The LSD and CLT of the

regularized matrix are investigated.

In Chapter [4 in order to satisfy the necessity of Chapter [3| we inves-
tigate a perturbation matrix which is a sample covariance matrix plus
a nonnegative definite matrix and provide the CLT for linear spectral

statistics of this kind of matrices.

In Chapter [5 independence test for a large number of high dimen-
sional random vectors with i.i.d. components is investigated and the
proposed statistic is based on the characteristic function of the ESD

of the corresponding sample covariance matrix.

In Chapter [6] we provide the LSD and CLT for linear spectral statis-
tics of sample covariance matrices whose columns are independent
covariance stationary processes. Based on the first two moments of
the ESD of the sample covariance matrices, we propose a novel statis-
tic for independence test for a large number of covariance stationary
time series. Moreover, the proposed test can be applied to a large

number of random vectors with linear dependent structures.



Chapter 2
Chapter

Limiting Spectral Distribution Of

Canonical Correlation Coefficients

2.1 Introduction

Canonical correlation analysis(CCA) deals with the relationship between
two random variable sets. Suppose that there are two random variable
sets: x = {z1,..., %0}, Y = {¥1,-- -, Yp, }, Where p; < py. Assume that
there are n observations for each of the p; + py variables and they are
grouped into p; x n random matrix X = (Xj;)p, xn and pa X n random
T

matrix Y = (Yi;)p,xn respectively. CCA seeks the linear combinations a’ x

and c’y that are most highly correlated, that is to maximize

aly. .c
r= Corr(a’x,cly) = utd , 2.1
( y) valYay/cTSyyc (2.1)

where iy, Xy, are population covariance matrices for x, y respectively;
>y 1s the population covariance matrix between x and y.
After finding the maximal correlation r; and associated combination

vectors a;, ¢;, CCA considers seeking a second linear combination alx,
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cl'y that has the maximal correlation among all linear combinations un-
correlated with al'x, c¢I'y. This procedure can be iterated and successive
canonical correlation coefficients 7, ..., r,, can be found. Substituting pop-
ulation covariance matrices with sample covariance matrices, rq,...,7,, can

be recast as the roots of the determinant equation
det(Az, A AL —r?A,) =0, (2.2)

where

1 1 1
A, =-XX" A, =-YY" A, =-XY".
n

xr ﬁ y E
About this point, one may refer to page 284 of Mardia et al. (1979)). The
roots of the determinant equation above go under many names, because they
figure equally in discriminant analysis, canonical correlation analysis, and
invariant tests of linear hypotheses in the multivariate analysis of variance.
These are standard techniques in multivariate statistical analysis. Section
4 of Wachter] (1980)) described how to transform these statistical settings to
the determinant equation form. |Johnstone (2008)) also gave its applications
in these aspects in multivariate statistical analysis.
The empirical distribution of the canonical correlation coefficients

71,79, - ,Tp, is defined as
1 .
Fla) = - #{i:re < ), (2:3)
1

where #{---} denotes the cardinality of the set {---}. When the two
variable sets x and y are independent and each set consists of i.i.d Gaus-
sian random variables, Wachter| (1980) proved that the empirical distri-
bution of 7,79, ,7, converges in probability and obtained an explicit
expression for the limit of the empirical distribution when py, po and n are

all approaching infinity. From the determinant equation ({2.2)), it can be
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seen that A\; = rf, A = 7r3,..., ), = 7“21 are eigenvalues of the matrix
Sey = AL ALy A TATL L Hence the analysis of the empirical distribution of
r1,T2, -+ ,Tp, is equivalent to analyzing the ESD of the matrix S,,. Here
for any p x p matrix A with real eigenvalues z; < o < ... < 1, its ESD

is defined as

FA(2) = ]%#{z cxy <z} (2.4)

The aim of this chapter is to prove that the result in |Wachter| (1980)
remains true when the entries of X and Y have finite second moments but

not necessarily Gaussian distribution.

Theorem 1. Assume that
(a) X = (Xij)1<i<pra<j<n where X5, 1 < i < p;,1 < j <mn, are i.i.d real
random variables with EX1; = 0 and E|X11|* = 1.
(0) Y = (Yij)i<i<psi<j<n where Yij,1 < i < py,1 < j < n are i.i.d real
random variables with EYy, = 0 and E|Y;;]* = 1.
(c) p1 = p1(n) and pa = pa(n) with B2 — c1 and 22 — ¢y, c1,¢5 € (0,1), as
n — oo.
(d) Say = AT AL A TAL where A, = IXXT A, = 1YY" and A,y =
IXYT,
(e) X and Y are independent.

Then as n — oo the empirical distribution of the matriz ri,ra, -+ ,7p,

converges almost surely to a fized distribution function whose density is

NI

p(r) = ((r=L)(r+L)(H—r)(H+r))z/[mrcyr(1=r)(1+71)], r € [L, H], (2.5)

where L = |(cy — 0201)% — (1 — C1C2)%| and H = (cy — 0201)% + (¢ — 0102)%;
and atoms of size max(0,1—co/c1) at zero and size max(0,1— (1 —c3)/cy)

at unity.
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Remark 1. The inverse of a matriz, such as A" and A;l, 18 the moore-
penrose pseudoinverse, i.e. in the spectral decomposition of the initial ma-
triz, replace each monzero eigenvalue by its reciprocal and leave the zero
eigenvalues alone. This is because under the finite second moment con-
dition, the matrices A, and A, may be not invertible under the classical
inverse matrix definition. However, with the additional assumption that
EX}, < oo and EY{} < oo, we have the conclusion that the smallest
eigenvalues of the sample matrices A, and A, converge to (1 — \/c1)* and
(1 — \/c2)? respectively[Theorem 5.11 of |Bai and Silverstein (2009)], which

are not zero since c1,co € (0,1). So A, and A, are invertible with proba-

bility one under the finite fourth moment condition.

As stated previously, it is sufficient to analyze the limiting spectral dis-
tribution(LSD) of the matrix S,,, where LSD denotes the limit of the em-
pirical spectral distribution as n — oo.

The strategy of the proof of Theorem [1}is as follows. Since the matrix
Sy is not symmetric, it is difficult to work on it directly. Instead we consider
the n X n symmetric matrix

P,P.P, (2.6)

where

P, = X"(XX")'X, P, =Y (YY")'Y.

Note that P, and P, are projection matrices. Let O,, = (XX7)"'XYT(YY?)'Y.
Then S,, = 0,,X” and P,P, = X70,,. By the property that for any
two matrices A and B, the nonzero eigenvalues of AB are the same as
the nonzero eigenvalues of BA, we can derive that, the eigenvalues of the
matrix P,P, are the same as those of the matrix S,, other than n — p;

zero eigenvalues. Moreover by the fact that Pz =p, PP,P,and P, P,
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also have the same nonzero eigenvalues. So the eigenvalues of the matrix
P,P,P, are the same as those of the matrix S,, other than n — p; zero

eigenvalues, i.e.

n —
FPPePy(0) = o) + PP (o) 27)

By and the result in Wachter| (1980), one can easily obtain the limit
of FPvP=Py(z) when the entries of X and Y are Gaussian distributed. To
move from the Gaussian case to non-Gaussian case, we mainly use Lin-
deberg’s method (see [Lindeberg (1922) and |Chatterjee (2006)) and the
Stieltjes transform. The Stieltjes transform for any probability distribu-

tion function G(z) is defined as

mg(z) = / ! dG(z), zeC"={z€eC, v=TImz>0}. (2.8)

r—z

An additional key technique is to introduce a perturbation matrix in
order to deal with the random matrix (XX?)~! under the finite second

moment condition.

2.2 Proof of Theorem 1

We divide the proof of Theorem [1| into 4 parts:

2.2.1 Step 1: Introducing a perturbation matrix

Let
A=PP,P,

In view of (2.7) it is enough to investigate F* to prove Theorem . In order

to deal with the matrix (XX?)~!, we make a perturbation of the matrix A
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and obtain a new matrix

B-=pPP.,P,

where P,, = 1XT(1XXT +1I,, )X, t > 0 is a small constant number and
I,, is the identity matrix of the size p;.
We claim that, with probability one,

lim lim L(FA,FB) —0. (2.9)

t—0 n—oo

where L(FA, F'B) is Levy distance between two distribution functions FA(\)

and F'B(\). By Lemma @ in the Appendix,

1 1
L}(FA FB) < —tr(A —B)* < —tr(P, — Py,)?

n n
1 /1 1 1 2

= —tr(=XXT[(=XX")"t — (=XXT +tL,) !
L (LXXP(EXXT) T - (CXXT 411,,)7)

< t2t (1XXT+tI )2 (2.10)
J— ’r‘ —_— .

~ n 'n oo

where the second inequality uses the fact that ||P,|| = 1 with the norm

being the spectral norm and the last inequality uses the spectral decompo-

sition of the matrix XX i.e.

1 1 1
XXX XTY T - (=XXT 1, )t
CXXT(CXXT) T - (XX 4 ,) ]
t
H1 p1(p1+t)
t
= UT Horn uu? firm ()
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p1+t

0

with that pq, ..., u, are the nonzero eigenvalues of the matrix %XXT and
the columns of U” are the eigenvectors of the matrix XX,

Given t > 0, by Theorem 3.6 in [Bai and Silverstein| (2009)) (or see |Jons-
son| (1982) and Marcenko and Pastur| (1967)) and the Helly-Bray theorem,

we have with probability one

L1 N U 1 b
—tr(=XXT +1,)% = —/—dF A / ——=dF,. (A
nr(n + pl) n ()\+t)2 pl( )_>Cl ., ()\—i-t)Q 1( )

V(b — V(b — —a)
M< A\ < M
/ A+ 1) 227m / /\327T =

where F},, is the ESD of the sample matrix %XXT, F., is the Marcenko-
Pastur Law, b = (1 + ,/c1)? and a = (1 — \/¢1)?. Here and in what follows

M stands for a positive constant number and it may be different from line
to line. This, together with , implies , as claimed.

Let B and A, respectively, denote analogues of the matrices B and A
with the elements of X replaced by i.i.d. Gaussian distributed random
variables, independent of the entries of Y. By and the fact that, for
any A € R,

[FAN) — FAN)| < [FAN) — FBO)| + [FBO) = FBO)| +FB(\) — FA(\),

in order to prove that, for any fixed ¢ > 0, with probability one,

lim [FA(\) — FA\)| =0, (2.12)

n—o0

(2.11)
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it suffices to prove with probability one,

lim |[FB(\) — FB()\)| = 0. (2.13)

n—oo

If we have (2.12)), then for any A € R, with probability one,

lim |FP«Pv()\) — FPEPu()\)| = 0. (2.14)

n—oQ

Since P, and P, stand symmetric positions in the matrix P, P, as in ([2.12])

and (2.14}), one can similarly prove that for any A € R, with probability one,

lim |FP#Py(\) — FPEPI())| = 0, (2.15)

n—o0

where P is obtained from the matrix P, with all the entries of Y replaced

by i.i.d Gaussian distributed random variables, independent of P9. Then

(2.14) and (2.15)) imply that for any A € R, with probability one,

lim |FPPv()\) — FPEPI(\)] = 0. (2.16)

n—o0

With the theorem obtained in Wachter| (1980)) and (2.16)), our theorem is
easily derived.

Hence the subsequent parts are devoted to proving (2.13)).

2.2.2 Step 2: Truncation, Centralization, Rescaling
and Tightness of FB

With (1.8) of Bai and Silverstein (2004) and the arguments above and
below, we can choose ¢, > 0 such that e, — 0, n'/%¢, — 0o as n — oo,

and P(|X;;| > n'/%,) < 2. Define
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1 1 ~ lor s %
Ptac = _XT(_XXT + tIp1>_1X7 Pta: = _XT(_XXT + tIpl)_IX’
n n n n

~ 1. 1~ ~ ~ - ~ ~ “
P, = —XT(—XXT +1tI,,)"'X, B=P,P,P,, B=P,P,,P,,
n
where X = (Xij)1<icprii<jon and X = (Xij)1<icpra<j<n-

PSS >

Let n;; = 1—1(]X;;| < n*/?e,). We then get by Lemmain the appendix
sup |FP(A) — FP())| < Erank(PmeP —-P PmP ) < Er(mk(Pm — Pm)
A

1 S S S 4 SN
< —[rank(X" = X) + rank(XX" - XX") + rank(X - X")] < =) "> “ny;.
n n
i=1 j=1
Denote ¢ = P(n;; = 1) = P(|X;;| > n'/%¢,). We conclude from Lemma
that for any 0 > 0,

P(Sl)l\p|FB(/\) ( )| =0) < ZZT’U—

21]1

n

ZZ% —np1g > npl(i —q))

=1 j=1
2,2(0 _ )2
n pl(pl q)
2np1q + np1 (2 — q)

< Zexp( - ) < 2exp(—nh),

for some positive h. It follows from Borel-Cantelli’s lemma that
sgp |FB(N) — FB()\)| — 0, a.s. asn— oo.
Next, we prove that
51)1\p |FB(A) - FB()\)| — 0, a.s. asn— oo. (2.17)

Again by Lemma [] we have

. . 1 . 1 . .
sup |[FB(\) — FB()\)| < —rank(B — B) < —rank [Pm — Pm}
A n n
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S IS B s -
< —rank| X" (SXXT +11,) 7! - (CXXT +11,,) )X
n n

n n
1 lor loor et L sry lver 1%
+rank [—X (=XXT+11,,) EX]+—mnk[—(EX )(=XXT+41,,) X}
n n n n n n

1 1 —r 1o -
+~rank [—(EXT)(—XXT + tIpl)’lEX] .
n n n
Since all elements of EX are identical, rank (EX) = 1. Moreover, from
(2.19))

1o 1
(EXXT +tL,) ! - (EXXT +tI,,) !

1~ 1o Tanr 1 onn
= (=XXT 441, ) (= XXT — = XX (=XXT 441, )7t
(XX +11,) CXXT)(CXXT 411,

1 1o _ ol oS oo Lo _
= H(EXXTnLtIm) 1(—EXEXT+XEXT+(EX)XT)(EXXTHIM) L

Hence

; ; M
sup |[FB(\) — FB())| < — =0
A

Let 62 = E(|X;]?) and B = #XT(#XXT + tL,)"'X. Then by

Lemma [6], we have

L3(FB, FB) < %tr(B -B)’
- ww% X XT(%XXT + &%Im)l(%XXT + t1p1)1>2
_ (62 _n1)2t2 tT((%XXT 6241, — &Qtlpl)(%XXT 4 &%Ipl)l(%XXT + ﬂpl)1>2
_ (@ —nl)%2 tr<< % XX 441, ) — &zt(%xxT + &%Im)l(%XXT + tIp1)1>2
< T (AKX )
SRR 457, (XK 4 ) )
N | N

n t2
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because 6% — 1 and p;/n — ¢; as n — oo; where the first equality uses the

formula ([2.19)); the second inequality uses the matrix inequality that
tr(C) < p|[C,

holding for any p; X p; normal matrix C; and the last inequality uses the

fact that

1o 1 1o 1
IXXT £ 62 )V < — . [[(EXXT 441 )Y < =
ICXXT +6°1,) 7| < = [ICXXT +1,) 7' <

In view of the truncation, centralization and rescaling steps above, in

the sequel, we shall assume that the underlying variables satisfy
1 Xi| <n'?e,, EX;=0, EX] =1, (2.18)

and for simplicity we shall still use notation X;; instead of XZ]
We now turn to investigating the tightness of FB. For any constant

number K > 0,

1 11
dFB < — [ \dFB® = ——¢r[P,P,, P
/)\>K —K/ KTLT[ ytt y}

Since the largest eigenvalue of P, is 1 and Py, is a nonnegative matrix we

obtain

tr [PyPtzPy] = tr [PyPtaf:]

1 1
< tr[Pu) = tr[- XX (=XX" +tI,,) '] < n.
n n

The last inequality has used the facts that ¢ > 0 and that all the eigenvalues
of IXXT(LXXT +¢I,,)~" are less than 1.
It follows that F'B is tight.
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2.2.3 Step 3: Convergence of the random part

Let
B '(z) = (P,P;,P, — 2I)"".
The aim in this section is to prove that
L, n L, no
—trB7(2) — E—trB7(2) - 0 a.s. asn — oc.
n n

To this end we introduce some notation. Let x; denote the kth column
of X and e the column vector of the size of p; with the kth element being
1 and otherwise 0. Moreover, define X to be the matrix obtained from X
by replacing the elements of the kth column of X with 0.

Fix v = 2z > 0. Define F; to be the o-field generated by xi, -, xy.
Let Ej(-) denote the conditional expectation with respect to Fj and Ej
denote expectation. That is, Fx(-) = E(:|Fx) and Ey(-) = E(-). Let

By = PyP}tny, B;Zl(Z) = (PyPi:IPy - 21)717

where Py, = %XT(%XXT + 1L, ) 'X, Py = %X{(%kag + 1L, )X
Define H, ' = (1 X, X} +tI,,) ! and H™! = (A XX +¢I,,) L.
Note that X = X, + xkef, that the elements of X e, are all zero and
hence that
XX — X XT = xpx}.

This implies that

1 1 1
-1 -1 —1y JTyy-1 “1y TEp-1
H -H = EH xpx, H, " = 1T 7 H 'x, EH]“ xpx, Hy o,
2 X, Hy,

where we make use of the formula

AT A=A (A - ADAT (2.19)
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holding for any two invertible matrices A; and As;

and
U 'u

Th—1..
(U+uv') u_—l—i—vTU—lu’

(2.20)

holding for any invertible matrices U and (U + uv?’), vectors u and v. We

then write
B, —-B= Py(Pff —Py,)P, =P, (C1 + Co+ C5+ Cy)Py, (2.21)
where
o 1 XTH,! xkka X, C, — 1 XTH; 'xel
no 1+ IxIH "%, nl+ ixIH; 'x;’
1 TH, X 1 TH,!
Oy = —— ke Tk ekx’; X’“ek . (229
nl+4 txIH " 1+ xTH, x,
Now write

n

%trB_l(z) — E%tTB_l(Z) = %Z[EktTB_I(Z) — By trB7H(2)]

k=1
IR -1 -1
=— Y (By—Ex)(trB™(2) —trB, " (2))
gyt
1
:ﬁ,ﬁ Ek—Ekl[Ztr< 2)P,CP,B" ())},
where the last step uses (2.19) and (2.21)). Let || - || denote the spectral

norm of matrices or the Euclidean norm of vectors. It is observed that

1

_ _ 1
B ()l <=, 1B (2)ll < IPy[] <1, p—ltrH <- (223

Y

t

S| =
S|

and since x} H; 'x; > 0 we have

1
1+ %X{lelxk

<1 (2.24)
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It follows that

1 x'H ' X, P,B71(2)B,.' ()P, X TH_'x
-1 -1 _ ke kL y k Yy Ak
|tTBk (Z)PyclpyB (Z)| - E 1+ %Xngzlxk

1

v2n?

<

B 1 B t _
% H X[ < %!Xikalxk\ﬂL%M‘:HkZXk\a (2.25)

where the last inequality uses the facts that ||x? H, ' X;||? = xI H, ' X, XTH, 'x;
and H; 'X, XTH, ' = nH; ' (21X, X] + (I, — tL,,)H;' = nH; ' — ntH; .
We then conclude from Lemma [2] (2.23)-(2.25) that

n 4

1
E|- > (Ey — Ex_1)trB;'(2)P,C,P,B7'(2)
k=1
M a B 4
< E;E‘terl(z)PyCleB 1(;;)‘
M < L M T
< FZE‘Xszlxk’ —G—FZE‘XngQXk‘
k=1 k=1
1
= O(ﬁ)?

where the last step uses the facts that via Lemma [3[ and ({2.18))

1 _ 4 1 _ 114 1 _
FE‘Xng 1xk’ < FME‘Xng 1%, — terl + EJWEHTH,CI]4 <M
(2.26)
and that
1 ryr—2. |*
FE’kak xk) < M. (2.27)
Similarly, we can also obtain for ¢ = 2, 3, 4,
BN -1 e M
E|— (Bx— BB ()P,CPB (o) < —. (2.28)

k=1

It follows from Borel-Cantelli’s lemma that

1 1
~trB7Y(z) - E—trB7!(2) a.s.n — oco. (2.29)
n n
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2.2.4 Step 4: From Gaussian distribution to general

distributions

This section is to prove that
1 1 1 1
El=trB™(2)] — E[-trD™(2)] = 0 as n — oo, (2.30)
n n

where D7!(2) = (P,P{,P, — zI)"!, P}, = 1GT(2GGT + {I,))"'G and
G = (Gjj)p,xn consists of ii.d. Gaussian random variables. We would

point out that (2.13) follows immediately from (2.29)), (2.30)), tightness of

FB and the well-known inversion formula for Stieltjes transform[Theorem
B.8 of Bai and Silverstein| (2009)]. We use Lindeberg’s method in |Chatterjee
(2006)) to prove this result.

To facilitate statements, denote

A A ~

Xll)"' aX1n7X217"' 7Xp1n respectively by Xl?”’ aXann-i-lv"' 7Xp1n

and

~ ~ ~

G, ,Gin, Gy, -+, Gy, Tespectively by @1, Gy Gogr, o, G,
For each 7, 0 < 7 < pin, set

Zj= (X1, -, X;,Gj1,  Gp) and Z0 = (X1, , Xjo1,0, Gy, -+, Gppa).
(2.31)

Note that X in B7!(z) consists of the entries of Z,, ,. Hence we denote

LtrB~!(2) by +tr(B(Z,,,) — 2I)~'. Define the mapping f from R"™* to C

as

F(Zyn) = 1r(B(Zyy) — 1) (2.3

Furthermore we use the entries of Z;, j = 0,1,--- ,pin — 1, respectively, to

replace X7, - - ,Xpln, the entries of X in B, to constitute a series of new
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matrices. For these new matrices, we define f(Z;), j =0,1,--- ,pjn—1 as
f(Zy,,) is defined for the matrix B. For example, f(Zy) = +irD~'(z). We
then write

pin
1

Bl 0B (2)] - E[ltrD ZE(f Z,.).

A third Taylor expansion yields

112,) = JE)+ X0, B+ G )+ 153 [ arpa sl e
0

A 1. 1o [*
f(Zj1) = F(Z)+Ci0,(Z9)+5, G50 (Z9)+ 56 / (1=7)*02f (2,71 (7))dr,
where 0} f(+), r = 1,2,3, stand for the r-fold derivative of the function f in
the j-th coordinate, and

~

Z(l)(f) — (le' .. 7Xj71,7')2'j,éj+1, B 7Gpn>7

Zgzjl(f) = (Xl,- .. ,Xj_l,Téj,éj_H, s ,Gpn).

A~

Since X; and G, are both independent of 79, E[X;] = E[G;] = 0 and
E[X?] = E[G?] = 1, we obtain

E[%trB_l(z)} — E[%trD‘l(z)]
_ %ZE[X?’ / PO ()i = G [ (1= w70 P (rpar].

Next we evaluate 05 f (Z9,(7)). Note that

oH' . OH
aXij 8XU

H. (2.33)

A simple but tedious calculation indicates that

OB 1 _ 1 _
ol EPyejez.T H 1XPy+EPyXTH 'ee] P,




2.2 Proof of Theorem 1 35

1
——P,X"H ' (e;e] X" + Xeje] )JH'XP,,

n
azB 2 Tyr—1 T 2 Tyy—1 T~T T —1
XL EPyejei H 'ee; P, — ﬁPyejei H™ (eje; X* + Xeje; )JH XP,

]
2 _ B 2 B -
— P, XTH ™ (eie] X" + Xeje] JH eie] P, — —P,X"H 'e;el H™'XP,

2 _ _
+EPyXT[H (e;el X7 4 Xeje )’H'XP,,

o°B 6 T (0 oTXT T 1le o
67% = —ﬁPyejeiH (eie; X' + Xeje; )H 'eje; P,
6
——Pye;e/H 'e;e] H 'XP,
n

6
+$Pyejef [H ' (e;e] X" + Xeje] )’H'XP,
6

—ﬁPyXTH’IeieZTH_leie;fp P,

—i—%PyXT[H_l(eieJTXT + XejeZT)FH_leieJTPy

—%PyXT[H_l(eie]T X" + Xeje] )’H 'XP,

—i—%PyXTHl(eie;‘.FXT + Xeje] )H 'e;e] H 'XP,
6

+$PyXTH—1eieiTH*1(eie]TXT + Xeje! )JH'XP,,.

Also, by the formula

1otrB™'(2) 1, ,0B

/- = _ = B2
it is easily seen that
1 93trB™1(2) 6, 0B 0B 0B
= \= Bfl Bfl B72
1 . 0°B 3 ,0°B 0B
- B72 el B72 _Bfl
S B+ B g B )
3 B__, 0B __,
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3trB !
£ %agTa(z) and therefore we
b

There are lots of terms in the expansion o
do not enumerate all the terms here. By using the formula that, for any

matrices A, B and column vectors e; and ey,

tr(Aejef B) = e/ BAe;, (2.34)

all the terms of %%};(Z)

That is

can be dominated by a common expression.

1 93rB~1(2)
-5 Il =
n  0X7

M B M _
—[H - [XTH |+ = [ XTH )P
n n
M B
+¥HH M- XTHTP
M —1 Tyxr—1 T —1
+EIIH |- [ XTHT| - [[XTH X
M _ _
+$HH Y- XTE] ) XTHX P
M
+$I|XTH‘III3 XTH'X]]
M
+EHXTH*1II3 [ XTHTIX)?
M
+F||XTH‘1||3 I XTHX |2 (2.35)
Obviously

H| < =. (2.36)

~+ | =

It is observed that

IXTH'X|]? = Max XTH ' XXTH X)) = Ao (H ' XXTH 1 XXT)
< P[4 2t|[HTY| + £2|[H2||] < Mn?, (2.37)
where A\jyax (1) denotes the maximum eigenvalue of the corresponding matrix;

and the first inequality above utilizes the fact that H-!XX? = anl(%XXT—I—
tL,, —tL, ) = nl, —ntH™ "
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Similarly we can obtain

IXTH™ | < My/n. (2.38)

We conclude from ([2.35) - that

1 93rB~1(2) M

— < . 2.39
This implies that
1 93trB~1(2) M Me
3 3 n
E|X; - — e | < n5/2E[ij] < 3 (2.40)
ij

Since all X;; and W;; play a similar role in their corresponding matrices,
the above argument works for all matrices. Hence we obtain
1 1
]E[—t’r’Bfl(z)] — E[~trD7(2)]]
n
pln 1
< MZ / (1-7)°E|X30 f (z§1>(7))|d7+/ (1 —7)2E|G23 f(Z\?,(r))|dr]
0

< Mé‘n.

This ensures that

E[%trB_l(z)] - E[%trD_l(z)] —0 as n— 0.

Therefore the proof of Theorem 1 is completed.

2.3 Conclusion

Canonical correlation coefficients play an important role in the analysis of
correlations between random vectors[Anderson (1984)]. Nowadays, investi-
gations of large dimensional random vectors attract a substantial research
works, e.g. Fan and Lv| (2010). As future works, we plan to develop cen-
tral limit theorems for the empirical distribution of canonical correlation
coefficients and make statistical applications of the developed asymptotic

theorems for large dimensional random vectors.
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2.4 Appendix

Lemma 1 (Burkholder| (1973)). Let {Xy,1 < k < n} be a complex martin-
gale difference sequence with respect to the increasing o-field {Fy}. Then,
forp =2,

EIY Xl < Kp(BEQ B(IXaPIFe)P? + B 1XelP).
k=1

k=1 k=1
Lemma 2 (Burkholder (1973))). With {X},1 < k <n} as above, we have,

forp>1,
E|Y XiP < KB 1XP)P
k=1 k=1
Lemma 3 (Lemma B.26 of Bai and Silverstein| (2009))). For X = (Xy,---, X,,)T
1.1.d standardized entries, C n X n matriz, we have, for any p > 2,
E|X*CX — trCP < K,((E|X,[*rCC*)*/? + E|X,|*tr(CC*)?/?).
Lemma 4 (Theorem A.43 of Bai and Silverstein (2009)). Let A and B be
two n X n symmetric matrices. Then

1
||[FA — FB|| < —rank(A — B),
n

where || f|| = sups|f(x)].

Lemma 5 (Hoeffding (1963))). Let Y1,Ys,... be i.i.d random wvariables,
PYy=1)=q=1—-P(Y, =0). Then

n2e2

P(Yy+ -4+ Y, —ng| > ne) < 2e 2na+ne
foralle >0, n=1,2,....

Lemma 6 (Corollary A.41 of Bai and Silverstein (2009)). Let A and B be
two n x n symmetric matrices with their respective ESDs of F4 and FEB.
Then,

L3(F4 FB) < %tr(A — B)*.



Chapter I
Chapter

Regularized Canonical Correlation

Coeflicients

3.1 Methodology and Theory

Throughout this chapter we make the following assumptions.

Assumption 1. p; = pi(n) and py = py(n) with 22 — ¢; and 2 — ¢y,
c1,c2 € (0,1), as n — 0.

Assumption 2. p; = p;(n) and ps = pa(n) with 2 — ¢; and 2 — ¢,
¢, € (0,400) and ¢, € (0,400), as n — oo.

Assumption 3. X = (X))l and Y = (V;)755,) satisfy X =
TI2W and Y = E%?V, where W = (wy,---,w,) = (W;;)i5l, consists

of i.i.d real random variables {W;;} with EWy; = 0 and E|Wy;]* = 1;

V = (vi, -+, va) = (Viy)i5Z, consists of i.i.d real random variables with

EViy = 0 and E|V;|* = 1; Z,l(f and 2%,2 are Hermitian square roots of
positive definite matrices Xy, and Xy, respectively so that (£12)? = X,

and (2}/7)? = =

- yy:
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Assumption 4. F¥xx o , a proper cumulative distribution function.

Remark 2. By the definition of the matriz S,,, the classical canonical
correlation coefficients between x and y are the same as those between w

and v when w and {w;} are i.i.d, and v and {v;} are i.i.d.

We now introduce some results from random matrix theory. Denote the
empirical spectral distribution function (ESD) of any n x n matrix A with

real eigenvalues p1 < po < -+ < i, by

FAw) = i < o), (3.1)

where #{-- - } denotes the cardinality of the set {--- }.

When the two random vectors x and y are independent and each of
them consists of i.i.d Gaussian random variables, under Assumptions 1 and
3, Wachter| (1980) proved that the empirical measure of the classical sample
canonical correlation coefficients 7,79, ,7,, converges in probability to

a fixed distribution whose density is given by

\/(:v —L)(x+ L)(H —z)(H + 7)

ple) = mez(l —x)(1+ 2) ;@ e (L, H], (32)

and atoms size of max(0, (1 — ¢3)/c1) at zero and size max(0,1 — (1 —
c2)/c1) at unity where L = |y/cy — co¢) —+/c1 — ¢1Co| and H = |\/co — co¢1 +
V/e1 — cic|. Here the empirical measure of 7,79, -+ ,7,, is defined as in
(3.1) with p; replaced by 7;.

In Chapter 2, we have proved that also holds for classical sample

canonical correlation coefficients when the entries of x and y are not nec-
essarily Gaussian distributed. For easy reference, we state the result in the

following proposition.
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Proposition 1. In addition to Assumptions 1 and 3, suppose that {X;;,1 <
i <p,1<j<n}and {Y;,1 <i<py1<j<n} are independent. Then
the empirical measure of r1,rs, ...,y converges almost surely to a fived

distribution function whose density is given by .

Under Assumptions 2-4, instead of FS#=_ we analyze the ESD, FTxv of
the regularized random matrix Ty, given in ([1.6). To this end, define the
Stieltjes transform of any distribution function G(z) by

1

(z), 2 € CT ={z € C,Imz > 0},

mgag =

where Imz denotes the imaginary part of the complex number z.
It turns out that the limit of the empirical spectral distribution (LSD)
of Ty is connected to that of the LSD of SISQ1 defined below. Let

1
T 1
E WpW, So = p— 5 WLWi —i—t Exx,
2 = pa+1
! !
c c
1 1
yl = 7 y2 - 1 7.
Gy )

The LSD of Sy, and its Stieltjes transform are denoted by F,; and my,:(z)
respectively. Under Assumptions 2- 4 from [Silverstein and Bai| (1995]) and
Pan| (2010) my,:(z) is the unique solution in C* to
1
My,i(2) = map, (z — m) (3.3)

where mp,(z) denotes the Stieltjes transform of the LSD of the matrix

ts 3! (one may also see (4.4) in Chapter . Let n = (ny,n9) and
y = (y1,y2) with ny = p; and ny = n — pa. The Stieltjes transforms of the
ESD and LSD of the matrix S;S;," are denoted by my(2) and my(2) re-
spectively while those of the ESD and LSD of the matrix p% P2 wl'sswy,

are denoted by m,,(z) and m(2) respectively. Observe that the spectra of
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S,S,;' and p% v w}'S5,'wy, are the same except (p; —p2) zero eigenvalues

and this leads to
]_ _
m, (2) = —Tyl +yimy (2). (3.4)

We are now in a position to state the LSD of Tyy.

Theorem 2. In addition to Assumptions 2-4, suppose that {X;;,1 < i <
p1,1 <j<n}and {Yi;,1 <i<psy,1<j<n} are independent.

a) Ifc, € (0,1), then the ESD, FT=()), converges almost surely to
a fized distribution F(q(l—’\_/\)), where ¢ = %~ and F(\) is a nonrandom

distribution and its Stieltjes transform my(z) is the unique solution in C*

to

N 0F, (1)
)=~ [ s iy () 7

b) If ¢, € [1,00), then FT()), converges almost surely to a fized

(3.5)

distribution é(ﬁ — t) where G(\) is a nonrandom distribution and its

Stieltjes transform satisfies the equation

() / dH (M)

mea(z) = :
¢ ML —d, —dzmga(z)) — =
Remark 3. Indeed, takingt =0 in recovers | Wachter (1980)’s result

(3.6)

(one may refer to the result of F matrixz in |Bai and Silverstein (2009)).

Let us now introduce the test statistic. Under Assumption 1 and As-
sumption 3, behind our test statistic is the observation that the limit of
FSes(z) can be obtained from when x and y are independent, while
the limit of FS=v(z) could be different from (3.2) when x and y have cor-
relation. For example, if y = ¥;w and x = ¥ow with p; = p, and both ¥,

and Y, being invertible, then
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which implies that the limit of F'S=v(x) is a degenerate distribution. This
suggests that we may make use of FS=(z) to construct a test statistic.

Thus we consider the following statistic

[ o@arss@) = - 3" a3, (3.7)

PriD

A perplexing problem is how to choose an appropriate function ¢(z). For

simplicity we choose ¢(z) = x in this work. That is, our statistic is

1 p1
Sp = / wdFSe (z) = - > ot (3.8)
=1

Indeed, extensive simulations based on Theorems [3] and [4] below have been
conducted to help select an appropriate function ¢(z). We find that other
functions such as ¢(x) = z* does not have an advantage over ¢(x) = .

In the classical CCA, the maximum likelihood ratio test statistic for

(1.1)) with fixed dimensions is

p1
MLR, = log(1—17) (3.9)

i=1
(see Wilks (1935) and Aderson (1984)). That is, ¢(z) in takes log(1 —
x). Note that the density p(x) has atom size of max(0,1 — (1 — ¢3)/c1)
at unity by . Thus the normalized statistic M LR,, is not well defined
when ¢; + ¢2 > 1 ( because [log(l — 2?)p(z)dx is not meaningful). In
addition, even when ¢; + ¢o < 1, the right end point of p(z), H, can be
equal to one so that some sample correlation coefficients r; are close to one.
For example H = 1 when ¢; = ¢ = 1. This in turns causes a big value
of the corresponding log(1 — r?). Therefore, M LR, is not stable and this
phenomenon is also confirmed by our simulations.

Under Assumptions 2 and 3, we substitute Ty, for S,, and use the
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statistic
T, = / rd P (). (3.10)
We next establish the CLTs of the statistics (3.7) and (3.10). To this
end, write
GV (A) = pr(FS=v(A) — Fermen (X)), (3.11)
and
G2, (A) = pr (FT=r(A) = Foman())), (3.12)

where [t ()\) and Féinan (A) are obtained from F°»*2(\) and Ferea with

pL — P2 o S P2
e = 2 and ¢, = Bc, = F

c1,co and cll,c'2 replaced by ¢y, =
respectively; F°°()) and F €162 (M) are the limiting spectral distributions

of the matrices S;, and Ty, respectively, whose densities can be obtained

from p(x) in and (3.5)). We re-normalize and (3.10) as
[ o060, 00 =il [ o) = [oyarenen ), (313
and

[ o462, 00 1= pa( [ SOFT ) = [ on)apinie). 319

Also, let

_ C1 _ C1 = = —— (1 - h)2
= 07 I = = 0,1 P h - — s =,
n 1— e S ( +OO) Y2 s S ( ) VUYLt Y2 Y1Y2, a1 (1 — y2)2
(1+h)? 1 -9
= 9neN) =5 — A) (A — <A< dB.15
2= g 2 = g gy V(@ T MO @) e <A< dils)
Theorem 3. Let ¢1,--- , ¢5 be functions analytic in an open region in the

complex plane containing the interval [a1, as]. In addition to Assumptions

1 and 3, suppose that

EX{ = EY}, =3. (3.16)
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Then, as n — 0o, the random vector

/ B AIG, ( / HOVCNEY) (3.17)

converges weakly to a Gaussian vector (Xg,, ..., Xy,) with mean

B L 1+ R%+ 2RR(E) 1 12
EX@ 17%{14 ‘%; 1f1< (1_@2)2 )[é_r—l + é‘_|_r71 €+%]d§7

and covariance function

1+h2+2hm (&1) )f (1+h2+2h9‘i(£2))
X, , X4) = — lim — e AN O ) S 2
COU( bir (j)J 7{{{1 47T fll ) fﬂ . (51 . 7"52)2 51 527

(3.19)

where fi(A) = gbz( _02 ~); R denotes the real part of a complex number;

and r | 1 means that r approaches to 1 from above.

Remark 4. When ¢(x) = x, the mean of the limit distribution in Theorem

2h2 y1y2
(y1+y2)*”

H 18 0 and the variance is

Zheng (2012).

These are calculated in Exzample 4.2 of

Before stating the CLT of the linear spectral statistics for the matrix

Ty, we make some notation. Let r be a positive integer and introduce

mr(z):/( dH (x) ()= 1

x—z+w(z)) 1+ yomyy (2
(2))

)’
C plmcm )Y —me(e)
N (e N E)) R Ty o
s(z1,29) = L — 1

L4 yomy(z1) 14 yamy(z2)’

where (my,:(2))" stands for the derivative with respect to z.
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Theorem 4. Let ¢q,--- ,¢5 be functions analytic in an open region in the
complex plane containing the support of the LSD F (A) whose stieltjes trans-
form is . In addition to Assumptions 2-4, suppose that

EX}{, = EY}, = 3. (3.20)
a) Ifc, €(0,1), then the random vector

([ o oG 2

converges weakly to a Gaussian vector (Xg,,. .., Xy,) with mean

y1 [ my(2)’z[x + my (2)]°dF,(x)
EXo = 27rzja{¢ 14z (

T— 1 [y (720 + my () @)
2 (—my (2))ma(—my (2)) + 93" (=my (=), (—m())ma(—my (=)
T 2 (—my () ma(—my ()

B (i mmal (),

1 — cw?(—my (2))ma(—my,(2))

+h(2)

—h(z) (3.22)

and covariance

%) m/y(zl)m/y<22)
Cov(Xou, Xo,) = 27r2 f}l{@ 1+ 2 1 + 22)((my(z1) —my(22))?
1
()P (m ( )+m( 1))?
h(z1)h(z2)[1 + g(21) + g(22) + g(21)g(22)]
[—my (22) + my (21) + s(—my (21), —my (22))]?

Here all the contour integrals can be evaluated on any contour enclosing the

support of the LSD F(\) whose stieltjes transform is .

)dzldzg. (3.23)

b) Ifc, € [1,4+00), (3.21) converges weakly to a Gaussian vector (Xg,, ..., Xy.)
with mean and covariance illustrated in (9.7.5) and (9.7.6) of [Bai and

2

Silverstein, (2009), where the parameter y equals c;, o* equals t~' and

T, = Y-
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Here we would like to point out that the idea of testing independence
between two random vectors x and y by CCA is based on the fact that the
uncorrelatedness between x and y is equivalent to independence between
them when the random vector of size (p; + p2) consisting of the components
of x and y is a Gaussian random vector. See Wilks (1935) and Anderson
(1984). For nonGaussian random vectors x and y, uncorrelatedness is not
equivalent to independence. CCA may fail in this case. Yet, since Theorems
and [ hold for nonGaussian random vectors x and y CCA can be still
utilized to capture dependent but uncorrelated x and y such as ARCH type
of dependence by considering higher power of their entries. See Section|3.4.6
for the further discussion.

Following Lytova and Pastur| (2009)) condition can be removed.
However it will significantly increase the length of this work and we will not

pursue it here.

3.2 The power under local alternatives

This section is to evaluate the power of S, or 7T,, under a kind of local

alternative. Recall the definitions of Ggl),m,i =1,2in 1) and 1} and
let RY = [ AGY) ,,.

Theorem 5. In addition to assumptions in Theorem [3 or Theorem[]} for

any i = 1,2, suppose that in probability

tr (sﬁyl - s@;)’ = o0, ‘tr (TE}; - Tﬁ;)‘ = o0, (3.24)

where ngﬁ is Syy under H;, with j =0, 1. T?ﬁ,j = 0,1 are defined similarly.
Then

lim P(RY > 2 or RY < 20)|H,) =1, (3.25)

n—oo
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where zﬁ)a and = are (1—«) and « quantiles of the asymptotic distribution

of the statistic RY under the null hypothests.

Remark 5. If S}} = (XX")"'XTP, X" and Sfy = (XX")"'XP,X"
withT being a nonnegative definite matriz, then this implies the covariance
matriz between x and y is T. Particularly, if T = I + eel with e =
(1,1,---,1) then under assumptions in Theorem @ or Theorem |4| it can be
proved that

tr (Sij - SZ’) =e'P,Pe=n

satisfying .

3.3 Applications of CCA

This section explores some applications of the proposed test. We consider
two examples from multivariate analysis and time series analysis respec-

tively.

3.3.1 Multivariate Regression test with CCA

Consider the multivariate regression(MR) model as follows:
Y =XB +E, (3.26)
where

Y = [y17y27 s >yp1]n><p17 X = []-le’XQa oo 7Xp2]n><p27

B= [ﬁlaﬁ% SR aﬁpl]szpm E= [917627 s ;epl]nxp17
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and each of the vectors y;, x;, e;, for j = 1,2,...,p; is n x 1 vectors and
{B;,i=1,2,...,p1} are py x 1 vectors.

Let Ay, = %X'Y and Ay = %X'X. We have the least square estimate
of B

B=A_A,. (3.27)

The most common hypothesis testing is to test whether there exists lin-
ear relationship between the two sets of variables (response variables and

predictor variables) or the overall regression test
Ho: B =0. (3.28)

To test Hy : B =0, Wilks’ A criterion is

|E| -

A= i 1;[(1 + )7 (3.29)
where
E=Y (I-XXX)'X)Y (3.30)
and
H =B (X'X)B; (3.31)

and {\;:7=1,...,s} are the roots of |[H — AE| = 0, s = min(k, p).

Remark 6. Wilk’s A criterion indeed assumes Gaussian observations and
deriwe the exact lambda distribution. In this thesis, we derive the asymp-
totic distribution of Wilk’s criterion under high dimensional case without

Gaussian assumption.
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An alternative form for A is to employ sample covariance matrices. That
is, H = AyxA 1A, and E = Ayy — AL ALA,,, so that |H— \E| = 0
becomes |Ayx At Axy — MAyy — AyxALAL)| = 0. From Theorem 2.6.8
of Timm| (2001) we have |H — 0(H + E)| = |[AyxA fAxy — 0Ayy| = 0 so
that

2 : Ay — A AZIAL |
A=110+x)"= 1—91-:‘ YR B 3.32
[Ta+x" =TTa-o o (3.32)
i=1 i=1
Evidently, the quantities r? = 6;,4 = 1,...,s are sample canonical correla-

tion coefficients. Therefore the test statistic (3.29) can be rewritten as

logA = Z log(1 —7r?). (3.33)
i=1

From this point of view, the multiple regression test is equivalent to the
independence test based on canonical correlation coefficients. As stated in
the last section, the statistic logA is not stable in the high dimensional

cases. Hence our test statistic S, or T, can be applied in the MR test.

3.3.2 Testing for Cointegration with CCA

Consider an n-dimensional vector process {y;} that has a first-order error

correction representation
AYt = —aﬂ,yt_l + E¢, t = ]_, e 7,_Z—'7 (334)

where a and 3 are full rank n x r matrices (r < n) and the n-dimensional
innovation {e;} is i.i.d. with zero mean and positive covariance matrix 2.
Select o and 3 so that the fact that |I, — (I, — a8)z| = 0 implies that
either [2| > 1 or z = 1 and that o' 3, is of full rank, where o and

B, are full rank n x (n — r) matrices orthogonal to a and 3. Under these
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assumptions, {y;} is 7(1) with r cointegration relations among its elements;

that is {8y, } is 1(0).
The goal is to test

Ho:7=0 (=8 =0); against Hy : r > 0; (3.35)

i.e. whether there exists cointegration relationships among the elements of
the time series {y:}.

This cointegration test is equivalent to testing

Ho : Ay, is independent with Ay;_q;
against

Hy : Ay, is dependent with Ay;_q. (3.36)

In order to apply canonical correlation coefficients to cointegration test

(3.35)), we construct random matrices

X = (Ay27 AY4; R Ay?t—?: A}’%» R AYT)a (337)

Y = (Ay17 AYS, SR Ay2t‘—1) Ay2t+17 SR )AYT—I) . (338)

3.4 Simulation results

This section reports some simulated examples to show the finite sample

performance of the proposed test.

3.4.1 Bootstrap Test Statistic

We should address one question about how to use the propose statistics 7,.

There is an unknown parameter H in the LSD F ¢ and the asymptotic
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distribution of

/ AIGD, (N). (3.39)

Here H is the LSD of the matrix X}
To overcome this difficulty, we consider a bootstrap method as follows.
We redraw samples X* = (x},x3,...,x5) and Y* = (y],y5,...,y,) from

the original samples X = (x1,Xs,...,%,) and Y = (y1,¥s2,...,¥Yn) respec-

tively. Then consider the bootstrap linear spectral statistic
2)*
/ AdGP" (M), (3.40)

where G2 (\) = pr (Fsiy(A) - F:'ln’c;n(A)), S*, is S, with X and Y re-
placed by X* and Y* respectively, and Fj inCan is FetnC2n with the bootstrap
version (X*, Y*).

From Theorem [4] the asymptotic distribution of the bootstrap statistic

(3.40)) is normal distribution with mean ([3.22)) and ([3.23|) in which the LSD
H should be replaced by the LSD of A,..

3.4.2 Empirical sizes and empirical powers

First we introduce the method of calculating empirical sizes and empiri-
cal powers. Let z;_, be the 100(1 — )% quantile of the asymptotic null
distribution of the test statistic 5,,. With K replications of the data set
simulated under the null hypothesis, we calculate the empirical size as

{t of SJI > 214}
K )

& = (3.41)

where S represents the values of the test statistic S, based on the data

simulated under the null hypothesis.
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The empirical power is calculated as

{t of Si'> 214}

b= K

(3.42)

where S2 represents the values of the test statistic S, based on the data
simulated under the alternative hypothesis.
In our simulation, we choose K = 1000 as the number of repeated

simulations. The significance level is a = 0.05.

3.4.3 Testing independence
Consider the data generating process
_ y1/2 _ wy1/2
x=3/Lw, y=3X/V, (3.43)
and two cases are investigated as

(a) Yxx = IP17 2;42 = IP2;

(b) Yx = (U%A)i,lhzlv 2;42 = Ipza

with
(14 6%), k=h;
omt =<0, k—h|=1,
0, |k — h| > 1.
and 0 = 0.6.

The empirical sizes of the proposed statistics \S,, for cases (a) and (b) are
listed in Table [3.I Moreover, the empirical sizes for re-normalized statistic
MLR, are included as comparison with S,,. Note that the re-normalized

statistic M LR,, means that we use the statistic

p [ Tog(1 = Nd(FS+(3) = Foen (1),
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The empirical sizes of T, for cases (a) and (b) are listed in Table [3.2] From
the results in Table[3.1] and [3.2] the proposed statistics S,, and T,, work well

under Assumption 1 and 2 respectively.

3.4.4 Factor model dependence

We consider the factor model as follows:
Xt :Alft+ut, Y :Ath+Vt,t: 1,2,...,71/, (344)

where A; and Ay are p; X r and py X r deterministic matrices respectively;
fi,t =1,2,...,n are r x 1 random vectors with i.i.d Gaussian distributed
elements and u; and vy, t = 1,2,...,n are independent random vectors
whose elements are all Gaussian distributed.

For this model, x; and y; are not independent if r # 0. The proposed
test statistic S, and 7}, can be used to detect this dependent structure.
Table and [3.4] illustrate the powers of the proposed statistic S,, and T,
respectively, as r increases from 1 to 4. Results in these tables indicate
that for one pair (py, p2,n), the power increases as the number of factors r
increases. This phenomenon makes sense since the dependence between x;
and y; is described by the 7 common factors contained in the factor vector f;.
Stronger dependence between x; and y; exists while more common factors
are included in the model.

Here would like to point out that using CCA based on the sample co-
variance matrices with sample mean will incorrectly conclude that x; and
y: are independent even if r # 0 but f; = f independent of ¢ because CCA
of x; and y, is the same as that of u; and v;. This is why and

are used.
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3.4.5 Uncorrelated case

The construction of is based on the idea that the limit of FSev(z)
could not be determined from (3.2)) when x and y have correlation. Thus,
a natural question is whether our statistic works in the uncorrelated but
dependent case. Below is such an example to demonstrate the power of the
test statistic in detecting uncorrelatedness.

Let x; = (X4, Xot, ..., Xpyt),t = 1,2,...,n be i.id normally distributed
random vectors with zero means and unit variances. Define y; = (Y14, Yar, - . -, Ypot)s
t=1,2,...,nby Yy = (X} —EX?),i=1,2,....,p1 and Y}, = €j1,j =
pr+1,...,pt=1,...,n, whereejs,j =p1+1,...,ps;t =1,... ,nareiid
normal distributed random variables and independent with x; and k is an

positive integer.

Remark 7. For standard normal random variable X;;, the 2k-th moment

is BX2F = 27k

For this model, x; and y; are uncorrelated since Cov(X;, Yiy) = EX Z-thﬂ—
EXitEXftk = (. Simulation results in Table and Table provide the
empirical powers of S, and T, by taking k = 2 and k = 5 respectively. They
show that S,, and 7T;, can distinguish this kind of dependent relationship well
when k£ = 5.

3.4.6 ARCH type dependence

The statistic works in the above example because the limit of FS+v can not
be determined from (3.2 if x and y are uncorrelated. However the limit
of FS=v(x) might be the same as (3.2)) when x and y are uncorrelated. We

consider such an example as follows.
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Consider two random vectors x; = (Xi4, Xot, ..., Xp,) and

ye = (Y, Yor, ..., Yyy) as follows:

Y;‘t = Zit\/Oé(] +041Xi2t,i = 1,2,...,}71;1/]'13 = th,j = D1 + 1,...,]92, (345)

where z, = (Zy, Zot, ..., Zp,) is a random vector consisting of ii.d el-
ements generated from Normal (0,1) and {z;} are independent across t;
x¢ = (Xit, Xot, ..., Xp,t) is also a random vector with i.i.d elements gen-
erated from Normal(0,1); Moreover, {z, : t = 1,...,T are independent of
{x¢:t=1,...,T}

For this model, x; and y; are dependent but uncorrelated. Simulation
results indicate that the proposed test statistic S,, can not detect the depen-
dence between them. Nevertheless, if we substitute the elements X2 and
Y;? for X;; and Y}, respectively, in the matrix S,,, then the new resulting
statistic 5, can capture the dependence of this type. This efficiency is due
to the correlation between the high powers of X;; and Yj;.

Table and list the powers of the proposed statistics .S,, and T,, for
testing model in several cases, i.e. oy and «; take different values.
From the table, we can find the phenomenon that as a; increases, the powers
also increase. This is consistent with our intuition because larger oy brings

about larger correlation between Y;; and Xj;.

3.5 Empirical applications

As an application of the proposed independence test, we test the cross-
sectional dependence of daily closed stock prices sets between two differ-
ent sections from New York Stock Exchange(NYSE) during the period
2000.1.1 — 2002.1.1, including consumer service section, consumer dura-

tion section, consumer nonduration section, energy section, finance section,
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transport section, healthcare section, capital goods section, basic industry
section and public utility section. The data set is obtained from Wharton

Research Data Services (WRDS) database.

We randomly choose p; and py companies from two different sections re-
spectively, such as the transport and finance section. At each time ¢, denote
the closed stock prices of these companies from the two different sections
as Xy = (T1g, Tat, - -, Tpye) a0d Y = (Yae, Yot, - - -, Ypyt) Tespectively. For each
company, there exist 1000 daily closed stock prices, i.e. t =1,2,...,1000.

The goal is to test dependence between x; and y;. From the time series

{x;:t=1,2,...,1000}, we construct i.i.d samples and group them into a
matrix X = (X1, X1420, - - -, X1420n), Where n < 50. Similarly, we can derive
the sample matrix Y = (y1,y1420,---,¥Y1420n). Lhe construction of X and

Y is based on the idea that the daily closed stock prices tend to being in-
dependent as the length of the time between them is long, i.e. current price

is independent of the price after 20 days.

The proposed test S,, is applied to testing dependence of x; and y;.
For each (p1,p2,n), we randomly choose p; and ps companies from two
different sections, construct the corresponding sample matrices X and Y,
and then calculate the P-value by applying the proposed test. Repeat
this procedure 100 times and derive 100 P-values to see whether the cross-

sectional 'dependence’ feature is popular between the tested two sections.

We test independence of closed stock prices of companies from three
pairs of sections, i.e. basic industry section and capital goods section, pub-
lic utility section and capital goods section, finance section and healthcare
section. From Table 3.9 Table [3.10, and Table |[3.11, we can see that, as
the pair of numbers of companies (pi, p2) increases, more experiments are

rejected in terms of the P-values below 0.05. It shows that cross-sectional
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dependence exists and is popular for different sections in NYSE. This sug-
gests that the assumption that cross-sectional independence in such empir-

ical studies may not be appropriate.

3.6 Appendix

Throughout this chapter, M, M;, M,, K and K; denote positive constants
which may change from line to line, o(1) means the term converging to zero

and O(n~*) means the term divided by n~* bounded in absolute value.

3.6.1 Some Useful Lemmas

Lemma 7 (Duhamel formula). Let My, My be n x n matrices and t € R.

Then we have

t
o(M1+Ma)t :€M1t+/ M=)\, eMi+M2)s 7o (3.46)
0

Moveover, if (A;j(t))1<ij<n i @ matriz-valued function of t € R that is C™

in the sense that each matriz element A;;(t) is C>. Then

1
%eAm :/ e AN (1)el=9A0 g, (3.47)
0

Lemma 8. Assume that F(X) is a differentiable function of each of the
elements of the matriz X, it then holds that

oTr(F(X))
oX

where f(-) is the scalar derivative of F(-).

= f(X)",

Lemma 9. Let U = f(X) be a matriz, then the derivative of the function
g(U) : R™"™ — R with respect to the element X;; of X is

dg(U) _ 9g9(U) ., OU
ox, M) ax,

! (3.48)
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Lemma 10 (Stein’s equation). Let & = {&},_, be independent Gaussian
random variables of zero mean, and ® : RP — C be a differentiable function

with polynomially bounded partial derivatives @2,@ = 1,...,p. Then we

have
E{&(6)} = E{&YE{®(9)}, £=1,...,p, (3.49)

and
Var{®(&)} <Y E{G}E{|2,(9)[*}. (3.50)

Lemma 11 (Generalized Stein’s equation of Lytova and Pastur| (2009)).
Let € be a random variable such that E|£[PT? < oo for a certain nonnegative
integer p. Then for any function ® : R — C of the class CP*' with bounded
derivative O ¢ =1,...,p+ 1, we have

B{ER(§)} = Y B0 (9)} +5,, (3.51)
=0

where the remainder term e, admits the bound

1
sl< [ B
0

and Ky 1S the £+ 1-th cumulant.

14 (3+2p)rt?
(p+1)!

£ 200 (g0)| (1 - vy, €, < . (3.52)

Lemma 12 (Theorem A.37 of |Bai and Silverstein| (2009))). If A and B are
two n X p matrices and M\, 0, k = 1,2,...,n denote their singular values.
If the singular values are arranged in descending order, then we have

v

D [\ = 6f* < tr[(A - B)(A - B)], (3.53)

where v = min{p, n}.
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3.6.2 Proof of Theorem [2

Since the matrix T, is not symmetric, it is difficult to work on it directly.

Instead we consider the n x n symmetric matrix
B, =P,P.P,. (3.54)

It is easily seen that the eigenvalues of the matrix B,, are the same as those
of the matrix T, other than (n — p;) zero eigenvalues. It follows that the

ESDs of B,, and Ty satisfy the equality

n—p

p
F2 (o) = 2P (2) 1+ 2Pl o (a). (3.55)

Below we first consider the case when the entries of X and Y (W and

V) are normal random variables. Write

X' =XxXT+ X7, (3.56)

where X' = P, X" and X} = (I - P,)X” is the corresponding residual
matrix. Let
wl=p,wW? WI!=(,-P,)W”
Then
X, = ZPW,, X, =22 W,.

Since f’y is a projection matrix, the entries of W are independent of those
of W5 and X is independent of X5 . Note that by the definition of Moore-

Penrose pseudoinverse
P,=P,=VI(VV)V. (3.57)
The ESD of B,, can be then written as

FBn@j) _ F%x{(%xxﬂrﬂ)*lxl(w)
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FaWTGWWIHEL) W ()

— DWW W W (L WaWT B ) (W W Wa W)
n
n—m
Tj0,100) ()
1 o
— %FI—(iwlwf(iwzwz?Hzxi)1+I) () + z np1 Ijo,400) (7). (3.58)

This, together with (3.55)), yields

Flos () = FU- (sWaWEGWaWE s =141) (3.59)

If p, > n, then Rank(f’y) = trf’y — trP, = n with probability one by

the definition of Moore-Penrose pseudoinverse because VV' has (py — n)

zero eigenvalues and from Theorem 1.1 of |Rudelson and Vershynin (2011)
with probability one

(YY) | (VB VAETY L

n Vn n?’

It follows that there exists a unitary matrix U such that with probability

(3.60)

one

U*P,U = diag(1,...,1), (3.61)

where diag(-) denotes a diagonal matrix. Since U is a unitary matrix and

all the elements of W are independent Gaussian random variables we obtain
wZLUwW”, W,wWTLwwT, (3.62)

where £ denotes equality in distribution of two random variables. Hence
AW, WT(AW,WI + 2 )~! < t ' LWWTE,,. This is a sample covari-
ance matrix and its LSD and CLT have been provided in (6.1.2) and The-
orem 9.10 of Bai and Silverstein, (2009) respectively.

If po < n then Rank(f’y) = trf’y = trP, = p, with probability one by

an inequality similar to (3.60)). Therefore there exists a unitary matrix U
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such that with probability one
U*P,U = diag(1,...,1,0,...,0), (3.63)

where diag(-) denotes a diagonal matrix and the number of the entries 1 on

the diagonal is py. This implies that

p2 n
T d T T d T
W, W, = E wipwi, WoW, = E WipWp ,

k=1 k=po+1
where wy is the k-th column of W. Therefore, with ¢, := - 2})2 we then
have
1 7,1 T —1\—-1 4 -1
EWIWI (EWQWZ +1t3 ) = ¢.S155, (3.64)
where
1 T 1
Zwkwk, Sy = Z Wkwk +t 2
pz n—p2, “
p2+1

Denote by fu1, pt2, ..., ftp, the eigenvalues of S,55". In view of
the eigenvalues of Ty, can be written as li”“; 1=1,2,...,p1. Note that
(6.1.2) of Bai and Silverstein, (2009) has provided the equation satisfied by
the Stieltjes transform of the LSD of the matrix ST, where S is a sample
covariance matrix and T is a matrix which is independent of S. Moreover
the Stieltjes transform of the LSD of Sy, is provided in Silverstein and Bai
(1995). By taking S = S; and T = ¢,S5,', we see that follows from
(6.1.2) of Bai and Silverstein, (2009).

As for the nonGaussian case, write

1op, 1 1 1
P, = —X'(=XX" +1I,)"'X = —WT(EWWT +tE.)7'W. (3.65)

n n n

Then the proof of Theorem 1 in Chapter 2 indeed shows that replacing

Gaussian entries in W (or X) by nonGaussian entries does not affect the
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LSD of B, and one may refer to (2.13). In view of (3.57), to replace
Gaussian entries in V by nonGaussian entries, as in (2.9), one can first

prove that the Levy distance, as n — oo, then u — 0,

1

I? (FPt

/25 o1/2 1/2 1/2 Mu? 1 5.
e PP FPu PuPi ) < tr(=VVT +ul,) "% < Mu® £% 0,
n n

where (P/*)? = P, and P, = IVIAVVT +ul,) 'V, u > 0. More-
over, we see that conclusion (2.13) still holds if we replace P, and Py, there
by Ptlf and P,, respectively and check on its argument carefully. There-
fore (2.13) ensures that replacing Gaussian entries in Y by nonGaussian
entries does not affect the LSD of P;fPuyP;ﬁ2 when the entries of X are

nonGaussian. The proof is now complete.

3.6.3 Proof of Theorem [3

The strategy of the proof is to first associate sample correlation coefficients
with the F' matrix when the entries of x are Gaussian distributed, whose
CLT was provide by |Zhengl (2012). Then by an interpolation trick first
adopted in [Lytova and Pastur (2009)), we extend the result to the non-
Gaussian distributions. When applying such an interpolation method, an
additional key technique is to introduce a smooth cut function so that we
can handle the expectation of the trace of the inverse of the sample covari-

ance matrix.

3.6.3.1 The Gaussian case

Since the classical sample canonical correlation coefficients between x and y
are the same with those between w and v, we assume that ¥y, = 3,y =1

in this theorem.
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Assume that the entries of X are Gaussian distributed. We below
demonstrate how the eigenvalues of the matrix S,, are connected to those
of an F-matrix.

We would remind the readers that the matrix S,, consists of the project
matrix P, rather than it perturbation matrix P, and P, rather than f’y
where

P, =X"XX""'X, P,=Y"(YY")'Y.

As before, since the matrix S,, is not symmetric we instead consider the
n X n symmetric matrix

A,=P,P,P, (3.66)
Then we have

FAr(z) = BLpsa () + 222

‘[[0,+OO) (x) (367)

Note that under Assumption 1 Rank:(f’y) = trf’y = py with probability
one because Apin(Y'Y)/n <=5 (1 — /3)%. Therefore, with a little abuse of

notation, as in (3.64)), we obtain
i - i
XoX{ S xxl, XoXT = > xxy, (3.68)
k=1 k=po+1

where X; and X, are similarly defined as in (3.56|) with f’y replaced by P,,.
As in (3.59) we conclude that

FAn(z) = FXTXXT) 71X (z) = &F(X1X?+X2X2T)_1X1X1T(x) + ioh 10, 100) ()
o ,+00o
—1 _
_ %F(ngxg(xlxﬂl) (z) + i npl (o, 100) (). (3.69)

This, together with (3.67)), yields

FSev(z) = F(I+X2X%“(X1X1T)*l)_1(x)‘ (3.70)
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Since X; and X are independent the matrix n%ngXg(p%XlX?)*l

an F'— matrix. The limiting spectral distribution of the F-matrix is

1
F??l,fm (dx> = 991,52 <x>l[a1,a2](x)dx + (1 - a)l{§1>1}60(dx)7 (3'71>

where gg, 5, is given in (3.15)) (one may see Section 4 of Bai and Silverstein
(2009)).
Denoting the eigenvalues of =X, X7 (.-X,X]) ™" by Ai,..., Ay, then

1 1
n—pyy 9t n—py :
1+ P2 )\1 1+ 72 )\pl

the eigenvalues of the matrix S, can be expressed as

Therefore the statistic (3.13) can be expressed as

1 2 1
/¢ dGPl Pz /¢ n— p2 )dpl[F” P2 XQ( 2% X ()‘>_F??1n,z72n()‘)]7
1+ A
(3.72)
where Fy, 4, is obtained from Fj, 5, with the substitution of (g1, Jn2) for

(71, 72) and the associated constants (hy,, an1, an2) for (h,ai, as), i.e.

_ p _ p — — —
Yn1 = : y Yn2 = _1a hn = \/ynl + Yn2 — Yn1Yn2,
n—p2 b2
al:(l—hn)z 2:(1+hn)2
=02 (1= G)?

In view of (3.72)), it suffices to provide the CLT for the F-matrix C, =
- Xo X3 (- X0 XT) ! [Zheng (2012) has established the CLTs for linear

n—p2

spectral statistics of F-matrices, which yields Theorem [3] for the Gaussian

distribution ((3.20]) holds in the Gaussian case).

3.6.3.2 The general case

We next consider the CLT for the general distribution by the interpolation
trick. By (3.67)), we have

/ NGy, (V) = 1 / SNA(EPPPo0) — FEu(N))], (3.73)
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where F¥*()) is obtained from the limit, F¥® of FPvP=Pv with ¢; and ¢y
replaced by p;/n and py/n respectively.

We start with the truncation of the underlying random variables. Define

~ o

Xy = (Xij)mxn’ X = (Xij)m xXn (3~74)

where )~( (X EX,J)/UW, X = Xijlx,,|<\me and 0 = E| EXij|2-
Choose ¢, > 0 such that ¢, — 0, n'/%¢,, — 0o and ;EX11[(|X11|>\/65) — 0

as n — 00. Denote € = ¢,, and we have

n

p1,
¥ . K
P(P.#P.) < 3 P(Xy # Xyj) € SEX vy = 0. (3.75)

ij=1
where P, is obtained from P, with X replaced by X.

Let A2 denote the i-th smallest eigenvalue of an Hermitian matrix A.
We use G, p,(x) and émm () to denote the analogues of Gy, ,,(x) with
the matrix C,, = P,P,P, replaced by én = ny’mPy and (NJn = ny’xPy
with P, = ig(f(nfif)_lin, respectively. By Lemma , we have, for each
i=1.2,... s,

(/qs] YA /qu )dGio <KZ\>\C" ACn|

< V(e o) < (e, - €e, - &,r)
< Va(tr(®, - PP, - P,)") " (3.76)

where K is a bound on | f]'(z)] Moreover, one can check that
(o —1)?=o(n"?),  |EXy|=o(n"?). (3.77)

By the formula
A'-B'=AYB-AB, (3.78)
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we obtain
P,—P,=Qi+Q+Q+Q,
where
1 -1~ T 1o = 1o ol v g-1w7T
Q=-XH X, Q=—"XH X, Q=-——XH -XX,H X,
n n n n
lg o ;14 ~ 1
Q= —X,H'-X,X,H'X,
n n

with Xy = X, — X,,, H! = (1X7X,)"" and H™! = (1X7X,,)"". Note
that

4
tr(P, —P,)(P, —P,)" <K Y rQQT.

ij=1

We obtain from ((3.77))

rQiQY < L (XX, ) < KIFCY| (1= 1/00)*0HX, + oy  EX

< K[ (1= /0020 (HY) + o720 EX 2] = o(n ™),
Similarly, one may verify that trQ;Q} = o(n™"), j=2,3,4. It follows that

0.

| [ @Gt - [ oy(a)aGi

In what follows, for simplicity we still use notation X;; rather than )Z'ij and

can assume that
| Xi;| < Vne, EX;; =0, EX] =1. (3.79)
To employ the interpolation trick we first introduce some notation. Let
Nl = [ GONAFA (), N5d) = [ GOAIFA ()~ PO
Moreover we introduce the following interpolating matrices

A,(s) =P,P,(s)P,, X(s) = s'"*X + (1 - 5)/?X,
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P.(s) = - XT(s)H ' (5)X(s), H'(s) = (H(3)) " = (CX(5)X7(s)

where X = (X};) is obtained from X = (Xj;) but consisting of standardized

normal random variables. Define

en(s,z) = exp(imeﬁ(A (5)))7 Ul(t, s) = etAn(®), (3.80)
e)(s,x) = e:cp(zx[Tr¢ _”/<Z5 A)dEYTY () )

By the continuous theorem of characteristic functions and Subsection

3.6.3.1] it suffices to prove that

A

R, (z) = E(eixN5[¢]> - E(eixﬁ’?[‘z’}) — 0, asn— oo, (3.81)

where N°[¢] is the analogue of N°[¢] with all entries of X replaced by i.i.d
standardized normal random variables.

For technical requirements, we introduce a smooth cut off function x(z) :

R — R:

(x) = { Lo lel < Kan (3.82)

0, |z|>2Kn2,

whose first four derivatives satisfy |x)(z)| < Mn?,j = 1,2,3,4.
To prove (3.81]) we first claim that

Ry (x) = E(e”N’S[d’}) — E<6”N3[¢’]X(Im(mn(m’2)))> — 0, as n — o¢3.83)

where m,, (z) is the Stieltjes transform of H = XX Indeed, let PR

be the eigenvalues of H. Since

3

Im(m,(in~?)) =n"> (3.84)
i=1

we conclude that

- M
Ay, > — if |Im(mg(in”2))| < Myn~2, (3.85)
n
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where M; may be the same as or different from K; given in (3.82)). From
Theorem 9.13 of |Bai and Silverstein| (2009), under our truncation, we have,

for any x > 0 and any integers k > 2,
P(Ay, < (1= er)® —2) = 0(n™). (3.86)

By and taking an appropriate x we have
P([Im(my,(in~?))] < Kyn™?) > ]3(5\,,1 > (1— /)’ —z) =1-0(n"B.87)
This is equivalent to

P(x(Im(m,(in"%))) =1) =1-0(n™"). (3.88)
It follows that
[Ba(@)] = B9 (1 = x(Im(ma(in~)))) )|

< P(X(Im(mn(in_Q))) £ 1) = O0(n™) =0, as n — .

(3.89)

Thus ((3.83) is true.
Evidently, (3.83) holds as well if X is replaced by its normal analogue,

X. In view of 1} to prove 1) it suffices to prove that, as n — oo,

R,(x) = E<e”N’3[¢}X(Im(mn(z’n’2)))) — E(eixﬁ’?[‘ﬂx(lm(mn(m’z)))) — 0,

(3.90)

where 70, (z) is the Stieltjes transform of H = %XXT
We show here for future use the moment of (A7 x(Im(m? (in~?))) where

m; (z) denotes the Stieltjes transform of H(s) and A, denotes the mini-

mum eigenvalue of H(s). Note that (3.85))-(3.88]) still hold for H(s) (replace

eigenvalues of H correspondingly by H(s)) because the truncation steps for
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{X};} are applicable to {X};}. In what follows we shall directly quote them

for H(s). By (3.85) and ([3.86]) we have, for any integer r > 0,

E[X(ImO;lifjn_ )))} < Mn"- P(% < A < (1 N \/6_1)2 —ZL‘)

+M((1=/er)? —z) =0(1). (3.91)

We now consider (3.90). In what follows, to simplify notation denote

X(Im(ms (in=2))) by Xns. By the inverse Fourier transform
o0 = [ Pt (3.92)

where ¢(t) is the Fourier transform of (), ie. ¢(t) = £ [e ™ p(N)d),

we obtain

R, (z) = /01 %E(e%(s,x))(m)cls

~

1
— jgeimn [ ORI o / ds / ¢(9>9d9-E(Tru(e,swyap””(s)
0

S

+ /01 E [6;(8, x)% <an>} ds. (3.93)

We next prove that the last term in (3.93) converges to zero.

Pyen(sa x)an)

To this end, we first list formulas for matrix derivatives. By the matrix

derivative formula

H'(s), (3.94)

and the chain rule of matrix derivatives, we have

P (s) 1 | p— —1
s = %XdSH (s)X(s) + %X (s)H™ " (5)Xys
L XT () (5)[ X XT(5) + X (5)XDJH L (5) X (s),

2n?

(3.95)
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X - A X) Denote the first derivative with respect to

where X4s = ( 7 =

77 Xki(s) by
= a/3(\/—)%( s))-

Similar to (3.94]) we obtain

Dy () = ~H ()W (s, JJH(0), iy S=X(5) = ],
(3.96)
where
X7 L s)e;el
W(Skj)_eke\/— ()—’_\/EX()]R

From Lemma[9] Lemma [§ (3.87), (3.79), (3-96) and (3.88), we have

E(Din)| = [1 2 (YDt () = in~21) )|

= ‘%E [X;@SIm (Tr[(H(s) —in " 2T) T2W,, (s, k,j)})} ‘
< Mn"P(xns #1) = O0(n™%), for any &k, (3.97)

where the last inequality uses the fact that x,, # 0 occurs only when
Kin™2 < Im(ms(n=2)) < 2K;n~2 This ensures the last term in ({3.93)

converges to zero.

In view of (3.93), (3.95) and (3.97) we may write R,(x) as

wcnf¢) YAFI*Y (X)
Ry(z) = / ds / o0 edez o(1), (3.98)
where
S o0 - 0
A 510.¢ v = E(X,®M),
Q \/_ Z kj kj) n m];l ( kj k])
with

) = O (Xiy) = (H ' (5) =X (s)PyU (0, )P, ), en(s,7)Xns,

1
NG
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Xk;js = 81/2ij + (1 — S)l/Qij;

(3.99)
and
Qv = /—1 % BX,00), VP = —— % B(Xi;®;))
n 7 /0 n 9 /0
e =1 n(l—s) 2
with

1 _
q)l(é) = @lgi.)(ijs) = (P.(s)P,U(0, s)Py%XT(s)H 1(5))jken(s,x)xm.

Now, the aim is to prove that (3.98) — 0 as n — oo. To this end, we
first further simplify Qg) and Vn(i),i = 1,2. Applying stein’s equation in
Lemma |10/ to the terms V") and V,? respectively, we can obtain

1 n,p1 1 n,p1
Vi == 3" E(Dye)Y), v = - > B(Dyd)). (3.100)
jk=1 Ji.k=1

Similarly, by generalized stein’s equation in Lemma [11| with p = 3, we have

3
QY =31 +¢, i=12% (3.101)
=0
where
. SZ_TI mp1 @)
7 ¢ i
TY = =5 Y iy B(DLOY), (=0,1,2,3;
tn2 52

with 7, being the (-th cumulant of the truncated random variable Xj;

and

i K n,p1 1 i
51< 5 O [ BXEDLe X
kyj=1

where CIDI(;]) (vXkjs) is obtained from @S}(ijs) given in (3.99) with Xj;s

replaced by v.Xj;s.
L2
We next prove that E‘Dijfl),(g‘ is bounded for ¢ =1,2,3,4, + = 1,2. To

this end, we below develop the expansion of ij(s)q),(jj)(s) first. Let e be
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the unit vector with the k£ th entry being 1 and zero otherwise. Recalling

the definition of the matrix U(f,s) in (3.80) and applying the Duhamel

formula (3.47) and (3.96) we have
1
Di(U(0,5)) = / HOANO) Dy (10 (5)) IR gt
0
= Z/ U(7, s)Dy; (An(5)>U((9—7', s)dr
0

0
_ / U(r,)P,BuP, U0 — 7, 5)dr,  (3.102)
0

B, — e]e{H1(5)%X(5)—%XT(S)Hl(s)Wn(s,k, I 5) =X (o
+%XT($)H_1(s)eke]T : (3.103)

It follows from (3.92)), (3.102) and the chain rule of calculating matrix

derivatives that
Dij(en(s, 7)) = —zen(s, z) / S(0)0Tr [U(e, s)PansPy] dh, (3.104)
where we also use the fact that
0
/ U0 — 1,5)U(r,s)dr = 0U(0, s).
0

From ((3.99) and (3.96) we have

Di(®)) = —e[H(s)Wi(s. k. ))Qu: U6, 5)Pyejen(s, 1) x(3.105)
-I—ekH (s )eke;‘-FPyU(Q, s)Pyejen(s, ) Xns
ef Qus (D (U6, 5)) ) Pyesen(s, 2)xns
+ei Q. U(0, s)Pye; (ij(en(s, SU)))an
+e1 Qs U(0, 5)Pyejen (s, 2) Dyj(Xns),



74 Chapter 3. Regularized Canonical Correlation Coefficients

where Q,,s = Hfl(s)\/iﬁX(s)Py.

Although there are many terms in the expansion of ij(CID,(é.)), from

(3.105), (3.102) and (3.104) we see that each term must be products of

some of the factors and their transposes below

1
%X(S% el Py(s),
Py7 U(ea 8)7 Xns; €k, €n(8,.7}), ejv Dk](an) (3106)

efH '(s)ey, et H'(s)

By the facts that [e,(s, 2)| < 1, [xns| < M, |[Po(s)|] = [[Py[| = [[U(0, 5)]| =
llex|| = ||e;]| = 1 and (3.106]), we conclude from ([3.105) that

D] < E Yl T ) =X ) o
6] (5) =X (01Dt )
< bl + 31y (3.107
where 7, d are some nonnegative integers independent of n, and || - || stands

for the spectral norm of a matrix or the Euclidean norm of a vector. From

the argument of (3.97)), (3.91) and ([3.85]) we see

1
B( 5 1Pss () ) < K, (3.108)

min

In view of (3.107), (3.110) and (3.91) we conclude that E|D;.C]-<I>,(€lj)|2 is
bounded.
We now claim that E(Dﬁjcb,(clj))Q, ¢ = 2,3,4 are bounded as well. Indeed,

from (3.102)) to (3.105)) we see that each higher derivative of E(Dijd)/%))

must be a sum of the products of some of the derivatives Dy;(U(6,s)),

Dyj(en(s,x)), Di;(H™1(s)), ij(\/iﬁX(s)) and Dy (xns). From (3.96)-(3.104

we see such derivatives must be formed by some of the factors listed in

(13.106)) as well as Dﬁj (Xns). Here we would point out that the trace involved
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n (3.104)) is handled in the way that tTCeke?D = e?DCek. Therefore, as
n (3.107), we have for £ = 2, 3,4

{4 _r _ 1
D8] < Kl e B (5) X |dIZ|Dk] ()|

7’1+d1/2 Z |Dk53 an (3109)

mll’l

where ry,d; are some nonnegative integers, independent of n. Again, from

the argument of (3 - and one can verify that

1
E<Arl+d1/Q\Dk](xns)I2) <K. (3.110)

min

2
Hence E‘D k,] is

< K. Likewise one may verify that F ‘D <I>,(£

bounded. Summarizing the above we have proved that

E‘D ,jj <K, (=1,234 i=12 (3.111)

Consider f?(f) in (3.101f) now. Define the event
B= <)\min >(1- @)2/2). (3.112)
Write

E)Xlgjleij(bl(c? (v Xkjs)

= E‘XlijsDﬁjq)gg<vijS)

I(B)+E(X,§js¢<4>(vxkjs) 1(B°).

From (3.109) and (3.79) we see that on the event B

4
X2 DL (0X 10| < Kv/nel X | + K (Vine)® > Dy (xns)|.

m=1

Moreover, as in (3.97)) one may verify that

) (v/ne)® Z|ij (xns)| = O(n™F).
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While (3.111)) and (3.86)) imply

E)X5 D} (X4 1(B°)

kjs

< (EID®) (vXis) ) (B X[ P P(B) V= O(n 7).

It follows that
K

&' < =5

n,p1 1 )
> / E‘X,fjspﬁjcb,@ (vXkjs)|dv < Ke — 0. (3.113)
0

k,j=1
For ¢ =1,2,3.4, let uzkj(ue,kj) and /‘izkj(/igykj) be the /-th moment and
(-th cumulant of the truncated variables Xp; (the original variables Xj;)

respectively. Then

K
4_ZE|ijy4I(kajy > ev/n).

(G i — 1< KE| X' T(1 X 0| > < -
‘ 4,k W:’W| = ‘ k]‘ (’ ka’ 5\/5) = (\/ﬁg)
(3.114)

It is well-known that the /-th cumulant s, can be written in terms of the

moments py as

K=Y Calla, (3.115)
A

where the sum is over all additive partitions A of the set {1,...,¢}, {e\}
are known coefficients and p) = [],, #e. We then obtain from (3.114)) and
(3-115)),

. K
|’%Z,kj — Iig7kj| S WEle]rl]ﬂXkﬂ > 8\/%) (3116)
Recalling the definition of Te(é_l) in (3.6.3.2), from (3.116]) and (3.111) we may
write
T =10 40, (3.117)

where the error term Tél) satisfies

(1) s-0/2 LT ¢ geli) Ke
Ir’| < sz K1k — Rt |[E(Dy; )| < W@'Hg)

7j:1
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and Tg(l) is the analogue of Tg(g1 ) with lizkj replaced by kgr;. Note that
To(l) = Tél) =0, Tl(l) = 751) because k; = k4 = 0. In view of Lemma
below, T2(1) = o(1), and hence

QY =V & +o(1). (3.119)
With the same proof as above, we can obtain
QY =V + & +o(1). (3.120)

This, together with (3.119)), (3.113)) and (3.98]), completes the proof of this

theorem.

Lemma 13. Under the assumptions of Theorem|[3,

l n,p1

> i (Dij %)) =o(1), i=12, (3.121)

7,k=1

T =

3
n2

as n — Q.

By taking a further derivative of (|3.105) we may obtain the expansion
of D};(®};). However since such an expansion is rather complicated we do
not list all the terms here. Note that each term of its expansion must be a

product or a convolution of some of the following factors

Cr = (Val$))ky, C2 = (Vn(S)%X(S)H‘I(S))kk, Cs = (Py(s)P,UP,)j;,
(3.122)

Ci= (P,UP,);;, Cs = en(s, x), C5 = (Vau(s)Pu(s))rj, Cr = (H'(5))aa,
Cio = (Px(s))jj7 Csg = (Px(S)PyUPny(S))jjv

1
XT(S)Hil(S))jka Cll = Xns, 012 = Dij(an),g = 1,2,

Vi
where V,,(s) = H™(s)

09:

\/iﬁX(s)PyUPy and U stands for U(0,s) or U(0 —

7,5). Moreover, each term of the expression of D,%j(s)q)élj)(s) must contain
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Cs = ey(s,x) and at least one of C1; and C}o; and moreover, it contains at
least one of Cy, Cg and Cy. For example we see that Dy;(e, (s, x)) contains
Ch or Cg from and Dy;((H™'(s))xx) includes Cy from ([3.96)).

Thus, to prove , it suffices to estimate the following term

p1,n
T1+1 T J— N
n3/2 3 E(C I1 Oh> o(1), i =1,6,9, (3.123)
k,j=1 heD,h#i
where all r,,h € D = {1,---,12} are nonnegative integers, independent

of n. As in (3.97) one may verify that (3.123]) converges to zero if Cj,

is contained in (3.123]). Below we consider only the case when (s is not
contained in and as a result it must contain C;.

We first prove holds for the case when there are at least two of
C;,v = 1,6,9 contained in the expectation sign of . Moreover for
concreteness we consider the case when C) and Cg are both contained in
and all the remaining cases can be proved similarly. With D; =
{2,---,5,7,--+- 10} by the Schwartz inequality and arguments similar to

(3-91)) and (3.107) we obtain

p1,m
r1+1 ~vre+1
‘anE(C ceton IT ar)
k,j=1 heDy
— 2(r1+1) — 2(rg+1) 1/2
< (I, > (Vals)Pa(s)is 70 1(B)
k,g=1 k,j=1
K nitritretratre M, (1 _ \/6_1)2 1
P(— < A < —) — O(—=), (3.124
n3/2 n = 9 (\/ﬁ) ( )
where we also use the fact that recalling the definition of the event B in
(13.112]),
p1,n p1,M
> (V)P VIB) < K |(Va(8)k[PI(B) < Ktr(Vi(s))*1(B) < nK.
k,j=1 k,j=1

If there is only one of C;,7 = 1,6,9 contained in (3.123) but its cor-

responding r; being greater than zero, then repeating the argument of
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(3.124]) ensures that holds. We now consider the case when one
of C;,i = 1,6,9 is contained in but its corresponding r; equals
zero. For concreteness we consider C contained in and the remain-
ing cases can be proved similarly. Let Dy = {2,---,5,7,8,10}. By the
Schwartz inequality

!—z s(cien T e

,j=1

< [Z [esleitteateiily Z ‘ Z N CpC ( )}
. Kn8+2r1+2r2+27’7P ( % o (1— 2\/_1)2>
< [Z S (V)b (VD Oty Co 1, Ol Cot (B)]
o (3.125)
KHMZQMHHP(% < Ay < LV _2\/6_1>2) ~ O(%), (3.126)

where we use Corp and Crgr, b = ky, ko, respectively, to denote Cy and
C7 to emphasize their dependence on k and the notation (-) denotes its

corresponding complex conjugate. As for (3.125]) we use the following fact

that
K \ / T2 r7 T2 r7
3.125) = — B 3 (Va(&)VE ()b O3, Ol Citas Coas L (B)]
k1,k2
- - . 2 1/2
[Z|02z1k107;1k1| Z!Z st Ot Ol | 1(5)]
k1 ko
* T T T T 1/2
— n3/2 |:Z Z kal(V ( )Vn(s))kb}kl02’2€2k20722]{)202’263]{:307;)3]63](B):|
k1 ko,ks

K \/ T 2\ 7 L) ~r7 To 7 1/2
:WE[an(s)(vn(s)) V() habs Ot Oy O, Gty [ ()] <
ka,ks3

where V() stands for the complex conjugate transpose of V,,(s). There-
fore (3.123)) holds for all cases and the proof of Lemma |13|is complete.
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3.6.4 Proof of Theorem [4
3.6.4.1 The Gaussian case

The CLT under the case of po > n has been discussed in the proof of
Theorem [2} Consider ¢, € (0, 1) next.

We remind readers that we below use the same notations as those in

Theorem E Recall ¢, = n}isz' From (3.59) we can see that the statistic
(3.10) can be expressed as

[ 66,0 = [ oI (PS5 1) = B, )], (3120

where F,

Yin,Y2n

defined in (3.5)), with the substitution of (y.1, yn2) for (y1,y2). Here yn = £

() is obtained from F,, ,,(u), whose stieltjes transform is

p1
n—pz’

From (3.127)), it suffices to provide the CLT for generalized F-matrix

and y,,, =

K, = 8182}1. When ¢t = 0, the CLT of the linear spectral statistics of K,,
is provided in Zheng (2012)). Following a line similar to the proof of The-
orem 3.1 of [Zheng| (2012), we next provide the CLT for the linear spectral
statistics of the matrix K,, in the case of t > 0.

Let n = (ny,n9) and y = (y1,y2) with n; = p; and ny = n — ps. The
Stieltjes transforms of the ESD and LSD of the matrix S;S5,' are denoted by
mn(z) and my (2) respectively while those of the ESD and LSD of the matrix
p%WlTS;WI are denoted by m,,(2) and m,(2) respectively. The ESD and
LSD of Sy are written as F,,, and F,,; respectively while those of SQ_t1
are written as H,,.(z) and Hy,(x) respectively. The Stieltjes transforms
of F,,, and F,,; are denoted by my,.,(z) and m,, () respectively. The
Stieltjes transforms of ESD and LSD of the matrix S, = n%pQWQWQT are
written as m,,,(2) and m,,(2) respectively while those of the ESD and LSD
of the matrix n_LmWQTWQ are denoted by m,,, (2) and m,, () respectively.
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Moreover, my, , m

ya are obtained from my, m respectively with y = (y1, y2)

replaced by yn = (Y1n; Y2n). Also Fy, ¢, my, 4, my, o Fy,,,my,, and m, are
F,

obtained from Fj,¢, my,:, m Yo

ot my, and m,, with ys replaced by ya,.

Some of the Stieltjes transforms and ESDs above have the following

relations:

and for all z > 0,
1 1
Hn2t<x) =1- Fnzt(g)v Hyzt(x) =1- Fyﬁ(;)'

This, together with Theorem 4.3 of Bai and Silverstein (2009), indicates

that m(2) satisfies the following equation

. 1 1 dFy, ()
= +/x+my(z). (3.129)

Replacing F,,;(z) by F,, ,(z) we have a similar expression ( see (6.2.15) of
Bai and Silverstein| (2009) as well)

1 n AF, | (x
p= +/y1 g () (3.130)
my'n

T+ my,

Write

n[my,(2) — my, (2)] = ni[my, (2) — m¥ 2 (2)] 4+ ny [mP 2t (2) — my, (2)],

where mt¥n1-Hnat}(2) is the unique root to the following equation

1 F
2= + / U Frnzi() (3.132)

m{ynl ,Hngt} x + m{ynlyHth} ’

Roughly speaking, mYm-Hr2t(2) is the Stieltjes transform of the LSD of
%W?S;Wl when Wy is given.
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Step 1: Given Wy, consider the conditional distribution of

n[m, —mirofinat (7). (3.133)

For simplicity, write m(2) as m(z). By Lemma 9.11 of |Bai and Silverstein|

(2009), we can obtain the conditional distribution of (3.133)) given Wy con-

verges to a Gaussian process M;(z) on some contour C (see Lemma 9.11 of

Bai and Silverstein| (2009)) with mean function

y1 [ m(2)°z[r + m(2)]2dF,,(v)

E(M W,) = 3.134
WhEIW) = T Tnere + ) 2dha e Y
for z € C and covariance function
m' (z1)m (22) 1
Cov(Mq(z1), M1(29)|W3) =2 — 3.135
(M), M) [Wa) = 2( o SEEL 220 — ) (3135)
for z1, 29 € C.
Step 2: Consider the limit distribution of
ny[mmo et (2) — m (2)]. (3.136)

By the definition of the Stieltjes transform, rewrite the equations of

(3.130) and (|3.132) as

1 1
== +yn1myn2t(_m )7 z =

+ yn1mn2t( - m{ynl,Hth}) .
myn

a m{ynl 7Hn2t}

(3.137)

Taking a difference of the above two identities we obtain

m{ynl ,Hth} —m

0 = my m{yannQ_t;’n + Yn1 [mmt(_m{ym :Hn2t}) _ ant(_myn)
iy, 1

+mn2t(_myn) - myngt(_m)’n)]

m{ynl 7Hn2t} —m (m{y"I’H"Qt} —m
= - yn1/

—¥n yn)dFmt(x)
mynm{ynl 7Hn2t} (aj —+ m{ynl yHth} (I —+ myn)

+yn1 [mnzt(_myn) - myth (_myn )] .
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From the above equality, we can obtain

[m et (2) —my, (2)]

= {yn,,Hn t}nl[ant(_myn) - myth(_myn)]
— —ynlmy m 1 2 : T
n mynm Ynyp-Hnot anQt(x)

From the fact that m, (2) — m(z) and Theorem 3.9 of Billingsley
(1999), the limiting distribution of

. (3.138)

{vn ,ant})

Pi[mny(=my,, ) = my,,, (—my, )]

is the same as that of

p1lMnye(—m) — my, (—m)].

Recall the definition of g(z) before Theorem[d] By Theorem [f]in Chapter
, we see that ny[mg,,(—m(z)) —m,, ,(=m(z))] converges to a Gaussian
process Ms(+) on z € C with mean function

/

Yo (—m(z))my(—m(2)) + yiw* (—m(2))m,,,(—m(z))ms(—m

EMy(z) =

and covariance

CO’U(M2<31)5M2<22)) _(—m(ZQ) +m(21))2

N 2[1 + g(21) + g(22) + g(21)g(22)]
[—m(z2) +m(21) + s(—m(21), —m(22))]*’

{yny Hpot}
. —my, (2)m "2t (2) —m?
Since v = converges to h(z) = m™(2)
my, (mm ot Gyap, () 1—yim?(z) [ vt 7
1—yn, [ - (z+m(2))?

(x+myn (z))(x«!»m{ynl ,Hn2t}>

we have (3.138)) converges weakly to a Gaussian process Ms(-) = h(z)Ms(2)
with mean E(M;(2)) = h(z) EMs(z) and covariance

Cov(Ms(z1), M3(22)) = h(z1)h(22)Cov(Ma(z1), Ma(22)).
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Since the limit of
nfmy (2) — mlme i (2)]
conditioning on Wy, is independent of the ESD of S,,,, the limits of

nu[my(2) — m 2t ()] and m[m et (2) = my, (2)

are asymptotically independent. Therefore n[m,(2) — my, (2)] converges

weakly to M (z) + M3(z) with mean function

o fm() el + m(2) B ()

BV + M) = [T oo m(o)] 2h

oo () mo(—(2)) + 42 (), (—m(2)yms(—m()
I~ e (—m(=))ma(—m(=))

Y (—m(2))my,, (—m(z))my(—m(z)

2

,.\
S

S~—

Pt

+h(z)

M A () (m(2))
(3.139)
and covariance function
B m'(z1)m (z) 1
COU(Ml(Zl) + MS(Zl) (32) + M3(22)) = 2(( ( ) ( 2))2 (Zl — z2)2>
_ 2h(z)h(z) h(z1)h(22)2[1 + g(21) + g(22) + g(zl)g(z )]
Cies) +m()) | em(es) + men) + s(omGe)—mGz))p - 4

By the Cauchy integral formula, we have with probability one for all n large

/f 2)dG? (x) = 2m/f 2)ma(z (3.141)

Then
2
/fl dGl(h)pz /fk del D2 >>
converges to a Gaussian vector (X, ..., Xy, ) where

EX; = j{fz 2) 4 Ms(2))dz (3.142)
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and

Cov(Xy,, Xy,) = —%ﬂ?{ffi(z)fj(z)Cov(Ml(zﬂ + M3(z1), M1(22) + M3(22))dz1dzs.

As for the non-Gaussian case, under the assumption that EX{, = 3, one
can verify that the CLT is the same as that in the Gaussian case by repeating
the method in Section (replacing P, there by Py, in (3.65))). We omit
the details here.

3.6.5 The proof of Theorem

Set
. (%)
DO —pr [ aa(FE ) - FEP ).

where Rg} represents the matrix S;, while Rg} represents the matrix T,y ;
(i) (5) :
and Fﬂﬁz o Fui “ stand for the ESDs of R% under Hy and Hy, respectively.

The power can be then calculated as

B, = P(Rgf) > Zi_q OT Rff) < Zg

)

= P(D(i) + R > 2, or DY 4+ RWO < 5,

)

= P(RS)O > 20— DY or RV < 2, — DO [I—|1>, (3.144)

where R(® stands for R under Hy. Under the condition 1) we have

Bn— 1, as n — oo.

(3.143)
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Table 3.1: Empirical sizes of the proposed test S, and the re-normalized like-
lihood ratio test M LR,, at 0.05 significance level for DGP(a) and DGP(b).

(p1,p2,n) S, DGP(a) Sn, DGP(b) | MLR, DGP(a) MLR,, DGP(b)
(10,20,40) 0.0458 0.0461 0.0481 0.0490
(20,30,60) 0.0480 0.0488 0.0440 0.0448
(30,60,120) 0.0475 0.0480 0.0530 0.0520
(40,80,160) 0.0464 0.0466 0.0420 0.0420
(50,100,200) 0.0503 0.0504 0.0487 0.0500
(60,120,240) 0.0490 0.0490 0.0574 0.0572
(70,140,280) 0.0524 0.0520 0.0570 0.0582
(80,160,320) 0.0500 0.0500 0.0632 0.0583
(90,180,360) 0.0521 0.0511 0.0559 0.0580
(100,200,400) 0.0501 0.0503 0.0482 0.0589
(110,220,440) 0.0504 0.0500 0.0440 0.0590
(120,240,480) 0.0513 0.0511 0.0400 0.0432
(130,260,520) 0.0511 0.0511 0.0520 0.0560
(140,280,560) 0.0469 0.0474 0.0582 0.0580
(150,300,600) 0.0495 0.0500 0.0590 0.0593
(160,320,640) 0.0514 0.0517 0.0437 0.0559
(170,340,680) 0.0498 0.0500 0.0428 0.0430
(180,360,720) 0.0509 0.0510 0.0580 0.0577
(190,380,760) 0.0488 0.0485 0.0388 0.0499
(200,400,800) 0.0491 0.0491 0.0462 0.0499
(210,420,840) 0.0491 0.0500 0.0450 0.0555
(220,440,880) 0.0515 0.0510 0.0572 0.0588
(230,460,920) 0.0493 0.0498 0.0470 0.0488
(240,480,960) 0.0482 0.0479 0.0521 0.0561
(250,500,1000) 0.0452 0.0450 0.0527 0.0545
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Table 3.2: Empirical sizes of the proposed test Ty, at 0.05 significance level for
DGP(a) and DGP(b).

(p1,p2,m) | Tn DGP(a) T DGP(b)
(100,50,60) 0.0582 0.0579
(140,70,80) 0.0591 0.0571

(180,90,100) 0.0549 0.0568
(200,100,120) 0.0561 0.0558
(240,120,130) 0.0571 0.0572
(280,140,150) 0.0540 0.0569
(320,160,170) 0.0551 0.0559
(360,180,190) 0.0542 0.0572
(400,190,200) 0.0571 0.0553
(440,220,230) 0.0532 0.0561
(480,240,250) 0.0540 0.0557

*The parameter ¢ in the statistic T,, takes value of 0.5.
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Table 3.3: Empirical powers of the proposed test S, at 0.05 significance level

for factor models.

(p1,p2,n) r=1 r=2 r=3 r=4
(10,20,40) 0.2690 0.6460 0.9420 0.9980
(30,60,120) 0.2930 0.8010 0.9760  0.9990
(50,100,200) 0.3110  0.7650 0.9770  1.0000
(70,140,280) 0.3240 0.7710 0.9830 0.9980
(90,180,360) 0.3450 0.7940 0.9870 1.0000
(110,220,440) 0.3330 0.7980 0.9800  0.9990
(130,260,520) 0.3460 0.7820 0.9780  0.9990
(150,300,600) 0.3510 0.7980  0.9720  0.9990
(170,340,680) 0.3250 0.7780 0.9750  1.0000
)
)
)

(190,380,760 0.3480 0.7810 0.9810  1.0000
(210,420,840 0.3210 0.7900 0.9700 1.0000
(230,460,920 0.3300 0.7810 0.9790 1.0000
(250,500,1000) | 0.3370 0.7890 0.9790  1.0000

*The powers are under the alternative hypothesis that x and y satisfy the factor model

(13.44)). r is the number of factors.
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Table 3.4: Empirical powers of the proposed test T, at 0.05 significance level

for factor models.

(p1,p2,m) r=1 r=2 r=3 r=4
(10,20,40) 0.3150 0.7440 0.9500 0.9830
(30,60,120) 0.4230 0.8550 0.9740 1.0000

(50,100,200) 0.3990 0.8760 0.9890  1.0000
(70,140,280) 0.4120  0.8690  0.9990  0.9980
( ) 0.4050 0.8820 0.9840 1.0000

90,180,360

(110,220,440) 0.4000 0.8740 0.9850 0.9990
(130,260,520) 0.3990 0.8910 0.9880 0.9990
(150,300,600) 0.4110 0.8570 0.9870  0.9990
(170,340,680) 0.4100 0.8800  0.9920  1.0000
(190,380,760) 0.3980 0.8690  0.9860  1.0000
(210,420,840) 0.3490 0.8790 0.9770  1.0000

(230,460,920) 0.3990 0.8730 0.9730 1.0000
(250,500,1000) | 0.4100 0.8770 0.9800  1.0000

*The powers are under the alternative hypothesis that x and y satisfy the factor model

(13.44)). r is the number of factors.
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Table 3.5: Empirical powers of the proposed test S, at 0.05 significance level
for x and'y with ARCH(1) dependent type.

(p1,p2,n) (0.9,0.1) | (0.8,0.2) | (0.7,0.3) | (0.6,0.4) | (0.5,0.5)

(10,20,40) 0.3480 0.4670 0.6380 0.7650 0.8500
(30,60,120) 0.4840 0.8090 0.9820 0.9990 1.0000
(50,100,200) 0.6190 0.9730 1.0000 1.0000 1.0000
(70,140,280) 0.7020 0.9980 1.0000 1.0000 1.0000
(90,180,360) 0.7900 1.0000 1.0000 1.0000 1.0000

(110,220,440) 0.8620 1.0000 1.0000 1.0000 1.0000
(130,260,520) 0.8970 1.0000 1.0000 1.0000 1.0000
( ) 0.9440 1.0000 1.0000 1.0000 1.0000
(170,340,680) 0.9520 1.0000 1.0000 1.0000 1.0000
( )
( )
(

150,300,600

190,380,760 0.9810 1.0000 1.0000 1.0000 1.0000
210,420,840 0.9880 1.0000 1.0000 1.0000 1.0000
230,460,920) 0.9950 1.0000 1.0000 1.0000 1.0000
(250,500,1000) 0.9980 1.0000 1.0000 1.0000 1.0000

*The powers are under the alternative hypothesis that Y;; = Z;+/aq +a1Xft,i =
1,2,...,015Y5 = Zjs,j = p1 +1,...,p2. The pair of two numbers in this table is

the value of (g, aq).
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Table 3.6: Empirical powers of the proposed test T,, at 0.05 significance level
for x and'y with ARCH(1) dependent type.

(p1,p2,m) (0.9,0.1) | (0.8,0.2) | (0.7,0.3) | (0.6,0.4) | (0.5,0.5)
(100,50,60) 0.5620 05720 0.6880 0.8030 0.9430
(140,70,80) 0.6330 0.7590 0.8200 0.9170 0.9590

(180,90,100) | 0.7190 0.8240 0.9560 0.9920 1.0000
200,100,110) | 0.7990 0.8370 0.9890 1.0000 1.0000
240,120,130) | 0.8810 0.9450 1.0000 1.0000 1.0000
280,140,150) | 0.9470 0.9780 1.0000 1.0000 1.0000
320,160,170) | 0.9790 0.9920 1.0000 1.0000 1.0000
360,180,190) | 0.9890 0.9990 1.0000 1.0000 1.0000
400,200,210) | 0.9860 0.9990 1.0000 1.0000 1.0000
440,220,230) | 0.9930 1.0000 1.0000 1.0000 1.0000
480,240,250) | 0.9970 0.9990 1.0000 1.0000 1.0000

—_ e~~~ ~ |~~~

*The powers are under the alternative hypothesis that Y;; = Zi+v/ao +a1Xi2t,i =
1,2,...,01;Y5: = Zj,j = p1 +1,...,p2. The pair of two numbers in this table is

the value of (g, a1). The parameter ¢ in the statistic T;, takes value of 0.5.
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Table 3.7: Empirical powers of the proposed test S, at 0.05 significance level

for uncorrelated but dependent case.

(p1,p2,n) w=4 | w=10
(10,20,40) 0.8140 | 0.9690
(30,60,120) 0.8200 | 0.9510
(50,100,200) 0.8220 | 0.9600
(70,140,280) 0.8100 | 0.9610
(90,180,360) 0.8210 0.9640
(110,220,440) 0.8110 | 0.9670
(130,260,520) 0.8320 | 0.9740
(150,300,600) 0.8420 | 0.9740
(170,340,680) 0.8450 | 0.9760
(190,380,760) | 0.8580 | 0.9680
(210,420,840) 0.8420 | 0.9670
(230,460,920) 0.8440 | 0.9810
(250,500,1000) | 0.8620 | 0.9810

*The powers are under the alternative hypothesis that ¥;; = Xy,i = 1,2,...,p; and

}/jtZEjtmj:pl_'_ly"'

,p2;t =1,...,n, where €¢,7 =p1 + 1,...

,p2;t =1,...,n are

standard normal distributed and independent with X;; and w = 4, 10.
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Table 3.8: Empirical powers of the proposed test T, at 0.05 significance level

for uncorrelated but dependent case.

(p1,p2,n) w= w =10
(100,50,60) 0.6270 | 0.8130
(140,70,80) 0.6920 | 0.8430
(180,90,100) 0.7010 0.8380

(200,100,110) | 0.7920 | 0.8460
(240,120,130)
(280,140,150) | 0.8660 | 0.9650
(320,160,170) | 0.9040 | 0.9780
)
)
)
)

0.8240 | 0.9330

(360,180,190
(400,200,210
(440,220,230
(480,240,250

0.9060 | 0.9830

0.9310 | 0.9920

0.9690 | 1.0000

0.9920 | 1.0000

*The powers are under the alternative hypothesis that Y;; = X, = 1,2,...,p; and
Yii=¢€,j=p1+1,...,p5t =1,...,n, where €;4,7 =p1 +1,...,p2;t = 1,...,n are
standard normal distributed and independent with X;; and w = 4,10. The parameter ¢

in the statistic T;, takes value of 0.5.
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Table 3.9: P-values for (p1,p2) companies from basic industry section and

capital goods section of NYSE.

P-values (p1,p2,n) (p1,p2,m)

(10,15,20) | (15,20,25)

P-value Interval | No. of Exp. | No. of Exp.
[0,0.05] 41 53
[0.05,0.1] 30 29
[0.1,0.2] 12 10
[0.2,0.3] 6 5
[0.3,0.4] 8 2
[0.4,0.5] 0 1
[0.6,0.7] 2 0
[0.8,0.9] 1 0
[0.9,1] 0 0

*These are P-values for (p1,p2) companies from different two sections of NYSE: basic
industry section and capital goods section, each of which has n closed stock prices during
the period 1990.1.1 — 2002.1.1. The number of repeated experiments are 100. All the
closed stock prices are from WRDS database. No. of Exp. is the number of experiments

whose P-values are in the corresponding interval.
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Table 3.10: P-values for (p1,p2) companies from public utility section and

capital goods section of NYSE.

P-values (p1,p2,n) (p1,p2, 1)

(10,15,20) | (15,20,25)

P-value Interval | No. of Exp. | No. of Exp.
[0,0.05] 82 80
[0.05,0.1] 9 16
[0.1,0.2] 4 3
[0.2,0.3] 2 0
[0.3,0.4] 0 1
[0.4,0.5] 0 0
[0.6,0.7] 2 0
[0.8,0.9] 1 0
[0.9,1] 0 0

*These are P-values for (p1,p2) companies from different two sections of NYSE: basic

industry section and capital goods section, each of which has n closed stock prices during

the period 1990.1.1 — 2002.1.1. The number of repeated experiments are 100. All the

closed stock prices are from WRDS database. No. of Exp. is the number of experiments

whose P-values are in the corresponding interval.
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Table 3.11: P-values for (p1,p2) companies from finance section and healthcare

section of NYSE.

P-values (p1,p2,n) (p1,p2,m)

(10,15,20) | (15,20,25)

P-value Interval | No. of Exp. | No. of Exp.
[0,0.05] 84 88
[0.05,0.1] 7 10
[0.1,0.2] 2 2
[0.2,0.3] 4 1
[0.3,0.4] 1 0
[0.4,0.5] 0 0
[0.6,0.7] 1 0
[0.8,0.9] 1 0
[0.9,1] 0 0

*These are P-values for (p1,p2) companies from different two sections of NYSE: basic
industry section and capital goods section, each of which has n closed stock prices during
the period 1990.1.1 — 2002.1.1. The number of repeated experiments are 100. All the
closed stock prices are from WRDS database. No. of Exp. is the number of experiments

whose P-values are in the corresponding interval.
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Chapter

CLT for a sample covariance matrix

plus a perturbation

As stated in last Chapter, we need the central limit theorem for linear
spectral statistics of a perturbation matrix. This chapter is devoted to

providing the CLT for linear spectral statistics, quantities of the form
1 < B
S0 = [ F@)dER ), (1)
j=1

where f is a function on [0, 00), A1, ..., A\, denote the eigenvalues of random

matrices B,, and

1
B, = =XX*+T,. 4.2
XX+ (42)

Here X = (X;;) is nx N with independent and identically distributed (i.i.d)
complex (real) standardized entries, T,, is a nonnegative Hermitian matrix,
and the empirical spectral distribution (ESD) of any square matrix A with

real eigenvalues py < po < -+ < i, is denoted by

FA(z) = %#{z cp < ), (4.3)
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where #{-- - } denotes the cardinality of the set {---}.
Silverstein (1995) discovers the limiting spectral distribution(LSD) F, g,
the limit of F'B», which is given in Lemma |14 below for easy reference. The

Stieltjes transform of any distribution function G(z) is defined by

me(z) = / . ! _AG(N), Tm(z) #0. (4.4)

Lemma 14. Assume that

1. For each n, X, = (X}3), {X[; :i=1,...,n;5 =1,...,N} are i.d;
forall nyi,j, {X5 :n =1,2,..5i =1,...,m3j = 1,...,N} are
independent. Moreover, EXy; = 0 and E|X1,]* = 1.

2. n=n(N) withn/N —c¢>0 as N — oc.

8. T, is an n X n Hermitian nonrandom matriz for which FT»(x) con-

verges vaguely to a nonrandom distribution H(x),

then almost surely, FB the ESD of B,, converges vaguely, as N — oo,
to a nonrandom distribution F, , whose Stieltjes transform m®(z),z € C*
satisfies

1

Hc—mo<z>)’ (4:5)

m°(z) = my (z —
where my(z) denotes the Stieltjes transform of H(x).

Remark 8. Indeed, Silverstein (1995) derives a more general equation than
for the matriz %XAnX* + T,, where A, is a diagonal matriz. If
we take A, = diag(%, N %) then the equation for the matrix
B, = %XX* + T, follows. A similar result covering more general matrices

A, can be found in Pan (2010).
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Before stating Theorem [ we introduce some notation. Set
Gn(x) = n[FP"(z) = Fo, 1, ()], (4.6)

where H,, = F™ ¢, = n/N and F,, y,(z) can be obtained from F, y(z)
with ¢ and H (z) replaced by ¢, and H,(z), respectively.
Let

m,(z) = / ( dH{) ; w(z) = -

r—z+w(z))
1 1
L+emO(z) 1+ emO(z)

s(z1,29) =

where r is a positive integer.

The main result of this chapter is Theorem [6]

Theorem 6. Assume that

(a) {Xiji < n,j < N} are ii.d. with EX;;y = 0, E|X11[* = 1 and
E| X! < oo.

(b) T, is n X n nonrandom Hermitian nonnegative definite with spectral
norm bounded in n, and with FT» L H, a proper c.d.f.

(¢) n=n(N) withn/N —c¢>0 as N — oc.

Let f1,..., fr be functions on R analytic on an open interval containing
Ton(e)(1 —/e)® +liminf AT7 (1 + v/c)* + limsup )\nT;C‘Lw] ) (4.8)

T T - .y :
where A" and A\, denote the mazimum and minimum eigenvalues of T,

respectively. Then

(i) the random vector

( / Fu(@)dCo(), . / ()G (x) (4.9)

forms a tight sequence in n.

i) If X11 and T, are real and EX}, = 3, then (4.9) converges weakly to a
11
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Gaussian vector (Xy,,..., Xy, ) with mean
EX, — | j{f(z)ch(z)mg(z) + 02w4(z)(m0(z))/m3(z) — c2w3(z)(m0(z))lm2(z)dz
—2mi 1 — cw?(2)ma(2)
(4.10)

and covariance function
_ c(m®(z1))’ c(m®(z2))
A f]{f LN G s G T T emd(2)2
c(mP®(29)) 1
(1 + cmo(zl)) (1 4+ emP(22))2" (20 — 21 + s(21, 22))?
(4.11)

ledZQ.

The contours in and are closed and are taken in the positive
direction in the complex plane, each enclosing the support of Fi p.

(iii) If X11 is complex with E(X?) = 0 and E(|X11|*) = 2, then the result
above also holds, except the mean is zero and the covariance function is 1/2

the function given in .

Remark 9. We investigate the matrix B,, = %XX* + T,, while |Bai and
Silverstein (2004) studies the matriz of the form S, = %R}lﬂXX*R}/Z,
where RY? is a Hermitian square root of the nonnegative definite Hermitian
matriz R,,. The two matrices B,, and S,, are the same when the matriz T,
becomes a zero matrix and R, becomes an identity matriz. In this case,
the asymptotic means and covariances in|Bai and Silverstein (2004) and in

Theorem [ are the same, which is verified in the last part of this chapter.

4.1 Proof of Theorem

The proof of Theorem [g] follows a line similar to that in [Bai and Silverstein
(2004). Throughout the proof K denotes a constant which may change

from line to line.
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4.1.1 Truncation, centralization and renormalization

We begin the proof by replacing the entries of X, with truncated and
centralized variables. Since the argument for (1.8) in Bai and Silverstein
(2004) can be carried directly over to the present case, we can then select

positive sequences 6,, such that

5 — 0, 5;4/ | X * — 0. (4.12)
{I1X11|20nv/n}

Set B, = %an(; + T, with X,, (of size n x N) having the (i, 7)th entry
Xijlx,,|<5,ym- Then we have

P(B, £B,) < nNP(|Xn| > 6.,3/n) < K&;‘*/ Xl = o(1).
{IX11[20nv/n}

Define B,, = %iniz + T, with X, having (7, j)th entry ()A(U - [EXij)/an,
where o, = E|X,; — EX,;|2. From Bai and Silverstein| (2004) we know that
both lim sup,, AC» and lim sup,, ACx are almost surely bounded by (1++/c),

where Cn = %XHX: and én = %}Eni;; By Weyl’s inequality and the
assumption ||T,|| < M, we have that limsup )\Egz and limsup,, )\ng are
almost surely bounded by [(1 4+ v/¢) + M]n We use G,(z) and G, () to
denote the analogues of G, (z) with the matrix B,, replaced by B, and B,
respectively.

. . . . . : 1/2m1/2
Since T, is a nonnegative definite matrix, we can write T,, = Tn/ Tn/ =

>, tits, where t; is the ith column of T,/%. We may then write
B, =F,F;, (4.13)
where

Fn:(rl,...,rN,tl,...,tn) (414)
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with r; = %X_Z-, t=1,...,N and X; standing for the ith column of X,,.
Define F,, and f‘n to be the analogues of F,, with the matrix X,, replaced

by X, and X, respectively. For each j =1,2,... k,

‘/f] Ten /f] )dGio <KZ’)\B” AB-

. - 1/2 1/2
< 2K (B~ F) (B =)' ) T (nOB, + M%)

where K is a bound on | fj/(z)\ and A2 denotes the ith smallest eigenvalue
of the matrix A.
By the fact that
tr(F, —F,)(F, —F,) = N"'r(X,, — X,,))(X,, — X",
and the result on page 560 of |Bai and Silverstein (2004), i.e
(NVtr(K — Ko (K~ %) = 0l )08 4 o(5n ™),
we obtain
[ H@)Gu@) = [ £@)Gu@) +or (1)
Therefore, in the sequel, we shall assume

’XZJ| < 571\/5, [EXU = 0, [E|X1J|2 = ]_, [E|Xz]|4 < 00,

and for the real case, E| X ;|* = 3+ 0(1) while for the complex case, EX? =
o(1/n) and E|X1;]* = 2+0(1). For simplicity we suppress all the subscripts

and superscripts on variables.

4.1.2 From linear spectral statistics to Stieltjes trans-

forms
With notation C,, = %XX*, by Weyl’s inequality we have

ABr < \Cn g AT ABu 5 ACn | AT

mar — max max? min mwn man’

(4.15)
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From (1.9a) and (1.9b) of Bai and Silverstein| (2004), we have

PABr >n)=o(n"), PP <60)=o(n"), (4.16)

mazxr man

Ty

liminf, A7, | and any positive /.

for any n > ((1 + /¢)? + lim sup,, )\E@;z» any 0 < 0 < (I(oyl)(c)(l — Vo) +
Write

M,(z) = n(mn(z) — mo(z))

n

where m,,(z) denotes the Stieltjes transform of FBr and m0(z) is m°(z)

with ¢, H replaced by ¢, H, respectively. By Cauchy’s integral formula

1 fg(Z)
=— ¢ —=d 4.17
ful) omi ) z—x (4.17)
we have for £ > 1, any complex constants aq,--- ,ax, and for all n large

with probability one,

k - - k & z z)az
;af/fé(x)dGn(x) - ]gfz( )M, (2)dz, (4.18)

27
(=1

where the contour C is specified below. Let vy > 0 be arbitrary. Let z, be
any number greater than the right end point of interval . Let x, be
any negative number if the left end point of is zero. Otherwise, choose
zo € (0,(1 —/c)? + liminf, ALz ). Let

Co={x+1vg: 1 € [14,7,]}.
Set

Ct={zi+iv:ve|0,v]} Ul U{z, +iv:ve0,v)}

Let C~ be the symmetric part of C* about the real axis. Then set C =
ctuc.
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We define now the subsets C; and its symmetric part C, of C when
M, (-) agrees with M,(-), a truncated version of M, () to be defined below.

Select a sequence {g,,} such that for some p € (0,1)

Let

c {zy+iv:v € [n"te,,v0]}, x> 0;
( pu—
{zy+iv:v € [0,u]}, xp <0,

and
C.={x, +iv:v e n e, v}

Set C;F = C,UC,UC,. The process Mn() can now be defined. For z = z+iv,
we have

M,(2), if zeCFuCy;

ng—;:n Mn(‘rT + in_lgn) + Eng;?an(xr - in_15n>7

M, (z) = if v =mx.,v€[-n"te,,n"le,l; (4.19)

nv+te < o—1 En—NV <o —1
Tn"Mn(fL’z +in"te,) + ”ZTMn(xl —inle,),

\ if v =1x,>0,v€[-n"le,n e,

With probability one, for all n large,

| 1 08() - M)z
max ((1 /)2 + AT )\ﬁgm) — 2, _1>

| min (Lo (€)1 = V) + N A2, ) — 20

< Kén(

1
— 0.(4.20)

In view of this and (4.18), as discussed in Bai and Silverstein| (2004), it

is enough to consider the limiting distribution of Zif:l (ZgMn(Zg).
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4.1.3 CLT of the Stieltjes transform m,(z) of FB~

Recall the definitions of m(z,r),w(z) and s(z1, z2) in the introduction.

Lemma 15. Under conditions (a)-(c) of Theorem@ {M,(2)} forms a tight
sequence on C. Moreover, if assumptions in (i) or (iii) of Theorem[f on
X11 hold, then M,(z) converges weakly to a Gaussian process M(z) for

z € C under the assumptions in (ii),

’

cw?(2)m(z,3) + @t (z) (mo(z))lm(z, 3) — ?@?(2)(m°(2)) m(z,2)

EM(z) = 1 — cw?(2)m(z,2)
(4.21)
and for z1,z3 € C
Coo(M(:1). M) = ~ s + 21+ s + o
c(m’(z1)) c(m’(z)) 1
(14 em®(21))2 (1 4+ em®(22))2" (20 — 21 + s(21, 22))?’
(4.22)

while under the assumptions in (iii) EM(z) = 0, and the covariance func-

tion similar to 15 half of the right hand side of .

We first list (2.3) of [Bai and Silverstein! (2004) below as Proposition [2]

which holds as well in our setting.

Proposition 2. For any nonrandom n X n matrices Ay, k =1,...,p and
B, ¢l =1,...,q, there exists

p q

‘E( H riAgr H(r“{Bgrl — NﬁltrB5)> ‘

k=1 /=1

p q
< KN 00529 [T AN TLIBAlL »>0, ¢>0. (4.23)
k=1 /=1
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Proof. We now start the proof of Lemma . Write M,(z) = M\"(2) +
Mf)(z), where

MOV (z) = n(mn(z) - [Emn(z)), M (z) = n([Emn(z) - mﬁ(z)).

By the discussion in Bai and Silverstein| (2004), it suffices to prove the

following four statements.
1. Finite dimension convergence of Mél)(z) on C,.
2. MV (z) is tight on C, where C, = C; UC;.

3. M,?)(z) — EM(z2), for z € C,,, where M (z) is the limit of M, (z) as

n — Q.

4. {MP(2)} for z € C, is bounded and equicontinuous.

4.1.3.1 Step 1: Convergence of M,(ll)(z)

Let vg = Im(2). To facilitate analysis we consider the case of vy > 0 only.

We first introduce some notation as follows.

- 1 _ 1o
vi(z) =riD; (2)r; — NEtrD] "(2), gj(2) = r;D; ' (2)r; NtTDJ 1(2),
1 d 1
*Ty—2 -2
d;(2) = er] (2)r; NtTDj (2) = E’fj(z)a Bi(z) = 1t I‘;Dj_l(z)rj’
1 1

7(2) = b,(2) = .
B ) 1+ N*ltrDj’l(z)’ () 1+ N-'EtrD;'(2)

As pointed out by Bai and Silverstein| (2004), the later three variables are
all bounded by |z|/vo. Let Eo(-) denote expectation and E;(-) denote con-

ditional expectation with respect to the o-field generated by rq,...,r;.
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Wite
n(mn(z) - [Emn(z)> = tr <D_1(z) - [ED_l(z)> - ﬁ;tr[jD_l(z) — trE,_,D7(2)
- imgj (D—l(z) - D;1<z)) —trE, (D—l(z) - D;l(z))
= - jﬁl([@ E;-1)8;(2)rD;2(2)r;, (4.24)
where the last equality uses
D !(2) = D;!(2) = —D; ! (2)r;1'D; 1 (2)8;(2). (4.25)

By the identity

Bi(2) = B} (2)=B5;(2) 8] (2)e5(2) = B} (2)— (B} (2))?e;(2)+ (8} (2))*8;(2)e3(2),
(4.26)
we have

(E; ~ ;082052 () = B, (8 (200,(2) — (87 (2))5(2) 117D5 ()

()~ B8 (2 (5,(0,(2) - 8D (=),
By Proposition [2 one can prove that (E; — E;_1)(8(2))? (zgj(z)éj(z) —
Bj(z)r;fo(z)rjf:?(zD converges to zero in probability (One can refer to
page 569 of Bai and Silverstein (2004)) for similar arguments).

Therefore it is sufficient to consider the sum Zlgzl ay Zjvzl Y;(z¢), where

i(2) = (87 (205,(2) — (87 (2))%65(2) D5 (2)) = ~Ej B (), (427

We next utilize Lemma 2.4 of Bai and Silverstein| (2004), CLT for mar-
tingale differences. By Proposition [2]and using the same arguments as those

above (2.4) on page 570 of Bai and Silverstein| (2004)), we see that condition
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2 of Lemma 2.4 of Bai and Silverstein| (2004) is satisfied and it is therefore

enough to find the limit in probability of

Z[EJ 1( Yi( 2)) (4.28)

Consider the sum
Z E,_ 1( ' (21)e5(2)) E; (ﬁ;r(zg)gj@))). (4.29)

Since

02
822621

1.29) = (4.28)), (4.30)

by the same arguments as those on page 571 of |Bai and Silverstein| (2004))
we only need to show converges in probability and to determine its
limit.

Note that the derivation above (4.3) of Bai and Silverstein| (1998) is true

in the present case and hence

1 1 _ _
E|5trD; L(z) — ~EtrD; '2)P < KN7P2 (4.31)

By the discussions above (2.7) of Bai and Silverstein, (2004)), we then have
Z[E] 1( 7 (21)g5(21)) E; (5}7(2’2)5;‘(22))>

(22 Z[EJ 1< (¢ zl))[Ej(gj(ZQ))) )

Thus it remains to prove that

o (20) Z[Ej 1( (5 zl))[Ej(gj(zg))) (4.32)

converges in probability and to determine its limit.
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In the complex case, namely FX% = o(1/n) and E|X;|* = 2+ 0(1), by
the identity
E(X3AX, — trA)(X,BX, — tB)

n

= (ElXul*— [EX]P —2)>  aubi + |[EXT "trAB” + tr AB4.33)

i=1
valid for n x n nonrandom matrices A = (a;;) and B = (b;;), (4.32) becomes
N
1 _ _
bu(z1)bu(22) 55 D (tr[Ej (D7 (21))E; (D (22)) + 0(1)An), (4.34)
j=1

where

4] < K (4, (D5 (1)), (D7 (20)) 1, (D7 (22)) (D} () ) = ()

J

Thus it is sufficient to study
| X
j=1

In the real case, namely E|X11|* = 3+ o(1), (4.32) should be double the
limit of (@35).

The next aim is to investigate (4.35)). To this end, set D;;(2) = D(z) —

r;r; —I;r;,
1 1
(%) = ) b = )
Bulz) =17 D, (2)r; &) = T N TR D)
N -1 _
H'(2) = (21— bi(z)I-T,)"
Write
N
N -1 N -1
Dj(Zl) —+ 211 — N bl(zl)I — Tn = ZI‘,L'I‘;( — N 51(21)1-
i#j

Multiplying by H™!(z1) on the left hand side, D;'(z1) on the right hand
side and using

r;D; () = 5ij(zl)r;‘kDi_jl(Zl)> (4.36)
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we conclude that

D‘;l(zl) - - Zl + Zﬁz] Zl Zl r;r; D ( )
i#]
N —1 _ B
—— bi(a)H Hz1)Dj(z1)

= —H (%) +bi(21)A(z1) + B(z1) + C(z1),  (4.37)

where

21) =Y H ' (z2)(rx; - N Dy (2),

i
B(z) = Z (Bij(21) = bi(21))H™ (21)rir; D (1),
i
C(z1) = N"'bi(z1)H ' (21) Y (D' (21) = Dj ' (21)).
i#£]

It is easy to verify for any real ¢,

. 1 L7t z(1+ N7'EtrD3) (2))

‘_z@+NHM®g@»_E _w@—ﬂ@+NHMD3@»—J
[2(1+ N7'EtrDy, (2))| < A+ n/(Nw))

~Im [(z —)(1+ N*l[EtrDl_Ql(z))] a Yo ’

where the last inequality uses

Im [(z —t)(1+ N’l[EtrDl’Ql(z))] =vg+1Im [(z - t)N’l[Eter;(z)]

- vo+1m[(z—t Z[E)\_Z}—UO‘FIW[ Z[E t—(—t))]

|A — z[?
=1

n

with the fact that

N> tVi=1,2,...,n
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where \;,i = 1,2, ..., n are eigenvalues of D15 = 2?7&1,2 r;r! +T,. It follows
that
N -1 -1 1 N
| =] (- Xt nan-m) | < BT s
Vo

Moreover from - and - we have

Ely(2)P < KN7'&P ™, p>2. (4.39)

Therefore the discussions for (2.11)-(2.13) of Bai and Silverstein| (2004)) still

work in our case. That is,
E[trB(z)M| < KmKNY?, E[trC(z)M| < Kp K, (4.40)

when Ky denotes the nonrandom bound of the spectral norm of M, an

n X n matrix; When M is non-random, we also have for any j,
EtrA(z)M| < K||M||N'/2, (4.41)

where ||M]| denotes the spectral norm of a matrix.

Using an identity similar to (4.25)) yields
tri; (A(Zl))Dj_l<22) = Ai(21, 22) + Az(21, 22) + As(21, 22), (4.42)
where

A 21,22 = —tTZH Zl r;r; “E, (D;1(21))/8”(ZQ)DZ_]I(ZQ)I'ZI':DZ_]I(ZQ)

1<j
= —Zﬁm 2)riE; (D' (21)) Dy (22)rir Dy (22)H (211,
1<J
N -1 -1 -1
A2 21,22 —tTZH (Dl] (21)) (D] (22) - Dij (22))7
1<j
3(21,2) = tr Y H '(z1)(rir} = N DE; (D' (21)) D5’ (22)-

1<J
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By arguments similar to (2.15) in Bai and Silverstein| (2004), (4.38)) and
(4.23) we have

[Aa(21, 22)] < K, E[A3(21, 22)] < KN'2.

The arguments above (2.16) of |[Bai and Silverstein| (2004)) can be carried

over to the present setting and therefore we obtain

E A1(21,22> + ‘]W

bl(zz)tr([Ej(D;l(zl))Dgl(ZQ))tngl(22)H*1(z1) < KN'2,

(4.43)

We conclude from (4.37))-(4.43) that

tr(E, (D (20)D; () (1 + J ];21191(21)1)1(@)# (D} (z)H(20))

= —tr (Hfl(zl)Djl(z2)> + Ay(z1, 22), (4.44)

where
[E‘A4(Zl, 22)| S KNl/z.

Applying the expression for D;l(Zz) in , 1} and 1} we obtain

tr(E, (D (20))D; (22)) % (12 ];21b1(21)b1(22)trH1(21)H1(22))

= tr <H’1(21)H*1(22)) + As(z1, 22), (4.45)

where
E|A5(21,22)| S KN1/2.

Since (b1(2) ;()) — 0 (indeed, the next subsection proves Em,(z) —

1+cp,md (2

mY(z) = O(N™1)), we have

n

St (E5(D} (20) D} (22)
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X <1 — ] - 1cn :
N (1 +emf(z1)) (1 + em(22))

/ dH,(t) )
(22 = oy — 1) (51— Tramey — 1)
dH,(t)

= Cp
/(22—#2(32)4)(21—%4)

+ A6<21, ZQ),

(4.46)

where E|Ag(21,22)] = o(1). Let

A 1 / dH,(t)
T O emd () (T eml(22)) (22— e — ) (51— ey — 1)

We claim that
|an (21, 22)| < 1. (4.47)

Indeed, by the Cauchy-Schwartz inequality, we have

Cn / dH,(t) ’
1 + Cnmo (Zl)) (1 + Cnmo (ZZ)) (2,’2 — m — t) (Zl — m — t)

CndH,(t) 1/2
/|1+cnm0 (21)|?|z1 — oo ;LO(ZI) t|2)

cndH,, (1) 1/2
/|1—|—cnm0 (22)]?|22 — ! t|2> ’

T+cnml (z2)

(4.48)

Note that m9(z) satisfies an equality similar to (4.5))

mo(z) = / dH, (1 ) : (4.49)

-z 1+cn mo 0(2)

Taking the imaginary part of the both sides of (4.49)) leads to

/ Im( P m)dHn(t)

Im(mg(z)) = |t— 2+ e 2
14+cnm? (2

|
B / N e Im(m?2(2)) /
|t 1+c mo(z)|2 ’1 + Cnmo Z) 2 ‘t 1+C mo Z)|2
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Dividing by Im(m?(z)) on both sides, we have
Cn dH,,

0 2 ( ) 2 =1- 0 / B < 1.
11+ c,ml(z2)] |t—z+wl m |t — + mo()]
This, together with |D yields (4.47)).

It follows from and ( - that ( can be written as

N

1 1
n ) NT A ) 9
an (21 zg)Njle_ ((j—l) + A7(z1, 22)

/N)a,(z1, 22)

where F|Az7(z1,22)| = o(1). We then conclude that

4.35) 2B a(zy, 22) /1 ;dt = / R dz
’ o 1—ta(z, 2) 0 11—z 7
where
B c dH (t)
R (o [ (ST e e e e
C c(m0() = () I
(14 emO(z1)) (1 +emO(22)) 22 — 21 + 1+cri0(21) - 1+cn}00(zz)
s(z1, 22) o 2y — 21
29 — 21 + 8(21, 22) 29 — 21 + 8(21, 29)
where the second equality uses and s(21,22) = 1 +cm{0(z1) — 1 +Cw10(z2).

Therefore the limit of (4.28)) under the complex case is

2 a(z1,22)
0 / 1 gy — 0 <8a(z1,22)/8z1>

029021 1—=2 Oz \ 1 — a(z1, 29)
0 [s(zl,zQ) + (21 — zﬁ%]
Ozl (20— 21+ 8(21, 22)) (20 — 21)
o7 1 c(m®(z)) 1
Oz [22 -2 (1+ (14 em9(21))2 290 — 21 + s(21, 22)]
v c(m®(z1))’ c(m°(z2))’ c(m®(z1))  c(m®(z))' ]
(29 — 21)? (14+cem9(z1))?2 (14 em9(22))?2 (14 emO(21))? (14 cmO(29))?
1
X

<Z2 — 21 + S(Zl, ZQ>)2.
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4.1.3.2 Step 2: Tightness of Mél)(z)

The tightness of {35, aM" ()} on z € C can be proved in the same way
as that in Bai and Silverstein (2004]).

4.1.3.3 Step 3: Convergence of Mg)(z)

We first list some results from Sections 3 and 4 in Bai and Silverstein| (2004)),
which hold in the present setting as well. Consider z € CF. As in (3.5),
(3.6) and the argument below (3.6) of Bai and Silverstein (2004) we have

Ely? < KN4 p>2 (4.50)
and
Ep(2)P <K, p>1, [|bo(2)] <K. (4.51)

Similar to (3.1) and (3.2) in Bai and Silverstein, (2004)), by (4.16[), we have

for any positive p
max (D)7, €D} ()P ED(2)) < K (452
and via (4.23) and (4.12))

q
’[E(a(v) H (riBy,(v)ry — Nﬁlter(U)))‘ < KN~ 5Qa=vo >
m=1

(4.53)
where the matrices B,,(v) are independent of r; and

max(|a(v)], |[Bum(v)|]) < K (14 n*I(||Bu]| > 0, or AB;, < m2))

min

for some positive s, with B being B,, or B,, with one or two of the r;’s

removed. Here 1, € ((1 4 /c)* + limsup,, [|T,||,z,). If 2, > 0, then
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e € (24, (1 — /0)? + liminf, Az ); if 2, < 0, then n, < 0. Similar to (4.1)

min
in Bai and Silverstein (2004), one may prove as n — 00,

sup |Em,(z) — m°(2)| — 0. (4.54)

ZGC;

Let M be an n X n non-random matrix. With the same arguments as (4.7)

in Bai and Silverstein| (2004) we obtain
EltrD; ' (2)M — EtrD; (2)M|* < K||M||?. (4.55)
We next show

sup || (([Eﬁl)l —z2I+ Tn>_1|] < 00. (4.56)

zeC;t

Denote the supports of the distributions H and F.z by Sy and Sf,
1
respectively. We see that || (([Eﬁl)I — 21+ Tn) || is bounded by 22F2/Nv0)

v
on C, by ([I38) and (@E39).

Consider z = x4 or z, now. So xz € S§,

. ,» Where ST~ denotes the

complement of S, .. We next prove that ¢t —x + m # 0 for any
t € Sy and x € I C Si  where I is an open interval by following a line

similar to Theorem 4.1 of Silverstein and Choil (1995). For any xy € I, let

mo = m°(zy) and D = {z € C : Imz > 0}. Letm:m(z):z—me
D (for z € D). From (4.5) we have
1
z(m)=m+ ———. (4.57)

1+ cempg(m)
Since m/(zg) = 1 + ﬂ—f&;v > 0, m(z) has an inverse Z(m) in a neigh-
borhood V' of xg by the inverse function theory. By the open mapping

1
14+cmg

theorem m(V') is open and includes (zy— ). Tt follows that zZ(m) — o

asm € m(V) — (zg — ﬁ) However we must have Z(m) = z(m) on
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m(VND) =m(V)ND due to (4.57) and (4.5)). Therefore we have z(m) — x

asmeD — (xg— 1+imo>'

(4.57)) can be further rewritten as

1 1

) =
Hence my(m) converges to a real number when m € D — (¢ — 1 +im0).
By Theorem 2.1 of |Silverstein and Choi| (]1995[) H'(xg — 1+imo) = 0. This
implies H = 0 on the set J = {x — W tx €1 C Sf, , } which is open
due to the monotonicity of (z — m) on /. Hence H is constant on J

which implies that J C S§. Therefore if ¢ is in the support of H, we then

1 : 1
havet%x—m,l.e.t—x—l—m#o.
Since m°(z) is continuous on C° = {z +iv : v € [0,v9]}, there exist

positive constants 1 and x such that for ¢y in the support of H(x)

— > d 0(2)| < k. 4.58
1+cm0(z)| n an ngclg\m(Z)\ K (4.58)

Also from (4.50)), (4.51)) and (4.54) we have

inf |t0 —z+
2€C0

1
sup [Ef —

—| — 0. 4.59
zECTT 1+Cm0<2)| ( )

Moreover, since FTn 3 H (x), for all large n, there exists an eigenvalue p

of T,, such that
[ —to| <n/4. (4.60)

We conclude from (4.60)), (4.59) and (4.58]) that

inf |u—z+ EpB| >n/2, (4.61)

z€CyUC,

which ensures (4.56)).
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With Hy = ES;(2)I — 21+ T, write

£ — (EA ()L (4.62)

IIMZ

Postmultiplying D~!(z) and premuliplying H;' on the both sides, taking

expectation and using an equality similar to (4.36)) we get

H!' —ED! 1[[(21«] vt — (B (2)I ) 1(2)]
- Hy lﬁ:[g@ﬁj D;'(2)) — H; ' (E5(2))ED ™ (2)
- N[E[ﬁl(z) (H;lrlr;D;l(z) - %Hl‘l[ED‘l(z))} (4.63)

Taking trace on both sides, we have

”(/ T — (i]ﬁlgﬁ)l(z)) - [Em"(z)>

- N[E[ﬁl(z) <r’{D1_1(z)H1_1r1 - %trﬂl—l[ED—l(z))]. (4.64)

When there is no confusion, we below drop z from £;(2),v1(2), bn(2),

etc. By , we have
EtrH Dyl (2) — E#HT'D7(2) = [E[51(z)trHl’lDl’l(z)rlr*{Dl’l(z)}
= bu(2)E[(L = B7)riDy () H; D7 (). (4.65)
where the last equality uses 5, = b, — 51b,71. In view of , and

(4.56)), we obtain

‘[EBI(z)verDfl(z)Hlefl(z)rl < KN, (4.66)

which implies that

’ 1.65) — N~1b,ED; (2)H;'D; (2)| < KNL.




4.1 Proof of Theorem |§| 119

Since 1 = b, — b2y + 1b27F we may write
NE(8ir;Dy ! (2)H 'ry) — EB EtrH; 'Dy ' (2)
= —bINE(niriD; ' (2)H; 'ry)
02 (NVE (813D Hy ') (612 EHT DY (2))
— —BNE(nriD; (2)H 1) + B2 (2)Cov(Biad, Dy (2)H )
2 (EIN By 2Dy (2)H; 'ry — Biyftr Dy ).

One may refer to a similar expansion on page 587 of Bai and Silverstein

(2004)). It follows from (4.50)), (4.56) and (4.53) that

[EIN G ()9 (:)eiDT () Hy 'y — oDy H; Y| < K62

By (4.51)), (4.50)), (4.56) and (4.55) we have
‘COU (Bwf,trDl_l(z)Hl_1>

(E[61[*) /4Bl ) (£

< K§N-V4

IA

trDH(2)H ' — EtrD (2)H; !

2> 1/2

We conclude from , and $; = b, — [1b,71 that
EB, = b, + O(N~Y?).
By the definition of v; we have
ENyiriDy H 'y
- N[E[(r’{Dl‘lrl - N—ltrD;1> (r’;Dl—lﬂl—lr1 - N‘ltrDl‘lHl‘l)]
+N"'Cov (terl, trDl’l(z)Hl’l). (4.67)

In view of (4.55), we see the second term above is O(N~1). We conclude
from ([L6)-(L67) that

"(/ - (i}ilgﬁ)l(z)) )
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= o(1) (4.68)
+b2(2) N 'EtrDTH ' D! (4.69)

—V2NE [(r’{Dflrl - N*lterl) (r’;D;1H;1r1 - N’ltrDl’lHjl)]
(4.70)

Using (4.33)) on (4.68) and by the assumptions under the complex case, we

have

n(/ P (Cihﬁlﬁgﬁ)l(z)) — [Emn(z)> — 0, as N — oo,

while under the real case

dH,(x) 2 p7—1 —lgy-1p -1
n —[Emnz>:—bnN EtrDy H, Dy +o0o(1).
(| =2 e VHD; o)
(4.71)

It is sufficient to find the limit of N~'EtrD;"H;'D;"'. Applications of

({4.25)),(4.51)),(4.53) and (4.56) ensure that

EtrD'H;'D;! — EtrD 'H;'D;?
and
EtrD'H;'D;! - EtrD 'H;'D ™!
are bounded. Hence it then reduces to considering the limit of
N 'EtrD'H;'D. (4.72)
From (4.62), similar to (4.63)) we have
N
D'(z) = H;'=) BH 'r;r;D;'(2) + (E4)H;'D(2)

Jj=1

= H;'+ (EB)A(z) + B(z) + C(2), (4.73)
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where

iH 1( 1I>D 1(2),

== > (% - EA)H 5D 2),
C(2) HERH Y (D)) - D (2))
— _Nfl(Eﬁl)HflzﬁjD; (2)r;r;D; ' (2).

It follows from (4.50)) and (4.51)) that

E|g — B> < KN~ (4.74)

For any n x n matrix M, by (4.52)), (4.53)), (4.51) and (4.74]) we obtain

INT'EGB(z)M| < K(E|fi(2) — EB(2)]?) 7 (E
< KN Y2(E||M|*)V4 (4.75)

il IDT M)

and
INT'EtrC(2)M| < KN 'E[B1(2)|rim| Dy (2)] ][ M]|

< KN7Y(E|[|M|})Y2. (4.76)

For any n X n nonrandom matrix M with a bounded spectral norm, we

write

trA(2)DH(2)M = Ay (2) + As(2) + As(2), (4.77)

where

Ar(2) = —tr i H;'r;riD; ! (2) (D—l(z) - D;l(z)) M,

J=1
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N
Ay(z) = —tr Z H* (rjr;ij_Q(z) — N_IDJ._Q(Z')> M,
j=1

Ag(2) = —tr i H;'N'D;(2) (Dj_l(z) - D—l(z))M.

j=1

Obviously EAs(z) = 0 and similar to (4.76]), we obtain

[EN~'A3(z)] < KN (4.78)

From (4.50) and (4.51)

E|8) — b, < KN (4.79)

Using (4.53)), (4.79) and (4.25) yields

EN"IA,(2) = [E[511«;13;2<z)r1r;D;1(z)MH;1r1}
- bn[E[(NfltrD;Z(z» <N*1trD;1(z)MH;1>} +o(1)
- bn[EKN_ltrD_Q(z)) (N-ltrD-l(z)MH;1>

By (4.55)) and (4.52)), we have
’C’ov <N‘1trD_2(z), N—ltrD—l(z)MH;1> ’
1/2 2\ 1/2

< <[E|N_1trD_2(z)|2> N‘1<[E’trD‘1(z)MH1‘1 - [EtrD_lMHl‘l‘ )

< KN
We thus have

EN~14,(2) = by (EN 1D 7%(2) ) (EN"1rD ™ (2)MH; ) + o(1). (4.50)
Moreover, by (4.73)), (4.75) and (4.76]), we have

EN“'trDY(2)H;? = N 'tr (Hl_1 +EB(2) + [EC(Z))HI2
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_ . dH,(x) )
_ n/ e (1). (4.81)

From (4.73)-(4.81]) we conclude that

N'EtrD ' (2)H'D ' (2)

— EN“'#DL(2)H? 112 ([EN_ltrD_z(z)> <[EN_1trD_1(z)H1_2> +o(1)
= Cn/( dH, (z) )3+bici[E/(iFj(:))2/ dH, () + o(1).

r—z+EB (:v—z+[Eﬁl)3
(4.82)
This, together with (4.71]), (4.56)), ([4.54) and (4.59)), leads to
dH,
dH,(x) 49 dF,(x) dH,(x)
= —c,b? —b,c E 1
¢ /(:z;—z—l—[Eﬁl)g ‘ /(55—2)2/(;1:—z+£@’1)3+0(>
o dH (x) a2 [dFen(x) dH (x) )
cw <Z>/ (z—2+ w(z))3 = (=) / (x — 2)? / (z—2+ w(z))3 +oll)
where the last step uses
an<:U> FC,H<:U>
zsélclz [E/(:U—z)Q_/(:v—z)Q‘_)O’ as n — oo, (4.84)
which can be proved similarly to (4.1) in |Bai and Silverstein| (2004)).
Let @,(z) = 1/(1 + ¢,m2(z)). By we then write
B dH, ()
n([Emn(z) - mg(z)) = n([Emn(z) — / Py po wn(z>>>(4.85)

_ n(Emn(Z)—/%>

dH, () dH,(x)
—H’L(/x_ (Z—[Eﬁ1) _/»’U_ (Z_wn(z>>>

= n(Ema(z) - / %>
dH,(z)

(=0-8) [ e emm e e




Chapter 4. CLT for a sample covariance matrix plus a
124 perturbation

We next find the limit of n(wn(z) - m). Recall that 7(z) = 1/(1 +
+trD; ! (2)) and let 57 (2) = 1/(14+5trD*(2)) and b(z) = 1/(1++ EtrD7'(2)).
Write

n(ma(z) —E61) = n(ma(z) - E87(2)) +n(EB"(2) - E87(2))
+n(EBY(2) — EB1(2)).
(4.86)
First, by the fact that
B (2) = b(z) + B (2)b(2) (caEmin(2) — cpmin(2)) (4.87)

we have

n(@a(z) = BB (2)) = nE[@(2)B" (2) (exmn(2) — cam(2))]
= [ (2)b(2) (Cama(2) — e (2))]

| (2)0(2) 8 (2) (cmn(2) = cam (2) ) (Eeamn(2) = euma(2) ) |
— 1w, (2)b(2)E (camn(2) — cam®(2)) + o(1), (4.88)

where via (4.54)), (4.55)), (4.51)) and (4.87))

ne2b(2)a(2)E |8 (2) (ma(2) = m8(2)) (Ema(2) = ma(2) )| (4.89)
= ne2b(=)ma(2) [E(B(2) (Bma(2) = m(2) (Ema(z) — ma(2))
—E(8(2) (Ema(z) = ma(2))") |
= o1) + nEP()@ () [E(Ema(z) —ma(2)) — E(8 () Ema(2) — ma(2)°)]

= o(l),

the last step using E|m,,(z) — Em,(2)|® = O(n™?) (see the argument above

(3.5) of Bai and Silverstein| (2004))).
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As for the second term on the right side of (4.86]), by (4.25]), we obtain

n(E8"(2) — EBY () = E[87(2)87 (2)tr (D;(2) - D1(2) )

- FElreremDemae)] = et [ T

where the last step uses (4.54)), (4.55), (4.51), (4.53), (4.84) and (4.79).
As for the third term on the right side of (4.86]) we conclude from (|4.26))

and (4.53) that

+ 0(4)90)

n(EB () — EB1(2)) = —nE( (8 (2))%8;(2)3(2)) (4.91)
= —nE(=3(2) (B (2)") + nE((2)8,(2) (8 ())") = —nE(2(2) (B (2))") + o(1).

Moreover by (4.53)), (4.55)), (4.33) and (4.54) we have for the real case

Eet(2)
1+ c,Em,(2))

-+ o(l) = —2°@°(2) / C(lfc_—HSz +o(1),

nE(E) (01 :)") = —

while the limit is half of the above in the complex case. This implies that

in the real case

n([ﬁfr(z) - [Eﬁl(z)) — —202w3(z)/6(156’_—Hg2), as N — oo, (4.92)

while the limit is half of the above in the complex case.

Summarizing the above we conclude that

n(wn(z) - [Eﬁl(z)> (4.93)

cn@n(2)b(2)nE(m,(2) — md(2)) — @ (2) [ df;;gg? +0(1) in the real case

n @ (2)b(2)nE (my,(2) — mb(z)) + o(1) in the complex case.
The proof for (4.47)) also shows that

cnw (2 dHn () 1.
el )/(J;—(z—wn(z)))2|<
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This, together with (4.85)), (4.93)), (4.56) and (4.54)), yields

n ([Emn(z) - m%(z))

( E dHp () 2 3 dF. g () dHp, ()
n| Emn(z)—[ TGt | @ (2) [ a2 ( )
o—(2—wn(2)) )
o(1 in the real case
_ Y0 o Pl - +o(1),
x*(szn(z»)
o(1), in the complex case

( / /
cw?(2)ms(2)+c2w?(2) (mo(z)) ms(z)—c?w?(2) (mo(z)) ma(z)

T—ew?(2)ma(2) , in the real case

0, in the complex case
\

where we use
B dH (z) 00)) — dFu(x)
me) = [ ey @) = [ T

4.1.3.4 Step 4: Boundness and equicontinuous of M7(L2)(z)

Boundness and equicontinuous of MV(Lz)(z) can be similarly proved as in the

last paragraph of Section 4 in Bai and Silverstein| (2004]).

4.2 Verification of Remark 2

This section is to verify the asymptotic means and covariances in Theorem
1.1 of Bai and Silverstein| (2004) and in Theorem [6] are the same when T,
and R,, become zero matrix and identity matrix respectively, as pointed
out in Remark 2.

Consider first. When T,, is a zero matrix, by the Stieltjes
transform mP(z) satisfies the following equation

0(,) — 1
m(z) l—z—c—emO(z) (4.94)
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Define B, = +X*X and denote its limiting Stieltjes transform by m°(z).

Then m°(z) and m°(z) have the relation

1—-c

m°(z) = — . + em®(2). (4.95)
By (4.94) and (4.95), we have
1
%(2) = ————— — 1. 4.96
W) =~ (4.96)
Moreover, from ({4.5))
1 1
= — 4.97
mP(z) 14+ cemO(2) (4.97)
Combining (4.96) with (4.97), we get
1
0(2) = —————. 4.98
2m () 1+ emO(2) (4.98)

We then conclude from (4.98]) that

c(m’(2)) :_<;) = (2m(2)) (4.99)

(1+ cmo(z))2 1+ cmO(z)

It follows that

L+ c(m’(z1))’ c(m’(z2))’ c(m’(z1))  e(m®(z2))
(1+ cmo(zll))2 (1+ CT)’Z,O(ZQ))2 (1 —i—, emO(21))? (,1 + emO(29))?
= 14 (z1m’(21)) + (22m’(22)) + (21m°(z1)) (21m°(z1)) - (4.100)

On the other hand, since (4.95)) has an inverse (one may also see (1.2)
in Bai and Silverstein| (2004))

z=— + , (4.101)
we have

(4.102)
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From this, we have

’

(2m’(2)) = @) (4.103)

(m ()"
Thus by (4.98)) and (4.102)), we have

29 — 21 + 8(21, 22) = 22(1 + mO(ZQ)) - 21(1 +m0(21))

1 [ m°(ze) — m°(z1)
= TG + (o) 0 (om0 (z) (4.104)
We then conclude from , and that
1+ c(m’(z1))’ c(m’(z2))’ c(m’(z1))  c(m(z2)) ]
(14+em%(z1))2 (14 emO(2))?2 (14 emO(z1))% (14 emO(22))?
1
. (22 — 21+ s(21, 22))
B (m°(z0)) | (m°(z)) (1)) ¢ (m(z)
= [ e e Gy Y G )
)

(4.105)

In view of (4.105]) we see that (1.7) in |Bai and Silverstein| (2004)) and (4.11]

are the same when T, is a zero matrix and R, is an identity matrix.

We next consider the asymptotic mean (4.10). When T,, = 0, by (4.5)),

we get
m,(2) = (m°(2))". (4.106)

Moreover we obtain from ([4.96]) and (4.98))

ot
2(m’(2) +1)°

From (4.106)) and (4.107)), it follows that

m(z) = —

w(z) = —zm°(2). (4.107)

@ (2)m,(2) = (m°(2))" (1 +m°(2)) . (4.108)
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This ensures that EM(z) in (4.21)) can be written as

e(m®(2))*(1 + m*(2)) (b5 + em(2)(mO(=)) — e(m(2)) 75 )
1= e(m0(2)2(1 + m(2))2 |

EM(z) =
(4.109)

Comparing (4.109) with (1.6) in Bai and Silverstein, (2004)), it is sufficient

to prove that

002)) = e(m(2)) L = L
w(z) +cw(2‘)(m ( )) ( ( )) mo(z) 1_ c(mo(z))Q(l +m°(z))‘2'
(4.110)
In view of we have
! 02)) = e(m®(2)) L = — L e(m®(2)) =
S TR — e’ () s = e+ elme) =
(4.111)

Taking derivative with respect to z on the both sides of (4.95|) we have

0 5 = (m0()) 5 l—c c(mo(z))2(1 —l—mo(z))*l —mO(2) 1-c
c(m(2)) z = (m°(z2)) = (- m() o

the last step using the expression (4.101)) for z.
In view of (4.110), (4.111) and (4.112) it is enough to show

z

(s ) - L (@) (1w )"

—n Tl-c 2 2
i 1 —c(m®(2))"(1 4+ mO(2))

m(z)
From (4.102) the left hand side of (4.113|) becomes 1+ m(z). Because it is
easy to check that

(14 m°2) (1= e(m(2)* (1 +m(2) ") =14+ m(2) = e(m"(=))* (1 + m"(2)

we get (4.113)). The proof is completed.






Chapter

Independence Test For A Large Panel
Data

5.1 Theory and Methodology

Before we establish the main theory and methodology, we first introduce

the following assumptions:

Assumption 1. For each v = 1,...,p, X1, -+, X, are independent and
identically distributed (i.i.d) random variables with mean zero and variance

one. When X;;’s are complex random variables, we require EXJ%- =0.
Assumption 2. p = p(n) with £ — ¢ € (0,00) as n — oo.

We stack p time series one by one to form a data matrix X = (xy, -+, X,) .

Moreover, denote the sample covariance matrix by

1
A, = -X*X,

n

where X = (x1,...,%,) = (¥1,.--,¥n)?, yJT denotes the j-th row of the

matrix X and X* is the Hermitian transform of the matrix X. The empirical
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spectral distribution (ESD) of the sample covariance matrix A,, is defined

FA(z) = %Z I < 2), (5.1)

where \; < Xy < ... < ), are eigenvalues of A,,.

It is well-known that under Assumptions 1 and 2, if x;,---,x, are
independent then FA»(x) converges with probability one to the Marcenko-
Pastur Law F°(x) (see Marcenko-Pastur (1967)) whose density has an ex-

plicit expression of the form

L /(b—z)(z—a), a<z <

fe(z) = 7 (5.2)

0, otherwise;

and a point mass 1 — 1/c at the origin if ¢ > 1, where a = (1 — /¢)? and
b= (1+ /)%

When there is some correlation structure among xi, - - - ,X,, denote by
T, the covariance matrix of each row, ij, of X (more specifically, we need

/ 2Wj whose definitions are given in Assumption 3 below).

to assume y; = T;,
Then, under Assumptions 1 and 2, if F'Tr(z) Ly H (7), then FA" converges
with probability one to a non random distribution function F“# whose

Stieltjes transform satisfies (see Silverstein (1995))

m(z) = / ! dH (), (5.3)

z(l—c—czm(z)) —z

where the Stieltjes transform mg for any c.d.f G is defined as

mea(2) :/)\isz(/\), Imz >0 (5.4)

and G can be recovered by the inversion formula

T2

1
G{lz1, 2]} = - E1_i>1(1)1+ Im(me(x + ig))dx,
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where z; and x5 are continuity points of G.

Moreover, equation (5.3)) takes a simpler form when F4 is replaced by
Fo' = (1= ¢)Ijg 00 + cF, (5.5)

which is the limiting ESD of A, = 2XX*. Its Stieltjes transform

1
m(z) = —— €+ em(2) (5.6)
has an inverse
1 T
pr— = — H N .
z = z(m) m—1—0/1+$md (x) (5.7)

The construction of our test statistic relies on the following observa-
tion: the limit of the ESD of the sample covariance matrix A,, is the M-P
law by when xi,---,x, are independent and satisfy Assumptions 1
and 2, while the limit of the ESD is determined from (/5.3)) when there is
some correlation among xi,--- ,x, with the covariance matrix T, differ-
ent from the identity matrix. Moreover, preliminary investigations indicate
that when x;,--- ,x, are only uncorrelated (without any further assump-
tions), the limit of the ESD of A,, is not the M-P law (see Ryan and Debbah
(2009)). From this point, any deviation of the limit of the ESD from the
M-P law is evidence of dependence. So, these motivate us to use the ESD of
A, FA»(x), as a test statistic. However, there is no central limit theorem
for (FA»(x) — F°(x)), as argued by Bai and Silverstein (2004). Therefore,

instead, we consider the characteristic function of F4»(x).

The characteristic function of FA=(z) is

. 1< .
salt) & / A ) = 13 e, (5.8)
=1

where \;,i = 1,...,p are eigenvalues of the sample covariance matrix A,,.
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Our test statistic is then proposed as follows:
1o
My = [ |salt) = s(t)PdU(1), (5.9)
T
where s(t) := s(t, ¢,) is the characteristic function of F°(z), obtained from
the M-P law F(x) with ¢ being replaced by ¢, = p/n, and U(t) is a weight
function with its support on a compact interval, say [T7, T5].

To develop the asymptotic distribution of M,, under a local alternative,

the following assumption is needed.

Assumption 3. Let T, be a p x p random Hermitian nonnegative defi-
nite matriz with a bounded spectral norm. Let y;‘-F = W;‘»FT;M, where T}Dﬂ
is the p x p Hermitian matriz that satisfies (Tll,/Q)2 = T, and w, =
(Wir, -+ W), 4 = 1,...,n are i.i.d random wvectors, in which Wj;,j <
n,i < p are i.i.d with mean zero, variance one and finite fourth moment.
The empirical spectral distribution F™r of T, converges weakly to a dis-
tribution H on [0,00) as n — oo; all the diagonal elements of the matriz

T, are equal to 1.

Note that under Assumption , A, becomes T}D/ QW*WT;,/ 2, where
W = (wy, - ,w,)?. The assumption that all the diagonal elements of
T, are equal to 1 is used to guarantee that EX? = 1. Under Assump-
tion , when T, = I,, the random vectors xy,...,x, are independent and
when T, # I,, they are not independent. For convenience, we name this

dependent structure as ‘linear dependence’.

To develop the asymptotic distribution of the test statistic, write
Gn(z) = p[FA(z) — F (x)]. (5.10)

Then, p(s,(t) — s(t)) can be decomposed as sum of the stochastic part
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and the non—stochastic part as follows:

p( / ztsz

— / ztxd( [FA"(QT) e n( )})—{—/Gltxd(p [FC"’ n FC" 1)
where F»Hn is obtained from F“" with ¢ and H replaced by ¢, = p/n and
H, = FT».

To simplify the statements of the following theorems, we introduce some

notation here:

61(t) = lim [ cos(tz)dp(F"(z) — F(z)),

n—oo

8(t) = lim [ sin(tz)dp(F" (z) — F(x)), (5.12)

n—oo

cm?®(2)ha(2)
p(t) = f{”s(”) —c fm2 2<1+Tm(z))—2dH(T)dZ’

)
cos(tjz1)sin(tpze) d d
o(tj, tn) d dod
]7 h %ﬂ fiﬁ 22))2 dz2m(22>d21m(21) 21d29,

2

) d
p3(tj,th) :7{ j{ cos(tjzl)sm(tth)d [m(z1)m(z9)h1 (21, 22)|dz1dzs,
7 Y2 z1dz

e 1 cos(tz ¢ [m?(z)m*(1+ mm(z))*dH () i
EVER) = g § st o T )72(1—|—Tm(z))*2dH(T))2d
_ E);lr_i_ 3p1(t), (5.13)
Con(V7e(t), 2(10)) = —gegoaty ) — Tty 1), (514
E(V™(t) = —%pl(w, (5.15)
and
Coo(Vi™(1,). 27 (1)) = —4—71]_2,02(15]-,25;1) _dE ‘)ZI;L =2) (b, 14).(5.16)

We now state the first theorem of this chapter.
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Theorem 7. In addition to Assumptions [1] and[3, let the fourth moment
of each Xj; be finite.

1) Suppose that Assumption@ and the following conditions hold:

—Ze T2 (m(21) T+ 1)~ T) Peie; To/? (m(z2) Tyt )~ T *e; — ha(21, 22)
(5.17)

and

Lo

- > el T (m(2) T, + D' Ty *eie; T)/* (m(2) T, + 1) > T}/ *e; — ha(2),

. (5.18)
where €} is the n-dimensional row vector with the i-th element being 1 and
others 0. Then the scaled proposed test statistic p*M, converges in distri-
bution to a random variable R of the form

T2
R = /T1 (V) +6:(8)]* + |Z(t) + 62(t)[P)dU (¢), (5.19)
where (V(t), Z(t)) is a Gaussian vector and d;(t), j = 1,2 are defined in
.

Denote (V(t), Z(t)) by (V"(t), Z"*(t)) when X1 is real and the mean
of V"e(t) is specified in (5.13). Replacing cos(tz) in E(V™(t)) by sin(t;z)
yields the expression of E(Z"¢(t)); the covariance of (V™(t), Z"¢(t)) is given
mn .

Denote (V(t), Z(t)) as (V™(t), Z"™(t)) when X1y is complex with EX?, =
0 and then the mean of V'™ (t) is specified in (m Similarly replacing
cos(tz) in E(V'™(t)) by sin(t;z) yields the expression of E(Z"™(t)) in this
case; the covariance of (V™ (t), Z™(t)) is given in (5.16).

In both cases, the definitions of Cov(V (t;),V (t)) and Cov(Z(t;), Z(t1))
are similar to that of Cov(V (t;), Z(t1)) except replacing cos(t;z)sin(tyz) by

cos(t;jz)cos(tyz) and sin(t;z)sin(tyz) respectively. The contours vy, v1 and
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Yo above are all closed and are taken in the positive direction in the complex
plane, each enclosing the support of F“H. Also v, and o are disjoint.
2) Under the null hypothesis Hy the scaled statistic p*M,, then converges
wn distribution to
T ~
Ro= [ (7P +120)PaU0), (5.20)
1
where the distribution of (V(t), Z(t)) can be obtained from that of (V (t), Z(t))
with H(T) being the degenerate distribution at the point 1, m(z) being

the Stieltjes transform of the M-P law, hy(z1,z3) = (m(z1)+1)1(m(ZQ)+1) and

ha(2) = G-

Remark 10. Assumption[]] assumes that all the entries of x; are identically
distributed. It is of practical interest to consider removing the identical
distribution condition. Instead of assuming identically distributed entries
for x;, we need only to impose the following additional assumptions: for
anyk=1,....p;7=1,....n, E[X;] =0, E[XJQ,J =1, SFEE[X;L,C] < 00
and for any n > 0,

1
ninp

n p
> Y E[1X Iy, mnvm] — 0, as n — oo (5.21)

j=1 k=1

A careful checking on the arguments of Theorem 1.1 of |Bai and Silver-
stein (2004) and Theorem 1.4 of Pan and Zhou| (2008) indicates that Lemma
listed in the Appendiz still holds and hence Theorem[7 holds under .

For the expressions of the mean and covariance of the asymptotic random

vector, we substitute the fourth moment E|Wi1|* in Lemma with the

n.p 4
Zj:l,kzl E|Wik|

average of all the fourth moments of all the entries, i.e. "

Here we would like to point out that there is no need to impose condi-

tions ((5.17)) and (j5.18]) when establishing the asymptotic distribution of the
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test statistic under the null hypothesis (the second part of the above theo-
rem). Moreover, conditions ((5.17) and (5.18)) can be removed if E [W},] = 3

in the real- number case or if E [W3] = 2 in the complex—number case (see
Bai and Silverstein, (2004)). The first part of the above theorem is concerned
with asymptotic distributions of the test statistic under a local alternative
hypothesis, i.e., Assumption [3] With respect to Assumption [3| we would
like to make the following comments, which are useful in the subsequent
application section.

It ij = v~v;‘~FC, where C is any ¢ x p nonrandom matrix and w;,j =
1,...,n are i.i.d. ¢ x 1 random vectors with their respective entries being
i.i.d random variables, then Theorem [7] is still applicable. This is because
%XX* in this case becomes %WCC*VV* and the nonnegative definitive
matrix CC* can be decomposed into CC* = T;/2T;/2, where T;/Q is a
q x q Hermitian matrix and W = (W, ..., W,). Note that the eigenvalues
of %XX* differ from those of %T}/ QW*WTé/ 2 by |p — ¢q| zeros. Thus, we
may instead resort to CLT of %T;/QW*VNVT;/Q.

We can evaluate the power of the statistic M, for a class of local alter-
natives, although it is difficult to establish an asymptotic distribution for

the test statistic under such a class of local alternatives.

Theorem 8. Let the following hold in probability,

lim supp/eit"”d(Fég‘ - Fﬁln) = 00, (5.22)

n—oo

where FI?O" stands for the ESD of A,, under Hy (satisfying Assumptions 1
and 2) and FI’;" s the ESD of A,, under Hy. Then

lim P(p*M, > v,|/H;) = 1,

n—oo

where v, 18 the critical value of n*M,, under Hy (determined by R in The-

orem@ corresponding to the significance level a.
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Remark 11. Note that if Fg; and Fﬁ‘l’l have different limits in probability,
then [ emd(Fgg — Fgf) converges in probability to a nonzero constant de-
pending t by Levy’s continuity theorem. This ensures 15 true. Most
of the examples given in the subsequent sections satisfy .

5.2 Applications to Multiple MA(1), AR(1)
and Spatial Cross—sectional dependent
Structures

This section is to explore some applications of the proposed test. In the
last section, we have discussed the case where dependent vectors can be
expressed as linear combinations of independent random vectors, i.e. y; =
w;C. Although this chapter mainly focuses on the analysis of cross—sectional
dependence, many other dependent structures incurred by time series also
satisfy the dependent structure developed in the last section. As an il-
lustration of this point, we provide MA(1) and AR(1) models here. For
cross-sectional dependence of interest in panel data analysis, we give exam-
ples of some spatial models that can be discussed in a way similar to what

has been done in Section 2.

Example 3.1. Consider a multiple moving average model of order 1(MA(1))
of the form:

V=12 + Yz 1, t=1,...,p, (5.23)

where || < 00; z; = (Zu4,...,Zn)? is an n-dimensional random vector
with i.i.d. elements, each of which has zero mean and unit variance; and
vi = (Vig, ..., V)T Denote by VJT and ZJT respectively the j-th rows of
V = (Vit)nxp and Z = (Zj1)nx (p+1)-
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For each j = 1,...,n, the MA(1) model ([5.23)) can be written as

V] =17]C, (5.24)
where
v 0 0 -0 0
1 ¢ 0 0 0
01 4y --- 00
C=1 . . - (5.25)
0O 00 --- 14
O 00 --- 0
(p+1)xp

From Assumption [3] the preceding subsection and Theorem [7] our test
is able to capture the dependence of vq,---,v, as n and p go to infinity in

the same order.
Example 3.2. Consider a vector autoregressive model of order 1 (VAR(1))
of the form:

V¢ :qbvt_1+zt, t= 1,...,p, (526)

where vy = \/11?6 with € being an n-dimensional random vector with

i.i.d elements whose means are zero and variances are unit, |¢p| < 1; for
any t = 1,...,p, 2t = (Z1t,..., Zn)" is an n-dimensional random vector

with i.i.d. elements, each of which has zero mean and unit variance; and

vi= Vi, ..., Vm)T. The choice of \/11_? in the definition of vy is to ensure
that the first two moments of {v;}}_, are well defined. In order to writing
this VAR(1) model into the linear dependent structure proposed in the last
section, we add zg = € to the sequence {z}}_; and thus {z;}/_, has the

same length with {v;}}_,. Denote the j-th rows of V. = (Vj;)nx(p+1) and
Z = (Zjt)nxp+1) by \Af;[ and Z]T respectively.
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For each j =1,...,n, the AR(1) model (5.26)) can be written as
vi=27'D, (5.27)

where

L =¢ (=¢)* (=) (=o' /V1-¢?
0 1 —¢ o (=0 (o /V1-¢?
_AH\P—4 (453 _ 42
R Al
00 0 - 1 —¢/\/1—¢?
0 0 0o - 0 1/3/1 = ¢2

By Theorem , we can apply the proposed test M,, to this AR(1) model

as well.

Example 3.3. We now consider a panel data case. Let {v;; : i =
1,...,p;7 = 1,...,n} be the error components involved in a panel data
model. They may be cross—sectionally correlated. In panel data analysis, it

is of interest to consider the cross—sectional independence hypothesis, i.e.
Hy : Cov(vji,vjn) =0 forall j=1,...,n and all i # h;

against
Hy, @ Cov(vji,vjn) # 0 for some j and some i # h. (5.29)

Under the assumption that {v;; : i = 1,...,p;j = 1,...,n} are normally
distributed, this hypothesis is equivalent to the independence hypothesis
that

Hy: xi,...,x, are independent; against H;y : xi,...,x, are not independent,

(5.30)
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where x; = (v, ..., v0), i =1,...,p.

Modern panel data literature has mainly adopted two different approaches
to model error cross—sectional dependence: the spatial approach and the
factor-structure approach. For the spatial approach, there are three pop-
ular spatial models: the Spatial Moving Average (SMA), Spatial Auto-
Regressive (SAR) and Spatial Error Components (SEC) processes. They

are defined as follows:

p
SMA : Vj; = Zwiksjk + €5, (531)
k=1
p
SAR : Vji = Zwikvjk + Ejiy (532)
k=1
p
SEC : Vj; = Zwikfjk + €ji, (533)
k=1

where w;y is the i-specific spatial weight attached to individual k; {ej; : i =
L...,pyg=1,....,n}and {§; ;i =1,...,p;j = 1,...,n} are two sets with
i.i.d. random components with zero mean and unit variance; moreover,
{&ii=1,...,p;j =1,...,n} are uncorrelated with {e;;,i =1,...,p;j =
1,...,n}.

Denote the j-th row of V. = (Vi) nxp, € = (€ji)nxp a0d & = (&ji)nxp DY
VT, ?:;-F and éjT respectively. Set w = (wik)pxp-

Model SMA may be rewritten as v/ = &} (w' +1,),Vj=1,...,n
and hence T, = (w + I,)(w” +I,). For model SAR , assume that
w—1I, is invertible. We then write \A/jT = éf(wT—Ip)*l, Vj=1,...,n. Hence
T, = (w—1L,) ' (w? —I,)7'. Therefore the test statistic M, can be used
to identify whether x4, - -+ ,x, of models and are independent.
Hence it can capture the cross—sectional dependence for the SMA model

and SAR model
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As for the SEC model, whether the statistic M,, can detect the depen-
dence of the SEC model relies on the properties of the sample covariance

matrix in the form of
1 T
B, = E(wé +e)(w€+e), (5.34)

where £ = (€,,...,€,)" and e = (e1,...,&p)".
Under the null hypothesis Hy, Dozier and Silverstein| (2007) provides
the limit of the ESD of the matrix B,, whose Stieljes transform is

(z) = / __dH(z) | (5.35)

where H(z) is the limit of F=e"

With this result, we know that the limit of the ESD of the matrix B,,
is not the M-P law so that condition ([5.22)) is satisfied. By Theorem [§], the
proposed test M, can be applied to capture the dependence of the SEC

model ((5.33]).

5.3 A general panel data model

It is well known that there are two common used cross-sectional dependent
structures in panel data: spatial structures and factor models. As stated
in the last section, our developed dependent structure y; = w;C covers
some spatial structures in panel data. In this section, we consider a simple
factor model which is utilised to describe cross—sectional dependence. A
new asymptotic theory is established as a consequence of our discussion.
Note that the proposed test is based on the idea that the limits of ESDs
under the null and local alternative hypotheses are different. Yet, it may

be the case that there exists some dependence among the set of vectors of
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X1, ,Xp but the limit of the ESD associated with such vectors is the M-P
law. Then a natural question is whether the statistic M,, works in this case.
We below investigate the panel data model as an example.

Consider a panel data model of the form

vij:ajjt%ui,izl,...,p;jzl,...,n, (5.36)
where {e;;,i = 1,...,p;j = 1,...,n} is a sequence of i.i.d. real random
variables with Fey; = 0 and Ee?, = 1, and {u;,7 = 1,...,p} are real
random variables, and independent of {¢;;,i =1,...,p;j =1,...,n}.

Forany i =1,...,p, set
X; = (Uz’la c. ,’Uin)T. (537)

The aim of this section is to test the null hypothesis specified in ([5.30))

for model (5.36)).
Model ([5.36)) can be written as

X =¢ +ue’, (5.38)
where X = (x1,...,%x,)7, u= (\/Lﬁul, s \/Lﬁup)T and e is p x 1 vector with

all elements being one.

Consider the sample covariance matrix

1 1
S, = —XX" = (e + ue’)(e + ue”)’. (5.39)
n n

By the rank inequality (see Lemma 3.5 of Yin (1986)) and the fact
that rank(ue’) < 1, it can be concluded that the limit of the ESD of the
matrix S is the same as that of the matrix %EET, i.e. the M-P law. Even
so, we still would like to use the proposed statistic M,, to test the null

hypothesis of mutual independence. However, this model does not satisfy
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Assumption [I| because the elements of each vector x; are not independent
and they include the common random factor u;, and Theorem [7] thus can
not be directly applicable to this model. Therefore, we need to develop a

new asymptotic theory for the proposed statistic M, for this model.

Theorem 9. Consider model and let Assumptz’on@ hold. Addition-
ally, suppose that {e;;} are i.i.d with mean zero, variance one and finite

fourth moment and that

Z(uf — ﬂ)(u? — u)] —0 asn— oo, (5.40)

i#]

1
Elul|* < oo and b

where u 1S a positive constant number.
Then, the proposed test statistic p>M,, converges in distribution to the
random variable Ry given by
to
Ro= [ (WP + @0P)aU) (541
t1
where (W (t),Q(t)) is a Gaussian vector whose mean and covariance are

specified as follows:

BW) = ~53 § oty e
_ c(m;—;—zs) 7{ cos(2) T (Zm;f_ e
2 £y e el
— = feostty) Tm)? (zmu;g j(“)f_l FMP()\)dz;(E)AQ)
and
Cov(W (1), Q(tn)) = —5. f{ ﬁ cos(t, Z’;)Z;Q) dilm( 1)%@(22)dz1dz2
B 7{ cosligm)eostinzs) dzildzz e e



146 Chapter 5. Independence Test For A Large Panel Data

(5.43)

Replacing cos(tjz) in E [W(t;)] by sin(t;z) yields the expression of E [Q(t;)].
The covariances Cov(W (t;), W (ts)) and Cov(Q(t;), Q(tr)) are similar ex-
cept replacing sin(tpz) and cos(t;z) by cos(tpz) and sin(t;z) respectively.
The contours in and both enclose the interval [(1 — \/c)* +

2cti, (1 4 v/€)* + 2cu]. Moreover, the contours v, and vo are disjoint.

Remark 12. When wuy,--- ,u, are independent and hence vi,---,v, are

independent, condition holds automatically.

In view of Theorem [9, we see that the proposed test statistic M, still
works mainly due to the involvement of the last term on the right—hand
side of . Section 5 below employs the proposed test to evaluate the
finite-sample performance and the practical applicability of the proposed

test.

5.4 Small sample simulation studies

This section provides some simulated examples to evaluate the finite sample
performance of the proposed test. In addition, we also compare the perfor-
mance of the proposed test with that of a likelihood ratio test proposed by
Anderson| (1984). Simulations are used to evaluate both the empirical sizes
and powers of the proposed test. To show the wide applicability and effi-
ciency of our test, two kinds of dependent structures considered in Sections
3 and 4, such as multiple MA(1) and AR(1) model, SMA and the general

panel data model, are investigated.
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5.4.1 Empirical sizes and empirical power values

First we introduce the method of calculating empirical sizes and power
values. Let z1, and z,_1, be the 100(3)% and 100(1 — )% quantiles
of the asymptotic null distribution of the test statistic M, respectively.
With K replications of the data set simulated under the null hypothesis,

we calculate the empirical size as

{tof M > 2y, or ME <2y}
K )

a = (5.44)
where M represents the values of the test statistic M,, based on the data

simulated under the null hypothesis.

In our simulation, we choose K = 1000 as the number of repeated sim-
ulations. The significance level is @ = 0.05. Since the asymptotic null
distribution of the test statistic is not a classical distribution, we need to
estimate the quantiles Z1a and 2 lar Naturally, we do as follows: gener-
ate K replications of the asymptotic distributed random variable and then
select the (K3a)-th smallest value 21, and (Kia)-th largest value 2, 1,
as the estimated 100(3c)% and 100(1 — )% quantiles of the asymptotic

distributed random variable.

With the estimated critical points 21, and 2,1, under the null hypoth-

1
-5

esis, the empirical power is calculated as

(5.45)

where M? represents the values of the test statistic M, based on the data

simulated under the alternative hypothesis.
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5.4.2 Comparisons with the classical likelihood ratio

test

For the proposed test, we generate n numbers of p—dimensional independent

and identical distributed random vectors {y;}”_,, each with the mean vector

j=1>
0, and the covariance matrix Y. Under the null hypothesis, {y;}}_, are

generated in two scenarios:

1. Each w; is a p-dimensional normal random vector with the mean
vector 0, and the covariance matrix X = L,; Vj =1,...n, y; = Tw;

with T, = L;

2. Each w; consists of i.i.d. random variables with standardized Gamma(4,2)
distribution, so they have zero means and unit variances; Vj = 1,...n,

yj = Tij Wlth Tp = Ip.

Under the alternative hypothesis, we consider the case:

1/ 2 = (v/0.951,,1/0.051,), where 1, is a p-dimensional vector with 1 as
entries. In this case, the population covariance matrix of y; is ¥ = 0.95I, +
0. 051p1p, which is called the compound symmetric covariance matrix.

For the normally distributed data, the fourth moment of each element
is £ [X7{,] = 3; for standardized Gamma(4,2) distributional data, F'[X{,] =
4.5. |Anderson (1984) provides a likelihood ratio criterion (LRT) to test
independence for a fixed number of fixed dimensional normal distributed
random vectors. We compare it with the proposed test.

Under the null hypothesis, the distribution of L is the distribution of
LyLs---L,, where Lo,..., L, are independently distributed with each Lj
having the distribution of U, (k—1)m,n—1—(k=1)m- Furthermore, for any & =

3

2a <.y py a8 N — 00, (77, -2 _> IOg (Um,(kfl)m,nflf(kfl)m) has a X2
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distribution of (k — 1)m? degrees of freedom (See section 8.5 of |Anderson

(1984)).

From the construction of the LRT test, we can see that the LRT utilises
additional n observations of the random vectors xy,...,x, under investi-
gation, while the proposed test does not need this information. However,
we can choose m = 1 and apply LRT to independence test of the random
vectors Xi, ..., X,, where for any 7 = 1,...,p, the elements of the vector x;
consist of its n observations. Hence the LRT test can test independence for

p numbers of random vectors with dimension n by choosing m = 1.

Tables [p.1] and show the empirical sizes and empirical power values
of our proposed test and the LRT test for the normally distributed random
vectors respectively. From Table [5.1 and Table [5.3] we can see that the
LRT test does not work when p and n are both large while the proposed
test possesses good performance when p and n are both large and increase
at the same order. The LRT test is only applicable to the case where p is
fixed and n increases from n = 5 to n = 100. From Table 5.3} it can be seen
that the LRT fails when p is large at the same order as that of n. When the
difference between p and n is large, the sizes and the power values of the
proposed test become worse. This is because our test is proposed under the
restriction that p and n are required to increase and vary at the same order.
The proposed test also works well for gamma random vectors while the LRT
test is not applicable to gamma case, since, in theory, LRT test is originally
proposed only for normal random vectors. Tables and provide the
empirical sizes and power values of the proposed test for the gamma case.
In our simulation, we choose p,n = 5,10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for
the proposed test and the LRT test. The significant level « is chosen as

0.05. In each case, we run K = 1000 repeated simulations. Our simulation
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results for the empirical powers show that the proposed test can well test
independence for both normal and gamma vectors.

As comparison, without using the asymptotic distribution under the null
hypothesis, we use the bootstrap method to obtain a bootstrap critical value
(bev) in each case to estimate the empirical sizes for normal and gamma
distributed data. The results are listed in Table From the table, we
can see that the bootstrap sizes are better than those estimated from the

null asymptotic distribution.

5.4.3 Multiple MA(1), AR(1) and SMA model
Consider multiple MA(1) model
vi =12 +Yz;_1,t=1,...,p. (5.46)

We choose 1 = 0.5 and z; S normal(0,1,),Vt = 0,1,...,p. The simula-
tion results in Table [5.6 show that the proposed test performs well for this
model.

Consider multiple AR(1)
vVi=o¢vi1+z, t=1,...,p, (5.47)

where vy = \/ﬁzo and z; Sy normal(0,1,),Vt =0,1,...,p. Let ¢ = 0.5.

The empirical powers for this model are provided in Table 5.7 As n and p

increase in the same order, the empirical power tends to 1.

As for the Spatial Moving Average (SMA) model, i.e.
P
Vj; = Zwiksjk + €ji, (548)
k=1

we generate € vy normal(1,1),Vj = 1,...,n;k = 1,...,p. Apply the

proposed statistic M,, for the sample matrix %V*V and the empirical powers
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are illustrated in Table 5.8 These power values show that M,, performs well

for capturing the cross—sectional dependence for SMA model.

5.4.4 The general panel data model

We examine the finite sample performance of the proposed test for the

general panel data model ([5.36)), i.e.

1
Vi =€+ —=u, i=1,....p; j=1,...,n, (5.49)

VD

where {e;;,1 =1,...,p;j =1,...,n} is asequence of i.i.d. random variables
and Fe;y = 0, Eei, = 1; {u;,i = 1,...,p} are independent of {e;;,7 =
L....,p;j=1,...,n}.

Under the null hypothesis, we generate u; S normal(1,1),i=1,...,p

and under the alternative hypothesis, we experiment with

u = (%ul,%ﬁu%...,\/iﬁup) ~ \/LﬁN(lp,E), where ¥ = TT? and T is a

p X p matrix whose elements are generated ¢, R U,1),i,k=1,...,p.

1

The simulation results including empirical sizes and power values in

Table [5.9| show that the proposed test can capture the dependence for the
general panel data model ([5.36)).

5.4.5 Some time series and Vandermonde matrix

Dependent structures of a set of random vectors are often described by
non-zero correlations among them, such as the linear dependent structure
developed in Section 3. However, there are some data which are not inde-
pendent but uncorrelated. We consider three such examples and test their

dependence by the proposed test.
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5.4.5.1 Nonlinear M A model

Consider nonlinear MA models of the form

Rtj == thl,th*Zj(Zt*Zj + th "’ 1)7 t = 17 s 7p7 j = 17 e 7n; (550)

where z; = (Zy1, ..., Zip) is an n-dimensional random vector with i.i.d. ele-
ments, each of which has zero mean and unit variance; and r; = (Ry1, ..., Ry,).
For any j =1,...,n, the correlation matrix of (R;1, Rj2, ..., Rj,) is a diag-

onal matrix. This model is provided by [Kuan and Lee (2004) which tests
the martingale difference hypothesis. Our proposed independence test can
be applied to this nonlinear MA model, and the powers in Table 10 show
that this test performs well for this model.

This result also implies that the limit of the ESD of the nonlinear MA
model is not the M-P law since the proposed test statistic is estab-

lished on the characteristic function of the M-P law.

5.4.5.2 Multiple ARCH(1) model

Consider the multiple autoregressive conditional heteroscedastic(ARCH(1))

model:

Wtj = th\/Oéo + a1Wt2_Lj, t= 1, RN OB j = 1, cee NG (551)
where z; = (Zy1, ..., Zip) is an n-dimensional random vector with i.i.d. ele-
ments, each of which has zero mean and unit variance; and w;, = (Wi, ..., Wy,).

For each j =1,...,n, ARCH(1) model (Wy;, Wyj, ..., W,,) is a martin-
gale difference sequence. ARCH(1) model has many applications in finan-
cial analysis. There exists no theoretical results stating that the limit of
the ESD of the sample covariance matrix for ARCH(1) model is the M-P

Law. A rigorous study is under investigation. For the ARCH(1) model, the
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proposed test can not capture the dependence of (wy,ws, ..., w,) directly,
but we can test the dependence of (wf,w3, ..., w?). Since this test can tell
us that (w},w3, ..., w?) are not independent, naturally it can be concluded
that (wi,ws,...,w,) are not independent either. Here we take oy = 0.9
and a; = 0.1. Table shows the power values of our test for testing
dependence of ARCH(1) model.

5.4.5.3 Vandermonde matrix

Consider the n x p vandermonde matrix V of the form

1 1 e 1
1 e~ e~ w2 - e~ iwp
V = % : : : (5.52)
e—in—Nwi  o—i(n—lwz . . c—=i(n—lwp
where w;,7 =1, ..., p are called phased distributions and are assumed i.i.d

on [0,27). Then the entries of V lie on the unit circle. Obviously, all
the entries of the rows of V are not independent while the columns are
independent. Denote the sample covariance matrix of V by D = VHV.
Vandermonde matrices play an important role in signal processing and
wireless applications such as direction of arrival estimation, pre-coding or
sparse sampling theory, etc.. [). Ryan and Debbah| (2009) established that
as both n, p go to co with their ratio being a positive constant, the limiting
spectral distribution of D = V'V is not the M-P law. From Theorem
we see that the proposed test could capture the dependence structure of
the rows of the matrix V. It is easy to see that, for any k =1,...,n —1
and j = 1,...,p, E(e7**i)? = 0 and Ele~*“i|* = 1. The empirical power
values in Table [5.12| show that the proposed test works well in detecting

dependence of Vandermonde matrices.
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5.5 Conclusions

This chapter has established a general test for testing independence among
a large number of high dimensional random vectors based on the charac-
teristic function of the empirical spectral distribution of the sample covari-
ance matrix of the random vectors. This test can capture various kinds of
dependent structures, e.g. MA(1), AR(1) model, nonlinear MA(1) model,
ARCH(1) model and the general panel data model established in the simula-
tion section. The conventional method (LRT proposed by |Anderson| (1984)))
utilizes the correlated relationship between random vectors to capture their
dependence. This idea is only efficient for normal distributed data. It may
be an inappropriate tool for non-Gaussian distributed data, such as mar-
tingale difference sequences (e.g. ARCH(1) model), nonlinear MA (1) model,
the Vandermonde matrix, etc., which possess dependent but uncorrelated
structures. The proposed test is not restricted to normally distributed data.
In general, the proposed test is proposed for testing independence among a

large number of high dimensional random vectors.

5.6 Appendix

5.6.1 Some useful lemmas

Lemma 16 (Theorem 8.1 of Billingsley| (1999)). Let P, and P be probability
measures on (C, ). If the finite dimensional distributions of P, converge weakly

to those of P, and if {P,} is tight, then P, = P.

Lemma 17 (Theorem 12.3 of Billingsley| (1999)). The sequence {X,} is tight if
it satisfies these two conditions

(1) The sequence {X,(0)} is tight.
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(II) There ezists constants v > 0, a > 1, and a nondecreasing, continuous

function F on [0,1] such that
E{[Xn(t2) = Xn(t1)["} < [F(t2) = F(t2)|* (5.53)
holds for all t1,ts, and n.

Lemma 18 (Continuous Theorem). Let X, and X be random elements defined
on a metric space S. Suppose g 1 S — S has a set of discontinuous points D,

such that P(X € Dy) = 0. Then
Xo 5 X = g(X,) S g(X). (5.54)

Lemma 19 (Complex mean value theorem (see Lemma 2.4 of |Guo and Higham
(2006)))). Let © be an open convex set in C. If f : Q — C is an analytic function

and a,b are distinct points in ), then there exist points u,v on L(a,b) such that

fla) = f(b) fla) = f(b) ,

Re(R2 =) = Re(f ), Im(R 212 = In(f (), (5.55)

where Re(z) and Im(z) are the real and imaginary parts of z respectively; and

L(a,b) = {a+t(b—a):te(0,1)}.

5.6.2 Proofs of the main theorems

This section provides the proofs of three main theorems. Lemmas and
involved in the respective proofs of Theorem [7] and Theorem [9] are listed and

proved in Section 7.3 below.

Proof of Theorem[7. Let t belong to a closed interval I = [T1,75]. To finish
Theorem[7} in view of Lemma[I6 and Lemma[20] it suffices to prove the tightness
of {(#n(t),¥n(t)) : t € I}. Thus it suffices to prove the tightness of p(sy(t) —
s(t)). Repeating the same truncation and centralization steps as those in Bai

and Silverstein (2004)), we may assume that

| Xij| < 0nv/n, EXy; =0, E|X;;* =1, B|Xj;[* < cc. (5.56)
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Set My (z) = nlmpa, (2) — Mpen,u, (2)]. By the Cauchy theorem
1 f(z)

= — d .
/(@) i) z—x (5:57)
we have, with probability one, for all n large,
A 1 .
/ it dp(F A () — Fentin () = — L 7{ G (Ndz. (558
211 I

The contour C involved in the above integral is specified as follows. Let
Cu ={z+ vy : x € [z, 2,]}, (5.59)

where vy > 0, x, is any number greater than lim sup Apae(T0)(1 + /€)2, 27 is
n
any negative number if ¢ > 1 and otherwise choose z; € (0, lim sup Apin(Ty)(1 —
n
v/©)?). Then the contour C is defined by the union of C; and its symmetric part

C_ with respect to the z-axis, where
Ci=A{x;+iv:ve0,v]}UC, U{z, +iv:v e [0,uv]}. (5.60)

From Lemma 1 and the argument regarding equivalence in probability of
M, (=) and its truncation version given in Page 563 in Bai and Silverstein| (2004)

and Lemma 3 we have

74|Mn<z>\|dz\ 2, 74 M (2)][dz], (5.61)
C C

where M(z) is a Gaussian process, the limit of M, (z).

We conclude from Lemma [L9| that for any 6 > 0

sup ‘ 7{(6”” — eit?z)Mn(z)dz|
[t1—t2|<d,t1,t2€l  JC
< sup ‘ ?{ \/(Re(ize“3z))2 + (Im(izeit4z))25]Mn(z)\]dz\‘
[t1—t2|<d,t1,t2€l ' JC
< Ko f M, ()=l | 25 Ko 7{ ME)dzl|, as nvoo,  (562)
C C

where t3 and t4 lies in the interval [T, Ts], the last inequality uses (5.61) and the
fact that Re(ize'3?), Im(ize'?) are bounded on the contour C and K (and in

the sequel) is a constant number which may be different from line to line.
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By (5.62)), we have for any € > 0,

P( w ‘ i(emz - eit?z)Mn(z)dz‘ > 5) < P(K(S‘ yi |Mn(z)|\dz|‘ > 5)

[t1—t2]|<d,t1,

(5.63)

and

lim 1imsupP(K(5‘féMn(z)Hdz\‘ >e) = %%P(Kd‘é\M(z)Hdz[‘ >c) =0,

=0 n—oo

(5.64)
Hence (5.63) and (5.64]) imply that
lim lim supP( sup ’ 7{(6“1”” - eith)Mn(z)dz‘ > 5) =0. (5.65)
00 n—oo |t1—t2|<6,t1,t2el ' JC

By Theorem 7.3 of Billingsley| (1999), [ e*@dp(FAn»(z) — Fentn (1)) is tight.
Moreover from the assumption we see that [ e@dp(FeHn(z) — Fen(x)) is tight
by Lemma 4.

O

Proof of Theorem[§ Consider p?>M,, under the alternative H; and rewrite it as

follows
2 [T 2 T2 H 2 2 in,H 2
P =3 [ lsa-soPav e = [ ] e+ [ [agnme] e,
T T Ty
where

M5 (0) = [ coslta)dp(Ffy (o) P (@), M3 (2) = [ sin(ea)dp(FYy (@) -F*(2).
We may further write

2 2 2
|:MTCLOS,H1 (t)] — [MfLOS,HO (t)} + [MEOS’HLHO (t)] +2 [Mzos,Hl,Ho (t)} |:MTCLOS,H0 (t)} ’

where M{%™0(t) is obtained from M5 (¢) with Fﬁl’l (x) replaced by Fgg’ (x)
and

Mwﬂmm=/mwmﬂﬁw@%m
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By Holder’s inequality we obtain

’/TTQ [MSOS,Hl,HO(t)} [Mgos,HO(t)}dU(t)‘2 < /Tz [MﬁOS’HI’HO(t)rdU(t)/

T T

" [P )] U (@) I

This, together with Lemma 20| (see Section 7.3 below) and the proof of Theorem

1, implies that

T Ty .
| [smeo )] [agzes st ey e) = o ([ a2 (e )2 ),
where
M o) — [ sin(e)dp(FRy (5) - iy (o).
Similarly

[Mzin,Hl(wr _ [Mzin,Ho (t)r+ [Mrsbin,HhHo (t)r+2[MTslin,H1,H0 (t)} [Mzin,Ho (tﬂ

and
[ )] [ ] au o) = op ([ o2 (B ) 2 1),

where M5™H0(¢) is similarly defined. Note that

1>

1>
[ s )2 gt ) v — |

T1 Tl

[ et an(rhy o)~ Fy @) [ ave),

Summarizing the above we have obtained

Ty

g = [ () o] v [ [ eantdy e)-mp @ a)

Ty
+o,( [ T [ eanrhy @) - By @) v ).

Thus, Theorem || follows from Theorem 1 and condition (|5.22]).

O]

Proof of Theorem[9 As in the proof of Theorem [7, in view of Lemma [21] (see
Section 7.3 below), it suffices to prove the tightness of {p(s,(t) — s(t)) : t € I}.

As before, write

p(sn(t) = s(t)) = p/emd[FS”(ﬂﬁ) — e (2)]
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1

- 74 e (tr(S, — 21,) " — pme, (2))dz,  (5.66)

where the contour = is specified in Lemma

From the formula (5.98)), we have

eTD;%(2)e
trD- Y (2) = trD Y (2) + € ) 5.67
This, together with (5.97)), yields
TD ()é vID2(2)v
trS71(2) — pme (2) = trD-N2) — pme (2 — n
(5.68)

By (5.94) and noting that M,(z) = trD_;(z) — pm,, (2), it is sufficient to

prove the tightness of the following three terms:

1 .

gni1(t) = 5 fi e M, (2)dz, (5.69)

1 .. EI'D;%(2)e
n2(t) = —=— ¢ e n dz, 5.70
gnz(t) 2mi ., 1-&eTD,'(2)e (5.70)

1 L VIDI2(2)v
n3(t) = —=— ¢ €'* L dz, 5.71
gns (1) 2mi J, 14+9TD, (2)v (5:71)

The tightness of {gn1(t) : t € I = [T1,T2]} has been proved in Theorem
Next, via the same method adopted by Theorem [7] we prove the tightness of
{gni(t) : t € I = [T1,T]}, i = 2,3 as follows.

By , and Slutsky’s theorem, we have

| D) em(2)
zely) 1-&TD;!(2)e N 2((14 m(2))? — cm?(2))

We conclude from 1} (5.123)) and Lemma 3 that, as n — oo,

j{‘ ’TD “d | == %} 1+m(cn;)(2) em?(z Hdz' (5.73)

74\ 9 e f

22N (5.72)

cm(z)

— 1
Ty @] T4 oo i
azm?(z) — 1

MPA




160 Chapter 5. Independence Test For A Large Panel Data

(5.74)

By (5.73)), (5.74)) and the same proof as ((5.62)) to ([5.65]), the tightness of {gn;(t) :
t eI =[T1,T5]}, i = 2,3 can be derived.

5.6.3 Proofs of Lemma and Lemma [21]

Bai and Silverstein| (2004)) established the remarkable central limit theorem for
functional of eigenvalues of A,, under the additional assumption that F|X1; |4 =3
while Pan and Zhou| (2008) provided a supplement to this theorem by eliminating
the condition to some extent. From Theorem 4 of|Pan and Zhou (2008)) and (j5.11])

we can directly obtain the following lemma.

Lemma 20. Under Assumptions[q and |3, we have, for any positive integer k,
(/cos(tlx)dGn(a:),...,/cos(tk:c)dGn(x),/sin(tlx)dGn(x),...,/sin(tka:)dGn(:c)>
(5.75)

converges in distribution to Gaussian vectors (Vi + 61(t1), ..., Vi + 61(tg), Z1 +
02(t1), ..., Zx + 02(tr)), where 61(t), d2(t) are, respectively, defined as

6 (t) = 71113;(} cos(tz)dp(FeHn (z) — For(z)), (5.76)
do(t) = nh—>Holo sin(tx)dp(Fen (z) — Fo (x)). (5.77)

The means and covariances of V; and Z; are specified as follows:
If X1, is real, then for any j=1,... k,

o b cos(tiz Cfm3(z)72(1+Tm<'z))_3dH(T)
B = A e ()2 (1t (=) 2dH ()2

211 ~
EX} -3 em?(2)ha(2)
el Uy (e ot

Replacing cos(tjz) in EV; by sin(t;z) yields the expression of EZ;. For any
jh=1,....k

1 cos(tjz1)sin(tpz2) d d
7 )= - J . .
Cov(V;, Zp,) D) 7{1 jqi (m(z1) — m(z))? dzgm(m)dzlm(zﬂdmd@

dz
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c(EX{ —3) f{ f , d?
_ t; t h dz1dzs.
12 »a cos(t;z1)sin( hZQ)ledZ2 [m(z1)m(z2)h1 (21, 22)]dz1dze

If X171 is complex with EX?, = 0, then

Bl X1t -2 em?(2)ha(2)
o 7{603(”2) 1= ¢ [ m2(2)72dH (1) /(1 + mm(2))?

EV;, = — dz,

and the covariance

1
ConlVysZ) =~ 15
v 1

thzs) d d
% COS ( hZQ) 7m(22)7m(21)d2’1d22
"2 7 !

E|X11]* - 2) d?
( | 11’ ?{ f cos(tjz1)sin(tyze) ———[m(z1)m(z2)hi(z1, 22)]dz1dzs.
71 Y y2 dz1dzy

The contours v, v1 and 2 above are all closed and are taken in the positive
direction in the complex plane, each enclosing the support of F&H . Also v and
Yo are disjoint.

The covariance structures Cov(V;, Vi) and Cov(Z;, Zy) are similar to Cov(Vj, Zp,)
except replacing (cos(t;z), sin(tpz)) by (cos(tjz), cos(tyz)) and (sin(t;z), sin(tyz))

respectively.

Remark 13. When T, =1, the mean and variance of the asymptotic Gaussian
distribution for power functions f(x) = a2, Vr € Z* is calculated in |Pan and
Zhou (2008) and Bai and Silverstein (2004). Hence the corresponding means
and covariances for fi(x) = sintz and fao(x) = costx can be derived by Taylor

series of sintx and costz.

While Lemma, [21| below is only used in part of the proof of Theorem 3, it is
of some general interest and its proof is also not trivial. We thus include both
the statement of this lemma and its proof in this chapter.

Write

Hy () = p[F®" (z) — Fo(x)], (5.78)

where S,, is defined in ([5.39)).
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Lemma 21. Under the assumptions of Theorem [9, we have for any positive

integer k,

(/cos(tlw)dHn(x),...,/cos(tk:z:)dHn(x),/sin(tlm)dHn(a?),...,/sin(th)dHn(x)>
(5.79)

converges in distribution to a Gaussian vector (Wi,..., Wi, Q1,...,Qr) whose

mean and covariance are specified as follows:

c m3(2)(1 + m(z
EW; = ~5 7cos(tjz) « +m(i§>2+_c<22z))2dz
c(EY —3) m3(z
_ 7217; j{/cos(tjz) A m) = cmZ(z)dZ
— @ cos(tjz m(z) z
2mi [, (t; )z((l +m(z))? — ch(z))d
A(1m(z)—em?(2)] (A=2) )
- cos(tjz) h uzmQ T dz; (5.80)
and
A B i cos(t;z1)sin(tyze im ; im o ds
Contt @0 =53 T e e D
c(BEY, d? m(z1)m(z2)
11 fl 7{2 s(t;jz1)cos thz?)dzldzg [(1 Tl _’_m(zz))]dzldza.
(5.81)

Replacing cos(t;z) in EW; by sin(t;z) yields the expression of EQ;. The co-
variances Cov(W;, Wy) and Cov(Qj,Qp) are similar except replacing sin(tpz)
and cos(tjz) by cos(tyhz) and sin(t;z) respectively. The contours in and
both enclose the interval [(1 —/c)* + 2ct, (1 4+ \/c)* + 2cu]. Moreover, the

contours y1 and 2 are disjoint.

Proof of Lemma[21] Repeating the same truncation and centralization steps as

those in Bai and Silverstein| (2004), we may assume that

|51'j‘ < Op/m, Eeij =0, E‘EijP =1, E|Eij|4 < 00. (5.82)
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For the panel data model ([5.36)), let
T T 1 1 T
vj:(vlj,...,vpj) ,ej:(slj,...,spj) ,u:(%ul,...,%up) ,j:l, ,n.
(5.83)
The model can be written in the vector form as
vi=¢g;j+u, j=1,...,n (584)

We then define the sample covariance matrix by S, =

write
n n
_ 1 B 1
V:E V],EZEZEJ',
Jj=1 Jj=1
and
1 — 1 &
T - T
Dn:—g gj€i, Sn==) (vi=V)(vj—=V), Dp=
n 4 n 4
Jj=1 Jj=1

Note that S,, = D,,. The sample covariance matrix S,,

as
S, =8, +vvl =D, +vv'.

By (5.40) and the Burkholder inequality we have

SRS

1
n .

n
\Zi Vf. Moreover
Jj=1

(5.85)

n

(5.86)

can be then expressed

(5.87)

ET*4<iEn T.4<£En T2 EnETA_Oi
ulelt < B ulelt < SRy ulul S Blule|! = 0(;),
j=1 j=1 j=1

which, together with Borel-Cantelli’s Lemma, implies that

— a.S.
ule 2% 0.

Also, condition ([5.40|) ensures that

(5.88)
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Therefore by (2.25) of |Pan (2012) and (5.40)), we have, as n — oo,

— =T

Amaz(VV©) = vl

v=ele+uu+2u’e¥ c+a, asn— . (5.89)
Furthermore, |Jiang| (2004) proved that

Mnaz(Dn) = (1 4++/¢)2, a.s. as n — oo (5.90)
and |Xiao and Zhou (2010)) proved that, when ¢ < 1

Amin(Dp) = (1 — V€)%, a.s. as n — oc. (5.91)

By (5.89) (5.90) and (5.91)), the maximal and minimal eigenvalues of S,, satisfy

with probability one

lim sup Az (Sn) <c+ a4+ (1 + \ﬁ)Q, (5.92)
n—oo
and
lim inf Arpin (Sn) > (1 — V)2 (5.93)

As in the proof of Theorem [7|, we obtain from Cauchy’s formula, with prob-

ability one, for n large,

YI¥) z—XT

Sn () — c":z:—i Mz Sn(g) — Fen (g
p [ S @) = Foe@) = o [ T e ) - P

_ P 7£ f(2)dz / L 4[FS(z) — Fer ()]

27 Z—1x
= —% f; f(Z)(tT(Sn — ZIp)_l — pme, (Z))d,z7 (5.94)

where m,, (z) is obtained from m(z) with ¢ replaced by ¢,. The contour 7 is
specified as follows: Let vg > 0 be arbitrary and set v, = {u + v, u € [, pr]},
where i, > c+u+(1++/c)? and 0 < py < Tio,1)(c)(1— V/©)? or py is any negative

number if ¢ > 1. Then define

v = {ue+iv:v € [0,v0]} Uy, U{pr +iv:v € [0,v0]} (5.95)
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and let v~ be the symmetric part of v about the real axis. Then set v = ~vTUy~.
Set

Sr:l(z) = (S — ZIp)ila S;Ll(z) = (Sn — ZIp)ilv

D, (2) = (D — 21,) 7Y, DY(2) = (D, — 21,) 7" (5.96)
Then we have
vID 2 (2)v
S (2) — pme, (2) = (trDy ' (2) — pme, (2)) — ——2 . (5.97
17 (2) e (2) = (D7 (2) —pme, () — o (59T
where we have used the identity
ClrrTC!
C "ol — — 5.98
(CtrrT) 1+rTC-1r’ ( )

where C and (C + rr’) are both invertible; and r € RP. The first term on the
right hand of was investigated in [Pan| (2012). In what follows we consider
the second term on the right hand of .

One may verify that

C—l

C -1 _
(€)= e

(5.99)

where C and (C + ¢grv’) are both invertible, ¢ is a scalar and r,v € RP. This,

together with ([5.84]) and (5.98)), yields

VID Y 2)v = &E'D Y (2)e+2uTD Y (2)e + ul' D, (2)u
7TD71 = TDfl =
£ n _(f)s 2 "_(lz)ef ul'D:(2)u (5.100)
1-eTD, " (z)e 1—-eD, (z)e

and

VID 2 (2)v =&l D, %(2)e + 2ul D2 (2)e + ul D% (2)u

_ éTiD,;i(z)éi n QUfD;i(lZ)é, . 2uTD;17(z)é§fD,€2(z)é +uTD (),
(1-eD, (2)g)2 1—€"D, (2)e (1-eTD;,, " (2)e)?
(5.101)
It is proved in Section 2.5 and (4.3) of [Pan (2012)) that as n — oo,
T2 em?(2) i.p.
sup |e" D, *(z)e — — — 0; (5.102)

zey (1 + m(z))2 - Cm2(z)
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sup |ETD1(2)e — (1 + zm(z))‘ 2N 0; (5.103)
zey

and

Ly, (5.104)

sup [u' D, 1(2)e
zey

(where we also use an argument similar to (2.28) of Pan| (2012)). By (3.4) and
(4.3) in [Pan| (2012)), and ([5.40]), we have as n — oo,

sup [ul D (2)u — ﬁm(z)‘ EINYG) (5.105)
zey

The next aim is to prove that

1 i.p.
sup [ul D, ?(2)u — a/QdFMP(A) Py (5.106)
zey ()\ - Z)
and that
sup [u' D, ?(2)e N (5.107)
zEy
Consider (5.106) first. By the formula (5.98)), we have an expansion
9 TD72 77TD71
UTDEQ(Z)U — uTDEQ(z)u—I— u n (Z)EE n (z)u

1-eTD, ' (z)e
u'D;1(2)ee" D2 (2)ee" D, (2)u

* (1—2TD, (2)e)?

For any given z € v, we conclude from Theorem 1 of [Pan (2012)) and Helly-Bray’s
theorem that

1 ip.
u' D% (2)u — u/ mdFMP(A) 50 as n— oo (5.108)

By the expansion of u’ D, ?(z)u and —, to prove , it suffices
to prove the tightness of {Kgl)(z) =u'D;?%(z)u—a [ ﬁdFMP(/\),z € ’y}
and {uTD;Q(z)é, z € ’y}.

To this end, as in Bai and Silverstein| (2004)), below introduce the truncated

version of u’ D, 2(z)u. Define v, = {p, +iv : v € [0 p,, 0]},

+iv:v € [n"pp, vo]}, > 0,
by = {e [n™ o, vol}, e (5.100)

{Mg—i—iv:vG [O,Uo]}, e < 0,
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where
ond 0, pn=>n? for somebe (0,1). (5.110)

Let 7,7 =4 U~, U~ and 7;, denote the symmetric part of 4, with respect to

o —

the real axis. We then define the truncated process u?’ D, 2(z)u of the process

u’'D;,%(2)u for z = a +iv by

u'D; %(2)u 2 €% =7 Urn,

o —

u'Di(2)u= ¢ "EnuTD 2(z, Ju+ - 0TD 2 (z)u p= g, € 1, (5.111)

7"15:;:” u'D; % (2, )u + 7p’§;:vuTD;2(zb)u p=pg>0,vel,

where z,, = [y +i07 pn, Zry = b — AN Pp,y 2oy = e HINT Py, 20y = e — 1IN Py

and I = [-n"'p,,n"1p,]. We then have

5 _ 1 1 i.p.
sup [l i (Ju—w D | < Konllal* 5 s— 4 s )
zey max n T min n

(5.112)

It is proved in Section 3 of Bai and Silverstein| (2004) that, for any positive

integer k and z € ;7 U~,,,
maz (E||D,; ' (2)|) < K. (5.113)

It follows from independence between u and €;,j = 1,--- ,n that

E‘uTD;2(Z)u—E/()\_1Z)2dFMP()\)‘

IA

E[u™D-2(2)u] + )ﬂ/(/\_lz)zdFMP()\)‘

E|la"|*E[D;2(2)|]” + K < K, (5.114)

IN

which ensures Condition (1) of Lemma Similarly, we can derive Elu’D;,%(2)&|? <
K.
Next, we prove condition (2) of Lemma [17] i.e.

EIEY (21) — K (20) 2

,=1,2. 5.115
P <oo, i=1, (5.115)

sup
n,21,22€%, Uy
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Note that
A7'-Bl=AYB-AB, (5.116)
where A and B are any two nonsingular matrices. We then conclude that

D, ?(21) — D, (22) = (21 — 22)D;,*(21)D;, " (22) + (21 — 22)D;, ' (21)D;, % (22).
(5.117)
Then

KV (21) — K$D(29)

21— 22 = u'D;*(z1)D; ! (22)u+u' D, " (21)D;, %(22)u

[ (A—z)+ (A —22) up
_u/ ey v T VR CRED

As in (5.114), we can obtain
Elu'D;%(z1)D, Y ()u? < K, Eu'D ' (2))D,?(z)uf* < K. (5.119)

Since f(\) = % is a continuous function when 21, z9 € +, the integral

[ F(NdFMP () is bounded. This, together with ((5.119)), implies

(1) (1) 2
E\K,, — Kp
sup | (z1) 5 (z2)] < 00. (5.120)
n,21,22€7y |Zl - ZQ|

By (2.38) in|Pan (2012) and an argument similar to (5.117)-(5.120) we may verify

that u D, ?(2)€ is tight for z € 7. Summarizing the above we obtain (5.106)).
Consider (5.107) now. From the last paragraph we see that it is enough to
consider the pointwise convergence of u”D;2(z)&. As in (5.111) and (5.112)) we

o —

may define the truncated process uZ Dy, %(2)€ of the process u’ D, %(2)& and then

prove that their difference tends to zero in probability. As in (4.3) of Pan (2012)

one may prove that for given z € v u’D;2(z)e 22

From (5.100)) to (5.107) we have

1 .
sup |[vID; 1 (2)v — (Lm(z) Ly, (5.121)

zEYy _Zm(z)

+ wm(z))
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and
—T~N—2 _ C _ 1 MP 7.p.
D - ———dF""" (A 0.
AR e o R R )
(5.122)
We then conclude from Slutsky’s theorem that
_ _ _ cm(z) - 1 MP
| Y2 ey O o)
P R 0.
26y 11 +VTDy (2)v uzm?(z) — 1
(5.123)

The arguments of Theorem 1 of (2012) show that the truncation version
of (trD, ' (z) — pme, (2)) converges in distribution to a two-dimensional Gaussian

process and that the difference between (trD,,'(z) — pm, (z)) and its truncation

version goes to zero in probability (see Page 563 of Bai and Silverstein! (2004)) and

(2.28) of (2012)). Theorem 3 then follows from ([5.123)), (5.94) and (5.97)),

Slutsky’s theorem and Lemma 3 (one may refer to Page 563 of Bai and Silverstein|

(2004)). O
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Table 5.1: Empirical sizes and power values of the proposed test at the 5%

significant level for standardized normally distributed random vectors.

p
n 5 10 20 30 40 50 60 70 80 90 100

Empirical sizes
5 0.069 0.064 0.027 0.039 0.034 0.052 0.035 0.033 0.037 0.043 0.047
10 0.049 0.059 0.048 0.046 0.055 0.044 0.043 0.048 0.048 0.038 0.046
20 0.045 0.042 0.047 0.051 0.052 0.052 0.051 0.041 0.042 0.046 0.041
30 0.034 0.035 0.052 0.053 0.068 0.063 0.050 0.049 0.047 0.040 0.046
40 0.055 0.050 0.052 0.061 0.056 0.038 0.042 0.064 0.054 0.044 0.066
50 0.038 0.041 0.048 0.044 0.050 0.052 0.050 0.058 0.046 0.053 0.041
60 0.064 0.061 0.043 0.049 0.047 0.049 0.050 0.049 0.059 0.046 0.048
70  0.047 0.042 0.051 0.039 0.052 0.055 0.058 0.044 0.037 0.038 0.049
80 0.028 0.032 0.033 0.041 0.052 0.054 0.047 0.042 0.047 0.046 0.040
90  0.042 0.037 0.032 0.048 0.054 0.044 0.053 0.041 0.037 0.051 0.042
100 0.037 0.046 0.036 0.035 0.045 0.029 0.045 0.056 0.048 0.047 0.056
Empirical power values

5 0.044 0.053 0.072 0.070 0.065 0.048 0.053 0.063 0.057 0.053 0.080
10 0.054 0.065 0.046 0.051 0.052 0.049 0.049 0.037 0.049 0.060 0.062
20 0.056 0.066 0.091 0.059 0.062 0.051 0.045 0.075 0.078 0.078 0.063
30 0.0561 0.062 0.054 0.068 0.051 0.081 0.092 0.087 0.115 0.128 0.148
40  0.041 0.036 0.052 0.055 0.126 0.183 0.144 0.208 0.209 0.276 0.254
50 0.068 0.051 0.054 0.066 0.151 0.262 0.329 0420 0474 0432 0.574
60 0.046 0.027 0.055 0.098 0.154 0.310 0455 0.592 0.596 0.733 0.715
70  0.050 0.044 0.018 0.110 0.211 0.379 0.565 0.747 0.793 0.846 0.841
80 0.053 0.046 0.036 0.102 0.233 0.439 0.687 0.892 0.906 0.944 0.977
90 0.028 0.040 0.054 0.122 0.226 0.484 0.752 0.878 0.963 0.980 0.999

*The power values are under the alternative hypothesis that the population covariance

matrix is ¥ = 0.95I, + 0.051,1,,.
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Table 5.2: Bootstrap sizes and power values of the proposed test at the 5%
significant level for standardized normal and gamma(4,2) random vectors respec-

tively.

p
n 5 10 20 30 40 50 60 70 80 90 100

Normal Data
5 0.044 0.045 0.047 0.045 0.040 0.045 0.046 0.045 0.043 0.042 0.040
10 0.042 0.047 0.047 0.044 0.042 0.043 0.042 0.042 0.040 0.043 0.045
20 0.040 0.045 0.045 0.047 0.046 0.046 0.047 0.045 0.045 0.042 0.043
30 0.042 0.045 0.049 0.053 0.052 0.052 0.051 0.048 0.047 0.046 0.048
40 0.040 0.044 0.050 0.052 0.056 0.048 0.042 0.052 0.054 0.044 0.052
50 0.039 0.040 0.049 0.044 0.050 0.052 0.050 0.058 0.046 0.053 0.048
60  0.037 0.041 0.047 0.049 0.047 0.049 0.050 0.049 0.059 0.046 0.049
70  0.032 0.040 0.048 0.049 0.052 0.055 0.053 0.046 0.048 0.047 0.049
80  0.031 0.039 0.043 0.046 0.052 0.054 0.047 0.042 0.047 0.046 0.047
90 0.030 0.040 0.041 0.048 0.051 0.044 0.053 0.041 0.047 0.051 0.048
100 0.033 0.038 0.040 0.042 0.044 0.043 0.046 0.048 0.051 0.049 0.051
Gamma Data

5 0.065 0.064 0.060 0.065 0.063 0.065 0.069 0.066 0.073 0.072 0.070
10 0.068 0.062 0.060 0.063 0.061 0.058 0.062 0.058 0.060 0.063 0.065
20 0.069 0.061 0.059 0.058 0.062 0.056 0.057 0.055 0.058 0.057 0.060
30 0.062 0.059 0.062 0.057 0.058 0.055 0.054 0.053 0.055 0.056 0.058
40  0.063 0.065 0.061 0.056 0.057 0.055 0.055 0.053 0.056 0.054 0.054
50 0.064 0.063 0.063 0.059 0.058 0.054 0.054 0.054 0.056 0.053 0.052
60 0.069 0.071 0.064 0.060 0.054 0.052 0.049 0.050 0.055 0.052 0.053
70 0.073 0.072 0.067 0.063 0.055 0.050 0.053 0.051 0.048 0.050 0.050
80 0.074 0.074 0.067 0.064 0.058 0.052 0.049 0.052 0.049 0.049 0.050
90  0.072 0.070 0.068 0.067 0.058 0.052 0.050 0.051 0.049 0.051 0.049
100 0.076 0.072 0.071 0.067 0.059 0.053 0.052 0.049 0.051 0.049 0.050
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Table 5.3: Empirical sizes and power values of the LRT at the 5% significant

level for standardized normally distributed random vectors.

p
n 5 10 20 30 40 50 60 70 80 90 100

Empirical sizes

5 0.005 0.475 0.495 0 0 0 0 0 0 0 0
10 0.030 0.115 0.504 0.454 0 0 0 0 0 0 0
20  0.047 0.030 0.522 1 0.500 0 0 0 0 0 0
30 0.040 0.032 0.076 0.873 1 1 0 0 0 0 0
40 0.044 0.034 0.057 0.148 0.982 1 1 1 0 0 0
50  0.057 0.034 0.044 0.062 0.299 1 1 1 1 1 0
60 0.049 0.053 0.040 0.065 0.101 0.578 1 1 1 1 1
70  0.038 0.060 0.049 0.054 0.108 0.229 0.784 1 1 1 1
80  0.055 0.040 0.043 0.072 0.079 0.147 0.442 0.950 1 1 1
90  0.054 0.061 0.047 0.033 0.048 0.129 0.233 0.691 0.991 1 1
100 0.055 0.048 0.066 0.069 0.076 0.085 0.185 0.402 0.844 0.997 1
Empirical power values

5 0.005 0.504 0.505 0 0 0 0 0 0 0 0
10 0.033 0.125 0.506 0.485 0 0 0 0 0 0 0
20 0.051 0.049 0.587 1 0.496 0 0 0 0 0 0
30  0.056 0.062 0.121 0.912 1 1 0 0 0 0 0
40  0.061 0.077 0.139 0.311 0.990 1 1 1 0 0 0
50  0.092 0.090 0.150 0.206 0.576 1 1 1 1 1 0
60 0.088 0.142 0.220 0.266 0.420 0.849 1 1 1 1 1
70 0.102 0.170 0.222 0.320 0.463 0.691 0.984 1 1 1 1
80 0.133 0.169 0.246 0.392 0478 0.666 0.883 0.994 1 1 1
90  0.122 0.190 0.331 0.404 0.526 0.666 0.819 0.983 1 1 1
100 0.153 0.232 0.411 0.550 0.658 0.713 0.842 0.952 0.995 1 1

*The power values are under the alternative hypothesis that the population covariance

matrix is ¥ = 0.951, + 0.051,1,.
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Table 5.4: Empirical sizes of the proposed test at the 5% significance level for

standardized gamma random vectors.

p
n 5 10 20 30 40 50 60 70 80 90 100

Empirical sizes
5 0.089 0.078 0.068 0.059 0.060 0.063 0.061 0.047 0.050 0.061 0.044
10 0.066 0.075 0.068 0.0564 0.046 0.051 0.047 0.048 0.050 0.042 0.052
20 0.057 0.058 0.072 0.062 0.053 0.054 0.053 0.052 0.049 0.051 0.048
30 0.069 0.069 0.069 0.076 0.058 0.056 0.054 0.047 0.067 0.066 0.054
40  0.061 0.049 0.058 0.040 0.065 0.048 0.063 0.065 0.068 0.047 0.067
50 0.053 0.054 0.055 0.057 0.059 0.048 0.067 0.066 0.043 0.059 0.053
60  0.059 0.052 0.057 0.060 0.052 0.067 0.058 0.064 0.064 0.061 0.069
70  0.044 0.050 0.064 0.055 0.071 0.054 0.067 0.064 0.051 0.077 0.048
80 0.045 0.050 0.061 0.043 0.071 0.055 0.071 0.053 0.056 0.070 0.060
90  0.041 0.067 0.034 0.056 0.049 0.054 0.050 0.060 0.047 0.060 0.058
100 0.070 0.045 0.059 0.055 0.047 0.062 0.069 0.057 0.056 0.060 0.061

Table 5.5: Empirical power values of the proposed test at the 5% significance

level for standardized gamma random vectors.

p
n 5 10 20 30 40 50 60

Empirical powers
5 0.334 0575 0.853 0.944 0.983 0.989 0.998
10 0.513 0.838 0.979 0.999 1 1 1
20 0.721 0.970 0.999 1
30 0.834 0.998 1
40 0.914 1 1
50  0.952 1 1

1

1
1
1
60 0.991 1 1

L e
[ S = S S
e e

*The power values are under the alternative hypothesis that the population covariance

matrix is ¥ = 0.95I, + 0.051,1,.
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Table 5.6: Empirical power values of the proposed test at the 5% significance
level for MA(1) model.

n 5 10 20 30 40 50 60

5 0.09 0.097 0.097 0.111 0.210 0.214 0.198
10 0.082 0.090 0.173 0.227 0.374 0.715 0.722
20 0.099 0.165 0.400 0.597 0.683 0.822 0.951
30 0.067 0.121 0.611 0.733 0.803 0.986 1

40  0.091 0.321 0.653 0.938 0.968 1
50 0.139 0.416 0910 0.956 0.998 1
60 0.117 0412 0918 0.994 1 1

= = =

Table 5.7: Empirical power values of the proposed test at the 5% significance
level for AR(1) model.

n 5 10 20 30 40 50

5 0130 0.094 0.264 0.253 0.181 0.169
10 0.167 0.289 0.482 0.640 0.668 0.609
20 0.230 0.544 0878 0.271 0.954 0.994
30 0.205 0.602 0.993 0.999 0.671 0.936
40 0344 0916 0.998 1 1 0.982
50 0.541 0.984 1 1 1 1
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Table 5.8: Empirical power values of the proposed test at the 5% significance

level for SMA (1) model.

p
n 5 10 20 30 40
5 0.330 0.431 0.782  0.999 1
10 0.647 1 1 1 1
20  0.967 1 1 1 1
30 0.962 1 1 1 1
40 0.998 1 1 1 1
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Table 5.9: FEmpirical sizes and power values of the proposed test at the 5%

significance level for the general panel data model.

p
n 5 10 20 30 40 50 60 70 80 90 100

Empirical sizes
5 0.038 0.045 0.047 0.057 0.058 0.067 0.069 0.069 0.072 0.076 0.074
10 0.041 0.042 0.046 0.049 0.056 0.050 0.065 0.047 0.068 0.063 0.069
20 0.035 0.042 0.049 0.056 0.052 0.046 0.063 0.043 0.069 0.055 0.057
30 0.043 0.049 0.043 0.059 0.048 0.068 0.059 0.057 0.040 0.055 0.047
40 0.048 0.052 0.043 0.060 0.057 0.046 0.049 0.054 0.046 0.058 0.061
50 0.057 0.048 0.046 0.058 0.052 0.055 0.048 0.049 0.050 0.040 0.041
60 0.058 0.056 0.055 0.048 0.047 0.045 0.053 0.066 0.058 0.049 0.050
70 0.062 0.060 0.059 0.056 0.049 0.057 0.049 0.068 0.052 0.036 0.043
80 0.071 0.063 0.067 0.047 0.048 0.058 0.056 0.044 0.059 0.057 0.055
90 0.065 0.068 0.065 0.048 0.053 0.048 0.056 0.048 0.048 0.066 0.060
100 0.037 0.046 0.036 0.035 0.045 0.043 0.045 0.056 0.048 0.047 0.055
Empirical power values

5 0.150 0.238 0.345 0.417 0.484 0.529 0.549 0.615 0.611 0.668 0.692
10 0.125 0.247 0.452 0.526 0.568 0.633 0.669 0.737 0.765 0.751 0.800
20 0.206 0.343 0493 0.615 0.673 0.752 0.788 0.813 0.860 0.864 0.876
30 0.111 0.404 0.535 0.684 0.757 0.756 0.855 0.875 0.882 0.909 0.953
40 0.308 0.393 0.605 0.698 0.786 0.820 0.878 0.898 0.944 0.959 0.953
50 0.207 0.450 0.603 0.718 0.815 0.889 0.923 0.938 0.966 0.973 0.980
60 0.268 0.430 0.594 0.780 0.826 0.918 0.913 0.926 0.974 0.976 0.984
70 0.144 0.434 0.649 0.798 0.888 0.883 0.944 0.968 0.971 0.982 0.996
80 0.171 0454 0.678 0.796 0.872 0.921 0.938 0.967 0.989 0.992 0.995
90 0.204 0.431 0.683 0.834 0.874 0.916 0.963 0.985 0.985 0.994 0.994
100 0.291 0.398 0.687 0.836 0.884 0.931 0.973 0.987 0.992 0.994 1
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Table 5.10: Empirical power values of the proposed test at the 5% significance

level for nonlinear MA model.

p

n 100
5 0.033 0.004 0.008 0.005 0.007 0.008 0.007 0.009 0.014 0.070
20 0.804 0.703 0.614 0.581 0.511 0.447 0.340 0.306 0.257 0.216
30 0.854 0.777 0.779 0.780 0.740 0.662 0.662 0.597 0.579 0.555
40 0.878 0.856 0.856 0.845 0.825 0.779 0.770 0.772 0.702 0.698
50 0.884 0.868 0.884 0.864 0.888 0.860 0.875 0.869 0.828 0.820
60 0.892 0.882 0.904 0.920 0.923 0933 0900 0.892 0.892 0.882
70  0.896 0.906 0.927 0.934 0921 0.952 0.925 0943 0917 0.926
80 0.936 0.925 0.921 0.952 0.950 0.943 0.943 0.958 0.953 0.936
90  0.922 0.939 0.935 0.958 0.959 0.955 0.982 0.962 0.957 0.954
100 0.926 0.920 0.937 0.952 0964 0970 0.975 0.978 0.970 0.965

Table 5.11: Empirical power values of the proposed test at the 5% significance

level for ARCH(1) model.

p

n 5 10 20 30 40 50 60 70 80 90 100
5 0.148 0.093 0.073 0.076 0.058 0.099 0.113 0.088 0.106 0.112 0.141
10 0454 0399 0315 0.215 0.128 0.121 0.112 0.121 0.093 0.095 0.092
20 0.401 0.428 0.508 0.464 0.444 0468 0436 0.338 0.356 0.337 0.302
30 0.272 0.364 0.616 0.712 0.753 0.759 0.793 0.743 0.638 0.639 0.598
40 0.232 0357 0.572 0.823 0.790 0874 0915 0.885 0.876 0.855 0.860
50 0.222  0.339 0.622 0.757 0.891 0.969 0.957 0975 0.967 0.957 0.975
60 0.216 0.448 0.617 0.862 0901 0976 0.983 0.987 0.992 0.997 0.997
70  0.200 0.339 0.592 0.864 0.931 0.982 0.993 0.998 0.997 0.998 0.996
80 0.194 0.376 0.566 0.824 0.950 0.967 0.997 1 1 0.999 1
90 0.184 0.456 0.721 0.839 0.960 0.995 0.999 1 0.999 1 1
100 0.128 0.306 0.802 0.859 0.934 0.992 1 1 1 1 1
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Table 5.12: Empirical power values of the proposed test at the 5% significance

level for Vandermonde Matriz.

n 10 20 30 40 50 60 70 80 90 100 120
10 0.180 0.197 0.192 0.169 0.202 0.211 0.190 0.185 0.171 0.177  0.240
20 0.309 0.332 0.356 0.327 0.291 0.303 0.301 0.295 0.321 0.243 0.478
30  0.324 0.433 0473 0413 0461 0408 0.445 0.395 0.368 0.397 0.606
40 0.458 0.512 0.527 0.546 0.533 0490 0.518 0.498 0.450 0.457 0.655
50 0.593 0.437 0.540 0.571 0.614 0.569 0.577 0.566 0.565 0.537 0.764
60 0.504 0.538 0.551 0.567 0.616 0.662 0.588 0.581 0.572 0.607 0.744
70  0.548 0.526 0.560 0.627 0.668 0.641 0.694 0.707 0.641 0.678 0.741
80 0.550 0.545 0.580 0.633 0.712 0.719 0.693 0.768 0.729 0.749 0.805
90 0.589 0.544 0.596 0.667 0.695 0.712 0.743 0.754 0.738 0.728 0.807
100 0.464 0.549 0.610 0.645 0.704 0.757 0.772 0.751 0.752 0.808 0.928
120 0.633 0.660 0.736 0.737 0.759 0.855 0.854 0.909 0.960 0.999 1




Chapter

Independence Test For Covariance

Stationary Time Series

6.1 Preliminary

The observed n random vectors x; = (X1, Xo, ..., Xp) withi =1,2,....n
are grouped into a matrix X = (X1, Xs,...,X,). Denote the sample covari-

ance matrix by
1
S = —XXT. (6.1)
n
The goal is to do the following independence hypothesis test

Ho : x1,X9,...,X, are independent; against Hy : X1,Xs,...,X, are dependent.

Throughout the chapter, we consider two types of high dimensional
random vectors x;. The first type x; is stationary time series specified as

follows.

Assumption 4. The n time series can be expressed as

thzzbkfjfk,b j:1a7p7 tzlv'-'ana (62)
k=0
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where for any t = 1,2,...,n, {£.}2°_ is an independent and identically
distributed (i.i.d) sequence with mean zero and variance one; {by}32, is a

sequence of real numbers satisfying > - |bk| < oo.

This assumption covers many classical covariance stationary time series,
for example, the autoregressive (AR), moving average (MA), and autore-
gressive and moving average(ARMA) time series of finite orders, etc.. In
addition to ensuring stationary, the condition Y .2 |by| < oo is imposed to
also guarantee that the spectral norm of the population covariance matrix
T, of each time series under investigation is bounded, as will be seen from
the proof.

The second type x; is linearly generated by y; whose components are

independent, as defined below.

Assumption 5. Let x; = T}/2yi with y; = (Yii, -+, Yp)T and T}/z being
a Hermitian square root of the nonrandom nonnegative definite Hermitian
matriz Tv. For eachi=1,...,n, Yy;,---,Y, are i.i.d with mean zero and

variance one.

Assumption 6. Let p be some function of n. Assume that n and p tend

to infinity in the same order, i.e.

c:=lim 2 e (0, 400).

n—oo N,

When {¢;;} are normally distributed, Assumption |4|is a special case of
Assumption . Indeed, it is clear that each X, is Gaussian distributed and
each x; is multivariate Gaussian distribution, whose covariance matrix is a
Toeplitz matrix, if {¢;;} are normally distributed. Then x; in Assumption
can be written as a form of T}/ Qyi as well. Here, to save notation, we

still use T; as a covariance matrix of x; although it is a Toeplitz matrix.
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Therefore in this case the sample covariance matrices S associated with

Assumptions [4] and [5] have a unified expression

1
—TYAYyY T, (6.3)
n
where Y = (y1, -+ ,¥n)-

Denote the sample covariance matrix in the form of (6.3)) by S;. We are
now interested in its limiting spectral distribution (LSD) which is the limit

of the empirical spectral distribution(ESD) F!(z). Here for any A of size
p X p with real eigenvalues, its ESD is defined by

@) = 3" 1y < ),

where 13 < po < -+ <y, are eigenvalues of the matrix A. A common way
to find the LSD is to first establish an equation of its Stieltjes transform,

which is defined as, for any cumulative distribution function (CDF) G(z),

mel(z) = / G, Tm(z) # 0.

It can be then recovered by the Frobenius-Perron formula inversion formula

b
G{la,b]} = tim I (ma (¢ + in) ) dc. (6.4)

™ n—=0t J,

where a, b are points of continuity of G(x).
Silverstein’s result (1995) shows that the LSD of Sy in (6.3) is Fi. ()

whose Stieltjes transform is the unique solution to

m(z) = / _ ! dH(7), (6.5)

l—c— czm(z)) — 2

in the set {m € C: =<+ cm € C*} if FT' — H(7). This also yields

the LSD of the sample covariance matrix S for linear stationary processes
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with the Gaussian entries because the condition that FT* — H(7) holds
automatically in the case of linear stationary time series. An alternative
expression of for stationary time series will be given in the next section
by using its spectral density.

To propose a statistic to test the hypothesis Hy based on the feature
of F, y(z), we consider an alternative that the sample covariance matrix S

takes the form of

1
—T*YT, YT}/, (6.6)
n
where T is an n X n deterministic Hermitian matrix. Hence the dependence
of the n time series is described by the matrix Ts.

Denote the sample covariance matrix in the form of by Ss. [Zhang
(2006)) provides the LSD of the matrix S, different from (6.5). For easy

reference, we state this result in the following lemma.

Lemma 22. In addition to Assumptions[J and [0, we assume that as n —
00, the ESDs of T1 and Ty, denoted by F** and F*? respectively, converge
weakly to two probability functions, Hy and Hs, respectively. Then the ESD
of the matriz Sy converges weakly to a non-random CDF F, g, g, with proba-
bility one, for which if Hy = 1jg yo0) or Hay = 1jg 400, then Fo gy 1, = 10, 400)5

otherwise if for each z € CT,

s(z) = —2z71(1 - c) —z e 1+q T U2()
Z = _1f 1+p dH1 ) (67)
s(z) = =z~ —p(Z)Q(Z)
is viewed as a system of equations for the complex vector (s(z),p(2),q(2)),

then the Stieltjes transform of F.m, m,, denoted by mr,, , (2), together
with two other functions, denoted by ¢1(z) and g2(2), both of which are
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analytic on C*, will satisfy that (ch,Hl,HQ (2), 91(2), g2(2)) is the unique

solution to in the set
{(s(z),p(z),q(z)) : Im(s(2)) > 0,Im(zp(z)) > 0,Im(q(z)) > 0}.

From and , we see that the LSD of the matrix S; is different
from that of S, since the latter one depends on the spectral distribution
of the matrix Ty which is an identity matrix under the null hypothesis
Ho. Based on the observation, a natural idea is to utilize the difference
between the LSDs of S under Hy and H; to distinguish independence from
dependence.

To this end let

GulN) = p(FS(N) = Fopr, (V) (6.8)

and consider the linear spectral statistic of S:

Mn:/f()\)dGn()\), (6.9)

where F,, pg,(\) is obtained from the LSD F, () of S under Hy and As-
sumptions | or [5| with ¢ and H replaced by ¢, = p/n and H,, respectively;
H, = F™ and f()) is a smooth function. Roughly speaking, the difference
between the LSDs of S under Hy and H; is reflected in behaviour of M,,.

Indeed, if we rewrite the statistic M,, as

o[ [ FO0(FS )=o) [ ] [ FOV(Feti D= Fon, ) |

(6.10)
where F,, g, n, (A) denotes the LSD of S under the alternative hypothesis
Hq, then we see that the last term of captures the difference between
the LSDs of S under Hy and Hy, not to mention the first term of .
One typical example of F,,, g, 1, (A) could be F, g, g, in Lemma 22]
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Central limit theorems (CLT) of M,, corresponding to Assumptions
and [5| will be given in the next section. Based on it we then propose our

test statistic.

6.2 Main theorems and the test statistic

6.2.1 Covariance stationary time series

The aim of this subsection is to establish the LSD of S and CLT of the
linear spectral statistic M,, under the null hypothesis Hy and Assumption

4 Below we first present the LSD of S.

Theorem 10. Under Assumptions [4] and [0 and the null hypothesis Hy,
with probability one, the ESD FS(x) converges to a nonrandom distribution

function F, 4(x) whose Stieltjes transform mgy(z) satisfies
N ¢

1 1 [ 1
o - my(2) i %/0 cemg(z) + (¢()\))_1 = (6:-1)

where ¢(\) denotes the spectral density of x;

BN = > ore™ Xe0,2m),

k=—00

with ¢ = Cov(Xji, Xjik1)-

Remark 14. This weakens the finite fourth moment condition imposed in
Yao (2012). In addition we would point out that 15 just an alternative
expression of in terms of the spectral density of x;. Therefore we use

F. () to denote F, y(x) in the case of stationary time series.

From ([6.11)), we see that the Stieltjes transform my(z) does not have

an explicit expression. In practice, we can adopt a numerical method to
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calculate it which is provided in Yao| (2012). For easy reference, we state it
below:

Algorithm of calculating m(z): Choose an initial value mgﬁo)(z) = u+ie,
where z = x+1¢ with x a given value and ¢ a small enough number. Iterate

the following mapping below for £ > 0:

= —z+ A(my(2)), (6.12)
me(2)

where

1 [% 1
Ama(:) = o | () 6T

until convergence. Let mfbK)(z) be the final value.

We next develop CLT of M,,, which, we believe, is new in the literature.

Recall the definition of G, () in (6.8]).

Theorem 11. In addition to Assumptz’ons and@ we suppose that Ef;‘_m =
3. Let f1, fo,..., [n be functions analytic on an open region containing the

support of F,, u,. Then the random vector

( / FLON)AG, (A / F2(N)dG( / FaN) G (6.13)

converges in distribution to a Gaussian random vector <Xf1, Xfyyono ,th>
with mean function for £ =1,2,--- , h,
1 =[5 emd ()¢ (V) (1 + d(\)my(2)) dA
EXj = o fe(2) 10 (2 ( ) PNV
¢" (1= [T mE ()N (1+ (M\)my () dN)

and covariance element for £,r =1,2,--- , h,

d d
COU<XfZ7XfT 2% f fe S fr 22) 2 m¢(21) m¢(22) dz1dzs.

(6.14)
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The contours C above are closed and are taken in the positive direction in
the complex plane, each enclosing the support of F.4(X) and my(z) is the
Stieltjes transform of the LSD of the matriz S = %XTX.

Here m(z) can be obtained from my(z) of ( - ) because the spectra

of S differs from that of S by |n — p| zeros.

6.2.2 Linear independent structures

This subsection is to consider x; satisfying Assumption [5
The CLT of the linear spectral statistic M,, defined in has been
reported in Theorem 9.10 of |Bai and Silverstein| (2009)). For easy reference,

we list it below.

Proposition 3. In addition to Assumptions@ cmd@ suppose that EY, =3
and ||T1]||, the spectral norm of Ty, is bounded and FT' converges weakly
to H(x). Then the random vector converges in distribution to a

Gaussian vector with mean

t2dH
]. ¢ m Z
EX;=—— ¢ f(2) UNCTTENS (1“ Sdz (6.15)
271 c (1 B f m2(2)t2dH (t) thH(t )
(1+tm(z)

and covariance function being the same as with my(2) replaced by
m(z). Here m(z), which can be obtained from m(z) in (6.5), is the Stieltjes
transform of the LSD of the matriz S = %XTX.

When T becomes the identity matrix, H(t) becomes a degenerate dis-
tribution at point 1 and we do not need to assume that EY;} = 3 in this

case. Theorem 1.4 of Pan and Zhou| (2008) gives CLT for the random vector
(6.13). We list it below.
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Proposition 4. In addition to Assumptions @ and@ suppose that EY}, <
oo. Then the random vector converges in distribution to a Gaussian

vector with mean

m3(z) 3(2
1 ClTm()® c(EXY m(z)
EX; = 5 f(2) (I+m(z))? Sdz— 11 j{f (I+m m2(z)
™ Je 1— m?(2)
( (1+tm(z)) ) 1+tm(z))
(6.16)
and covariance
il 21 fr (22) d d
Xr, X —_— —_— dz1d
COU( fis fr fél \%CQ ZQ))2 dZQM(ZQ)d21M(Zl) Z21422
c(EXf1 —3) f d 1 d 1
I Sl S ) ; — dz1dzs.
27T2 C1 JC2 fl(Z1)f (22) [1 + m(’zl) d~7'2 1 + m(22)] e
(6.17)

6.2.3 Test statistic

There are two questions to be addressed before proposing a test statistic
based on Theorem [11], Propositions [3] and 4 The first one is the choice of
the test function f(A) associated with M, in (6.9). The second one is that
the mean of the asymptotic distribution of M,,, which includes the spectral
density ¢(\) of time series x; or H(x) associated with linear independence
structures, is often unknown in practice no matter what f(\) is

For the first question, we choose two simple test functions fi(A) = A
and fy(\) = A? for simplicity and consider their linear combination. To
overcome the second difficulty, we divide n time series into two groups,
each of which contains [n/2] time series, where [n/2] is the largest integer

smaller than n/2. By Theorem |11 or Proposition [3{ we have

(/xng)(a:),/xQdGSf)(xD N (X;”,Xi?), asn — oo, i =1,2(6.18)

— " dz
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where G1Y (x) = p(FS"(x) = F, (1)) with e = p/[n/2], Hyo =
Hy, Fe NOE:N0)
mX(Z)X @ and X@ consisting of the i-th group of the divided time se-
ries, i = 1,2 (X = (XM, X®) when n is even). Here (Xg(ci),Xg(UQ) is the

(z) is the analogue of F,, . but corresponding to S =

limiting distribution corresponding to the i-th group time series. Since the
statistics on the left hand side of (6.18]) for the two groups of time series
are independent under Hy, we calculate the difference of the two statistics

and obtain

</xdén(x),/x2dén(as)> N ()@,)@2), as n — 0o, (6.19)

where

émw:GmuwwKMw:p@@%@—fﬁﬁw) (6.20)

n

and X, = X" — X X,» = X)) - x©).
It follows from Theorem that (X,, X,2) is bivariate normal with mean
0 and covariance matrix ﬁ, where = 2Q and Q = (wWgh)2x2 is the asymp-

totic covariance matrix of ([ zdGY (z), [ 22dG (x)) given by

g 2’1 ) fn(22) d d
o dz1dzy. (6.21
fél Co m¢ m¢(z2))2 dem (22)d21m¢(21> VARLYS) (6 )

Note that - ) does not involve any unknown parameters. Therefore, we

propose the following testing statistic for Hy:

~ o = ~ 1/ f 2dGy ()
L, = (/xdGn(x),/w dGn(x)>ﬂ ( " ) (6.22)
[ 22dG,,(x)

As for the linear independence structures, the statistic L,, is the same
except that m,(z) in (6.21) should be replaced by the Stieltjes transform
m(z) given in Proposition

The following theorem is a direct application of Theorem (11| or Propo-

sition Bl
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Theorem 12. Under the assumptions in Theorem [I1] or in Proposition [3,
the test statistic L,, converges in distribution to x*(2), which denotes the

chi—squared random variable with the degree of freedom being 2.

Remark 15. The proposed statistic L,, contains the inverse covariance ma-
triz Q" and this matriz contains the unknown parameter my(z). This
parameter can be estimated either by the algorithm provided above, or the
sample Stieltjes transform m,, (z) = %t'r’(X'X — 21,)7Y. Furthermore, the
asymptotic distribution is still x* after plugging in the estimator of my(2)
by the Slutsky theorem. In view of this the proposed statistic L, is easy to

implement.

Remark 16. Traditionally, the method of dividing total samples into two
parts is to use one part to do test and the other part to estimate unknown
parameters. However, the strategqy of dividing total samples into two parts
here serves as a different purpose, eliminating the unknown term involved
in the linear spectral statistic M,,. Indeed, we make use of the full strength
of all observations, because if the first group and the second group are not
independent or there is dependence among each group, then 1 not
true.

We also considered a Bootstrap method as follows. By a parametric
bootstrap we may redraw a sample x* = {x3,...,x5} from the p-variate
normal distribution with mean zero and the population covariance matriz S

defined in . Then consider the bootstrap linear spectral statistic
[ t@)aG; ) (623

where G (z) = p[FS3 (x) — F,, ps (x)] and Sz = £ > x;(x})T. We can fur-
i=1
ther construct a statistic like by replacing G, (x) with G (x). More-
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over its asymptotic distribution can be directly obtained from Theorem
or Proposition [3

However simulations show that the bootstrap statistic is not as powerful
as the one proposed based on the strategy of diwviding observations. The
key reason is that the independence assumption under Hy is reflected in F'S
and its limit only such that the difference p(FS — F,, ) is not used. As
a consequence it can not identify the alternatives whose limit is the same
as the one determined by |m} such as %XTgXT with Ty = I+ eel (all

components of e are one).

6.2.4 The power under local alternatives

This section is to investigate the power for some local alternatives. The first
interesting example (local alternative) is that xy, - - - , x,, satisfy Assumption
but T there is assumed to be random, independent of {Y;;}. Evidently,
X1, ,X, are not independent in this case. Yet, Silverstein’s result (1995)
indicates that still holds if {Y};} are independent and independent of
T;. This indicates that there may be the cases where the LSD of sample
covariance matrix is also determined by even when xq,---,X, are
not independent. A nature concern is whether the statistic L,, works in
this case. We now consider the case when the random T is the inverse of
another sample covariance matrix (S becomes the F' matrix in this case). It
is then proved in Theorem 3.1 of Zheng (2012) that L, has a central limit
theorem different from that for independent x;,--- ,x,. The difference is
caused by randomness of T and one may refer to (6.32) in Step 2 of Zheng’s
proof.

Although it is difficult to provide a central limi theorem for the statistic

L, for the general alternative hypothesis H;, we can still evaluate the power
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of L, for a class of local alternatives. Specifically speaking, we consider a

kind of local alternative with a sample covariance matrix in the form of

XT,X", as in (6.6). Set
RY =p / xid(pgj“(x) - Fﬁ;”<x)), i=1,2j=12  (6.24)

where Fﬁéj) stands for the ESD of S¥) under Hy while Fﬁl(j) is the ESD of
SU) under H;.

Theorem 13. In addition to assumptions in Theorem [11] or Theorem [3,
suppose that in probability

lim ‘R;i)‘ — 00, for any i, . (6.25)

n—oo
Then
lim P(Ln > '71—o<|[Hl) =1,

n—oo

where y1_q 1 the critical value of x* under Hy corresponding to the signifi-

cance level a.

Remark 17. Suppose that each column of X satisfies either Assumption
or Assumption @ and all columns are independent. Condition 18

equivalent to requiring

tr <X(j)T(j)(X(j))T) —tr (X(j)(X(j))T> — 00, foranyi,j  (6.26)
in probability, where XWTO)(XUNT denotes the sample covariance matriz
of the jth group of the observations under the alternative Hy with TY char-
acterizing the dependence among observations, while X9 (XUNT stands for
the sample covariance matrix of the jth group of the observations under the
null hypothesis Hy.

If

T =1+ ee’,
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where the elements of the vector e are all equal to one, then it is straight-

forward to verify that 1s true. Moreover, most of the examples given
in the subsequent section satisfy (0.20]).

6.3 Simulation results

This section provides some simulated examples to show the finite sample
performance of the proposed test statistic L,,. To show the efficiency of
our test, some classical time series models, such as MA(1), AR(1) and
ARMA(1,1) processes, are considered. As for the dependent structures,
we consider some dependent structures described by MA(1) model, AR(1)
model, ARMA(1,1) model and factor model. The factor model is commonly
used to illustrate cross-sectional dependence in cross-sectional panel data

analysis.

6.3.1 Empirical sizes and empirical powers

First we introduce the method of calculating empirical sizes and empirical
powers. Since the asymptotic distribution of the proposed test statistic L,
is a classical distribution, i.e. x? distribution of degree 2, the empirical
sizes and powers are easy to calculate. Let z_1, be the 100(1 — 20)%
quantile of the asymptotic null distribution x?(2) of the test statistic L.
With K replications of the data set simulated under the null hypothesis,
we calculate the empirical size as

{ﬁ Of L{-;I Z Zl—%a}
K Y

(6.27)

o=

where L represents the value of the test statistic L, based on the data

simulated under the null hypothesis.
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In our simulation, we choose K = 1000 as the number of repeated
simulations. The significance level is o = 0.05. Since the asymptotic null
distribution of the test statistic is a classical distribution, the quantile 2 la
is easy to know. Similarly, the empirical power is calculated as

{Jj Of Lé Z Zl—%a}
K )

B = (6.28)

where L2 represents the value of the test statistic L, based on the data

simulated under the alternative hypothesis.

6.3.2 Testing independence

In order to derive independent stationary time series {x; = (X1;, Xo;, . .. ,Xpi)/ :
i =1,...,n}, we generate data from the following three data generating

processes (DGPs):

DGPl XJ,L :Zﬂ—i-elZ],l’“ j: 1,2,,]?, 7,: 1,2,,77,, (629)

DGP2 : in:¢1Xj_1’i+Zji, ]: 1,2,...,]9; 1= 1,2,...,n; (630)

DGP3 . in - ¢1Xj—1,i = Zji + 012]‘_1,2', ] = ]_, 2, BN U 1= 1, 2, e,y
(6.31)

where {X;, Z;; : j =1,2,...,p;i =1,2,...,n} ~ i.i.d N(0,1). For each
DGP, we generate p + 100 observations and then discard the first 100 data
in order to mitigate the impact of the initial values.

With these simulated data, we apply the proposed statistic L,, and cal-
culate the empirical sizes. Table [6.1, Table [6.3| and Table [6.5| establish the
empirical sizes for the three DGPs under different pairs of (p,n). The re-

sults show that our statistic L,, works well under the null hypothesis Hy.
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Additionally, their empirical sizes from the bootstrap method proposed in

Remark [I6] are illustrated in Table[6.2] Table [6.4 and Table [6.6] respectively.

6.3.3 Testing dependence
6.3.3.1 Three types of correlated structures

In this section, we test four dependent structures with the proposed test
and provide the powers under each case. As in the last part of this section,
we first generate data X = (x3,Xy,...,%,) under DGP 1. To describe the
cross-sectional dependence between x;, and x;,, Vi; # iy, we generate new
data X = XT, where T is a p x p Hermitian matrix which is the square root

of a covariance matrix. T is constructed by the following three methods.

1. MA(1) type covariance matrix Xya = (o)) _y:

(1+06%), k=h
o =10, k—h| = 1; (6.32)
0, |k —h| > 1.

Under this case, T = E}V/[Z.

2. AR(1) type covariance matrix Xap = (O-I(CI;:R))Z,hZIZ
k=P
AR) _ @
o) — 5 (6.33)
: 1/2
Under this case, T = EA/R.
3. ARMA(1,1) type covariance matrix Xsrpa = (U](;;:RMA))%,ZZIZ
(0+6)° — B
1+ 55, k = h;
o= g g oy e k—hl =1  (6.39)

17¢2 Y

PN (G 4+ + L) (| — | > 2.
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Under this case, T = ZZ/;MA.

The powers under the three cases are illustrated in Table[6.7] Table [6.8| and
Table [6.9. The true parameters are taken as ¢ = 0.8 and 6 = 0.2. It can
be seen that the powers are near 1 as n and p tend to infinity in the same

order.

6.3.3.2 Factor model dependence

We consider a data generating process which comes from a dynamic factor

model, which is always used to describe cross-sectional dependence.
Xji=Xfj+e;, i=1,2....n, j=1,2,....p, (6.35)
with
f,=2;+0z;_,, i=1,2,...,n, j=1,2,...,p, (6.36)

where A is an r x 1 deterministic vector whose elements are called factor
loadings; f; is an r x 1 random vector generated from , whose elements
are called factors and the cross-section dependence between x;, and x;, are
caused by the common factors f;. {z; : j = 1,2,...,p} ~ iid N(0,,1,)
where 0, is an r X 1 vector with elements 0 and I,. is an r X r identity matrix.
{e;i:j=1,2,...,p;i=1,2,...,n} ~iid N(0,1) are idiosyncratic errors.

First, we generate the factor loadings in the vector A from N (4, 1) before
generating data from (6.35)) and . After generating the data, we can
apply the proposed test statistic L,, to the data and the empirical powers are
shown in Table [6.10] From this table, we can see that the powers increase
as the number of factors r increases. This is reasonable in the sense that

more factors should bring in stronger dependence.
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6.3.3.3 Common random dependence

We consider a special dependent structure which is caused by a common

random part. The data generating process is as follows.
X; :Ayz, 1= 1,2,...,71, (637)

where A is a p X p random matrix whose components are i.i.d standard
normal random variables; and y;, ¢« = 1,2,...,n are independent p x 1
random vectors, whose components are assumed to be i.i.d standard normal
random variables.

Therefore the random vectors X1, Xo,...,X, are dependent due to the
common random part A. The empirical powers are listed in Table [6.11]
From the table, we can see that the proposed statistic L, is powerful to

capture this kind of dependence.

6.3.3.4 ARCH type dependence

It is known that dependent relations may be linear dependence or nonlinear
dependence. The examples above are all linear dependent structures. In
this section, we will present a nonlinear dependent structure.

Let us consider an autoregressive conditional heteroskedasticity (ARCH)

model of the form:

in = Zj“/a()"’alXJ%i,l,i = ]_,2,...,71; ]: 1,2,...,}9; (638)

where {Z;; : j =1,2,...,p;i=1,2,...,n} are white noise error terms with
zero mean and unit variance. Here we take ap,a; € (0,1) and 3a? < 1,
since the fourth moment of the elements of Xj; exists.

From this model, the sequences {xi,Xs,...,X,} are dependent but un-

correlated. Moreover, this sequence is a multiple martingale difference se-
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quence. The components of each vector x; are independent here. This sim-
plified assumption is imposed because the asymptotic theory is established
for covariance time series under the assumption that the fourth moment
equals 3 while the asymptotic theorem is provided for random vectors with
i.i.d. components without this restriction.

Simulation results indicate that the proposed test statistic L,, can not
detect this type of dependence between xi,Xs,...,X,. Nevertheless, if we
replace the elements X;; by ijt, then our statistic L, can capture the
dependence of this type. This efficiency is due to the correlation between
the high powers of {X;; :t=1,2,...,n}.

Table lists the powers of the proposed statistics L,, testing model
in several cases, i.e. «g and «; take different values. From the
table, we can find the phenomenon that as «; increases, the powers also
increase. This is consistent with our intuition that larger «; brings about

larger correlation between xi, X, ..., X,.

6.4 Conclusion

This chapter provides a novel approach for independence test among a large
number random vectors including covariance stationary time series of length
p by using the empirical spectral distribution of the sample covariance ma-
trix of the grouped time series under investigation. This test can capture
various kinds of dependent structures, e.g. MA(1) model, AR(1) model,
ARCH(1) model and the dynamic factor model established in the simula-
tion section. The conventional method(LRT proposed by Anderson, (1984)))
utilized the correlated relationship between random vectors with i.i.d com-

ponents to capture their dependence, instead of covariance stationary time
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series. [Hong ((1996)) proposed a test statistic based on correlation functions
to investigate independence between two covariance stationary time series.
On the one hand, this idea is only efficient for normal distributed data.
It may be an inappropriate tool for non-Gaussian distributed data, such
as martingale difference sequences (e.g.ARCH(1) model), nonlinear MA(1)
model etc., which possess dependent but uncorrelated structures. On the
other hand, his method is only applicable to independence test for finite
number of covariance stationary time series. Then the proposed test is
more advantageous in these two points. The simulation results and an em-
pirical application to cross-sectional independence test for stock prices in

S&P500 highlight this approach.

6.5 Appendix

First, we present some lemmas and technical facts used in the proofs of the

main theorems.

6.5.1 Useful lemmas

We would point out that (3.52)) can be obtained from the proof of Lytova
and Pastur| (2009).

Our proof utilizes the generalized Fourier transform as follows:

Lemma 23 (Proposition 2.1 of Lytova and Pastur| (2009)). Let g : Ry — C

be locally Lipshitzian and such that for some § > 0
sup e g (t)] < oo
>0

and let g: {z € C: Im(z) < —0} — C be its generalized Fourier transform

g(z) =it /000 e “g(t)dt.
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The inversion formula is given by

l

9(t) = 5

/emﬁ(z)dz,t >0,
L

where L = (—oo —ig,00 —ig), € > 0, and the principal value of the integral

at infinity is used.

Denote the correspondence between functions and their generalized Fourier

transforms as g <+ g. Then we have
/(1) & ilo(0) + )s [ ar)ar o (2)75C)
| ot =narr = (2 0)®) 0 ORE). (639

Furthermore, we introduce a simple fact about exponential matrices

below.

Lemma 24 (Duhamel formula). Let W1, Wy be n X n matrices and t € R.

Then we have

t
e(W1+W2)t = eW1t + / ewl(t_s)WQG(W1+W2)SdS- (6-40)
0

Moreover, if (Wij (t)) is a matriz-valued function of t € R that is C'™°

1<i,j<n

in the sense that each matriz element W;;(t) is C*. Then

1
%ew(t) :/ eWOW' (1)el =Wt s, (6.41)
0

where W' (t) is an n x n matriz with elements being the derivatives of the

corresponding elements of W (t).

Proof of Theorem 10: Since

(s =5l -5
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the sequence E{FS()\)} is tight. By Theorem B.9 of Bai and Silverstein
(2009), the proof of Theorem 10 is complete if we can verify the following

two steps:

1. For any fixed z € C*, m,(z) — Em,(z) — 0, a.s. as n — oo, where
my(z) = ;trG~'(2) with G™'(2) = (S — 2I,)~" and I, being a p x p

identity matrix.

2. For any fixed z € CT, Em,(z) — my(z), as n — oo, where my(z) =

f )\iz chvd)()\) °

The first step is omitted here, since it is similar to the proof on page 54 of
Bai and Silverstein, (2009).
We will finish the second step by comparing Em,(z) for the Gaussian

case and nonGaussian case: as n — 00
Em,(z) — Em,(z) — 0, (6.42)

Emy,(2) = my(2), (6.43)

where 71,,(2) is obtained from m,(z) with the elements X;; = > 77, bi&j_k
replaced by th =310 bkfj_m. Here {{Aj_m} are 1.i.d Gaussian random
variables with mean zero and variance one and {éj,m} are independent of
{&-kt}- obviously holds by [Yao| (2012).

Let Im(z) = v > 0 and below we will frequently use the fact that |, (2)|
and |m,(z)| are both bounded by 1/v without mention. We now consider

(6.42) and start with the truncation of underlying random variables. Define

1
S = EXT(XT)T, X7 = (X],)pxns (6.44)

X5 = 0] s § gy = Gonad ([§-kal < 7VR),  (6.45)
k=0
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where 7 = 7, is a positive sequence satisfying
1
T =0, ;E(|§11|2](|§11| > 7y/n)) = 0. (6.46)
We claim that for every 7 > 0,

lim ‘Emn —BEm’(z)| =0, (6.47)

n—oo
where m; (z) = $trG; ' (2) with G7'(2) = Str(S7 — 2I,)~". In fact, we have

‘Emn — Em’( )‘

1 <« 1
< | == 3 B((E ()6 () =X),, (X5 - X))

p?n
1

+‘m;:: E((th - X7, (G‘l(Z)Gil(Z)%X)jJ

2
< Can\bk\EKnU(!én\>T\/_) Pl = TV Z|bmo

where the first inequality uses the resolvent identity
(A—2L)"'—B-2I,)"'=—(A-2L,)(A-B)B-2L,)",

holding for any Hermitian matrices A and B and the second inequality uses

1 1 1 1

—|G7H(2)—=X]|| = ~ |G (2)=XXTG!(2)||'/?

67 =Xl = e ) el

1

1
< GG ) SO (648)

Here || - || denotes the spectral norm of a matrix. Also throughout the
chapter we use C' to denote constants which may change from line to line.

In view of it is sufficient to prove that|Em](z) — Em,(z)| —
0, as n — oo. However for simplicity below we still use notation m,,(z), X, X, §—k.
instead of using m’ (z), X" , Xy, &1, and prove (6.42). But one should keep

in mind that [§;_r+| < 7y/n.
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We next prove (6.42)) by an interpolation technique first introduced in
Lytova and Pastur| (2009)). To this end define the interpolation matrix

1 .
S(s) = ~X(s)XT(s), X(s) = (Xg,t(s)) — 12X £ (1- 92K, se0,1]
n
(6.49)
and
G *(s,2) = (S(s) - zIp> . m(s,2) = ~trG *(s,2), k=12
D
Write ©4(s) = (G”(s, z)\%X(s)) We then have
Em,(z) — / —Emn (s,2)ds =
1 pn 1 pn 1 .
——/ _1/2 thq)]t d8+ / 1/2% jt(I)jt(S) ds,
(6.50)
where we have used the formula below
0G~'(s,2) 1 2 98(8)
5 - -G (s, 2) B G (s, 2).

Consider the second term in 1) first. Since th =>70 bkéj_m we

have

E(\/l— th)Jt ) Zbk ( £J ktq)gt( )) (6-51)

Applying Lemma u to each summand in (6.51)) we have

(1- WZbk 7@ e Zbk S b B (Dus(@().

kO 0=j—k

(6.52)

where the partial derivative Dy, = (9/8( —Xoi(s)) and we used the fact
that

ant . ant(S)
0—j+k>

< = = (1 —s)V2
O0& ks 0 Xy
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Consider the first term in (6.50)) now. As before, applying the fact that
X = ZZ‘;O be&i—k, and Lemma to each summand of the first term in

(6.50), we obtain
E(S_1/2% 1P (s ) = 3_1/2Zb E( —=&j- ktq)ﬁ( )) (6.53)
e fzbmmﬂ sl me > B (Deslate)) + 2

(=j—k

where k; . denotes the ¢th cumulant of the variable §;_j; with i = 1,2,

Cis™'? & 3 2
o1 € 2o Y el E(J&ral* sup 1D (@i(s)]).

k=0 1€kt | STV
with
1 1
B (®,(s)) ( i 8<I>Jt ) O mXcals) ajaXc,t>
i— it k.t
R Di- S 0 Xels) 07X 08 ke

p
s ) Z be—j+kby—jreDey (Dv,t(@jt(s)))=

C=j—kv=j—k

where ﬁj_k,t = 6’/8\/%35]-_;@# Here we would point out that checking the

argument of Lemma[11}in Lytova and Pastur| (2009)) shows that sup in ([3.52

teR

can be replaced by  sup  in the remainder £, due to the truncation step.
1€ —k,t|<TVR

We conclude from ((6.50))-(6.53)) that

s1/2 2
Emn(z) — Emn(2) = —/ [ — Z by Z k1 ED4(s) Z e
0 pr = 7,t=1 jt 1
_1/2 0 p
Zbk Z fow—1) Y bg_j+kE<D¢7t(<I>jt(s))>]ds. (6.54)
k=0 J,t=1 (=j—k

The next aim is to prove that each of the three integrands goes to zero

as n tends to infinity. To this end, first let (1) and ke, (ke) be the
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(th moment and cumulant of the truncated &;; and the untruncated (&;;)

respectively. Then

s — o] < CE(|§11\ZI(|§11| > Tﬁ))

As a result we have

C

WE(|§11|2](|§11| > 7/n).

(6.55)

e — el < CE (| (| > 7v/)) <

This result uses the fact that cumulants can be expressed by moments as

follows

= Z CAlx,
A

where the sum is over all additive partitions A\ of the set {1,...,7}, {c¢ :
¢ € A} are known coefficients and puy = [],c, ee-

Second we provide the upper bound of ®;:(s), D, +(®;:(s)) and Dy (D (q)Jt(s))) :
For simplicity, we introduce more new notation.

1(¢.7) = e,ef +ecel, Wi(.t) = e ef =X7(s) + =X(s)ese!.

NG NO
J1(Q) = G (s, 2)W((, 1)G%(5,2), J2(7,¢) = G (s, 2)I(7, )G (s, 2)
J5(7,¢) = G (s, 2)W(7,1)G (s, 2 ) W((, 1) G (s, 2),

J4(C,7) = G (5, )W(C )G (5, 2)W(7,1)G (s, 2),

where e, and e; are p X 1 unit vectors with the v-th and j-th elements
being 1 respectively and others being zeros; and e; is n X 1 a unit vector
with the t-th element being 1 and others being zeros. With these notation

by a simple but tedious calculation we obtain

L X(s)e, + 7T (1) =X (s)er

Dyi(®i(s)) = —ejG (s, 2)e, + eJTJl(wﬁ NG



6.5 Appendix 205

and
Dey <Dw,t(‘bjt(5))) =ejJi(Qe, +e] J1 (C)e, — ef Ju(C, 7)%X(3)et
T 400 =X (s)er — €333, ) =X (s)en + ] i (1)ec — €] I (e
—e] 3¢ 1) =X (s)es — ] 3T (. ) =X (s)er — ] (¢ 1) =X ey

-5
-4

—l—e;-FJg(% ()—=X(s)e; + eJTJg(’y, () —=X(s)ey.

B
9

From the expansions of ®j(s), D, (®;:(s)) and D¢, <D%t(<13jt(s))> we

see that all the terms in such expansions include only three factors below:

D, = (%XT(S)G_Z(S,Z)%X(S»

Dy =G (s,2),, (= 1,2,k k =3,¢, or .

, Dy = <G_€(s,z)%X(s))kt,

tt

These three factors turn out to be bounded, as seen below.

Obviously | D3| < v~*. Similar to (6.48)) using

G1(2) L X (s)XT(s) = T + 2G (s, 2). (6.56)

n

one may verify that

1 _ .
[Da] € =[G 7 (s, 2) =X(s)| < €, i = 1,2

Bl

and

D] < =X (66 (5, 2)Z=X(5)] =] G5, ) X(9)XT(5) < €

Therefore ®;(s) and the two derivatives D, (®;:(s)), D¢ (D%t(@jt(s))>
are bounded. This, together with (6.55)) and (6.46)), yields

—1/2 >

p,n
Z by Z K17 P

k=0 J,t=1

E < B PI(] > Vi) =0

pnl/?
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and

1 ) p,n p

=3 Y (e = 1) D bk B (Deals)®ils) )|

"I = C=j—k

< CE(lEnl*I(|én] > 7v/n)) = 0.

Moreover since E|{;;|* < 74/n and ([6.46) we have

p.n
1

e

J,t=1

<Ct—0, as n — oo.

These, together with (6.54)), yield (6.42). The proof of this theorem is
complete. O

Proof of Theorem 11: The strategy of the proof is the same as that in |Ly-
tova and Pastur (2009). That is, we first establish CLT for the case when
{&—k+} are iid N(0,1) and then generalize it to the general distributions.

When {&;_x:} are i.i.d N(0,1), as stated in Section 2, under Hy, the
matrix S can be written in the form that S = %T}/QXXTT}/Q so that
Theorem 9.10 of Bai and Silverstein (2009) is applicable. The asymptotic
variance of Theorem 11 is the same as that in |Bai and Silverstein (2009)
while the asymptotic mean is obtained from that in Bai and Silverstein

(2009) and the facts that (See Yao (2012) and |Gray| (2009))
1 0 1 2
Jim 3 sl = [ st =50 [ oo
However to apply [Bai and Silverstein| (2009)), we have to make sure that the
spectral norm of the population covariance matrix T; of each time series is
bounded. We claim that this is ensured by the condition ) [b;| < co. In
fact, let o, = Cov(X,i, Xj+k¢). By the expression (2.2) of the time series

and a change of variables we have

[e9] o0

Z ok | = Z |OOU(Z by §j—kr Z Okyjth—tot)]
k1=0

k=0 k=0 ko=0
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= DI bkl < O b)) < o0 (6.57)
k=0

k=0 k=0
By Lemma 4.1 of (Gray, (2009) and we conclude that
1Tyl <4 |ow] < o (6.58)
k=0
We next adopt an interpolation trick and compare the CLT of the general
case with that of the Gaussian case. Recall the definition of G,,()) in (2.8).
Let

Nl = [ 7046, Nalfl = [ FOVdpFS ).

Define N°[f] and N, [f] to be obtained from N°[f] and N, [f] respectively,
with the entries X;; = > - bp&j_k+ replaced by th =370 bkéj,kyt where
{& s} are iid. N(0,1) and independent of {¢; s,}. By the continuous

theorem of characteristic functions, it suffices to show that
R,(z) = E(emN"O[f]> - E(emﬁno[f]> — 0, as n — oo. (6.59)

Since the integrand function f admits the Fourier transform

5 1

f6) = o5 [ ran

the Fourier inversion formula is
F\) = / ¢ £(6)d6. (6.60)
Then the statistic NV, [f] can be written as
Nl = [ F@)ua (o,

where

u,(0) = Tru(h), U(h) = e"s. (6.61)
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By we obtain

f(S) = z’/f(@)@U(Q)d&. (6.62)

We still use the same truncation as that in (and use the same
notation) but this time 7 satisfies (see formula (9.7.7) of Bai and Silverstein
(2009))

=0, 7 Eg gl (&ke] > Tv/n) = 0. (6.63)

Note that

p,n p,n oo
T T 1 4
P{X #X7} < ;M P{Xj # Xj;} < W]thl Ek::O Ok B[ 1(&j kel > Tv/n) — 0.

In view of this it is enough to prove that
E(emNgT[ﬁ> - E(e“ﬁgm> — 0, as n — oo, (6.64)

where N2 [f] is obtained from N?[f] with X replaced by XT.
As in the proof of Theorem 10 we still use notation &;_y ;, X, N, [f] rather
than &7, , X7, N [f] and below prove (6.59). Recall the interpolation

matrix defined in (6.49) and furthermore define
en(s, ) = exp <i:vTrf(S(s))>, U(s, 0) = (Uy;,) = %56,
By we have
1
R,(x) = an/o %E(eds,x))ds
= ixa, /1 E[en(s, x)T'r (f,(S(S))(S_l/QLX —(1- 3)—1/2LX) —XT/(s)ﬂdS
0 vn v/
1
= —za, | ds / 0f(0)(D,, — By,)do, (6.65)
0

1

where a,, = exp(—iz [ fdpF., 4,) and
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with

Uju(s) = en(s, z) (U(s 6)— X(s))

gt

vn
By Lemma |10] and a calculation similar to (6.51), (6.52)) and (6.53) we

obtain
| bno P
== Y b B (Duon(¥als)), (6.66)
7,t=1 k=0 kD =j—k
where .Dk.(l)t = 8/8\/%)(,41”.
Also, by Lemma [11] with ¢ = 3 we have

3
D, =Y Ty +es, (6.67)
=0

where

s—1/2 P

o> mZE\Ifﬁ

jtl

S-n/2 Pn P

Ty = U@ /2 E /ig+1TE by, E bk(e)_j+kbk(l—1)—j+k'"bk;(l)_j+k
k=0 k(&) p-1)

.....

-E(Dw)tl)w—l)t e Dk(l)t‘l’jt(s)>a 0=1,2,3;

and

p

les] < 5/2 Z Z b | Z bk —jn] = orn i

j,t=1 k=0 EG kW =j—k
1
/ E[’ij—k,tPDk(‘l)t"'Dk(l)t‘ljjt<5)|€j7kt:vgjikti|(1_U>3(¢6768)
0 : :

where W;;(s) , means that &_, involved in Wj,(s) is replaced by

|€j—k,t=1}$j—k
v€j_+ and Ky, is the ¢th cumulant of &;_g .

Next, we provide the upper bounds of derivatives:

Dk.(é)tDk(Zfl)t Dk(l ( ) g - O, 1,2 3 4
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Let Y(5) = (Yu(s)) =
to the entries, U, of U(s, ) we have

%X(s). Applying the Duhamel formula of Lemma

Dsa(Upya) = i| (UY (5))jaxUs 0 ) )+ (UY () #Uss ) (6) (6:69)

where the convolution * is defined in (6.39). Here and below we use U to
denote U(s, ) when there is no confusion. In view of and the fact
that I, = > ¥_ e.e. we have

p

Dy, (UY (8)) 50 = Doy ( Z: Yrt(S)Urj>
Uit + i (YT (YUY () % Uit ) (6) + ((UY ()0 % (UY (5))n ) 6)]
(6.70)
Dy (YT (s)UY (5))1s = Dk<d>t(§:<UY<s>>ﬁYﬁ<s>)

= 2UY(s))yiay + 20 (Y ()UY () + (UY(5))gco ) (0), (6.71)

and by
Dyiwy(en(s,x)) = —2xeny(s, ) /Qf(ﬁ)(UY(s))k(g)tdQ, (6.72)

where ¢,d = 1,2, 3, 4.
Since Y7 | |[Uyl* = 1 and ||U|| = 1, from Hélder’s inequality, we obtain

O )l < (S 0e)?) ™ 1Y () UY (3))ul < Z (©73)

r=1
Recalling the definition of W (s) and repeatedly using 1' one can
verify that

b NG
Doy Dycevyy -+ Dy U (s )‘ < C+C<Z( Yiu(5)) ) 0=0,1,2,3, 4.

r=1

(6.74)
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For example see (6.83]) below for the expansion of D), V,(s). Moreover
it is straightforward to check that ¢ = 0,1,2, 3, E( le(Kt(s))2)(£+1)/Q is
bounded by the fact that n? E|Y,.(s)|* = E|X,+(s)[* < co. We then conclude
that

E| Dy, Dy - - katqfﬁ(s)‘ <Oy £=0,1,2,3. (6.75)

However, to prove ¢35 — 0, (6.74]) for the case ¢ = 4 is not enough for
our purpose since

ElXu(s)P < CTvn, (6.76)

not bounded. To offset this y/n, one key observation is that from —
(6.72) we see that each term in the expansion of Dy, Dye-1); - - - Dyay Ve(S)

is a product or a convolution of some of the following factors
(UY(S))h1t7 (U)hzhsa (YT(S)UY(S))tt7 €n<57x)7
where h; can be j or any k©, £ = 1,---,4. Let my and my be the total

number of factors of types of (UY(s))n,+ and (Y7 (s)UY(s)); appearing

in each term of the expansion, respectively. Then from 1) and
(6.83) below we see that (my + 2ms) < 5 (this explains ((6.74]) to some

extent). Consider the case when (my + 2msy) = 5 first. In this case from

(6.69)-(6.72) and (6.83) below we see that at least one (UY(s))p,; must

be contained in the expansion. We below show how to handle such terms
by demonstrating one example and all other cases can be similarly proved.

Consider the term
(UY(5));¢(U)g@pe (U)o (Y (s)UY (s))7 (6.77)

(my = 1 and my = 2 in this case). Then for (6.68)), it can be estimated as

follows

E%ZA4@mmwwmmwwmwmwmmmbwa

Jt=1
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x(1 —v)3dv

= =5 i/ [|77] (U)k(Z)k(3)(U>k(4)k(1)(YT<S)UY(S))?7&>}gjikyt:vn]

x (1 —v)*dv

IN

< n z / E[mr’vﬁ((; AL | R [ (S L7

where 7 has the same distribution as {¢,_x,} and is independent of them,
and satisfies |n| < 74/n; the first inequality uses the fact that |[(U)y,p,| <
1; and the second inequality uses the second inequality of and the
following estimation

P

D> IUY )l < vB( Y (Y ),r) "

p

_ 1/2
— \/ﬁ< Z etTYT(s)UTejeJTUY(S)et)
=1

- \/5<etTYT(s)Y() )1/2 (Z ) . (6.79)

where the second equality uses the fact that U is a symmetric unitary
matrix. Moreover, since for any h = 1,2, ..., p, the coefficient of vy in the

expansion of Y, is by_jr when §;_., is replaced by vn, we have

lgjfk,t:W?

P m/2
(X6 ) < nm/Q(ZrbT ekl (/)™ fot y2)
r=1

< C+=N " Xm(s), 2<m<5 6.80
< +nz_: i(s), 2<m <5, (6.80)

where )Z'Tt(s) is X,.(s) = s'/2 Yoo b+ (1— s)l/ert without the factor
&+ = vn; and the last inequality utilizes the condition that >~ 2 |bs| <

52 Z/ [I ZI UY (s));e| (YT (s )UY(S))ttmgj_k,t:vn}(l — v)3du

(6.78)
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oo. Note that )’Zﬁ is independent of 1. This, together with 1) and the
fact E(|X,+|°(s)) < Cry/n, implies that

(6.78) < Ccr — 0.

If (UY(s));: in (6.77) is replaced by any (UY (s)),ey, ¢ = 1,2, 3,4, then an
estimate similar to (6.78)) also holds by exchanging the order of summation

as follows
[eS) p kO 4k
g E g bk(w J+k UY k( it = § § (UY(S))k<i)t § bk(”*j”@-
J=1 k=0 () =5k k=0 k(H=1—k J=1

(6.81)
Next consider the case when (m; +mg) < 4. By (6.74]) and (6.80]), one may
verify that

p,n
=Y / il (U ()7 (00 (U

7t=1

(YT (s)UY (s))52 | (1= vyaw

) |fj—k,t:U§j—k,t
<Cr—0,

where m; > 0,7 = 3,4. Summarizing the above we may conclude that
les| < CT — 0. (6.82)

Recall the definition of T, in (6.67). Denote the analogues of T,, by T,
with the truncated matrix X(s) replaced by the initial matrix X(s). Then

write
CFZT :T€+TZ, 6207172737

where

(Z 1)/2 bn

|T£| S €| (€+1)/2 Z |"{ L+1), 1 Kf-i-ll‘ Z |b/€|
k=0
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p
) bk rbrte—n i bk(1)7j+k|E(Dk(")tDk(‘f—l)t e Dk(l)t‘l’jt(S)) ‘
kO k=1 k1)
C

< Bl 1gnl > rvi) -

where the last step uses (6.63)), (6.75) and an estimate similar to (6.55)).

By Lemma |25 below, (6.67)), (6.82) and the facts that Ty, = T3 = 0
(because k1 = k4 = 0) and that T} = B, (see (6.66))) we see

D,, = B, + o(1).

This, together with (6.65)), ensures (6.64)) by the facts that |a,,| = 1 and that

the function f is an analytic function. The proof of theorem is complete. [J

Lemma 25.

1/ K3 P

L= Sag Zzbk > bk(2)7j+kbk(1>fj+kE(Dk(z)t(5>Dk(1>t<5)\yﬁ<5)>

Jt=1k=0 k2 (1)=j—k
= 0(1>7

as n — 0o.
Proof. It follows from 1) that the expansion of Dy, W;(s) is

Dy Vir(s) = en(s,x)[— 2 / 0 f(@)(UY(S))k(l)tdé’(UY(s))jt—i—Uk(l)j
+i(YI(S)UY(3))tt * Uk<1)j + i(UY<S))jt * (UY(S))k(l)t} :
(6.83)
By (6.69)-(6.72) we can further obtain the expansion of Dy, Dy ¥ju(s).

Since such an expansion is complicated we do not list it here. However each

term of the expansion is a constant multiple of one of the following forms

Ay = (UY(S))hlt 0 Unynsen(s, T),
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Ay = (UY(s)), ,o (YT(S)UY(S))“ o Upyhsen(S, ),

As = (UY(5)) 4, © (UY(5)) 0y, 0 (UY (s )) (s, ),

where “o” denotes a product or a convolution; h; = k®, k(™ or j with

1=1,2,3 and hy # hy # hsz. In view of this it then suffices to prove that

p

— n3/2 ]; kz; bi km%::j_kbku)_ﬁkbw)_ﬂkEAi =o(1), i=1,2,3.

Without loss of generality, we below consider hy = j, ho = k() and
hs = k@ only, otherwise one may first exchange the order of the summation
as in when necessary and then proceed as follows. Consider T5;,. Note
that the fact that UY (s)Y7T(s) = Y(s)YZ(s)U. A simple calculation then

yields
E i|i UY(5)) ] E[i (UY(s)Y"(5)07), |
- FE zp: )m}z (n) (6.84)

By the Schwartz inequality, (6.73]) and (6.84]), we have

T2 < ngE[Zw*T YUY (s ] [Z|Z (UY(s ]

SB[ (X)) o6 (6.55)

This argument also works for T5; and T53 and we ignore the details here.

IN

Therefore
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Proof of Theorem 4. Set

. L~ ~_ a a
xﬁhz/QWGA@,i:LQ; Q =" ™

a12 A22

Furthermore, under Hy, XS), 1 = 1,2, can be written as

X0 = v 4y, (6.86)

n

i i ™ @)
y :p/x a(F () - FS (@),
From (/6.86)) we have
an (X)? + asa(XP)? + 2410 XV XP) = Wy + W + Wy,
where

Wl — CL11(Y2(1))2 + a22(y2(2)>2 + 2(112)/2(1)Y2(2),

Wy = an(Y’l(l)>2 + a22(Y'1(2)>2 + 2a12Y'1(1)Y'1(2)
and
Wy = 2a11Y'1(1)Y'2(1) + 2(122}/1(2)}/2(2) + 2(112[}/2(1)}/1(2) + Y'l(l)Y'Q(Q)]‘

Note that W) converges in distribution to x*(2) by Theorem 11 or Propo-
sition 1. Also YQ@, t = 1,2 converge in distribution to Gaussian distribution
by Theorem 11 or Proposition 1. We next prove that W5 — oo in proba-
bility while W5 = 0,(W3). By Assumption (3.15) Yl(l) — 00 Or Y1(2) — 00
in probability (we would point out that Yl(i) > 0). If Yl(l) — oo and
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lim sup Yl(z) < 00 in probability, then W5 — 400 in probability. It is then
easy to verify that W3 = 0,(W3). This argument also applies to the case
when Yl(z) — oo and limsup Yl(l) < oo in probability. If Yl(l) — oo and

Y1(2) — 00 in probability then by Holder’s inequality
Wa > 2(varv/azs + a12)Y1(1)Y1(2) — $00

in probability, because
det(ﬁ_ ) = a11Q22 — CL%Q > 0.
It is then easy to verify that W3 = 0,(W>) in this case.

In view of the above we conclude from the definition of L,, that

)

~_1 Xﬁl)
P(L, > 71_o|H) = P((X<1>,X<2>)Q (
X

) > T—a

)

[Hl) =1, as n — oc. (6.87)

n

= P((CLH(XS))Q + CL22(X7(12))2 + 2a12X7(11)X(2) > VN-a

= P<W1+W2+W3> Y—a

]
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Table 6.1: Empirical sizes of the proposed test L, at significant level 0.05 for
n time series generated from DGP 1 with 61 = 0.8 in model .

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes
50 0.023 0.022 0.027 0.021 0.019 0.021 0.023 0.018 0.022 0.020
100 0.037 0.040 0.035 0.039 0.036 0.031 0.034 0.030 0.029 0.025
150 0.042 0.040 0.039 0.043 0.041 0.038 0.039 0.034 0.034 0.031
200 0.039 0.043 0.046 0.045 0.043 0.045 0.042 0.041 0.038 0.040
250 0.040 0.045 0.048 0.044 0.045 0.044 0.042 0.040 0.041 0.041
300 0.037 0.041 0.049 0.054 0.052 0.048 0.043 0.041 0.039 0.045
350 0.041 0.048 0.053 0.049 0.055 0.052 0.049 0.047 0.045 0.047
400 0.038 0.041 0.047 0.052 0.052 0.048 0.053 0.051 0.046 0.046
450 0.035 0.037 0.040 0.046 0.050 0.055 0.059 0.060 0.058 0.055
500 0.032 0.035 0.035 0.040 0.047 0.052 0.054 0.057 0.054 0.058

Table 6.2: Bootstrap sizes of the proposed test L, at significant level 0.05 for
n time series generated from DGP 1 with 61 = 0.8 in model .

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes
50 0.039 0.041 0.038 0.037 0.040 0.037 0.039 0.035 0.037 0.037
100 0.043 0.042 0.040 0.039 0.039 0.040 0.042 0.040 0.046 0.041
150 0.046 0.042 0.048 0.043 0.045 0.047 0.040 0.049 0.045 0.041
200 0.042 0.047 0.043 0.046 0.049 0.051 0.048 0.048 0.046 0.050
250 0.052 0.050 0.046 0.054 0.048 0.051 0.050 0.049 0.052 0.055
300 0.048 0.053 0.055 0.052 0.056 0.057 0.053 0.051 0.049 0.054
350 0.046 0.054 0.052 0.054 0.050 0.051 0.050 0.048 0.053 0.054
400 0.043 0.048 0.046 0.051 0.054 0.051 0.052 0.054 0.049 0.052
450 0.046 0.052 0.048 0.049 0.053 0.050 0.054 0.055 0.053 0.052
500 0.042 0.046 0.045 0.047 0.050 0.053 0.055 0.052 0.055 0.054
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Figure 6.1: Graphs of smoothed density function of the transformed data vs

standard normal distribution
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*These graphs contain the empirical density functions of the transformed data for all
96 stocks used in our empirical application. The blue line is the smoothed density
function of the transformed data for one stock and the red graph is standard normal

density function.
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Table 6.3: Empirical sizes of the proposed test L, at significant level 0.05 for

n time series generated from DGP 2.

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes
50 0.037 0.035 0.030 0.031 0.034 0.029 0.032 0.030 0.030 0.028
100 0.040 0.043 0.045 0.042 0.040 0.037 0.040 0.035 0.035 0.032
150 0.042 0.043 0.048 0.043 0.045 0.040 0.040 0.039 0.037 0.037
200 0.041 0.046 0.051 0.045 0.049 0.053 0.047 0.043 0.040 0.041
250 0.044 0.049 0.053 0.051 0.047 0.052 0.044 0.047 0.045 0.045
300 0.040 0.042 0.046 0.046 0.050 0.055 0.047 0.044 0.046 0.048
350 0.038 0.046 0.049 0.053 0.054 0.051 0.053 0.046 0.045 0.046
400 0.039 0.041 0.043 0.047 0.055 0.051 0.058 0.056 0.051 0.053
450 0.037 0.039 0.039 0.043 0.049 0.053 0.055 0.048 0.050 0.048
500 0.037 0.035 0.042 0.047 0.045 0.055 0.047 0.054 0.052 0.055

*The data are simulated from model (6.30). ¢; = 0.2.

Table 6.4: Bootstrap sizes of the proposed test L, at significant level 0.05 for

n time series generated from DGP 2.

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes
50  0.041 0.039 0.040 0.042 0.038 0.037 0.035 0.038 0.036 0.038
100 0.044 0.047 0.043 0.040 0.042 0.041 0.040 0.045 0.039 0.040
150 0.046 0.048 0.049 0.051 0.048 0.047 0.053 0.055 0.052 0.047
200 0.043 0.050 0.053 0.049 0.052 0.048 0.049 0.054 0.051 0.047
250 0.045 0.052 0.054 0.050 0.050 0.054 0.051 0.048 0.047 0.052
300 0.044 0.048 0.051 0.047 0.048 0.050 0.046 0.053 0.052 0.047
350 0.046 0.051 0.047 0.054 0.052 0.050 0.051 0.051 0.052 0.049
400 0.042 0.047 0.052 0.049 0.051 0.050 0.055 0.050 0.054 0.052
450 0.045 0.049 0.053 0.053 0.050 0.051 0.054 0.049 0.049 0.051
500 0.042 0.035 0.045 0.049 0.047 0.050 0.051 0.047 0.050 0.053

*The data are simulated from model (6.30). ¢; = 0.2.



6.5 Appendix 221

Table 6.5: Empirical sizes of the proposed test L, at significant level 0.05 for

n time series generated from DGP 3.

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes
50 0.036 0.039 0.035 0.030 0.035 0.031 0.036 0.035 0.030 0.029
100 0.040 0.042 0.040 0.039 0.042 0.045 0.040 0.037 0.039 0.034
150 0.043 0.048 0.051 0.045 0.047 0.051 0.043 0.042 0.039 0.040
200 0.040 0.046 0.055 0.052 0.047 0.055 0.049 0.045 0.044 0.044
250 0.039 0.041 0.048 0.053 0.051 0.057 0.053 0.055 0.058 0.059
300 0.042 0.045 0.045 0.050 0.048 0.055 0.054 0.048 0.052 0.056
350 0.037 0.042 0.047 0.052 0.050 0.051 0.047 0.045 0.048 0.052
400 0.035 0.045 0.052 0.047 0.051 0.048 0.053 0.054 0.052 0.050
450 0.038 0.041 0.045 0.046 0.045 0.047 0.049 0.052 0.050 0.048
500 0.039 0.043 0.047 0.052 0.048 0.048 0.051 0.055 0.046 0.051

*The data are simulated from model (6.31). #; = 0.8 and ¢; = 0.2.

Table 6.6: Bootstrap sizes of the proposed test L, at significant level 0.05 for

n time series generated from DGP 8.

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes
50 0.040 0.042 0.045 0.037 0.035 0.034 0.032 0.036 0.034 0.038
100 0.043 0.045 0.048 0.046 0.039 0.042 0.046 0.047 0.044 0.044
150 0.047 0.052 0.049 0.055 0.057 0.050 0.046 0.045 0.040 0.043
200 0.045 0.048 0.053 0.050 0.051 0.052 0.055 0.055 0.056 0.052
250 0.047 0.048 0.051 0.055 0.054 0.056 0.056 0.052 0.054 0.053
300 0.045 0.049 0.050 0.053 0.050 0.053 0.058 0.054 0.053 0.055
350 0.048 0.053 0.057 0.053 0.052 0.050 0.049 0.047 0.053 0.055
400 0.045 0.048 0.050 0.055 0.051 0.054 0.053 0.056 0.055 0.056
450 0.042 0.044 0.051 0.048 0.053 0.054 0.050 0.051 0.053 0.053
500 0.045 0.048 0.050 0.054 0.050 0.049 0.050 0.053 0.053 0.054

*The data are simulated from model (6.31). #; = 0.8 and ¢; = 0.2.



Chapter 6. Independence Test For Covariance Stationary Time

222

Series

Table 6.7: Empirical powers of the proposed test L, at significant level 0.05

for n time series with MA (1) type dependent structure.

n 50 100 200 300 350 400
Empirical sizes

50 0.210 0.279 0.429 0445 0.505 0.614
100 0.469 0.513 0.725 0.779 0.794  0.805
200 0.712 0.793 0.814 0.889 0.903 0.921
300 0.787 0.899 0.932 0.921 0.945 0.962
350 0.823 0.956 0.983 0.972 0.989 0.994
400 0.921  0.993 0.994 0.999 1.000. 0.999

*The data are simulated from model (6.32)). Each time series x; is generated from DGP

3 with 6; = 0.8 and ¢; = 0.2. In (6.32), we take § = 0.8.

Table 6.8: Empirical powers of the proposed test L, at significant level 0.05

for n time series with AR(1) type dependent structure.

n 50 100 200 300 350 400
Empirical sizes
50 0.656 0.720 0.714 0.801 0.823 0.842
100 0.792 0.824 0.846 0.891 0.907 0.917
200 0.858 0.889 0.922 0.926 0.954 0.985
300 0901 0.935 0.958 0.982 0.992 0.0.993
350 0.892. 0.970 0.992 0.995 0.999 0.999
400 0941 0.989 0.999 1.000 1.000 1.000

*The data are simulated from model (6.33]). Each time series x; is generated from DGP

3 with 6, = 0.8 and ¢; = 0.2. In (6.33), we take ¢ = 0.2.
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Table 6.9: Empirical powers of the proposed test L, at significant level 0.05
for n time series with ARMA(1,1) type dependent structure.

n 50 100 200 300 350 400

Empirical sizes
50 0.592 0.613 0.654 0.719 0.746 0.758
100 0.713 0.748 0.855 0.891 0.904 0.909
200 0.776 0.833 0.892 0.903 0.955 0.968
300 0.856 0.901 0.963 0.981 0.982 0.993
350 0.902 0.946 0.980 0.999 0.998 1.000
400 0.933 0.951 0.991 1.000 1.000 1.000

*The data are simulated from model (6.34). Each time series x; is generated from DGP

3 with 6; = 0.8 and ¢; = 0.2. In (6.34)), we take § = 0.8 and ¢ = 0.2.

Table 6.10: Empirical powers of the proposed test L, at 0.05 significance level

for the dynamic factor model.

(p,n) r=1 r=2 r=3 r=4
(50,50) 0.342 0.553 0.889 0.950
(50,100) 0.358 0.622 0.949 0.968
100,100) | 0.403 0.685 0.972 0.984

) | 0.526 0.741 0.983 0.998
300,200) | 0.557 0.763 0.987  1.000
)
)
)

200,100

(
(
(
(200,300) | 0.637 0.785 0.983  0.999
(100,200) | 0.656 0.791 0.988  0.999
(
(
(
(

200,400 0.671 0.785 0.990 0.999
400,200) | 0.685 0.768 0.991  1.000
100,300) | 0.682 0.784 0.980  1.000
300,100) | 0.701 0.782 0.989  1.000

*The data are simulated from model (6.35)) and (6.36]).
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Table 6.11: Empirical powers of the proposed test L, at significant level 0.05

for n random vectors with common random dependence.

n 50 70 90 110 130 150

Empirical sizes
50 0.894 0.920 0.923 0.942 0.966 0.959
70 0910 0.948 0.955 0.975 0.980 0.995
90 0.960 0.958 0.969 0.984 0.989 0.999
110  0.941 0956 0.984 0.992 0.994 1.000
130 0.930 0.972 0.990 0.995 0.999 1.000
150 0.952 0.980 0.989 1.000 1.000 1.000

*The data are simulated from model ([6.37)).

Table 6.12: Empirical powers of the proposed test L, at 0.05 significance level
for ARCH(1) dependent type.

(p,n) (0.9,0.1) | (0.8,0.2) | (0.7,0.3) | (0.6,0.4) | (0.5,0.5)

(50,50) 0.257 0.396 0.425 0.605 0.732
(50,100) 0.597 0.879 0.890 0.899 0.998
(100,200) | 0.727 0.978 0.997 0.998 0.999
(200,200) | 0.738 0.990 0.999 1.000 1.000
(200,300) | 0.828 0.992 0.998 1.000 1.000
(200,400) |  0.887 0.997 1.000 1.000 1.000
(300,400) |  0.906 1.000 1.000 1.000 1.000
(400,400) |  0.922 1.000 1.000 1.000 1.000

*The data are simulated from model ([6.38]).
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Table 6.13: L, under various scenarios for 5 randomly selected samples

(n,p) 5%critical values 1 2 3 4 5
(60,30) [0, 5.99] 305.44 | 462.76 | 481.85 | 443.79 | 481.46
(70,35) [0, 5.99] 595.84 | 642.31 | 620.96 | 592.63 | 632.87
(90,40) [0, 5.99] 902.55 | 928.89 | 1318.6 | 1173.9 | 914.25

*The critical values are the corresponding quantiles of the limiting distribution y?(2) of

the statistic L, for (n,p) = (60, 30), (70,35), (90, 40) respectively.






Chapter

Discussion and Future Research

7.1 Conclusion

This research work develops some independence tests for high dimensional data
by the tool of large dimensional random matrix theory. Two types of indepen-
dence tests are considered.

For the independence test between two high dimensional random vectors, we
propose linear spectral statistics of classical and regularized canonical correlation
matrices respectively. Moreover, the LSD’s and CLT’s for these matrices are
developed by discussing the Gaussian case and the general case respectively.

Regard to the independence test between a large number of high dimensional
random vectors, we have talked about three cases. When the components of
each random vector are i.i.d., we propose a linear spectral statistic by using the
characteristic function of the ESD of the sample covariance matrix. When each
random vector has a linear dependent structure or is a covariance stationary
process, the first two moments of the ESD of the sample covariance matrix are
utilized to do the independence test. As an independent contribution in random
matrix theory, the LSD and CLT are developed for the sample covariance matrix

whose columns are independent covariance stationary processes.
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For each independence test, some simulation results are provided to show the

effectiveness of our proposed test statistics.

7.2 Future Research

In high dimensional data analysis, more complicated data appear rather than
just i.i.d. or stationary processes. We will use large dimensional random matrix
theory to investigate more practical data which appear frequently in economic
or finance, such as co-integrated time series, etc.

As this research work focuses on independence test for high dimensional data,
some other problems arise once the null hypothesis is rejected. As more and
more sections are grouped together, the appearance of cross-sectional dependence
is quite natural and common. In view of this, measuring the degree of cross-
sectional dependence is more important than testing its presence. A natural
question is how to model dependence between a large number of random vectors?

Modeling and Estimation of dependence are one of our main future research work.
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