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1

Abstract

This thesis is concerned about statistical inference for high dimensional data

based on large dimensional random matrix theory, especially, independence

tests for high dimensional data.

The first problem we discussed is an independence test between two

high dimensional random vectors x : p1 × 1 and y : p2 × 1, each of which

has n random samples, i.e. {x1,x2, . . . ,xn} and {y1,y2, . . . ,yn} respec-

tively. A statistic is proposed based on the sum of squares of sample

canonical correlation coefficients. Fortunately, the squares of the sample

canonical correlation coefficients r2
1, r

2
2, . . . , r

2
p1

are eigenvalues of the ma-

trix Sxy = ( 1
n
XXT )−1 1

n
XYT ( 1

n
YYT )−1 1

n
YXT , where X = (x1,x2, . . . ,xn)

and Y = (y1,y2, . . . ,yn). From this point, the proposed statistic is a

linear spectral statistic for the matrix Sxy(This matrix is called canonical

correlation matrix). For this matrix, we investigate its limiting spectral dis-

tribution(LSD) and the central limit theorem(CLT) for its linear spectral

statistics.

Under the case of X and Y being Gaussian distributed and independent,

the LSD of Sxy has been provided in Wachter (1980). By using the Stieltjes

transform method and Lindeberg’s method, under the finite second moment

condition, we derive that the LSD of Sxy under the general case is the same

as that under the Gaussian case. The CLT for linear spectral statistics of

Sxy is also provided by a similar approach. Under the Gaussian case, the

empirical spectral distribution(ESD) of the matrix Sxy can be related to the

ESD of an F -matrix. Under the general case, by the interpolation method

and the general Stein’s equation provided in Lytova and Pastur (2009), we

conclude that the CLT is the same as that under the Gaussian case with

the assumption EX4
11 = 3.
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Apparently, the matrix Sxy only can be used under the restricted con-

dition of p1, p2 < n in order to make the matrices 1
n
XXT and 1

n
YYT

invertible. To overcome this drawback, we propose regularized canonical

correlation coefficients whose squares are eigenvalues of the regularized ma-

trix Txy = ( 1
n
XXT + tIp1)

−1 1
n
XYT ( 1

n
YYT )− 1

n
YXT , where t > 0, Ip1 is a

p1× 1 identity matrix and ( 1
n
YYT )− denotes the Moore-Penrose pseudoin-

verse matrix of 1
n
YYT . The LSD and CLT for the matrix Txy have been

provided in a similar way to those of Sxy.

Moreover, in order to derive the asymptotic theorem for the matrix Txy,

we develop a CLT for linear spectral statistics of a kind of random matrix

which is a sample covariance matrix plus a nonnegative definite matrix.

The second independence test is about testing independence among a

large number of high dimensional random vectors, i.e. detecting indepen-

dence among x1,x2, . . . ,xn, where xi is a p-dimensional random vector and

p is comparable to n. For this test, we propose a linear spectral statistic of

the sample covariance matrix S = 1
n
XXT with X = (x1,x2, . . . ,xn).

When each random vector xi, i = 1, 2, . . . , n consists of independent and

identical distributed(i.i.d.) components, based on the idea of the LSD of S

being Marcenko-Pastur law under the null hypothesis, we use the character-

istic function of the ESD of S to capture dependence between x1,x2, . . . ,xn.

Moreover, since the characteristic function contains a parameter t, we pro-

vide the asymptotic theorem for the linear spectral statistic process with

respect to the parameter t in any closed interval.

We also deal with this problem for random vectors which have relatively

more complicated structures. Each random vector xi, i = 1, 2, . . . , n has the

linear dependent structure xi = Twi or xi is a covariance stationary linear

process, where T is a nonnegative definite Hermitian matrix and wi is a p-
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dimensional random vector with i.i.d. components. We utilize the first two

moments of the ESD of the matrix S to construct test statistics. The CLT

for linear spectral statistics of S when xi = Twi has been provided in Bai

and Silverstein (2004) while the CLT for those when each xi is covariance

stationary is provided in this thesis by the interpolation trick proposed in

Lytova and Pastur (2009).

In summary, this thesis proposes some linear spectral statistics for inde-

pendence tests for high dimensional data and develop the asymptotic the-

oretical results. Some simulation results are also provided to demonstrate

the effectiveness of the proposed test statistics.





Chapter 1
Introduction

Recent technological innovations have brought explosion of data into many

scientific disciplines, including genomics, image processing, microarray, pro-

teomics and finance, to name but a few. In these areas the dimensionality

of the data p can be much larger than or at least comparable to the sample

size n. We focus on the scenario of p/n tending to a constant. This type of

data poses great challenges because traditional multivariate approaches do

not necessarily work, which were established for the case of the sample size

n tending to infinity and the dimension p remaining fixed (See Anderson

(1984)). There have been a substantial body of research work dealing with

high dimensional data, e.g. Bai and Saranadasa (1996), Fan et al. (2012),

Huang et al. (2008), Fan and Fan (2008), Bai and Ng (2002), Birke and

Dette (2005), etc.

The importance of the independence assumption for inference arises in

many aspects of multivariate analysis. For example, it is often the case in

multivariate analysis that a number of variables can be rationally classified

into several mutually exclusive categories. When variables can be grouped

in such a way, a natural question is whether there is any significant relation-
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ship between the groups of variables. In other words, can we claim that the

groups are mutually independent so that further statistics analysis such as

classification and testing hypothesis of equality of mean vectors and covari-

ance matrices could be conducted ? When the dimension p is fixed, Wilks

(1935) used the likelihood ratio statistic to test independence for k sets of

normal distributed random variables and one may also refer to Chapter 12

of Anderson (1984) regarding to this point.

In this thesis, we will investigate the independence test for high dimen-

sional data, including testing independence for any two large dimensional

random vectors and independence test between a large number of high di-

mensional random vectors. Large dimensional random matrix theory pro-

vides us with good tools to construct novel test statistics and develop their

asymptotic theory for high dimensional independence test. Thus we come

to the main purpose of the thesis in detail.

1.1 Canonical Correlation Analysis

The aim is to test the hypothesis

H0 : x and y are independent; against H1 : x and y are dependent, (1.1)

where x = (x1, . . . , xp1)
T and y = (y1, . . . , yp2)

T . Without loss of generality,

suppose that p1 ≤ p2.

It is well known that canonical correlation analysis (CCA) deals with

the correlation structure between two random vectors (see Chapter 12 of

Anderson (1984)). Draw n independent and identically distributed (i.i.d.)

observations from these two random vectors x and y, respectively and group

them into p1 × n random matrix X = (x1, · · · ,xn) = (Xij)p1×n and p2 × n
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random matrix Y = (y1, · · · ,yn) = (Yij)p2×n respectively. CCA seeks the

linear combinations aTx and bTy that are most highly correlated, that is

to maximize

γ = Corr(aTx,bTy) =
aTΣxyb√

aTΣxxa
√

bTΣyyb
, (1.2)

where Σxx and Σyy are the population covariance matrices for x and y

respectively and Σxy is the population covariance matrix between x and y.

After finding the maximal correlation r1 and associated vectors a1 and b1,

CCA continues to seek a second linear combination aT2 x and bT2 y that has

the maximal correlation among all linear combinations uncorrelated with

aT1 x and bT1 y. This procedure can be iterated and successive canonical

correlation coefficients γ1, . . . , γp1 can be found.

It turns out that the population canonical correlation coefficients γ1, . . . , γp1

can be recast as the roots of the determinant equation

det(ΣxyΣ−1
yyΣT

xy − γ2Σxx) = 0. (1.3)

About this point, one may refer to page 284 of Mardia et al. (1979). The

roots of the determinant equation above go under many names, because they

figure equally in discriminant analysis, canonical correlation analysis, and

invariant tests of linear hypotheses in the multivariate analysis of variance.

Traditionally, sample covariance matrices Σ̂xx, Σ̂xy and Σ̂yy are used

to replace the corresponding population covariance matrices to solve the

nonnegative roots ρ1, ρ2, . . . , ρp1 to the determinant equation

det(Σ̂xyΣ̂
−1

yyΣ̂
T

xy − ρ2Σ̂xx) = 0

where

Σ̂xx =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T , Σ̂xy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ)T ,



8 Chapter 1. Introduction

Σ̂yy =
1

n

n∑
i=1

(yi − ȳ)(yi − ȳ)T , x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi.

However, it is inappropriate to use these types sample covariance matrices

to replace population covariance matrices to test (1.1) in some cases. We

demonstrate such an example in Section 3.4.4.

Therefore, in this part we instead consider the nonnegative roots r1, r2, . . . , rp1

of an alternative determinant equation as follows

det(AxyA−1
yyAT

xy − r2Axx) = 0, (1.4)

where

Axx =
1

n
XXT , Ayy =

1

n
YYT , Axy =

1

n
XYT .

We also call Axx, Ayy and Axy sample covariance matrices, as in the ran-

dom matrix community. However, whichever sample covariance matrices

are used they are not consistent estimators of population covariance ma-

trices, which is called ‘curses of dimensionality’, when the dimensions p1

and p2 are both comparable to the sample size n. As a consequence it is

conceivable that the classical likelihood ratio statistic (see Wilks (1935) and

Anderson (1984)) does not work well in the high dimensional case (in fact,

it is not well defined and we will discuss this point in the later section).

Moreover, from (1.4), one can see that r2
1, r

2
2, . . . , r

2
p1

are the eigenvalues

of the matrix

Sxy = A−1
xxAxyA−1

yyAT
xy. (1.5)

Evidently A−1
xx and A−1

yy do not exist when p1 > n and p2 > n. For this

reason, we also consider the eigenvalues of the regularized matrix

Txy = A−1
tx AxyA−yyAT

xy, (1.6)
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where A−1
tx = ( 1

n
XXT + tIp1)

−1, t is a positive constant number and Ip1 is

a p1 × p1 identity matrix, and A−yy denotes the Moore-Penrose pseudoin-

verse matrix of Ayy. Since Txy is not a symmetric matrix we consider its

symmetric version

Bn = P̃yPtxP̃y, (1.7)

where P̃y = 1
n
YT ( 1

n
YYT )−Y and Ptx = 1

n
XT ( 1

n
XXT + tIp1)

−1X. The

projection matrix P̃y is unique when p2 > n . Hence Txy is well defined

even in the case of p1, p2 ≥ n. Moreover Txy reduces to Sxy when p1, p2 are

both smaller than n and t = 0. Here a natural question may be asked: why

we use a regularized version in Ptx and a generalized inverse in P̃y? This

choice totally comes from technical convenience. In the proofs of asymptotic

theorems, we will need treat P̃y as a project matrix and wonder an identity

matrix from multiplying 1
n
XXT by its inverse.

We now look at CCA from another perspective. The original random

vectors x and y can be transformed into new random vectors ξ and η as

( x

y

)
→
( ξ
η

)
=
( A′ 0

0 B′
)( x

y

)
(1.8)

such that

( A′ 0

0 B′
)( Σxx Σxy

Σyx Σyy

)( A 0

0 B

)
=
( Ip1 P

P ′ Ip2

)
, (1.9)

where P = (P1,0), P1 = diag(γ1, . . . , γp1) and A = Σ−1/2
xx Q1, B =

Σ−1/2
yy Q2, with Q1 : p1 × p1 and Q2 : p2 × p2 being orthogonal matrices

satisfying

Σ−1/2
xx ΣxyΣ−1/2

yy = Q1PQ2.
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Hence testing independence between x and y is equivalent to testing in-

dependence between ξ and η. The covariance between ξ and η has the

following simple expression

V ar
( ξ
η

)
=
( Ip1 P

P ′ Ip2

)
. (1.10)

In view of this, independence between x and y is equivalent to asserting

that the population canonical correlations all vanish: γ1 = · · · = γp1 = 0

if the joint distribution of x and y is Gaussian. Details can be referred to

Chapter 11 of Fujikoshi et al. (2010). A natural criteria for this test should

be
∑p1

i=1 γ
2
i .

As pointed out, ri is not a consistent estimator of the corresponding

population version γi in the high dimensional case. However, fortunately,

the classical sample canonical correlation coefficients r1, r2, . . . , rp1 or its

regularized analogous still contain important information so that hypothesis

testing for (1.1) is possible although the classical likelihood ratio statistic

does not work well in the high dimensional case. This is due to the fact

that the limits of the empirical spectral distribution (ESD) of r1, · · · , rp1
under the null and the alternative are different so that we may use it to

distinguish dependence from independence (one may see the next section).

Our approach essentially makes use of the integral of functions with respect

to the ESD of canonical correlation coefficients. The proposed statistic

turns out a trace of the corresponding matrices, i.e.
∑p1

i=1 r
2
i .

In addition to proposing a statistic for testing (1.1), another contribu-

tion of this part is to establish the limit of the ESD of regularized sample

canonical correlation coefficients and central limit theorems (CLT) of lin-

ear functionals of the classical and regularized sample canonical correlation

coefficients r1, r2, . . . , rp1 respectively. This is of an independent interest
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in its own right in addition to providing asymptotic distributions for the

proposed statistics.

To derive the CLT for linear spectral statistics of classical and regular-

ized sample canonical correlation coefficients, the strategy is to first estab-

lish the CLT under the Gaussian case, i.e. the entries of X are Gaussian

distributed. In the Gaussian case, the CLT for linear spectral statistics

of the matrix Sxy can be linked to that of an F -matrix, which has been

investigated in Zheng (2012). We then extend CLT to the general distri-

butions by bounding the difference between the characteristic functions of

the respective linear spectral statistics of Sxy under the Gaussian case and

nonGaussian case. To bound such a difference and handle the inverse of a

random matrix we use an interpolation approach and a smooth cutoff func-

tion. The approach of developing the CLT for linear spectral statistics of

the matrix Txy is similar except we first have to develop CLT of perturbed

sample covariance matrices in another chapter for establishing CLT of the

matrix Sxy when the entries of X are Gaussian.

One point to be stressed is that, in order to derive the asymptotic the-

orem for the matrix Txy, we need the CLT for linear spectral statistics of

a kind of random matrix which is the sum of one sample covariance matrix

and a nonnegative definite matrix. This kind of matrix plays an important

role in random matrix theory and we have also provided it in this thesis.

Here we would point out some works on canonical correlation coefficients

under high dimensional scenario. In the high dimensional case Wachter

(1980) investigated the limit of the empirical spectral distribution function

of the classical sample canonical correlation coefficients r1, r2, . . . , rp1 and

Johnstone (2008) established the Tracy-Widom law of the maximum of

sample correlation coefficients when Axx and Ayy are Wishart matrices
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and x, y are independent.

1.2 Independence test for random vectors

with i.i.d components

Suppose that {Xji, j = 1, . . . , n; i = 1, . . . , p} are real–valued random vari-

ables. For 1 ≤ i ≤ p, let xi = (X1i, · · · , Xni)
T denote the i–th vector of

random variables and (x1, · · · ,xp) be a matrix of p vectors of random vari-

ables, where n usually denotes the sample size in each of the time series

data. In both theory and practice, it may be unrealistic to assume that

x1,x2, · · · ,xp are independent or even uncorrelated. This is because there

is no natural ordering for cross–sectional indices. There are such cases in

various disciplines. In economics and finance, for example, it is not un-

reasonable to expect that there is significant evidence of cross–sectional

dependence in output innovations across p countries and regions in the

world. In the field of climatology, there is also some evidence to show that

climatic variables at different stations may be cross–sectionally dependent

and the level of cross–sectional dependence may be determined by some

kind of physical distance. Moreover, one would expect that climatic vari-

ables, such as temperature and rainfall variables, in a station in Australia

have higher–level dependence with the same type of climatic variables in a

station in New Zealand than those in the United States.

In such situations, it may be necessary to test whether x1,x2, · · · ,xp
are independent before a statistical model is used to fit such data. In the

econometrics and statistics literature, several papers have basically consid-

ered testing for cross–sectional uncorrelatedness for the residuals involved
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in some specific regression models. Such studies include Pesaran (2004) for

the parametric linear model case, Hsiao, Pesaran and Pick (2007) for the

parametric nonlinear case, and Chen, Gao and Li (2012) for the nonpara-

metric nonlinear case. Other related papers include Su and Ullah (2009) for

testing conditional uncorrelatedness through examining a covariance matrix

in the case where p is fixed. The main purpose of this part is to propose

using an empirical spectral distribution function based test statistic for in-

dependence of x1,x2, · · · ,xp.

The aim is to test

H0 : x1, · · · ,xp are independent; against H1 : x1, · · · ,xp are not independent,

(1.11)

where xi = (X1i, . . . , Xni)
T for i = 1, . . . , p.

In time series analysis, mutual independence test for multiple time series

has long been of interest. Moreover, time series always display various kinds

of dependence. For example, an autoregressive conditional heteroscedastic

(ARCH(1)) model involves a martingale difference sequence (MDS); a non-

linear moving average (MA) model is not a MDS, but its autocorrelations

are zero; a linear moving average (MA) model and an autoregressive (AR)

model are both models with correlated structures. In this part, we also

employ the proposed statistic to test dependence for multiple time series.

Section 8.5 of Anderson (1984) also considers a similar problem but with the

dimensionality being fixed. His problem and approach are as follows. Let

the pm-component vector x be distributed according to N(µ,Σ). Partition

x into p subvectors with m components respectively, that is,
(
hT1 , · · · ,hTp

)T
,

and partition Σ as p2 submatrices, that is, Σ = (Σij) with each Σij being

m×m.
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To tackle the problem above, draw n observations from the population x

to form a sample covariance matrix. The likelihood ratio criterion proposed

is

λ =
|Q| 12n∏p

i=1 |Qii|
1
2
n
,

where Q = (Qik) with Qik being the sample covariance matrix of the ran-

dom vectors hi and hk.

Our approach essentially uses the characteristic function of the empiri-

cal spectral distribution of sample covariance matrices in large dimensional

random matrix theory. Unlike the Anderson’s test, we need not re–draw

observations from the set of vectors of x1, · · · ,xp due to the high dimen-

sionality.

1.3 Independence test for linear dependent

structures and covariance stationary pro-

cesses

Testing cross-sectional dependence between a large number of high–dimensional

random vectors attracts great interest in high dimensional statistical anal-

ysis, especially in longitudinal data and panel data analysis (Frees (1995);

Mundlak (1978); Hsiao et al. (2009); Sarafidis et al. (2009); Chen et al.

(2012)). In longitudinal data or panel data analysis, one of the key rea-

sons of pooling the data together is to overcome the aggregation problems

that arise with dependent data in modelling the behaviour of heterogenous

agents on the basis of the representative assumption. In multivariate time

series analysis, elucidation of various causalities between time series is vital

to forecasting and prediction. Compared with the literature focusing on
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detecting serial dependence within a univariate time series, relatively few

studies have been done to capture dependence between time series (Haugh

(1976); Geweke (1993); Hong (1996)). Moreover, the goal of these papers

is restricted to investigating dependence between two covariance stationary

time series.

Mutual independence is difficult to test while nonlinear dependence is

also not easy to detect. Mutual independence is more demanded than pair-

wise independence. One conventional measure of linear dependence is the

correlation function, which may overlook nonlinear dependent structures

that have zero correlations, e.g. Hong (1996). Another useful tool is to

utilize the equivalence of the joint distribution and the product of the cor-

responding marginal distributions under independent case (see Hong (2000);

Hong (2005)). Of course, this method can capture all kinds of dependence

types since it is a sufficient and necessary condition of independence. How-

ever, it is just applicable to pairwise independence test rather than mutual

independence test for a large number of high–dimensional random vectors.

Hong (1999) developed a generalized spectral density approach via the em-

pirical characteristic function for serial independence test of one time series.

This method is also applicable to some types of linear and nonlinear depen-

dencies but only works for detecting pairwise dependence.

In this part, we propose a novel test statistic to test mutual indepen-

dence for n random vectors of length p when n and p are comparable.

Since there are n × p observed data available, we pool them together to

form a data matrix so that some features of the data matrix to investigate

independence among the initial n random vectors can be utilized. Large

dimensional random matrix theory then serves as a powerful tool to inves-

tigate such a matrix. Specifically speaking, we group the n random vectors
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into a matrix X = (x1,x2, . . . ,xn) and then consider the empirical spectral

distribution (ESD) of the eigenvalues of the corresponding sample covari-

ance matrix S = 1
n
XXT , where xi, i = 1, 2 . . . , n are the observed n time

series, each being of length p, i.e. xi = (X1i, X2i, . . . , Xpi)
′
. Here we would

like to point out that there have been a substantial set of research works

dealing with high dimensional data by random matrix theory (see, for ex-

ample, Ledoit and Wolf (2002), Johnstone (2001), Birke and Dette (2005)

and Yao (2012)). Our approach essentially uses the ESD of the sample

covariance matrix S for n random vectors to distinguish dependence from

independence. Our discussion covers both the case where the random vec-

tors are n covariance stationary time series and the case where the random

vectors are vectors of linear combinations of independent random variables.

To study the size of the proposed test we first establish the limiting

spectral distribution(LSD), i.e. the limit of the ESD of the sample covari-

ance matrix S under the finite second moment condition on the components.

This generalizes the result of Yao (2012), which obtained the LSD under the

finite fourth moment condition. Moreover, for the first time we establish

a central limit theorem (CLT) for linear spectral statistics of the sample

covariance matrices whose columns are covariance stationary time series

under the finite fourth moment condition on the time series components.

This CLT complements the classical result of linear spectral statistics of the

sample covariance matrices of the independent random vectors with i.i.d.

components or linear independent structure (see Bai and Silverstein (2009)

and Lytova and Pastur (2009)).

As stated above, correlation functions are useful enough for describing

linear dependence but can not detect all sorts of nonlinear dependencies.

To some extent, our proposed test statistic is also based on a correlation
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structure, i.e. the sample covariance matrix. A natural question is how

our test performs under all sorts of dependent structures. For the Gaussian

case, the sample covariance matrix of a linear covariance stationary time

series can be written in the form of S1 = 1
n
T

1/2
1 YY

′
T

1/2
1 , where T1 is a

p× p nonnegative positive Hermitian deterministic matrix and Y is a p×n

random matrix with i.i.d. components. If the cross–sectional dependence

can be described as 1
n
T

1/2
1 YT2Y

′
T

1/2
1 with T2 being an n × n Hermitian

deterministic matrix, the limit of its ESD is then given in Theorem 1.2.1

of Zhang (2006), which is different from the limit of the ESD of S1 corre-

sponding to the independent case. In view of this, our test is able to capture

this type of dependent structure. In panel data analysis, the issue of how

to characterize cross–sectional dependence attracts great attention among

researchers. Spatial models and factor models are two commonly used de-

pendent structures. The simulation given in Section 4 below shows that

the proposed test can be applied to these two types of dependence. Finite

sample simulations illustrate that the proposed test can also detect some

kinds of nonlinear dependence with zero correlations except the “ARCH”

dependence. To detect the ARCH dependence we use high power of entries

Xji instead of Xji so that the test statistic still works.

1.4 Thesis Outline

The main content of the thesis is organized as follows.

• In Chapter 2, we provide the LSD of the canonical correlation matrix

as the dimensions p1, p2 are comparable to the sample size n.

• In Chapter 3, the CLT for the linear spectral statistics of the classical
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canonical correlation matrix is provided. Moreover, the regularized

canonical correlation matrix is proposed. The LSD and CLT of the

regularized matrix are investigated.

• In Chapter 4, in order to satisfy the necessity of Chapter 3, we inves-

tigate a perturbation matrix which is a sample covariance matrix plus

a nonnegative definite matrix and provide the CLT for linear spectral

statistics of this kind of matrices.

• In Chapter 5, independence test for a large number of high dimen-

sional random vectors with i.i.d. components is investigated and the

proposed statistic is based on the characteristic function of the ESD

of the corresponding sample covariance matrix.

• In Chapter 6, we provide the LSD and CLT for linear spectral statis-

tics of sample covariance matrices whose columns are independent

covariance stationary processes. Based on the first two moments of

the ESD of the sample covariance matrices, we propose a novel statis-

tic for independence test for a large number of covariance stationary

time series. Moreover, the proposed test can be applied to a large

number of random vectors with linear dependent structures.



Chapter 2
Limiting Spectral Distribution Of

Canonical Correlation Coefficients

2.1 Introduction

Canonical correlation analysis(CCA) deals with the relationship between

two random variable sets. Suppose that there are two random variable

sets: x = {x1, . . . , xp1}, y = {y1, . . . , yp2}, where p1 ≤ p2. Assume that

there are n observations for each of the p1 + p2 variables and they are

grouped into p1 × n random matrix X = (Xij)p1×n and p2 × n random

matrix Y = (Yij)p2×n respectively. CCA seeks the linear combinations aTx

and cTy that are most highly correlated, that is to maximize

r = Corr(aTx, cTy) =
aTΣxyc√

aTΣxxa
√

cTΣyyc
, (2.1)

where Σxx, Σyy are population covariance matrices for x, y respectively;

Σxy is the population covariance matrix between x and y.

After finding the maximal correlation r1 and associated combination

vectors a1, c1, CCA considers seeking a second linear combination aT2 x,
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cT2 y that has the maximal correlation among all linear combinations un-

correlated with aT1 x, cT1 y. This procedure can be iterated and successive

canonical correlation coefficients r1, . . . , rp1 can be found. Substituting pop-

ulation covariance matrices with sample covariance matrices, r1, . . . , rp1 can

be recast as the roots of the determinant equation

det(AxyA
−1
y AT

xy − r2Ax) = 0, (2.2)

where

Ax =
1

n
XXT , Ay =

1

n
YYT , Axy =

1

n
XYT .

About this point, one may refer to page 284 of Mardia et al. (1979). The

roots of the determinant equation above go under many names, because they

figure equally in discriminant analysis, canonical correlation analysis, and

invariant tests of linear hypotheses in the multivariate analysis of variance.

These are standard techniques in multivariate statistical analysis. Section

4 of Wachter (1980) described how to transform these statistical settings to

the determinant equation form. Johnstone (2008) also gave its applications

in these aspects in multivariate statistical analysis.

The empirical distribution of the canonical correlation coefficients

r1, r2, · · · , rp1 is defined as

F (x) =
1

p1

#{i : ri ≤ x}, (2.3)

where #{· · · } denotes the cardinality of the set {· · · }. When the two

variable sets x and y are independent and each set consists of i.i.d Gaus-

sian random variables, Wachter (1980) proved that the empirical distri-

bution of r1, r2, · · · , rp1 converges in probability and obtained an explicit

expression for the limit of the empirical distribution when p1, p2 and n are

all approaching infinity. From the determinant equation (2.2), it can be
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seen that λ1 = r2
1, λ2 = r2

2, . . . , λp1 = r2
p1

are eigenvalues of the matrix

Sxy = A−1
x AxyA

−1
y AT

xy. Hence the analysis of the empirical distribution of

r1, r2, · · · , rp1 is equivalent to analyzing the ESD of the matrix Sxy. Here

for any p × p matrix A with real eigenvalues x1 ≤ x2 ≤ . . . ≤ xp, its ESD

is defined as

FA(x) =
1

p
#{i : xi ≤ x}. (2.4)

The aim of this chapter is to prove that the result in Wachter (1980)

remains true when the entries of X and Y have finite second moments but

not necessarily Gaussian distribution.

Theorem 1. Assume that

(a) X = (Xij)1≤i≤p1,1≤j≤n where Xij, 1 ≤ i ≤ p1, 1 ≤ j ≤ n, are i.i.d real

random variables with EX11 = 0 and E|X11|2 = 1.

(b) Y = (Yij)1≤i≤p2,1≤j≤n where Yij, 1 ≤ i ≤ p2, 1 ≤ j ≤ n are i.i.d real

random variables with EY11 = 0 and E|Y11|2 = 1.

(c) p1 = p1(n) and p2 = p2(n) with p1
n
→ c1 and p2

n
→ c2, c1, c2 ∈ (0, 1), as

n→∞.

(d) Sxy = A−1
x AxyA

−1
y AT

xy where Ax = 1
n
XXT , Ay = 1

n
YYT and Axy =

1
n
XYT .

(e) X and Y are independent.

Then as n → ∞ the empirical distribution of the matrix r1, r2, · · · , rp1
converges almost surely to a fixed distribution function whose density is

ρ(r) = ((r−L)(r+L)(H−r)(H+r))
1
2/[πc1r(1−r)(1+r)], r ∈ [L,H], (2.5)

where L = |(c2− c2c1)
1
2 − (c1− c1c2)

1
2 | and H = (c2− c2c1)

1
2 + (c1− c1c2)

1
2 ;

and atoms of size max(0, 1− c2/c1) at zero and size max(0, 1− (1− c2)/c1)

at unity.
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Remark 1. The inverse of a matrix, such as A−1
x and A−1

y , is the moore-

penrose pseudoinverse, i.e. in the spectral decomposition of the initial ma-

trix, replace each nonzero eigenvalue by its reciprocal and leave the zero

eigenvalues alone. This is because under the finite second moment con-

dition, the matrices Ax and Ay may be not invertible under the classical

inverse matrix definition. However, with the additional assumption that

EX4
11 < ∞ and EY 4

11 < ∞, we have the conclusion that the smallest

eigenvalues of the sample matrices Ax and Ay converge to (1−√c1)2 and

(1−√c2)2 respectively[Theorem 5.11 of Bai and Silverstein (2009)], which

are not zero since c1, c2 ∈ (0, 1). So Ax and Ay are invertible with proba-

bility one under the finite fourth moment condition.

As stated previously, it is sufficient to analyze the limiting spectral dis-

tribution(LSD) of the matrix Sxy, where LSD denotes the limit of the em-

pirical spectral distribution as n→∞.

The strategy of the proof of Theorem 1 is as follows. Since the matrix

Sxy is not symmetric, it is difficult to work on it directly. Instead we consider

the n× n symmetric matrix

PyPxPy (2.6)

where

Px = XT (XXT )−1X, Py = YT (YYT )−1Y.

Note that Px and Py are projection matrices. Let Oxy = (XXT )−1XYT (YYT )−1Y.

Then Sxy = OxyX
T and PxPy = XTOxy. By the property that for any

two matrices A and B, the nonzero eigenvalues of AB are the same as

the nonzero eigenvalues of BA, we can derive that, the eigenvalues of the

matrix PxPy are the same as those of the matrix Sxy other than n − p1

zero eigenvalues. Moreover by the fact that P2
y = Py, PyPxPy and PxPy
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also have the same nonzero eigenvalues. So the eigenvalues of the matrix

PyPxPy are the same as those of the matrix Sxy other than n − p1 zero

eigenvalues, i.e.

FPyPxPy(x) =
p1

n
FSxy(x) +

n− p1

n
I[0,+∞)(x). (2.7)

By (2.7) and the result in Wachter (1980), one can easily obtain the limit

of FPyPxPy(x) when the entries of X and Y are Gaussian distributed. To

move from the Gaussian case to non-Gaussian case, we mainly use Lin-

deberg’s method (see Lindeberg (1922) and Chatterjee (2006)) and the

Stieltjes transform. The Stieltjes transform for any probability distribu-

tion function G(x) is defined as

mG(z) =

∫
1

x− z
dG(x), z ∈ C+ ≡ {z ∈ C, v = Imz > 0}. (2.8)

An additional key technique is to introduce a perturbation matrix in

order to deal with the random matrix (XXT )−1 under the finite second

moment condition.

2.2 Proof of Theorem 1

We divide the proof of Theorem 1 into 4 parts:

2.2.1 Step 1: Introducing a perturbation matrix

Let

A = PyPxPy.

In view of (2.7) it is enough to investigate FA to prove Theorem 1. In order

to deal with the matrix (XXT )−1, we make a perturbation of the matrix A
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and obtain a new matrix

B = PyPtxPy,

where Ptx = 1
n
XT ( 1

n
XXT + tIp1)

−1X, t > 0 is a small constant number and

Ip1 is the identity matrix of the size p1.

We claim that, with probability one,

lim
t→0

lim
n→∞

L
(
FA, FB

)
= 0. (2.9)

where L(FA, FB) is Levy distance between two distribution functions FA(λ)

and FB(λ). By Lemma 6 in the Appendix,

L3(FA, FB) ≤ 1

n
tr(A−B)2 ≤ 1

n
tr(Px −Ptx)

2

=
1

n
tr
( 1

n
XXT [(

1

n
XXT )−1 − (

1

n
XXT + tIp1)

−1]
)2

≤ t2

n
tr(

1

n
XXT + tIp1)

−2, (2.10)

where the second inequality uses the fact that ||Py|| = 1 with the norm

being the spectral norm and the last inequality uses the spectral decompo-

sition of the matrix 1
n
XXT , i.e.

1

n
XXT [(

1

n
XXT )−1 − (

1

n
XXT + tIp1)

−1]

= UT



µ1

. . .

µm

0

. . .

0


UUT



t
µ1(µ1+t)

. . .

t
µm(µm+t)

−1
t

. . .

−1
t


U
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= UT



t
µ1+t

. . .

t
µm+t

0

. . .

0


U (2.11)

with that µ1, . . . , µm are the nonzero eigenvalues of the matrix 1
n
XXT and

the columns of UT are the eigenvectors of the matrix 1
n
XXT .

Given t > 0, by Theorem 3.6 in Bai and Silverstein (2009) (or see Jons-

son (1982) and Marcenko and Pastur (1967)) and the Helly-Bray theorem,

we have with probability one

1

n
tr(

1

n
XXT + tIp1)

−2 =
p1

n

∫
1

(λ+ t)2
dFp1(λ)→ c1

∫ b

a

1

(λ+ t)2
dFc1(λ)

=

∫ b

a

√
(b− λ)(λ− a)

(λ+ t)22πλ
dλ ≤

∫ b

a

√
(b− λ)(λ− a)

λ32π
dλ ≤M,

where Fp1 is the ESD of the sample matrix 1
n
XXT , Fc1 is the Marcenko-

Pastur Law, b = (1 +
√
c1)2 and a = (1−√c1)2. Here and in what follows

M stands for a positive constant number and it may be different from line

to line. This, together with (2.10), implies (2.9), as claimed.

Let B̄ and Ā, respectively, denote analogues of the matrices B and A

with the elements of X replaced by i.i.d. Gaussian distributed random

variables, independent of the entries of Y. By (2.9) and the fact that, for

any λ ∈ R,

|FA(λ)− F Ā(λ)| ≤ |FA(λ)− FB(λ)|+ |FB(λ)− F B̄(λ)|+ |F B̄(λ)− F Ā(λ)|,

in order to prove that, for any fixed t > 0, with probability one,

lim
n→∞

|FA(λ)− F Ā(λ)| = 0, (2.12)
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it suffices to prove with probability one,

lim
n→∞

|FB(λ)− F B̄(λ)| = 0. (2.13)

If we have (2.12), then for any λ ∈ R, with probability one,

lim
n→∞

|FPxPy(λ)− FPgxPy(λ)| = 0. (2.14)

Since Py and Px stand symmetric positions in the matrix PxPy, as in (2.12)

and (2.14), one can similarly prove that for any λ ∈ R, with probability one,

lim
n→∞

|FPgxPy(λ)− FPgxPgy(λ)| = 0, (2.15)

where Pg
y is obtained from the matrix Py with all the entries of Y replaced

by i.i.d Gaussian distributed random variables, independent of Pg
x. Then

(2.14) and (2.15) imply that for any λ ∈ R, with probability one,

lim
n→∞

|FPxPy(λ)− FPgxPgy(λ)| = 0. (2.16)

With the theorem obtained in Wachter (1980) and (2.16), our theorem is

easily derived.

Hence the subsequent parts are devoted to proving (2.13).

2.2.2 Step 2: Truncation, Centralization, Rescaling

and Tightness of FB

With (1.8) of Bai and Silverstein (2004) and the arguments above and

below, we can choose εn > 0 such that εn → 0, n1/2εn → ∞ as n → ∞,

and P (|Xij| ≥ n1/2εn) ≤ εn
n

. Define

X̃ij = XijI(|Xij| < n1/2εn), X̂ij = X̃ij − EX̃11,



2.2 Proof of Theorem 1 27

Ptx =
1

n
XT (

1

n
XXT + tIp1)

−1X, P̃tx =
1

n
X̃T (

1

n
X̃X̃T + tIp1)

−1X̃,

P̂tx =
1

n
X̂T (

1

n
X̂X̂T + tIp1)

−1X̂, B̃ = PyP̃txPy, B̂ = PyP̂txPy,

where X̃ = (X̃ij)1≤i≤p1;1≤j≤n and X̂ = (X̂ij)1≤i≤p1;1≤j≤n.

Let ηij = 1−I(|Xij| < n1/2εn). We then get by Lemma 4 in the appendix

sup
λ
|FB(λ)− F B̃(λ)| ≤ 1

n
rank(PyPtxPy −PyP̃txPy) ≤

1

n
rank(Ptx − P̃tx)

≤ 1

n
[rank(XT − X̃) + rank(XXT − X̃X̃T ) + rank(X− X̃T )] ≤ 4

n

p1∑
i=1

n∑
j=1

ηij.

Denote q = P (ηij = 1) = P (|Xij| ≥ n1/2εn). We conclude from Lemma 5

that for any δ > 0,

P (sup
λ
|FB(λ)− F B̃(λ)| ≥ δ) ≤ P (

1

n

p1∑
i=1

n∑
j=1

ηij ≥ δ)

= P (

p1∑
i=1

n∑
j=1

ηij − np1q ≥ np1(
δ

p1

− q))

≤ 2exp
(
−

n2p2
1( δ
p1
− q)2

2np1q + np1( δ
p1
− q)

)
≤ 2exp(−nh),

for some positive h. It follows from Borel-Cantelli’s lemma that

sup
λ
|FB(λ)− F B̃(λ)| → 0, a.s. as n→∞.

Next, we prove that

sup
λ
|F B̂(λ)− F B̃(λ)| → 0, a.s. as n→∞. (2.17)

Again by Lemma 4 we have

sup
λ
|F B̂(λ)− F B̃(λ)| ≤ 1

n
rank(B̂− B̃) ≤ 1

n
rank

[
P̂tx − P̃tx

]
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≤ 1

n
rank

[ 1

n
X̃T
(

(
1

n
X̂X̂T + tIp1)

−1 − (
1

n
X̃X̃T + tIp1)

−1
)
X̃
]

+
1

n
rank

[ 1

n
X̃T (

1

n
X̂X̂T +tIp1)

−1EX̃
]
+

1

n
rank

[ 1

n
(EX̃T )(

1

n
X̂X̂T +tIp1)

−1X̃
]

+
1

n
rank

[ 1

n
(EX̃T )(

1

n
X̂X̂T + tIp1)

−1EX̃
]
.

Since all elements of EX̃ are identical, rank
(
EX̃

)
= 1. Moreover, from

(2.19)

(
1

n
X̂X̂T + tIp1)

−1 − (
1

n
X̃X̃T + tIp1)

−1

= (
1

n
X̃X̃T + tIp1)

−1(
1

n
X̃X̃T − 1

n
X̂X̂T )(

1

n
X̂X̂T + tIp1)

−1

=
1

n
(
1

n
X̃X̃T + tIp1)

−1(−EX̃EX̃T + X̃EX̃T + (EX̃)X̃T )(
1

n
X̂X̂T + tIp1)

−1.

Hence

sup
λ
|F B̂(λ)− F B̃(λ)| ≤ M

n
→ 0.

Let σ̂2 = E(|X̂ij|2) and ˆ̂B = 1
nσ̂2 X̂

T ( 1
nσ̂2 X̂X̂T + tIp1)

−1X̂. Then by

Lemma 6, we have

L3(F B̂, F
ˆ̂B) ≤ 1

n
tr(B̂−ˆ̂B)2

=
(σ̂2 − 1)2t2

n
tr
( 1

n
X̂X̂T (

1

n
X̂X̂T + σ̂2tIp1)

−1(
1

n
X̂X̂T + tIp1)

−1
)2

=
(σ̂2 − 1)2t2

n
tr
(

(
1

n
X̂X̂T + σ̂2tIp1 − σ̂2tIp1)(

1

n
X̂X̂T + σ̂2tIp1)

−1(
1

n
X̂X̂T + tIp1)

−1
)2

=
(σ̂2 − 1)2t2

n
tr
(

(
1

n
X̂X̂T + tIp1)

−1 − σ̂2t(
1

n
X̂X̂T + σ̂2tIp1)

−1(
1

n
X̂X̂T + tIp1)

−1
)2

≤ (σ̂2 − 1)2t2

n
p1

(
||( 1

n
X̂X̂T + tIp1)

−1||

+σ̂2t||( 1

n
X̂X̂T + σ̂2tIp1)

−1|| · ||( 1

n
X̂X̂T + tIp1)

−1||
)2

≤ (σ̂2 − 1)2t2

n
p1

4

t2
→ 0,
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because σ̂2 → 1 and p1/n→ c1 as n→∞; where the first equality uses the

formula (2.19); the second inequality uses the matrix inequality that

tr(C) ≤ p1||C||,

holding for any p1 × p1 normal matrix C; and the last inequality uses the

fact that

||( 1

n
X̂X̂T + σ̂2tIp1)

−1|| ≤ 1

σ̂2t
, ||( 1

n
X̂X̂T + tIp1)

−1|| ≤ 1

t
.

In view of the truncation, centralization and rescaling steps above, in

the sequel, we shall assume that the underlying variables satisfy

|Xij| ≤ n1/2εn, EXij = 0, EX2
ij = 1, (2.18)

and for simplicity we shall still use notation Xij instead of X̂ij.

We now turn to investigating the tightness of FB. For any constant

number K > 0,∫
λ>K

dFB ≤ 1

K

∫
λdFB =

1

K

1

n
tr[PyPtxPy]

Since the largest eigenvalue of Py is 1 and Ptx is a nonnegative matrix we

obtain

tr[PyPtxPy] = tr[PyPtx]

≤ tr[Ptx] = tr[
1

n
XXT (

1

n
XXT + tIp1)

−1] ≤ n.

The last inequality has used the facts that t > 0 and that all the eigenvalues

of 1
n
XXT ( 1

n
XXT + tIp1)

−1 are less than 1.

It follows that FB is tight.
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2.2.3 Step 3: Convergence of the random part

Let

B−1(z) = (PyPtxPy − zI)−1.

The aim in this section is to prove that

1

n
trB−1(z)− E 1

n
trB−1(z)→ 0 a.s. as n→∞.

To this end we introduce some notation. Let xk denote the kth column

of X and ek the column vector of the size of p1 with the kth element being

1 and otherwise 0. Moreover, define Xk to be the matrix obtained from X

by replacing the elements of the kth column of X with 0.

Fix v = Tz > 0. Define Fk to be the σ-field generated by x1, · · · ,xk.

Let Ek(·) denote the conditional expectation with respect to Fk and E0

denote expectation. That is, Ek(·) = E(·|Fk) and E0(·) = E(·). Let

Bk = PyP
tx
k Py, B−1

k (z) = (PyP
tx
k Py − zI)−1,

where Ptx = 1
n
XT ( 1

n
XXT + tIp1)

−1X, Ptx
k = 1

n
XT
k ( 1

n
XkX

T
k + tIp1)

−1Xk.

Define H−1
k = ( 1

n
XkX

T
k + tIp1)

−1 and H−1 = ( 1
n
XXT + tIp1)

−1.

Note that X = Xk + xke
T
k , that the elements of Xkek are all zero and

hence that

XXT −XkX
T
k = xkx

T
k .

This implies that

H−1
k −H−1 =

1

n
H−1xkx

T
kH−1

k =
1

1 + 1
n
xTkH−1

k xk

1

n
H−1
k xkx

T
kH−1

k ,

where we make use of the formula

A−1
1 −A−1

2 = A−1
2 (A2 −A1)A−1

1 , (2.19)
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holding for any two invertible matrices A1 and A2;

and

(U + uvT )−1u =
U−1u

1 + vTU−1u
, (2.20)

holding for any invertible matrices U and (U + uvT ), vectors u and v. We

then write

Bk −B = Py(P
tx
k −Ptx)Py = Py(C1 + C2 + C3 + C4)Py, (2.21)

where

C1 =
1

n

XT
kH−1

k
1
n
xkx

T
kH−1

k Xk

1 + 1
n
xTkH−1

k xk
, C2 = − 1

n

XT
kH−1

k xke
T
k

1 + 1
n
xTkH−1

k xk
,

C3 = − 1

n

ekx
T
kH−1

k Xk

1 + 1
n
xTkH−1

k xk
, C4 = − 1

n

ekx
T
kH−1

k xke
T
k

1 + 1
n
xTkH−1

k xk
. (2.22)

Now write

1

n
trB−1(z)− E 1

n
trB−1(z) =

1

n

n∑
k=1

[EktrB
−1(z)− Ek−1trB

−1(z)]

=
1

n

n∑
k=1

(Ek − Ek−1)(trB−1(z)− trB−1
k (z))

=
1

n

n∑
k=1

(Ek − Ek−1)
[ 4∑
i=1

tr
(
B−1
k (z)PyCiPyB

−1(z)
)]
,

where the last step uses (2.19) and (2.21). Let || · || denote the spectral

norm of matrices or the Euclidean norm of vectors. It is observed that

||B−1(z)|| ≤ 1

v
, ||B−1

k (z)|| ≤ 1

v
, ||Py|| ≤ 1,

1

p1

trH−1
k ≤

1

t
. (2.23)

and since xTkH−1
k xk ≥ 0 we have

1

1 + 1
n
xTkH−1

k xk
≤ 1. (2.24)
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It follows that

|trB−1
k (z)PyC1PyB

−1(z)| =
1

n2

∣∣∣xTkH−1
k XkPyB

−1(z)B−1
k (z)PyX

T
kH−1

k xk

1 + 1
n
xTkH−1

k xk

∣∣∣
≤ 1

v2n2
||xTkH−1

k Xk||2 ≤
1

v2n
|xTkH−1

k xk|+
t

v2n
|xTkH−2

k xk|, (2.25)

where the last inequality uses the facts that ||xTkH−1
k Xk||2 = xTkH−1

k XkX
T
kH−1

k xk

and H−1
k XkX

T
kH−1

k = nH−1
k ( 1

n
XkX

T
k + tIp1 − tIp1)H−1

k = nH−1
k − ntH

−2
k .

We then conclude from Lemma 2, (2.23)-(2.25) that

E

∣∣∣∣∣ 1n
n∑
k=1

(Ek − Ek−1)trB−1
k (z)PyC1PyB

−1(z)

∣∣∣∣∣
4

≤ M

n3

n∑
k=1

E
∣∣∣trB−1

k (z)PyC1PyB
−1(z)

∣∣∣4
≤ M

n7

n∑
k=1

E
∣∣∣xTkH−1

k xk

∣∣∣4 +
M

n7

n∑
k=1

E
∣∣∣xTkH−2

k xk

∣∣∣4
= O(

1

n2
),

where the last step uses the facts that via Lemma 3 and (2.18)

1

n4
E
∣∣∣xTkH−1

k xk

∣∣∣4 ≤ 1

n4
ME

∣∣∣xTkH−1
k xk − trH−1

k

∣∣∣4 +
1

n4
ME|trH−1

k |
4 ≤M

(2.26)

and that
1

n4
E
∣∣∣xTkH−2

k xk

∣∣∣4 ≤M. (2.27)

Similarly, we can also obtain for i = 2, 3, 4,

E| 1
n

n∑
k=1

(Ek − Ek−1)trB−1(z)PyCiPyB
−1
k (z)|4 ≤ M

n2
. (2.28)

It follows from Borel-Cantelli’s lemma that

1

n
trB−1(z)− E 1

n
trB−1(z) a.s. n→∞. (2.29)
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2.2.4 Step 4: From Gaussian distribution to general

distributions

This section is to prove that

E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)]→ 0 as n→∞, (2.30)

where D−1(z) = (PyP
g
txPy − zI)−1, Pg

tx = 1
n
GT ( 1

n
GGT + tIp1)

−1G and

G = (Gij)p1×n consists of i.i.d. Gaussian random variables. We would

point out that (2.13) follows immediately from (2.29), (2.30), tightness of

FB and the well-known inversion formula for Stieltjes transform[Theorem

B.8 of Bai and Silverstein (2009)]. We use Lindeberg’s method in Chatterjee

(2006) to prove this result.

To facilitate statements, denote

X11, · · · , X1n, X21, · · · , Xp1n respectively by X̂1, · · · , X̂n, X̂n+1, · · · , X̂p1n

and

G11, · · · , G1n, G21, · · · , Gp1n respectively by Ĝ1, · · · , Ĝn, Ĝn+1, · · · , Ĝp1n.

For each j, 0 ≤ j ≤ p1n, set

Zj = (X̂1, · · · , X̂j, Ĝj+1, · · · , Ĝp1n) and Z0
j = (X̂1, · · · , X̂j−1, 0, Ĝj+1, · · · , Ĝp1n).

(2.31)

Note that X in B−1(z) consists of the entries of Zp1n. Hence we denote

1
n
trB−1(z) by 1

n
tr(B(Zp1n)− zI)−1. Define the mapping f from Rnp1 to C

as

f(Zp1n) =
1

n
tr(B(Zp1n)− zI)−1. (2.32)

Furthermore we use the entries of Zj, j = 0, 1, · · · , p1n− 1, respectively, to

replace X̂1, · · · , X̂p1n, the entries of X in B, to constitute a series of new
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matrices. For these new matrices, we define f(Zj), j = 0, 1, · · · , p1n− 1 as

f(Zp1n) is defined for the matrix B. For example, f(Z0) = 1
n
trD−1(z). We

then write

E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)] =

p1n∑
j=1

E
(
f(Zj)− f(Zj−1)

)
.

A third Taylor expansion yields

f(Zj) = f(Z0
j)+X̂j∂jf(Z0

j)+
1

2
X̂2
j ∂

2
j f(Z0

j)+
1

2
X̂3
j

∫ 1

0

(1−τ)2∂3
j f(Z

(1)
j (τ))dτ,

f(Zj−1) = f(Z0
j)+Ĝj∂jf(Z0

j)+
1

2
Ĝ2
j∂

2
j f(Z0

j)+
1

2
Ĝ3
j

∫ 1

0

(1−τ)2∂3
j f(Z

(2)
j−1(τ))dτ,

where ∂rj f(·), r = 1, 2, 3, stand for the r-fold derivative of the function f in

the j-th coordinate, and

Z
(1)
j (t̃) = (X̂1, · · · , X̂j−1, τX̂j, Ĝj+1, · · · , Ĝpn),

Z
(2)
j−1(t̃) = (X̂1, · · · , X̂j−1, τ Ĝj, Ĝj+1, · · · , Ĝpn).

Since X̂j and Ĝj are both independent of Z0
j , E[X̂j] = E[Ĝj] = 0 and

E[X̂2
j ] = E[Ĝ2

j ] = 1, we obtain

E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)]

=
1

2

p1n∑
j=1

E
[
X̂3
j

∫ 1

0

(1− τ)2∂3
j f(Z

(1)
j (τ))dτ − Ĝ3

j

∫ 1

0

(1− τ)2∂3
j f(Z

(2)
j−1(τ))dτ

]
.

Next we evaluate ∂3
j f(Z

(1)
p1n(τ)). Note that

∂H−1

∂Xij

= −H−1 ∂H

∂Xij

H−1. (2.33)

A simple but tedious calculation indicates that

∂B

∂Xij

=
1

n
Pyeje

T
i H−1XPy +

1

n
PyX

TH−1eie
T
j Py
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− 1

n2
PyX

TH−1(eie
T
j XT + Xeje

T
i )H−1XPy,

∂2B

∂X2
ij

=
2

n
Pyeje

T
i H−1eie

T
j Py −

2

n2
Pyeje

T
i H−1(eie

T
j XT + Xeje

T
i )H−1XPy

− 2

n2
PyX

TH−1(eie
T
j XT + Xeje

T
i )H−1eie

T
j Py −

2

n2
PyX

TH−1eie
T
i H−1XPy

+
2

n3
PyX

T [H−1(eie
T
j XT + Xeje

T
i )]2H−1XPy,

∂3B

∂X3
ij

= − 6

n2
Pyeje

T
i H−1(eie

T
j XT + Xeje

T
i )H−1eie

T
j Py

− 6

n2
Pyeje

T
i H−1eie

T
i H−1XPy

+
6

n3
Pyeje

T
i [H−1(eie

T
j XT + Xeje

T
i )]2H−1XPy

− 6

n2
PyX

TH−1eie
T
i H−1eie

T
j Py

+
6

n3
PyX

T [H−1(eie
T
j XT + Xeje

T
i )]2H−1eie

T
j Py

− 6

n4
PyX

T [H−1(eie
T
j XT + Xeje

T
i )]3H−1XPy

+
6

n3
PyX

TH−1(eie
T
j XT + Xeje

T
i )H−1eie

T
i H−1XPy

+
6

n3
PyX

TH−1eie
T
i H−1(eie

T
j XT + Xeje

T
i )H−1XPy.

Also, by the formula

1

n

∂trB−1(z)

∂Xij

= − 1

n
tr(

∂B

∂Xij

B−2(z)),

it is easily seen that

1

n

∂3trB−1(z)

∂X3
ij

= − 6

n
tr(

∂B

∂Xij

B−1(z)
∂B

∂Xij

B−1(z)
∂B

∂Xij

B−2(z))

− 1

n
tr(

∂3B

∂X3
ij

B−2(z)) +
3

n
tr(

∂2B

∂X2
ij

B−2(z)
∂B

∂Xij

B−1(z))

+
3

n
tr(

∂2B

∂X2
ij

B−1(z)
∂B

∂Xij

B−2(z)).
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There are lots of terms in the expansion of 1
n
∂3trB−1(z)

∂X3
ij

and therefore we

do not enumerate all the terms here. By using the formula that, for any

matrices A, B and column vectors ej and ek,

tr(Aeje
T
kB) = eTkBAej, (2.34)

all the terms of 1
n
∂3trB−1(z)

∂X3
ij

can be dominated by a common expression.

That is

|| 1
n

∂3trB−1(z)

∂X3
ij

|| ≤ M

n3
||H−1|| · ||XTH−1||+ M

n4
||XTH−1||3

+
M

n4
||H−1|| · ||XTH−1||2

+
M

n4
||H−1|| · ||XTH−1|| · ||XTH−1X||

+
M

n5
||H−1|| · ||XTH−1|| · ||XTH−1X||2

+
M

n5
||XTH−1||3 · ||XTH−1X||

+
M

n6
||XTH−1||3 · ||XTH−1X||2

+
M

n7
||XTH−1||3 · ||XTHX||3. (2.35)

Obviously

||H−1|| ≤ 1

t
. (2.36)

It is observed that

||XTH−1X||2 = λmax(XTH−1XXTH−1X) = λmax(H−1XXTH−1XXT )

≤ n2[1 + 2t||H−1||+ t2||H−2||] ≤Mn2, (2.37)

where λmax(·) denotes the maximum eigenvalue of the corresponding matrix;

and the first inequality above utilizes the fact that H−1XXT = nH−1( 1
n
XXT+

tIp1 − tIp1) = nIp1 − ntH−1.
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Similarly we can obtain

||XTH−1|| ≤M
√
n. (2.38)

We conclude from (2.35)-(2.38) that

|| 1
n

∂3trB−1(z)

∂X3
ij

|| ≤ M

n5/2
. (2.39)

This implies that

E|X3
ij ·

1

n

∂3trB−1(z)

∂X3
ij

| ≤ M

n5/2
E[X3

ij] ≤
Mεn
n2

. (2.40)

Since all Xij and Wij play a similar role in their corresponding matrices,

the above argument works for all matrices. Hence we obtain

|E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)]|

≤ M

p1n∑
j=1

[

∫ 1

0

(1− τ)2E|X̂3
j ∂

3
j f(Z

(1)
j (τ))|dτ +

∫ 1

0

(1− τ)2E|Ĝ3
j∂

3
j f(Z

(2)
j−1(τ))|dτ ]

≤ Mεn.

This ensures that

E[
1

n
trB−1(z)]− E[

1

n
trD−1(z)]→ 0 as n→∞.

Therefore the proof of Theorem 1 is completed.

2.3 Conclusion

Canonical correlation coefficients play an important role in the analysis of

correlations between random vectors[Anderson (1984)]. Nowadays, investi-

gations of large dimensional random vectors attract a substantial research

works, e.g. Fan and Lv (2010). As future works, we plan to develop cen-

tral limit theorems for the empirical distribution of canonical correlation

coefficients and make statistical applications of the developed asymptotic

theorems for large dimensional random vectors.
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2.4 Appendix

Lemma 1 (Burkholder (1973)). Let {Xk, 1 ≤ k ≤ n} be a complex martin-

gale difference sequence with respect to the increasing σ-field {Fk}. Then,

for p ≥ 2,

E|
n∑
k=1

Xk|p ≤ Kp(E(
n∑
k=1

E(|Xk|2|Fk−1))p/2 + E
n∑
k=1

|Xk|p).

Lemma 2 (Burkholder (1973)). With {Xk, 1 ≤ k ≤ n} as above, we have,

for p > 1,

E|
n∑
k=1

Xk|p ≤ KpE(
n∑
k=1

|Xk|2)p/2.

Lemma 3 (Lemma B.26 of Bai and Silverstein (2009)). For X = (X1, · · · , Xn)T

i.i.d standardized entries, C n× n matrix, we have, for any p ≥ 2,

E|X∗CX− trC|p ≤ Kp((E|X1|4trCC∗)p/2 + E|X1|2ptr(CC∗)p/2).

Lemma 4 (Theorem A.43 of Bai and Silverstein (2009)). Let A and B be

two n× n symmetric matrices. Then

||FA − FB|| ≤ 1

n
rank(A−B),

where ||f || = supx|f(x)|.

Lemma 5 (Hoeffding (1963)). Let Y1, Y2, . . . be i.i.d random variables,

P (Y1 = 1) = q = 1− P (Y1 = 0). Then

P (|Y1 + · · ·+ Yn − nq| ≥ nε) ≤ 2e−
n2ε2

2nq+nε

for all ε > 0, n = 1, 2, . . ..

Lemma 6 (Corollary A.41 of Bai and Silverstein (2009)). Let A and B be

two n × n symmetric matrices with their respective ESDs of FA and FB.

Then,

L3(FA, FB) ≤ 1

n
tr(A−B)2.



Chapter 3
Regularized Canonical Correlation

Coefficients

3.1 Methodology and Theory

Throughout this chapter we make the following assumptions.

Assumption 1. p1 = p1(n) and p2 = p2(n) with p1
n
→ c1 and p2

n
→ c2,

c1, c2 ∈ (0, 1), as n→∞.

Assumption 2. p1 = p1(n) and p2 = p2(n) with p1
n
→ c

′
1 and p2

n
→ c

′
2,

c
′
1 ∈ (0,+∞) and c

′
2 ∈ (0,+∞), as n→∞.

Assumption 3. X = (Xij)
p1,n
i,j=1 and Y = (Yij)

p2,n
i,j=1) satisfy X =

Σ1/2
xx W and Y = Σ1/2

yy V, where W = (w1, · · · ,wn) = (Wij)
p1,n
i,j=1 consists

of i.i.d real random variables {Wij} with EW11 = 0 and E|W11|2 = 1;

V = (v1, · · · ,vn) = (Vij)
p1,n
i,j=1 consists of i.i.d real random variables with

EV11 = 0 and E|V11|2 = 1; Σ1/2
xx and Σ1/2

yy are Hermitian square roots of

positive definite matrices Σxx and Σyy respectively so that (Σ1/2
xx )2 = Σxx

and (Σ1/2
yy )2 = Σyy.
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Assumption 4. FΣxx
D→ H, a proper cumulative distribution function.

Remark 2. By the definition of the matrix Sxy, the classical canonical

correlation coefficients between x and y are the same as those between w

and v when w and {wi} are i.i.d, and v and {vi} are i.i.d.

We now introduce some results from random matrix theory. Denote the

empirical spectral distribution function (ESD) of any n× n matrix A with

real eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn by

FA(x) =
1

n
#{i : µi ≤ x}, (3.1)

where #{· · · } denotes the cardinality of the set {· · · }.

When the two random vectors x and y are independent and each of

them consists of i.i.d Gaussian random variables, under Assumptions 1 and

3, Wachter (1980) proved that the empirical measure of the classical sample

canonical correlation coefficients r1, r2, · · · , rp1 converges in probability to

a fixed distribution whose density is given by

ρ(x) =

√
(x− L)(x+ L)(H − x)(H + x)

πc1x(1− x)(1 + x)
, x ∈ [L,H], (3.2)

and atoms size of max(0, (1 − c2)/c1) at zero and size max(0, 1 − (1 −

c2)/c1) at unity where L = |
√
c2 − c2c1−

√
c1 − c1c2| and H = |

√
c2 − c2c1 +

√
c1 − c1c2|. Here the empirical measure of r1, r2, · · · , rp1 is defined as in

(3.1) with µi replaced by ri.

In Chapter 2, we have proved that (3.2) also holds for classical sample

canonical correlation coefficients when the entries of x and y are not nec-

essarily Gaussian distributed. For easy reference, we state the result in the

following proposition.
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Proposition 1. In addition to Assumptions 1 and 3, suppose that {Xij, 1 ≤

i ≤ p1, 1 ≤ j ≤ n} and {Yij, 1 ≤ i ≤ p2, 1 ≤ j ≤ n} are independent. Then

the empirical measure of r1, r2, . . . , rp1 converges almost surely to a fixed

distribution function whose density is given by (3.2).

Under Assumptions 2-4, instead of FSxy , we analyze the ESD, FTxy , of

the regularized random matrix Txy given in (1.6). To this end, define the

Stieltjes transform of any distribution function G(x) by

mG =

∫
1

x− z
dG(x), z ∈ C+ = {z ∈ C, Imz > 0},

where Imz denotes the imaginary part of the complex number z.

It turns out that the limit of the empirical spectral distribution (LSD)

of Txy is connected to that of the LSD of S1S
−1
2t defined below. Let

S1 =
1

p2

p2∑
k=1

wkw
T
k , S2t =

1

n− p2

n∑
k=p2+1

wkw
T
k + t

n

n− p2

Σ−1
xx ,

y1 =
c
′
1

c
′
2

, y2 =
c
′
1

1− c′2
.

The LSD of S2t and its Stieltjes transform are denoted by Fy2t and my2t(z)

respectively. Under Assumptions 2- 4 from Silverstein and Bai (1995) and

Pan (2010) my2t(z) is the unique solution in C+ to

my2t(z) = mHt

(
z − 1

1 + y2my2t(z)

)
, (3.3)

where mHt(z) denotes the Stieltjes transform of the LSD of the matrix

t n
n−p2 Σ

−1
xx (one may also see (4.4) in Chapter 4). Let n = (n1, n2) and

y = (y1, y2) with n1 = p1 and n2 = n− p2. The Stieltjes transforms of the

ESD and LSD of the matrix S1S
−1
2t are denoted by mn(z) and my(z) re-

spectively while those of the ESD and LSD of the matrix 1
p2

∑p2
k=1 wT

k S−1
2t wk

are denoted by mn(z) and my(z) respectively. Observe that the spectra of
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S1S
−1
2t and 1

p2

∑p2
k=1 wT

k S−1
2t wk are the same except (p1−p2) zero eigenvalues

and this leads to

my(z) = −1− y1

z
+ y1my(z). (3.4)

We are now in a position to state the LSD of Txy.

Theorem 2. In addition to Assumptions 2-4, suppose that {Xij, 1 ≤ i ≤

p1, 1 ≤ j ≤ n} and {Yij, 1 ≤ i ≤ p2, 1 ≤ j ≤ n} are independent.

a) If c
′
2 ∈ (0, 1), then the ESD, FTxy(λ), converges almost surely to

a fixed distribution F̃ ( λ
q(1−λ)

), where q = c2
1−c2 and F̃ (λ) is a nonrandom

distribution and its Stieltjes transform my(z) is the unique solution in C
+

to

my(z) = −
∫

dFy2t(1/λ)

λ(1− y′1 − y′1zmy(z))− z
. (3.5)

b) If c
′
2 ∈ [1,∞), then FTxy(λ), converges almost surely to a fixed

distribution G̃( t
1−x − t) where G̃(λ) is a nonrandom distribution and its

Stieltjes transform satisfies the equation

mG̃(z) =

∫
dH(λ)

λ(1− c′1 − c′1zmG̃(z))− z
. (3.6)

Remark 3. Indeed, taking t = 0 in (3.5) recovers Wachter (1980)’s result

(one may refer to the result of F matrix in Bai and Silverstein (2009)).

Let us now introduce the test statistic. Under Assumption 1 and As-

sumption 3, behind our test statistic is the observation that the limit of

FSxy(x) can be obtained from (3.2) when x and y are independent, while

the limit of FSxy(x) could be different from (3.2) when x and y have cor-

relation. For example, if y = Σ1w and x = Σ2w with p1 = p2 and both Σ1

and Σ2 being invertible, then

Sxy = I,
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which implies that the limit of FSxy(x) is a degenerate distribution. This

suggests that we may make use of FSxy(x) to construct a test statistic.

Thus we consider the following statistic∫
φ(x)dFSxy(x) =

1

p1

p1∑
i=1

φ(r2
i ). (3.7)

A perplexing problem is how to choose an appropriate function φ(x). For

simplicity we choose φ(x) = x in this work. That is, our statistic is

Sn =

∫
xdFSxy(x) =

1

p1

p1∑
i=1

r2
i . (3.8)

Indeed, extensive simulations based on Theorems 3 and 4 below have been

conducted to help select an appropriate function φ(x). We find that other

functions such as φ(x) = x2 does not have an advantage over φ(x) = x.

In the classical CCA, the maximum likelihood ratio test statistic for

(1.1) with fixed dimensions is

MLRn =

p1∑
i=1

log(1− r2
i ) (3.9)

(see Wilks (1935) and Aderson (1984)). That is, φ(x) in (3.7) takes log(1−

x). Note that the density ρ(x) has atom size of max(0, 1 − (1 − c2)/c1)

at unity by (3.2). Thus the normalized statistic MLRn is not well defined

when c1 + c2 > 1 ( because
∫

log(1 − x2)ρ(x)dx is not meaningful). In

addition, even when c1 + c2 ≤ 1, the right end point of ρ(x), H, can be

equal to one so that some sample correlation coefficients ri are close to one.

For example H = 1 when c1 = c2 = 1. This in turns causes a big value

of the corresponding log(1 − r2
i ). Therefore, MLRn is not stable and this

phenomenon is also confirmed by our simulations.

Under Assumptions 2 and 3, we substitute Txy for Sxy and use the
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statistic

Tn =

∫
xdFTxy(x). (3.10)

We next establish the CLTs of the statistics (3.7) and (3.10). To this

end, write

G(1)
p1,p2

(λ) = p1

(
FSxy(λ)− F c1n,c2n(λ)

)
, (3.11)

and

G(2)
p1,p2

(λ) = p1

(
FTxy(λ)− F c

′
1n,c

′
2n(λ)

)
, (3.12)

where F c1n,c2n(λ) and F c
′
1n,c

′
2n(λ) are obtained from F c1,c2(λ) and F c

′
1,c
′
2 with

c1, c2 and c
′
1, c

′
2 replaced by c1n = p1

n
, c2n = p2

n
and c

′
1n = p1

n
, c
′
2n = p2

n

respectively; F c1,c2(λ) and F c
′
1,c
′
2(λ) are the limiting spectral distributions

of the matrices Sxy and Txy respectively, whose densities can be obtained

from ρ(x) in (3.2) and (3.5). We re-normalize (3.7) and (3.10) as∫
φ(λ)dG(1)

p1,p2
(λ) := p1

( ∫
φ(λ)dFSxy(λ)−

∫
φ(λ)dF c1n,c2n(λ)

)
, (3.13)

and∫
φ(λ)dG(2)

p1,p2
(λ) := p1

( ∫
φ(λ)dFTxy(λ)−

∫
φ(λ)dF c

′
1n,c

′
2n(λ)

)
. (3.14)

Also, let

ȳ1 :=
c1

1− c2

∈ (0,+∞), ȳ2 :=
c1

c2

∈ (0, 1), h =
√
ȳ1 + ȳ2 − ȳ1ȳ2, a1 =

(1− h)2

(1− ȳ2)2
,

a2 =
(1 + h)2

(1− ȳ2)2
, gȳ1,ȳ2(λ) =

1− ȳ2

2πλ(ȳ1 + ȳ2λ)

√
(a2 − λ)(λ− a1), a1 < λ < a2.(3.15)

Theorem 3. Let φ1, · · · , φs be functions analytic in an open region in the

complex plane containing the interval [a1, a2]. In addition to Assumptions

1 and 3, suppose that

EX4
11 = EY 4

11 = 3. (3.16)
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Then, as n→∞, the random vector

( ∫
φ1(λ)dG(1)

p1,p2
(λ), . . . ,

∫
φs(λ)dG(1)

p1,p2
(λ)
)

(3.17)

converges weakly to a Gaussian vector (Xφ1 , . . . , Xφs) with mean

EXφi = lim
r↓1

1

4πi

∮
|ξ|=1

fi
(1 + h2 + 2hR(ξ)

(1− ȳ2)2

)[ 1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + ȳ2
h

]
dξ,

(3.18)

and covariance function

cov(Xφi , Xφj) = − lim
r↓1

1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

fi
(1+h2+2hR(ξ1)

(1−ȳ2)2

)
fj
(1+h2+2hR(ξ2)

(1−ȳ2)2

)
(ξ1 − rξ2)2

dξ1dξ2,

(3.19)

where fi(λ) = φi(
1

1+(
1−c2
c2

)λ
); R denotes the real part of a complex number;

and r ↓ 1 means that r approaches to 1 from above.

Remark 4. When φ(x) = x, the mean of the limit distribution in Theorem

3 is 0 and the variance is
2h2y21y

2
2

(y1+y2)4
. These are calculated in Example 4.2 of

Zheng (2012).

Before stating the CLT of the linear spectral statistics for the matrix

Txy, we make some notation. Let r be a positive integer and introduce

mr(z) =

∫
dH(x)

(x− z +$(z))r
, $(z) =

1

1 + y2my2t(z)
,

g(z) =
y2(my2t(−my(z)))′

(1 + y2my2t(−my(z)))2
, h(z) =

−m2
y(z)

1− y1m2
y(z)

∫ dFy2t(x)

(x+my(z))2

,

s(z1, z2) =
1

1 + y2my2t(z1)
− 1

1 + y2my2t(z2)
,

where (my2t(z))′ stands for the derivative with respect to z.
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Theorem 4. Let φ1, · · · , φs be functions analytic in an open region in the

complex plane containing the support of the LSD F̃ (λ) whose stieltjes trans-

form is (3.5). In addition to Assumptions 2-4, suppose that

EX4
11 = EY 4

11 = 3. (3.20)

a) If c
′
2 ∈ (0, 1), then the random vector

( ∫
φ1(λ)dG(2)

p1,p2
(λ), . . . ,

∫
φs(λ)dG(2)

p1,p2
(λ)
)

(3.21)

converges weakly to a Gaussian vector (Xφ1 , . . . , Xφs) with mean

EXφi = − 1

2πi

∮
C
φi
( z

1 + z

)( y1

∫
my(z)3x[x+my(z)]−3dFy2t(x)

[1− y1

∫
my(z)2(x+my(z))−2dFy2t(x)]2

+h(z)
y2$

2(−my(z))m3(−my(z)) + y2
2$

4(−my(z))m
′
y2t

(−m(z))m3(−my(z))

1− y2$2(−my(z))m2(−my(z))

−h(z)
y2

2$
3(−my(z))m

′
y2t

(−m(z))m2(−my(z))

1− c$2(−my(z))m2(−my(z))

)
dz (3.22)

and covariance

Cov(Xφi , Xφj) = − 1

2π2

∮
C

∮
C
φi
( z1

1 + z1

)
φj(

z2

1 + z2

)
( m

′
y(z1)m

′
y(z2)

(my(z1)−my(z2))2

− 1

(z1 − z2)2
− h(z1)h(z2)

(−my(z2) +my(z1))2

+
h(z1)h(z2)[1 + g(z1) + g(z2) + g(z1)g(z2)]

[−my(z2) +my(z1) + s(−my(z1),−my(z2))]2

)
dz1dz2. (3.23)

Here all the contour integrals can be evaluated on any contour enclosing the

support of the LSD F̃ (λ) whose stieltjes transform is (3.5).

b) If c
′
2 ∈ [1,+∞), (3.21) converges weakly to a Gaussian vector (Xφ1 , . . . , Xφs)

with mean and covariance illustrated in (9.7.5) and (9.7.6) of Bai and

Silverstein (2009), where the parameter y equals c
′
1, σ2 equals t−1 and

Tn = Σxx.
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Here we would like to point out that the idea of testing independence

between two random vectors x and y by CCA is based on the fact that the

uncorrelatedness between x and y is equivalent to independence between

them when the random vector of size (p1 +p2) consisting of the components

of x and y is a Gaussian random vector. See Wilks (1935) and Anderson

(1984). For nonGaussian random vectors x and y, uncorrelatedness is not

equivalent to independence. CCA may fail in this case. Yet, since Theorems

3 and 4 hold for nonGaussian random vectors x and y CCA can be still

utilized to capture dependent but uncorrelated x and y such as ARCH type

of dependence by considering higher power of their entries. See Section 3.4.6

for the further discussion.

Following Lytova and Pastur (2009) condition (3.20) can be removed.

However it will significantly increase the length of this work and we will not

pursue it here.

3.2 The power under local alternatives

This section is to evaluate the power of Sn or Tn under a kind of local

alternative. Recall the definitions of G
(i)
p1,p2 , i = 1, 2 in (3.11) and (3.12) and

let R
(i)
n =

∫
λdG

(i)
p1,p2 .

Theorem 5. In addition to assumptions in Theorem 3 or Theorem 4, for

any i = 1, 2, suppose that in probability∣∣∣tr(SH1
xy − SH0

xy

)∣∣∣→∞, ∣∣∣tr(TH1
xy −TH0

xy

)∣∣∣→∞, (3.24)

where S
Hj
xy is Sxy under Hj, with j = 0, 1. T

Hj
xy , j = 0, 1 are defined similarly.

Then

lim
n→∞

P (R(i)
n > z

(i)
1−α or R

(i)
n < z(i)

α |H1) = 1, (3.25)



48 Chapter 3. Regularized Canonical Correlation Coefficients

where z
(i)
1−α and z

(i)
α are (1−α) and α quantiles of the asymptotic distribution

of the statistic R
(i)
n under the null hypothesis.

Remark 5. If SH1
xy = (XXT )−1XTPyX

T and SH0
xy = (XXT )−1XPyX

T

withT being a nonnegative definite matrix, then this implies the covariance

matrix between x and y is T. Particularly, if T = I + eeT with e =

(1, 1, · · · , 1) then under assumptions in Theorem 3 or Theorem 4 it can be

proved that

tr
(
SH1
xy − SH0

xy

)
= eTPyPxe = n

eTPyPxe

‖e‖
= Op(n)

satisfying (3.24).

3.3 Applications of CCA

This section explores some applications of the proposed test. We consider

two examples from multivariate analysis and time series analysis respec-

tively.

3.3.1 Multivariate Regression test with CCA

Consider the multivariate regression(MR) model as follows:

Y = XB + E, (3.26)

where

Y = [y1,y2, . . . ,yp1 ]n×p1 , X = [1n,x1,x2, . . . ,xp2 ]n×p2 ,

B = [β1,β2, . . . ,βp1 ]p2×p1 , E = [e1, e2, . . . , ep1 ]n×p1 ,
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and each of the vectors yj, xj, ej, for j = 1, 2, . . . , p1 is n × 1 vectors and

{βi, i = 1, 2, . . . , p1} are p2 × 1 vectors.

Let Axy = 1
n
X
′
Y and Axx = 1

n
X
′
X. We have the least square estimate

of B

B̂ = A−1
xxAxy. (3.27)

The most common hypothesis testing is to test whether there exists lin-

ear relationship between the two sets of variables (response variables and

predictor variables) or the overall regression test

H0 : B = 0. (3.28)

To test H0 : B = 0, Wilks’ Λ criterion is

Λ =
|E|

|E + H|
=

s∏
i=1

(1 + λi)
−1, (3.29)

where

E = Y
′(

I−X(X
′
X)−1X

′)
Y (3.30)

and

H = B̂
′
(X

′
X)B̂; (3.31)

and {λi : i = 1, . . . , s} are the roots of |H− λE| = 0, s = min(k, p).

Remark 6. Wilk’s Λ criterion indeed assumes Gaussian observations and

derive the exact lambda distribution. In this thesis, we derive the asymp-

totic distribution of Wilk’s criterion under high dimensional case without

Gaussian assumption.
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An alternative form for Λ is to employ sample covariance matrices. That

is, H = AyxA−1
xxAxy and E = Ayy −AyxA−1

xxAxy, so that |H − λE| = 0

becomes |AyxA−1
xxAxy − λ(Ayy −AyxA−1

xxAxy)| = 0. From Theorem 2.6.8

of Timm (2001) we have |H − θ(H + E)| = |AyxA−1
xxAxy − θAyy| = 0 so

that

Λ =
s∏
i=1

(1 + λi)
−1 =

s∏
i=1

(1− θi) =
|Ayy −AyxA−1

xxAxy|
|Ayy|

. (3.32)

Evidently, the quantities r2
i = θi, i = 1, . . . , s are sample canonical correla-

tion coefficients. Therefore the test statistic (3.29) can be rewritten as

logΛ =
s∑
i=1

log(1− r2
i ). (3.33)

From this point of view, the multiple regression test is equivalent to the

independence test based on canonical correlation coefficients. As stated in

the last section, the statistic logΛ is not stable in the high dimensional

cases. Hence our test statistic Sn or Tn can be applied in the MR test.

3.3.2 Testing for Cointegration with CCA

Consider an n-dimensional vector process {yt} that has a first-order error

correction representation

∆yt = −αβ′yt−1 + εt, t = 1, . . . , T, (3.34)

where α and β are full rank n× r matrices (r < n) and the n-dimensional

innovation {εt} is i.i.d. with zero mean and positive covariance matrix Ω.

Select α and β so that the fact that |In − (In − αβ
′
)z| = 0 implies that

either |z| > 1 or z = 1 and that α
′

⊥β⊥ is of full rank, where α⊥ and

β⊥ are full rank n× (n− r) matrices orthogonal to α and β. Under these
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assumptions, {yt} is I(1) with r cointegration relations among its elements;

that is {β′yt} is I(0).

The goal is to test

H0 : r = 0 (α = β = 0); against H1 : r > 0; (3.35)

i.e. whether there exists cointegration relationships among the elements of

the time series {yt}.

This cointegration test is equivalent to testing

H0 : ∆yt is independent with ∆yt−1;

against

H1 : ∆yt is dependent with ∆yt−1. (3.36)

In order to apply canonical correlation coefficients to cointegration test

(3.35), we construct random matrices

X =
(
∆y2,∆y4, . . . ,∆y2t−2,∆y2t, . . . ,∆yT

)
, (3.37)

Y =
(
∆y1,∆y3, . . . ,∆y2t−1,∆y2t+1, . . . ,∆yT−1

)
. (3.38)

3.4 Simulation results

This section reports some simulated examples to show the finite sample

performance of the proposed test.

3.4.1 Bootstrap Test Statistic

We should address one question about how to use the propose statistics Tn.

There is an unknown parameter H in the LSD F c
′
1,c
′
2 and the asymptotic
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distribution of ∫
λdG(2)

p1,p2
(λ). (3.39)

Here H is the LSD of the matrix Σ−1
xx .

To overcome this difficulty, we consider a bootstrap method as follows.

We redraw samples X∗ = (x∗1,x
∗
2, . . . ,x

∗
n) and Y∗ = (y∗1,y

∗
2, . . . ,y

∗
n) from

the original samples X = (x1,x2, . . . ,xn) and Y = (y1,y2, . . . ,yn) respec-

tively. Then consider the bootstrap linear spectral statistic∫
λdG(2)∗

p1,p2
(λ), (3.40)

where G
(2)∗
p1,p2(λ) = p1

(
FS∗xy(λ)− F c

′
1n,c

′
2n

∗ (λ)
)

, S∗xy is Sxy with X and Y re-

placed by X∗ and Y∗ respectively, and F
c
′
1n,c

′
2n

∗ is F c
′
1n,c

′
2n with the bootstrap

version (X∗,Y∗).

From Theorem 4, the asymptotic distribution of the bootstrap statistic

(3.40) is normal distribution with mean (3.22) and (3.23) in which the LSD

H should be replaced by the LSD of Axx.

3.4.2 Empirical sizes and empirical powers

First we introduce the method of calculating empirical sizes and empiri-

cal powers. Let z1−α be the 100(1 − α)% quantile of the asymptotic null

distribution of the test statistic Sn. With K replications of the data set

simulated under the null hypothesis, we calculate the empirical size as

α̂ =
{] of SHn ≥ z1−α}

K
, (3.41)

where SHn represents the values of the test statistic Sn based on the data

simulated under the null hypothesis.
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The empirical power is calculated as

β̂ =
{] of SAn ≥ ẑ1−α}

K
, (3.42)

where SAn represents the values of the test statistic Sn based on the data

simulated under the alternative hypothesis.

In our simulation, we choose K = 1000 as the number of repeated

simulations. The significance level is α = 0.05.

3.4.3 Testing independence

Consider the data generating process

x = Σ1/2
xx w, y = Σ1/2

yy v, (3.43)

and two cases are investigated as

(a) Σxx = Ip1 , Σ1/2
yy = Ip2 ;

(b) Σxx = (σMA
kh )p1k,h=1, Σ1/2

yy = Ip2 ,

with

σMA
kh =


(1 + θ2), k = h;

θ, |k − h| = 1,

0, |k − h| > 1.

and θ = 0.6.

The empirical sizes of the proposed statistics Sn for cases (a) and (b) are

listed in Table 3.1. Moreover, the empirical sizes for re-normalized statistic

MLRn are included as comparison with Sn. Note that the re-normalized

statistic MLRn means that we use the statistic

p1

∫
log(1− λ)d

(
FSxy(λ)− F c1n,c2n(λ)

)
.
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The empirical sizes of Tn for cases (a) and (b) are listed in Table 3.2. From

the results in Table 3.1 and 3.2, the proposed statistics Sn and Tn work well

under Assumption 1 and 2 respectively.

3.4.4 Factor model dependence

We consider the factor model as follows:

xt = Λ1ft + ut, yt = Λ2ft + vt, t = 1, 2, . . . , n, (3.44)

where Λ1 and Λ2 are p1 × r and p2 × r deterministic matrices respectively;

ft, t = 1, 2, . . . , n are r × 1 random vectors with i.i.d Gaussian distributed

elements and ut and vt, t = 1, 2, . . . , n are independent random vectors

whose elements are all Gaussian distributed.

For this model, xt and yt are not independent if r 6= 0. The proposed

test statistic Sn and Tn can be used to detect this dependent structure.

Table 3.3 and 3.4 illustrate the powers of the proposed statistic Sn and Tn

respectively, as r increases from 1 to 4. Results in these tables indicate

that for one pair (p1, p2, n), the power increases as the number of factors r

increases. This phenomenon makes sense since the dependence between xt

and yt is described by the r common factors contained in the factor vector ft.

Stronger dependence between xt and yt exists while more common factors

are included in the model.

Here would like to point out that using CCA based on the sample co-

variance matrices with sample mean will incorrectly conclude that xt and

yt are independent even if r 6= 0 but ft = f independent of t because CCA

of xt and yt is the same as that of ut and vt. This is why (1.4) and (1.6)

are used.
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3.4.5 Uncorrelated case

The construction of (3.8) is based on the idea that the limit of FSxy(x)

could not be determined from (3.2) when x and y have correlation. Thus,

a natural question is whether our statistic works in the uncorrelated but

dependent case. Below is such an example to demonstrate the power of the

test statistic in detecting uncorrelatedness.

Let xt = (X1t, X2t, . . . , Xp1t), t = 1, 2, . . . , n be i.i.d normally distributed

random vectors with zero means and unit variances. Define yt = (Y1t, Y2t, . . . , Yp2t),

t = 1, 2, . . . , n by Yit = (X2k
it − EX2k

it ), i = 1, 2, . . . , p1 and Yjt = εjt, j =

p1 + 1, . . . , p2; t = 1, . . . , n, where εjt, j = p1 + 1, . . . , p2; t = 1, . . . , n are i.i.d

normal distributed random variables and independent with xt and k is an

positive integer.

Remark 7. For standard normal random variable Xit, the 2k-th moment

is EX2k
it = 2−k (2k)!

k!
.

For this model, xt and yt are uncorrelated since Cov(Xit, Yit) = EX2k+1
it −

EXitEX
2k
it = 0. Simulation results in Table 3.7 and Table 3.8 provide the

empirical powers of Sn and Tn by taking k = 2 and k = 5 respectively. They

show that Sn and Tn can distinguish this kind of dependent relationship well

when k = 5.

3.4.6 ARCH type dependence

The statistic works in the above example because the limit of FSxy can not

be determined from (3.2) if x and y are uncorrelated. However the limit

of FSxy(x) might be the same as (3.2) when x and y are uncorrelated. We

consider such an example as follows.
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Consider two random vectors xt = (X1t, X2t, . . . , Xp1t) and

yt = (Y1t, Y2t, . . . , Yp2t) as follows:

Yit = Zit

√
α0 + α1X2

it, i = 1, 2, . . . , p1;Yjt = Zjt, j = p1 + 1, . . . , p2, (3.45)

where zt = (Z1t, Z2t, . . . , Zp2t) is a random vector consisting of i.i.d el-

ements generated from Normal (0,1) and {zt} are independent across t;

xt = (X1t, X2t, . . . , Xp1t) is also a random vector with i.i.d elements gen-

erated from Normal(0,1); Moreover, {zt : t = 1, . . . , T are independent of

{xt : t = 1, . . . , T}.

For this model, xt and yt are dependent but uncorrelated. Simulation

results indicate that the proposed test statistic Sn can not detect the depen-

dence between them. Nevertheless, if we substitute the elements X2
it and

Y 2
it for Xit and Yjt, respectively, in the matrix Sxy, then the new resulting

statistic Sn can capture the dependence of this type. This efficiency is due

to the correlation between the high powers of Xit and Yit.

Table 3.5 and 3.6 list the powers of the proposed statistics Sn and Tn for

testing model (3.45) in several cases, i.e. α0 and α1 take different values.

From the table, we can find the phenomenon that as α1 increases, the powers

also increase. This is consistent with our intuition because larger α1 brings

about larger correlation between Yit and Xit.

3.5 Empirical applications

As an application of the proposed independence test, we test the cross-

sectional dependence of daily closed stock prices sets between two differ-

ent sections from New York Stock Exchange(NYSE) during the period

2000.1.1 − 2002.1.1, including consumer service section, consumer dura-

tion section, consumer nonduration section, energy section, finance section,
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transport section, healthcare section, capital goods section, basic industry

section and public utility section. The data set is obtained from Wharton

Research Data Services (WRDS) database.

We randomly choose p1 and p2 companies from two different sections re-

spectively, such as the transport and finance section. At each time t, denote

the closed stock prices of these companies from the two different sections

as xt = (x1t, x2t, . . . , xp1t) and yt = (y1t, y2t, . . . , yp2t) respectively. For each

company, there exist 1000 daily closed stock prices, i.e. t = 1, 2, . . . , 1000.

The goal is to test dependence between xt and yt. From the time series

{xt : t = 1, 2, . . . , 1000}, we construct i.i.d samples and group them into a

matrix X = (x1,x1+20, . . . ,x1+20n), where n ≤ 50. Similarly, we can derive

the sample matrix Y = (y1,y1+20, . . . ,y1+20n). The construction of X and

Y is based on the idea that the daily closed stock prices tend to being in-

dependent as the length of the time between them is long, i.e. current price

is independent of the price after 20 days.

The proposed test Sn is applied to testing dependence of xt and yt.

For each (p1, p2, n), we randomly choose p1 and p2 companies from two

different sections, construct the corresponding sample matrices X and Y,

and then calculate the P-value by applying the proposed test. Repeat

this procedure 100 times and derive 100 P-values to see whether the cross-

sectional ’dependence’ feature is popular between the tested two sections.

We test independence of closed stock prices of companies from three

pairs of sections, i.e. basic industry section and capital goods section, pub-

lic utility section and capital goods section, finance section and healthcare

section. From Table 3.9, Table 3.10, and Table 3.11, we can see that, as

the pair of numbers of companies (p1, p2) increases, more experiments are

rejected in terms of the P-values below 0.05. It shows that cross-sectional
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dependence exists and is popular for different sections in NYSE. This sug-

gests that the assumption that cross-sectional independence in such empir-

ical studies may not be appropriate.

3.6 Appendix

Throughout this chapter, M , M1, M2, K and K1 denote positive constants

which may change from line to line, o(1) means the term converging to zero

and O(n−k) means the term divided by n−k bounded in absolute value.

3.6.1 Some Useful Lemmas

Lemma 7 (Duhamel formula). Let M1,M2 be n × n matrices and t ∈ R.

Then we have

e(M1+M2)t = eM1t +

∫ t

0

eM1(t−s)M2e
(M1+M2)sds. (3.46)

Moveover, if (Aij(t))1≤i,j≤n is a matrix-valued function of t ∈ R that is C∞

in the sense that each matrix element Aij(t) is C∞. Then

d

dt
eA(t) =

∫ 1

0

esA(t)A
′
(t)e(1−s)A(t)ds. (3.47)

Lemma 8. Assume that F (X) is a differentiable function of each of the

elements of the matrix X, it then holds that

∂Tr(F (X))

∂X
= f(X)T ,

where f(·) is the scalar derivative of F (·).

Lemma 9. Let U = f(X) be a matrix, then the derivative of the function

g(U) : Rm×n → R
1 with respect to the element Xij of X is

∂g(U)

∂Xij

= Tr[(
∂g(U)

∂U
)T

∂U

∂Xij

]. (3.48)
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Lemma 10 (Stein’s equation). Let ξ = {ξ`}p`=1 be independent Gaussian

random variables of zero mean, and Φ : Rp → C be a differentiable function

with polynomially bounded partial derivatives Φ
′

`, ` = 1, . . . , p. Then we

have

E{ξ`Φ(ξ)} = E{ξ2
` }E{Φ

′

`(ξ)}, ` = 1, . . . , p, (3.49)

and

V ar{Φ(ξ)} ≤
p∑
`=1

E{ξ2
` }E{|Φ

′

`(ξ)|2}. (3.50)

Lemma 11 (Generalized Stein’s equation of Lytova and Pastur (2009)).

Let ξ be a random variable such that E|ξ|p+2 <∞ for a certain nonnegative

integer p. Then for any function Φ : R→ C of the class Cp+1 with bounded

derivative Φ(`), ` = 1, . . . , p+ 1, we have

E{ξΦ(ξ)} =

p∑
`=0

κ`+1

`!
E{Φ(`)(ξ)}+ εp, (3.51)

where the remainder term εp admits the bound

|εp| ≤ Cp

∫ 1

0

E
∣∣∣ξp+2Φ(p+1)(ξv)

∣∣∣(1− v)pdv, Cp ≤
1 + (3 + 2p)p+2

(p+ 1)!
, (3.52)

and κ`+1 is the `+ 1-th cumulant.

Lemma 12 (Theorem A.37 of Bai and Silverstein (2009)). If A and B are

two n× p matrices and λk, δk, k = 1, 2, . . . , n denote their singular values.

If the singular values are arranged in descending order, then we have

ν∑
k=1

|λk − δk|2 ≤ tr[(A−B)(A−B)∗], (3.53)

where ν = min{p, n}.



60 Chapter 3. Regularized Canonical Correlation Coefficients

3.6.2 Proof of Theorem 2

Since the matrix Txy is not symmetric, it is difficult to work on it directly.

Instead we consider the n× n symmetric matrix

Bn = P̃yPtxP̃y. (3.54)

It is easily seen that the eigenvalues of the matrix Bn are the same as those

of the matrix Txy other than (n− p1) zero eigenvalues. It follows that the

ESDs of Bn and Txy satisfy the equality

FBn(x) =
p1

n
FTxy(x) +

n− p1

n
I[0,+∞)(x). (3.55)

Below we first consider the case when the entries of X and Y (W and

V) are normal random variables. Write

XT = XT
1 + XT

2 , (3.56)

where XT
1 = P̃yX

T and XT
2 = (I − P̃y)X

T is the corresponding residual

matrix. Let

WT
1 = P̃yW

T , WT
2 = (In − P̃y)W

T .

Then

X1 = Σ1/2
xx W1, X2 = Σ1/2

xx W2.

Since P̃y is a projection matrix, the entries of W1 are independent of those

of W2 and X1 is independent of X2 . Note that by the definition of Moore-

Penrose pseudoinverse

P̃y = P̃v = VT (VVT )−V. (3.57)

The ESD of Bn can be then written as

FBn(x) = F
1
n

XT
1 ( 1

n
XXT+tI)−1X1(x)
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= F
1
n

WT
1 ( 1

n
WWT+tΣ−1

xx )−1W1(x)

=
p1

n
F

(
1
n

W1WT
1 + 1

n
W2WT

2 +tΣ−1
xx−( 1

n
W2WT

2 +tΣ−1
xx )
)

( 1
n

W1WT
1 + 1

n
W2WT

2 +tΣ−1
xx )−1

(x)

+
n− p1

n
I[0,+∞)(x)

=
p1

n
F I−

(
1
n

W1WT
1 ( 1

n
W2WT

2 +tΣ−1
xx )−1+I

)−1

(x) +
n− p1

n
I[0,+∞)(x). (3.58)

This, together with (3.55), yields

FTxy(x) = F I−
(

1
n

W1WT
1 ( 1

n
W2WT

2 +tΣ−1
xx )−1+I

)−1

(x). (3.59)

If p2 ≥ n, then Rank(P̃y) = trP̃y = trP̃v = n with probability one by

the definition of Moore-Penrose pseudoinverse because VV′ has (p2 − n)

zero eigenvalues and from Theorem 1.1 of Rudelson and Vershynin (2011)

with probability one

λmin(V′V)

n
≥
(√p2 −

√
n− 1

√
n

)2 1

n2
. (3.60)

It follows that there exists a unitary matrix U such that with probability

one

U∗P̃vU = diag(1, . . . , 1), (3.61)

where diag(·) denotes a diagonal matrix. Since U is a unitary matrix and

all the elements of W are independent Gaussian random variables we obtain

WT d
= UWT , W1W

T
1

d
= WWT , (3.62)

where
d
= denotes equality in distribution of two random variables. Hence

1
n
W1W

T
1 ( 1

n
W2W

T
2 + tΣ−1

xx)−1 d
= t−1 1

n
WWTΣxx. This is a sample covari-

ance matrix and its LSD and CLT have been provided in (6.1.2) and The-

orem 9.10 of Bai and Silverstein (2009) respectively.

If p2 < n then Rank(P̃y) = trP̃y = trP̃v = p2 with probability one by

an inequality similar to (3.60). Therefore there exists a unitary matrix U
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such that with probability one

U∗P̃yU = diag(1, . . . , 1, 0, . . . , 0), (3.63)

where diag(·) denotes a diagonal matrix and the number of the entries 1 on

the diagonal is p2. This implies that

W1W
T
1

d
=

p2∑
k=1

wkw
T
k , W2W

T
2

d
=

n∑
k=p2+1

wkw
T
k ,

where wk is the k-th column of W. Therefore, with qn := p2
n−p2 we then

have

1

n
W1W

T
1 (

1

n
W2W

T
2 + tΣ−1

xx)−1 d
= qnS1S

−1
2t , (3.64)

where

S1 =
1

p2

p2∑
k=1

wkw
T
k , S2t =

1

n− p2

n∑
k=p2+1

wkw
T
k + t

n

n− p2

Σ−1
xx .

Denote by µ1, µ2, . . . , µp1 the eigenvalues of S1S
−1
2t . In view of (3.59)

the eigenvalues of Txy can be written as qnµi
1+qnµi

, i = 1, 2, . . . , p1. Note that

(6.1.2) of Bai and Silverstein (2009) has provided the equation satisfied by

the Stieltjes transform of the LSD of the matrix ST, where S is a sample

covariance matrix and T is a matrix which is independent of S. Moreover

the Stieltjes transform of the LSD of S2t is provided in Silverstein and Bai

(1995). By taking S = S1 and T = qnS
−1
2t , we see that (3.5) follows from

(6.1.2) of Bai and Silverstein (2009).

As for the nonGaussian case, write

Ptx =
1

n
XT (

1

n
XXT + tIp1)

−1X =
1

n
WT (

1

n
WWT + tΣ−1

xx)−1W. (3.65)

Then the proof of Theorem 1 in Chapter 2 indeed shows that replacing

Gaussian entries in W (or X) by nonGaussian entries does not affect the



3.6 Appendix 63

LSD of Bn and one may refer to (2.13). In view of (3.57), to replace

Gaussian entries in V by nonGaussian entries, as in (2.9), one can first

prove that the Levy distance, as n→∞, then u→ 0,

L3
(
FP

1/2
tx P̃yP

1/2
tx , FP

1/2
tx PuyP

1/2
tx

)
≤ Mu2

n
tr(

1

n
VVT + uIp2)

−2 ≤Mu2 a.s.−→ 0,

where (P
1/2
tx )2 = Ptx and Puy = 1

n
VT ( 1

n
VVT + uIp2)

−1V, u > 0. More-

over, we see that conclusion (2.13) still holds if we replace Py and Ptx there

by P
1/2
tx and Puy respectively and check on its argument carefully. There-

fore (2.13) ensures that replacing Gaussian entries in Y by nonGaussian

entries does not affect the LSD of P
1/2
tx PuyP

1/2
tx when the entries of X are

nonGaussian. The proof is now complete.

3.6.3 Proof of Theorem 3

The strategy of the proof is to first associate sample correlation coefficients

with the F matrix when the entries of x are Gaussian distributed, whose

CLT was provide by Zheng (2012). Then by an interpolation trick first

adopted in Lytova and Pastur (2009), we extend the result to the non-

Gaussian distributions. When applying such an interpolation method, an

additional key technique is to introduce a smooth cut function so that we

can handle the expectation of the trace of the inverse of the sample covari-

ance matrix.

3.6.3.1 The Gaussian case

Since the classical sample canonical correlation coefficients between x and y

are the same with those between w and v, we assume that Σxx = Σyy = I

in this theorem.
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Assume that the entries of X are Gaussian distributed. We below

demonstrate how the eigenvalues of the matrix Sxy are connected to those

of an F -matrix.

We would remind the readers that the matrix Sxy consists of the project

matrix Px rather than it perturbation matrix Ptx and Py rather than P̃y

where

Px = XT (XXT )−1X, Py = YT (YYT )−1Y.

As before, since the matrix Sxy is not symmetric we instead consider the

n× n symmetric matrix

An = PyPxPy. (3.66)

Then we have

FAn(x) =
p1

n
FSxy(x) +

n− p1

n
I[0,+∞)(x). (3.67)

Note that under Assumption 1 Rank(P̃y) = trP̃y = p2 with probability

one because λmin(Y′Y)/n
a.s.−→ (1−√c2)2. Therefore, with a little abuse of

notation, as in (3.64), we obtain

X1X
T
1

d
=

p2∑
k=1

xkx
T
k , X2X

T
2

d
=

n∑
k=p2+1

xkx
T
k , (3.68)

where X1 and X2 are similarly defined as in (3.56) with P̃y replaced by Py.

As in (3.59) we conclude that

FAn(x) = FXT
1 (XXT )−1X1(x) =

p1

n
F (X1XT

1 +X2XT
2 )−1X1XT

1 (x) +
n− p1

n
I[0,+∞)(x)

=
p1

n
F

(
I+X2XT

2 (X1XT
1 )−1

)−1

(x) +
n− p1

n
I[0,+∞)(x). (3.69)

This, together with (3.67), yields

FSxy(x) = F

(
I+X2XT

2 (X1XT
1 )−1

)−1

(x). (3.70)
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Since X1 and X2 are independent the matrix 1
n−p2 X2X

T
2 ( 1

p2
X1X

T
1 )−1 is

an F− matrix. The limiting spectral distribution of the F -matrix is

Fȳ1,ȳ2(dx) = gȳ1,ȳ2(x)I[a1,a2](x)dx+ (1− 1

ȳ1

)I{ȳ1>1}δ0(dx), (3.71)

where gȳ1,ȳ2 is given in (3.15) (one may see Section 4 of Bai and Silverstein

(2009)).

Denoting the eigenvalues of 1
n−p2 X2X

T
2 ( 1

p2
X1X

T
1 )−1 by λ1, . . . , λp1 , then

the eigenvalues of the matrix Sxy can be expressed as 1

1+
n−p2
p2

λ1
, . . . , 1

1+
n−p2
p2

λp1
.

Therefore the statistic (3.13) can be expressed as∫
φ(λ)dGp1,p2(λ) =

∫
φ
( 1

1 + n−p2
p2

λ

)
dp1[F

1
n−p2

X2XT
2 ( 1

p2
X1XT

1 )−1

(λ)−Fȳ1n,ȳ2n(λ)],

(3.72)

where Fȳ1n,ȳ2n is obtained from Fȳ1,ȳ2 with the substitution of (ȳn1, ȳn2) for

(ȳ1, ȳ2) and the associated constants (hn, an1, an2) for (h, a1, a2), i.e.

ȳn1 =
p1

n− p2

, ȳn2 =
p1

p2

, hn =
√
ȳn1 + ȳn2 − ȳn1ȳn2,

an1 =
(1− hn)2

(1− ȳn2)2
, an2 =

(1 + hn)2

(1− ȳn2)2
.

In view of (3.72), it suffices to provide the CLT for the F -matrix Cn =

1
n−p2 X2X

T
2 ( 1

p2
X1X

T
1 )−1. Zheng (2012) has established the CLTs for linear

spectral statistics of F -matrices, which yields Theorem 3 for the Gaussian

distribution ((3.20) holds in the Gaussian case).

3.6.3.2 The general case

We next consider the CLT for the general distribution by the interpolation

trick. By (3.67), we have∫
φ(λ)dGp1,p2(λ) = n[

∫
φ(λ)d

(
FPyPxPy
n (λ)− F yxy

n (λ)
)
], (3.73)
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where F yxy
n (λ) is obtained from the limit, F yxy, of FPyPxPy with c1 and c2

replaced by p1/n and p2/n respectively.

We start with the truncation of the underlying random variables. Define

X̃n = (X̃ij)p1×n, X̆ = (X̆ij)p1×n (3.74)

where X̃ij = (X̆ij−EX̆ij)/σij, X̆ij = XijI|Xij |<
√
nε and σ2

ij = E|X̆ij−EX̆ij|2.

Choose εn > 0 such that εn → 0, n1/2εn →∞ and K
εn
EX4

11I(|X11|>
√
nε) → 0

as n→∞. Denote ε = εn and we have

P
(
Px 6= P̆x

)
≤

p1,n∑
i,j=1

P
(
Xij 6= X̆ij

)
≤ K

ε4
EX4

11I(|X11|>
√
nε) → 0, (3.75)

where P̆x is obtained from Px with X replaced by X̆.

Let λA
k denote the i-th smallest eigenvalue of an Hermitian matrix A.

We use Ğp1,p2(x) and G̃p1,p2(x) to denote the analogues of Gp1,p2(x) with

the matrix Cn = PyPxPy replaced by C̆n = PyP̆xPy and C̃n = PyP̃xPy

with P̃x = X̃T
n (X̃nX̃

T
n )−1X̃n, respectively. By Lemma 12, we have, for each

j=1,2,. . . ,s,∣∣∣ ∫ φj(x)dĞn(x)−
∫
φj(x)dG̃n(x)

∣∣∣ ≤ K
n∑
k=1

|λC̆n
k − λ

C̃n
k |

≤
√
n
( n∑
k=1

|λC̆n
k − λ

C̃n
k |

2
)1/2

≤
√
n
(
tr(C̆n − C̃n)(C̆n − C̃n)T

)1/2

≤
√
n
(
tr(P̆x − P̃x)(P̆x − P̃x)

T
)1/2

, (3.76)

where K is a bound on |f ′j(z)|. Moreover, one can check that

(σ−1
11 − 1)2 = o(n−2), |EX̆11| = o(n−

3
2 ). (3.77)

By the formula

A−1 −B−1 = A−1(B−A)B−1, (3.78)
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we obtain

P̆x − P̃x = Q1 + Q2 + Q3 + Q4,

where

Q1 =
1

n
XdH̆

−1X̆T
n , Q2 = − 1

n
X̃nH̃

−1Xd, Q3 = − 1

n
X̃nH̆

−1 1

n
XdX̃nH̃

−1X̆T
n ,

Q4 = − 1

n
X̃nH̆

−1 1

n
X̆nXdH̃

−1X̆T
n ,

with Xd = X̆n − X̃n, H̆−1 = ( 1
n
X̆T
nX̆n)−1 and H̃−1 = ( 1

n
X̃T
nX̃n)−1. Note

that

tr(P̆x − P̃x)(P̆x − P̃x)
T ≤ K

4∑
i,j=1

trQiQ
T
j .

We obtain from (3.77)

trQ1Q
T
1 ≤

||H̆−1||
n

(
trXT

dXd

)
≤ K||H̆−1||

[
(1− 1/σ11)2trH̆X̆n + σ−2

11 n|EX̆11|2
]

≤ K||H̆−1||
[
(1− 1/σ11)2nλmax

(
H̆−1

)
+ σ−2

11 n|EX̆11|2
]

= o(n−1).

Similarly, one may verify that trQjQ
T
j = o(n−1), j=2,3,4. It follows that∣∣∣ ∫ φj(x)dĞn(x)−

∫
φj(x)dG̃n(x)

∣∣∣ i.p.−→ 0.

In what follows, for simplicity we still use notation Xij rather than X̃ij and

can assume that

|Xij| ≤
√
nε, EXij = 0, EX2

ij = 1. (3.79)

To employ the interpolation trick we first introduce some notation. Let

Nn[φ] = n

∫
φ(λ)dFAn(λ), N ◦n [φ] = n

∫
φ(λ)d[FAn(λ)− F yxy(λ)].

Moreover we introduce the following interpolating matrices

An(s) = PyPx(s)Py, X(s) = s1/2X + (1− s)1/2X̂,
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Px(s) =
1

n
XT (s)H−1(s)X(s), H−1(s) = (H(s))−1 = (

1

n
X(s)XT (s))−1,

where X̂ = (X̂kj) is obtained from X = (Xkj) but consisting of standardized

normal random variables. Define

en(s, x) = exp
(
ixTrφ(An(s))

)
, U(t, s) = eitAn(s), (3.80)

e◦n(s, x) = exp
(
ix[Trφ(An(s))− n

∫
φ(λ)dF yxy

n (λ)]
)
.

By the continuous theorem of characteristic functions and Subsection

3.6.3.1 it suffices to prove that

R̂n(x) = E
(
eixN

◦
n [φ]
)
− E

(
eixN̂

◦
n [φ]
)
→ 0, as n→∞, (3.81)

where N̂ ◦n [φ] is the analogue of N ◦n [φ] with all entries of X replaced by i.i.d

standardized normal random variables.

For technical requirements, we introduce a smooth cut off function χ(x) :

R→ R:

χ(x) =
{ 1, |x| ≤ K1n

−2

0, |x| ≥ 2K1n
−2,

(3.82)

whose first four derivatives satisfy |χ(j)(x)| ≤Mn2j, j = 1, 2, 3, 4.

To prove (3.81) we first claim that

R̃n(x) = E
(
eixN

◦
n [φ]
)
− E

(
eixN

◦
n [φ]χ(Im(mn(in−2)))

)
→ 0, as n→∞,(3.83)

wheremn(z) is the Stieltjes transform of H = 1
n
XXT . Indeed, let λ̃1, . . . , λ̃p1

be the eigenvalues of H. Since

Im(mn(in−2)) = n−3

n∑
i=1

1

λ̃2
i + n−4

, (3.84)

we conclude that

λ̃p1 >
M2

n
if |Im(mn(in−2))| ≤M1n

−2, (3.85)
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where M1 may be the same as or different from K1 given in (3.82). From

Theorem 9.13 of Bai and Silverstein (2009), under our truncation, we have,

for any x > 0 and any integers k ≥ 2,

P (λ̃p1 ≤ (1−
√
c1)2 − x) = O(n−k). (3.86)

By (3.84) and taking an appropriate x we have

P
(
|Im(mn(in−2))| ≤ K1n

−2
)
≥ P

(
λ̃p1 > (1−

√
c1)2 − x

)
= 1−O(n−k).(3.87)

This is equivalent to

P
(
χ(Im(mn(in−2))) = 1

)
= 1−O(n−k). (3.88)

It follows that

|R̃n(x)| = |E
(
eixN

◦
n [φ]
(
1− χ(Im(mn(in−2)))

))
|

≤ P
(
χ(Im(mn(in−2))) 6= 1

)
= O(n−k)→ 0, as n→∞.

(3.89)

Thus (3.83) is true.

Evidently, (3.83) holds as well if X is replaced by its normal analogue,

X̂. In view of (3.83), to prove (3.81), it suffices to prove that, as n→∞,

Rn(x) = E
(
eixN

◦
n [φ]χ

(
Im(mn(in−2))

))
− E

(
eixN̂

◦
n [φ]χ

(
Im(m̂n(in−2))

))
→ 0,

(3.90)

where m̂n(z) is the Stieltjes transform of Ĥ = 1
n
X̂X̂T .

We show here for future use the moment of (λ−rminχ(Im(ms
n(in−2))) where

ms
n(z) denotes the Stieltjes transform of H(s) and λmin denotes the mini-

mum eigenvalue of H(s). Note that (3.85)-(3.88) still hold for H(s) (replace

eigenvalues of H correspondingly by H(s)) because the truncation steps for
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{Xkj} are applicable to {X̂kj}. In what follows we shall directly quote them

for H(s). By (3.85) and (3.86) we have, for any integer r > 0,

E
[χ(Im(ms

n(in−2)))

λrmin

]
≤ Mnr · P

(M2

n
< λmin < (1−

√
c1)2 − x

)
+M

(
(1−

√
c1)2 − x

)−r
= O(1). (3.91)

We now consider (3.90). In what follows, to simplify notation denote

χ(Im(ms
n(in−2))) by χns. By the inverse Fourier transform

φ(λ) =

∫
eitλφ̂(t)dt, (3.92)

where φ̂(t) is the Fourier transform of φ(λ), i.e. φ̂(t) = 1
2π

∫
e−itλφ(λ)dλ,

we obtain

Rn(x) =

∫ 1

0

∂

∂s
E
(
e◦n(s, x)χns

)
ds

= ixe−ixn
∫
φ(λ)dF yxyn (λ) ×

∫ 1

0

ds

∫
φ̂(θ)θdθ · E

(
TrU(θ, s)Py

∂Px(s)

∂s
Pyen(s, x)χns

)
+

∫ 1

0

E
[
e◦n(s, x)

∂

∂s

(
χns

)]
ds. (3.93)

We next prove that the last term in (3.93) converges to zero.

To this end, we first list formulas for matrix derivatives. By the matrix

derivative formula

∂H−1(s)

∂s
= −H−1(s)

∂H(s)

∂s
H−1(s), (3.94)

and the chain rule of matrix derivatives, we have

∂Px(s)

∂s
=

1

2n
XT
dsH

−1(s)X(s) +
1

2n
XT (s)H−1(s)Xds

− 1

2n2
XT (s)H−1(s)[XdsX

T (s) + X(s)XT
ds]H

−1(s)X(s),

(3.95)
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where Xds = ( 1√
s
X − 1√

1−sX̂). Denote the first derivative with respect to

1√
n
Xkj(s) by

Dkj = ∂/∂(
1√
n
Xkj(s)).

Similar to (3.94) we obtain

Dkj(H
−1(s)) = −H−1(s)Wn(s, k, j)H−1(s), Dkj(

1√
n

X(s)) = eke
T
j ,

(3.96)

where

Wn(s, k, j) = eke
T
j

1√
n

XT (s) +
1√
n

X(s)eje
T
k .

From Lemma 9, Lemma 8, (3.87), (3.79), (3.96) and (3.88), we have∣∣∣E(Dkjχns

)∣∣∣ =
∣∣∣ 1
n
E
(
χ
′

nsDkjIm
(
tr(H(s)− in−2I)−1

))∣∣∣
=

∣∣∣ 1
n
E
[
χ
′

nsIm
(
Tr
[
(H(s)− in−2I)−2Wn(s, k, j)

])]∣∣∣
≤ Mn7P (χns 6= 1) = O(n−k), for any k, (3.97)

where the last inequality uses the fact that χ
′
ns 6= 0 occurs only when

K1n
−2 ≤ Im(ms

n(n−2)) ≤ 2K1n
−2. This ensures the last term in (3.93)

converges to zero.

In view of (3.93), (3.95) and (3.97) we may write Rn(x) as

Rn(x) =
ixe−ixn

∫
φ(λ)dF yxyn (λ)

2

∫ 1

0

ds

∫
φ̂(θ)θdθ

2∑
i=1

[Q(i)
n −V (i)

n ]+o(1), (3.98)

where

Q(1)
n =

1√
ns

n,p1∑
j,k=1

E(XkjΦ
(1)
kj ), V (1)

n =
1√

n(1− s)

n,p1∑
j,k=1

E(X̂kjΦ
(1)
kj ),

with

Φ
(1)
kj = Φ

(1)
kj (Xkjs) =

(
H−1(s)

1√
n

X(s)PyU(θ, s)Py

)
kj
en(s, x)χns,
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Xkjs = s1/2Xkj + (1− s)1/2X̂kj;

(3.99)

and

Q(2)
n =

1√
ns

p1,n∑
k,j=1

E(XkjΦ
(2)
kj ), V (2)

n =
1√

n(1− s)

p1,n∑
k,j=1

E(X̂kjΦ
(2)
kj ),

with

Φ
(2)
kj = Φ

(2)
kj (Xkjs) =

(
Px(s)PyU(θ, s)Py

1√
n

XT (s)H−1(s)
)
jk
en(s, x)χns.

Now, the aim is to prove that (3.98) → 0 as n → ∞. To this end, we

first further simplify Q
(i)
n and V

(i)
n , i = 1, 2. Applying stein’s equation in

Lemma 10 to the terms V
(1)
n and V

(2)
n respectively, we can obtain

V (1)
n =

1

n

n,p1∑
j,k=1

E(DkjΦ
(1)
kj ), V (2)

n =
1

n

n,p1∑
j,k=1

E(DkjΦ
(2)
kj ). (3.100)

Similarly, by generalized stein’s equation in Lemma 11 with p = 3, we have

Q(i)
n =

3∑
`=0

T
(i)
`ε + ξ

(i)
3 , i = 1, 2; (3.101)

where

T
(i)
`ε =

s
`−1
2

`!n
`+1
2

n,p1∑
j,k=1

κε`+1,kjE(D`
kjΦ

(i)
kj ), ` = 0, 1, 2, 3;

with κε`,kj being the `-th cumulant of the truncated random variable Xkj

and

|ξ(i)
3 | ≤

K

n5/2

n,p1∑
k,j=1

∫ 1

0

E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣dv,
where Φ

(i)
kj (vXkjs) is obtained from Φ

(i)
kj (Xkjs) given in (3.99) with Xkjs

replaced by vXkjs.

We next prove that E
∣∣∣D`

kjΦ
(i)
kj

∣∣∣2 is bounded for ` = 1, 2, 3, 4, i = 1, 2. To

this end, we below develop the expansion of Dkj(s)Φ
(1)
kj (s) first. Let ek be



3.6 Appendix 73

the unit vector with the k th entry being 1 and zero otherwise. Recalling

the definition of the matrix U(θ, s) in (3.80) and applying the Duhamel

formula (3.47) and (3.96) we have

Dkj(U(θ, s)) =

∫ 1

0

eitθAn(s)Dkj

(
iθAn(s)

)
ei(1−t)θAn(s)dt

= i

∫ θ

0

U(τ, s)Dkj

(
An(s)

)
U(θ − τ, s)dτ

= i

∫ θ

0

U(τ, s)PyBnsPyU(θ − τ, s)dτ, (3.102)

where

Bns = eje
T
kH−1(s)

1√
n

X(s)− 1√
n

XT (s)H−1(s)Wn(s, k, j)H−1(s)
1√
n

X(s)

+
1√
n

XT (s)H−1(s)eke
T
j . (3.103)

It follows from (3.92), (3.102) and the chain rule of calculating matrix

derivatives that

Dkj(en(s, x)) = −xen(s, x)

∫
φ̂(θ)θTr

[
U(θ, s)PyBnsPy

]
dθ, (3.104)

where we also use the fact that∫ θ

0

U(θ − τ, s)U(τ, s)dτ = θU(θ, s).

From (3.99) and (3.96) we have

Dkj(Φ
(1)
kj ) = −eTkH−1(s)Wn(s, k, j)QnsU(θ, s)Pyejen(s, x)χns(3.105)

+eTkH−1(s)eke
T
j PyU(θ, s)Pyejen(s, x)χns

+eTkQns

(
Dkj(U(θ, s))

)
Pyejen(s, x)χns

+eTkQnsU(θ, s)Pyej

(
Dkj(en(s, x))

)
χns

+eTkQnsU(θ, s)Pyejen(s, x)Dkj(χns),
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where Qns = H−1(s) 1√
n
X(s)Py.

Although there are many terms in the expansion of Dkj(Φ
(1)
kj ), from

(3.105), (3.102) and (3.104) we see that each term must be products of

some of the factors and their transposes below

eTkH−1(s)ek, eTkH−1(s)
1√
n

X(s), eTj Px(s),

Py, U(θ, s), χns, ek, en(s, x), ej, Dkj(χns). (3.106)

By the facts that |en(s, x)| ≤ 1, |χns| ≤M , ||Px(s)|| = ||Py|| = ||U(θ, s)|| =

||ek|| = ||ej|| = 1 and (3.106), we conclude from (3.105) that∣∣∣DkjΦ
(1)
kj

∣∣∣ ≤ K||λmin||−r||eTkH−1(s)
1√
n

X(s)||d|χns|

+K||eTkH−1(s)
1√
n

X(s)|||Dkj(χns)|

≤ K

λ
r+d/2
min

|χns|+
K

λmin

|Dkj(χns)|, (3.107)

where r, d are some nonnegative integers independent of n, and || · || stands

for the spectral norm of a matrix or the Euclidean norm of a vector. From

the argument of (3.97), (3.91) and (3.85) we see

E
( 1

λ2
min

|Dkj(χns)|2
)
≤ K, (3.108)

In view of (3.107), (3.110) and (3.91) we conclude that E|DkjΦ
(1)
kj |2 is

bounded.

We now claim that E
(
D`
kjΦ

(1)
kj

)2
, ` = 2, 3, 4 are bounded as well. Indeed,

from (3.102) to (3.105) we see that each higher derivative of E
(
D1
kjΦ

(1)
kj

)
must be a sum of the products of some of the derivatives Dkj(U(θ, s)),

Dkj(en(s, x)), Dkj(H
−1(s)), Dkj(

1√
n
X(s)) andD`

kj(χns). From (3.96)-(3.104)

we see such derivatives must be formed by some of the factors listed in

(3.106) as well as D`
kj(χns). Here we would point out that the trace involved
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in (3.104) is handled in the way that trCeke
T
j D = eTj DCek. Therefore, as

in (3.107), we have for ` = 2, 3, 4

∣∣∣D`
kjΦ

(`)
kj

∣∣∣ ≤ K||λmin||−r1||eTkH−1(s)
1√
n

X(s)||d1
∑̀
m=0

|Dm
kj(χns)|

≤ K

λ
r1+d1/2
min

∑̀
m=0

|Dm
kj(χns)|, (3.109)

where r1, d1 are some nonnegative integers, independent of n. Again, from

the argument of (3.97), (3.91) and (3.85) one can verify that

E
( 1

λ
r1+d1/2
min

|D`
kj(χns)|2

)
≤ K. (3.110)

Hence E
∣∣∣D`

kjΦ
(1)
kj

∣∣∣2 ≤ K. Likewise one may verify that E
∣∣∣D`

kjΦ
(2)
kj

∣∣∣2 is

bounded. Summarizing the above we have proved that

E
∣∣∣D`

kjΦ
(i)
kj

∣∣∣2 ≤ K, ` = 1, 2, 3, 4, i = 1, 2. (3.111)

Consider ξ
(i)
3 in (3.101) now. Define the event

B =
(
λmin ≥ (1−

√
c1)2/2

)
. (3.112)

Write

E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣ = E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣I(B)+E
∣∣∣X5

kjsΦ
(4)(vXkjs)

∣∣∣I(Bc).

From (3.109) and (3.79) we see that on the event B

|X5
kjsD

4
kjΦ

(i)
kj (vXkjs)| ≤ K

√
nε|X4

kjs|+K(
√
nε)5

4∑
m=1

|Dm
kj(χns)|.

Moreover, as in (3.97) one may verify that

E
∣∣∣(√nε)5

4∑
m=1

|Dm
kj(χns)

∣∣∣ = O(n−k).



76 Chapter 3. Regularized Canonical Correlation Coefficients

While (3.111) and (3.86) imply

E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣I(Bc)

≤ (E|D4
kjΦ

(i)
kj (vXkjs)|2)1/2(E|Xkjs|4(p+2)P (Bc))1/4 = O(n−k).

It follows that

|ξ(i)
3 | ≤

K

n5/2

n,p1∑
k,j=1

∫ 1

0

E
∣∣∣X5

kjsD
4
kjΦ

(i)
kj (vXkjs)

∣∣∣dv ≤ Kε→ 0. (3.113)

For ` = 1, 2, 3.4, let µε`,kj(µ`,kj) and κε`,kj(κ`,kj) be the `-th moment and

`-th cumulant of the truncated variables Xε
kj (the original variables Xkj)

respectively. Then

|µε`,kj−µ`,kj| ≤ KE|Xkj|`I(|Xkj| > ε
√
n) ≤ K

(
√
nε)4−`E|Xkj|4I(|Xkj| > ε

√
n).

(3.114)

It is well-known that the `-th cumulant κ` can be written in terms of the

moments µλ as

κ` =
∑
λ

cλµλ, (3.115)

where the sum is over all additive partitions λ of the set {1, . . . , `}, {cλ}

are known coefficients and µλ =
∏

`∈λ µ`. We then obtain from (3.114) and

(3.115),

|κε`,kj − κ`,kj| ≤
K

(
√
nε)4−`E|Xkj|4I(|Xkj| > ε

√
n). (3.116)

Recalling the definition of T
(1)
`ε in (3.6.3.2), from (3.116) and (3.111) we may

write

T
(1)
`ε = T

(1)
` + r

(1)
` , (3.117)

where the error term r
(1)
` satisfies

|r(1)
` | ≤

s(`−1)/2

`!n(`+1)/2

p1,n∑
k,j=1

|κε`+1,kj − κ`+1,kj||E(D`
kjΦ

ε(i)
kj )| ≤ Kε`−4

√
n

(3.118)
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and T
(1)
` is the analogue of T

(1)
`ε with κε`,kj replaced by κ`,kj. Note that

T
(1)
0 = T

(1)
3 = 0, T

(1)
1 = V

(1)
n because κ1 = κ4 = 0. In view of Lemma 13

below, T
(1)
2 = o(1), and hence

Q(1)
n = V (1)

n + ξ
(1)
3 + o(1). (3.119)

With the same proof as above, we can obtain

Q(2)
n = V (2)

n + ξ
(2)
3 + o(1). (3.120)

This, together with (3.119), (3.113) and (3.98), completes the proof of this

theorem.

Lemma 13. Under the assumptions of Theorem 3,

T
(i)
2 =

s
1
2

2n
3
2

n,p1∑
j,k=1

κε3,kjE
(
D2
kj(Φ

i
kj)
)

= o(1), i = 1, 2, (3.121)

as n→∞.

By taking a further derivative of (3.105) we may obtain the expansion

of D2
kj(Φ

i
kj). However since such an expansion is rather complicated we do

not list all the terms here. Note that each term of its expansion must be a

product or a convolution of some of the following factors

C1 = (Vn(s))kj, C2 = (Vn(s)
1√
n

X(s)H−1(s))kk, C3 = (Px(s)PyUPy)jj,

(3.122)

C4 = (PyUPy)jj, C5 = en(s, x), C6 = (Vn(s)Px(s))kj, C7 = (H−1(s))kk,

C10 = (Px(s))jj, C8 = (Px(s)PyUPyPx(s))jj,

C9 = (
1√
n

XT (s)H−1(s))jk, C11 = χns, C12 = D`
kj(χns), ` = 1, 2,

where Vn(s) = H−1(s) 1√
n
X(s)PyUPy and U stands for U(θ, s) or U(θ −

τ, s). Moreover, each term of the expression of D2
kj(s)Φ

(1)
kj (s) must contain
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C5 = en(s, x) and at least one of C11 and C12; and moreover, it contains at

least one of C1, C6 and C9. For example we see that Dkj(en(s, x)) contains

C1 or C6 from (3.104) and Dkj((H
−1(s))kk) includes C9 from (3.96).

Thus, to prove (3.121), it suffices to estimate the following term

1

n3/2

p1,n∑
k,j=1

E
(
Cri+1
i

∏
h∈D,h 6=i

Crh
h

)
= o(1), i = 1, 6, 9, (3.123)

where all rh, h ∈ D = {1, · · · , 12} are nonnegative integers, independent

of n. As in (3.97) one may verify that (3.123) converges to zero if C12

is contained in (3.123). Below we consider only the case when C12 is not

contained in (3.123) and as a result it must contain C11.

We first prove (3.123) holds for the case when there are at least two of

Ci, i = 1, 6, 9 contained in the expectation sign of (3.123). Moreover for

concreteness we consider the case when C1 and C6 are both contained in

(3.123) and all the remaining cases can be proved similarly. With D1 =

{2, · · · , 5, 7, · · · , 10} by the Schwartz inequality and arguments similar to

(3.91) and (3.107) we obtain∣∣∣ 1

n3/2

p1,n∑
k,j=1

E
(
Cr1+1

1 Cr6+1
6 C11

∏
h∈D1

Crh
h

)∣∣∣
≤ K

n3/2
E
( p1,n∑
k,j=1

|(Vn(s))kj|2(r1+1)

p1,n∑
k,j=1

|(Vn(s)Px(s))kj|2(r6+1)I(B)
)1/2

+
Kn4+r1+r6+r2+r7

n3/2
P
(M2

n
≤ λmin ≤

(1−√c1)2

2

)
= O(

1√
n

), (3.124)

where we also use the fact that recalling the definition of the event B in

(3.112),

p1,n∑
k,j=1

|(Vn(s))kj|2(r1+1)I(B) ≤ K

p1,n∑
k,j=1

|(Vn(s))kj|2I(B) ≤ Ktr(Vn(s))2I(B) ≤ nK.

If there is only one of Ci, i = 1, 6, 9 contained in (3.123) but its cor-

responding ri being greater than zero, then repeating the argument of
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(3.124) ensures that (3.123) holds. We now consider the case when one

of Ci, i = 1, 6, 9 is contained in (3.123) but its corresponding ri equals

zero. For concreteness we consider C1 contained in (3.123) and the remain-

ing cases can be proved similarly. Let D2 = {2, · · · , 5, 7, 8, 10}. By the

Schwartz inequality∣∣∣ 1

n3/2

p1,n∑
k,j=1

E
(
C1C11

∏
h∈D2

Crh
h

)∣∣∣2
≤ K

n3
E
[∑
j=1

∣∣Cr3
3 C

r4
4 C

r8
8 C

r10
10

∣∣2∑
j=1

∣∣∣∑
k

(Vn(s))kjC
r2
2 C

r7
7

∣∣∣2I(B)
]

+
Kn8+2r1+2r2+2r7

n3
P
(M2

n
≤ λmin ≤

(1−√c1)2

2

)
≤ K

n2
E
[∑
j=1

∑
k1,k2

(Vn(s))k1j(V̄n(s))k2jC
r2
2k1k1

Cr7
7k1k1

C̄r2
2k2k2

C̄r7
7k2k2

I(B)
]

(3.125)

+
Kn8+2r1+2r2+2r7

n3
P
(M2

n
≤ λmin ≤

(1−√c1)2

2

)
= O(

1√
n

), (3.126)

where we use C2kk and C7kk, k = k1, k2, respectively, to denote C2 and

C7 to emphasize their dependence on k and the notation (̄·) denotes its

corresponding complex conjugate. As for (3.125) we use the following fact

that

(3.125) =
K

n2
E
[∑
k1,k2

(V̄n(s)VT
n (s))k2k1C

r2
2k1k1

Cr7
7k1k1

C̄r2
2k2k2

C̄r7
7k2k2

I(B)
]

≤ K

n2
E
[∑

k1

|Cr2
2k1k1

Cr7
7k1k1
|2
∑
k1

∣∣∣∑
k2

(V̄n(s)VT
n (s))k2k1C̄

r2
2k2k2

C̄r7
7k2k2

∣∣∣2I(B)
]1/2

≤ K

n3/2
E
[∑

k1

∑
k2,k3

(V̄n(s)VT
n (s))k2k1(V

∗
n(s)Vn(s))k3k1C̄

r2
2k2k2

C̄r7
7k2k2

Cr2
2k3k3

Cr7
7k3k3

I(B)
]1/2

=
K

n3/2
E
[∑
k2,k3

(V̄n(s)(VT
n (s))2V̄n(s))k2k3C̄

r2
2k2k2

C̄r7
7k2k2

Cr2
2k3k3

Cr7
7k3k3

I(B)
]1/2

≤ K√
n
,

where V∗n(s) stands for the complex conjugate transpose of Vn(s). There-

fore (3.123) holds for all cases and the proof of Lemma 13 is complete.



80 Chapter 3. Regularized Canonical Correlation Coefficients

3.6.4 Proof of Theorem 4

3.6.4.1 The Gaussian case

The CLT under the case of p2 ≥ n has been discussed in the proof of

Theorem 2. Consider c′2 ∈ (0, 1) next.

We remind readers that we below use the same notations as those in

Theorem 2. Recall qn = p2
n−p2 . From (3.59) we can see that the statistic

(3.10) can be expressed as∫
φ(λ)dG(2)

p1,p2
(λ) =

∫
φ(

qnµ

1 + qnµ
)dp1[FS1S−1

2t (µ)− F̃y1n,y2n(µ)], (3.127)

where F̃y1n,y2n(µ) is obtained from F̃y1,y2(µ), whose stieltjes transform is

defined in (3.5), with the substitution of (yn1, yn2) for (y1, y2). Here yn1 = p1
p2

and yn2 = p1
n−p2 .

From (3.127), it suffices to provide the CLT for generalized F -matrix

Kn = S1S
−1
2t . When t = 0, the CLT of the linear spectral statistics of Kn

is provided in Zheng (2012). Following a line similar to the proof of The-

orem 3.1 of Zheng (2012), we next provide the CLT for the linear spectral

statistics of the matrix Kn in the case of t > 0.

Let n = (n1, n2) and y = (y1, y2) with n1 = p1 and n2 = n − p2. The

Stieltjes transforms of the ESD and LSD of the matrix S1S
−1
2t are denoted by

mn(z) and my(z) respectively while those of the ESD and LSD of the matrix

1
p2

WT
1 S−1

2t W1 are denoted by mn(z) and my(z) respectively. The ESD and

LSD of S2t are written as Fn2t and Fy2t respectively while those of S−1
2t

are written as Hn2t(x) and Hy2t(x) respectively. The Stieltjes transforms

of Fn2t and Fy2t are denoted by mn2t(z) and my2t(z) respectively. The

Stieltjes transforms of ESD and LSD of the matrix S2 = 1
n−p2 W2W

T
2 are

written as mn2(z) and my2(z) respectively while those of the ESD and LSD

of the matrix 1
n−p2 W

T
2 W2 are denoted by mn2

(z) and my2
(z) respectively.
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Moreover, myn ,myn
are obtained frommy,my respectively with y = (y1, y2)

replaced by yn = (y1n, y2n). Also Fyn2 t,myn2 t
,myn2 t

, Fyn2 ,myn2
and myn2

are

obtained from Fy2t,my2t,my2t
, Fy2 ,my2 and my2

with y2 replaced by y2n.

Some of the Stieltjes transforms and ESDs above have the following

relations:

mn(z) = −1− yn1

z
+ yn1mn(z), my(z) = −1− y1

z
+ y1my(z); (3.128)

and for all x > 0,

Hn2t(x) = 1− Fn2t(
1

x
), Hy2t(x) = 1− Fy2t(

1

x
).

This, together with Theorem 4.3 of Bai and Silverstein (2009), indicates

that my(z) satisfies the following equation

z = − 1

my(z)
+

∫
y1dFy2t(x)

x+my(z)
. (3.129)

Replacing Fy2t(x) by Fyn2t(x) we have a similar expression ( see (6.2.15) of

Bai and Silverstein (2009) as well)

z = − 1

myn

+

∫
yn1dFyn2t(x)

x+myn

. (3.130)

Write

n1[mn(z)−myn
(z)] = n1[mn(z)−myn1 ,Hn2t(z)] + n1[myn1 ,Hn2t(z)−myn

(z)],

(3.131)

where m{yn1 ,Hn2t}(z) is the unique root to the following equation

z = − 1

m{yn1 ,Hn2t}
+

∫
yn1dFn2t(x)

x+m{yn1 ,Hn2t}
. (3.132)

Roughly speaking, myn1 ,Hn2t(z) is the Stieltjes transform of the LSD of

1
n
WT

1 S−1
2t W1 when W2 is given.
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Step 1: Given W2, consider the conditional distribution of

n1[mn −m{yn1 ,Hn2t}(z)]. (3.133)

For simplicity, write my(z) as m(z). By Lemma 9.11 of Bai and Silverstein

(2009), we can obtain the conditional distribution of (3.133) given W2 con-

verges to a Gaussian process M1(z) on some contour C (see Lemma 9.11 of

Bai and Silverstein (2009)) with mean function

E(M1(z)|W2) =
y1

∫
m(z)3x[x+m(z)]−3dFy2t(x)

[1− y1

∫
m(z)2(x+m(z))−2dFy2t(x)]2

(3.134)

for z ∈ C and covariance function

Cov(M1(z1),M1(z2)|W2) = 2
( m

′
(z1)m

′
(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

)
(3.135)

for z1, z2 ∈ C.

Step 2: Consider the limit distribution of

n1[m{yn1 ,Hn2t}(z)−myn(z)]. (3.136)

By the definition of the Stieltjes transform, rewrite the equations of

(3.130) and (3.132) as

z = − 1

myn

+ yn1myn2t
(−myn), z = − 1

m{yn1 ,Hn2t}
+ yn1mn2t

(
−m{yn1 ,Hn2t}

)
.

(3.137)

Taking a difference of the above two identities we obtain

0 =
m{yn1 ,Hn2t} −myn

mynm
{yn1 ,Hn2t}

+ yn1[mn2t(−m{yn1 ,Hn2t})−mn2t(−myn)

+mn2t(−myn)−myn2t
(−myn)]

=
m{yn1 ,Hn2t} −myn

mynm
{yn1 ,Hn2t}

− yn1

∫
(m{yn1 ,Hn2t} −myn)dFn2t(x)

(x+m{yn1 ,Hn2t})(x+myn)

+yn1 [mn2t(−myn)−myn2t
(−myn)].
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From the above equality, we can obtain

n1[m{yn1 ,Hn2t}(z)−myn(z)]

= −yn1mynm
{yn1 ,Hn2t}

n1[mn2t(−myn)−myn2t
(−myn)]

1− yn1

∫ myn
m
{yn1 ,Hn2t}dFn2t(x)

(x+myn
)(x+m

{yn1 ,Hn2t})

. (3.138)

From the fact that myn(z) → m(z) and Theorem 3.9 of Billingsley

(1999), the limiting distribution of

p1[mn2t(−myn)−myn2t
(−myn)]

is the same as that of

p1[mn2t(−m)−myn2t
(−m)].

Recall the definition of g(z) before Theorem 4. By Theorem 6 in Chapter

4, we see that n1[mn2t(−m(z)) − myn2t
(−m(z))] converges to a Gaussian

process M2(·) on z ∈ C with mean function

EM2(z) =
y2$

2(−m(z))m3(−m(z)) + y2
2$

4(−m(z))m
′
y2t

(−m(z))m3(−m(z))

1− y2$2(−m(z))m2(−m(z))

−
y2

2$
3(−m(z))m

′
y2t

(−m(z))m2(−m(z))

1− y2$2(−m(z))m2(−m(z))

and covariance

Cov(M2(z1),M2(z2)) = − 2

(−m(z2) +m(z1))2

+
2[1 + g(z1) + g(z2) + g(z1)g(z2)]

[−m(z2) +m(z1) + s(−m(z1),−m(z2))]2
,

Since
−myn

(z)m
{yn1 ,Hn2t}(z)

1−yn1
∫ myn (z)m

{yn1 ,Hn2t}(z)dFn2t(x)

(x+myn (z))(x+m
{yn1 ,Hn2t})

converges to h(z) = −m2(z)

1−y1m2(z)
∫ dFy2t

(x)

(x+m(z))2

,

we have (3.138) converges weakly to a Gaussian process M3(·) = h(z)M2(z)

with mean E(M3(z)) = h(z)EM2(z) and covariance

Cov(M3(z1),M3(z2)) = h(z1)h(z2)Cov(M2(z1),M2(z2)).
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Since the limit of

n1[mn(z)−m{yn1 ,Hn2t}(z)]

conditioning on W2 is independent of the ESD of Sn2 , the limits of

n1[mn(z)−m{yn1 ,Hn2t}(z)] and n1[m{yn1 ,Hn2t}(z)−myn(z)]

are asymptotically independent. Therefore n1[mn(z) − myn(z)] converges

weakly to M1(z) +M3(z) with mean function

E(M1(z) +M3(z)) =
y1

∫
m(z)3x[x+m(z)]−3dFy2t(x)

[1− y1

∫
m(z)2(x+m(z))−2dFy2t(x)]2

+h(z)
y2$

2(−m(z))m3(−m(z)) + y2
2$

4(−m(z))m
′
y2t

(−m(z))m3(−m(z))

1− c$2(−m(z))m2(−m(z))

−h(z)
y2

2$
3(−m(z))m

′
y2t

(−m(z))m2(−m(z))

1− y2$2(−m(z))m2(−m(z))

(3.139)

and covariance function

Cov(M1(z1) +M3(z1),M1(z2) +M3(z2)) = 2
( m

′
(z1)m

′
(z2)

(m(z1)−m(z2))2
− 1

(z1 − z2)2

)
− 2h(z1)h(z2)

(−m(z2) +m(z1))2
+
h(z1)h(z2)2[1 + g(z1) + g(z2) + g(z1)g(z2)]

[−m(z2) +m(z1) + s(−m(z1),−m(z2))]2
. (3.140)

By the Cauchy integral formula, we have with probability one for all n large∫
f(x)dG(2)

p1,p2
(x) = − 1

2πi

∫
f(z)mG(z)dz. (3.141)

Then (∫
f1(x)dG(2)

p1,p2
(x), . . . ,

∫
fk(x)dG(2)

p1,p2
(x)
)

converges to a Gaussian vector (Xf1 , . . . , Xfk) where

EXfi = − 1

2πi

∮
fi(z)E(M1(z) +M3(z))dz (3.142)
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and

Cov(Xfi , Xfj) = − 1

4π2

∮ ∮
fi(z)fj(z)Cov(M1(z1) +M3(z1),M1(z2) +M3(z2))dz1dz2.

(3.143)

As for the non-Gaussian case, under the assumption that EX4
11 = 3, one

can verify that the CLT is the same as that in the Gaussian case by repeating

the method in Section 3.6.3.2 (replacing Px there by Ptx in (3.65)). We omit

the details here.

3.6.5 The proof of Theorem 5

Set

D(i) = p1

∫
λd
(
F

R
(i)
xy

H1
(λ)− FR

(i)
xy

H0
(λ)
)
,

where R
(1)
xy represents the matrix Sxy while R

(2)
xy represents the matrix Txy;

and F
R

(i)
xy

H0
, F

R
(i)
xy

H1
stand for the ESDs of R

(i)
xy under H0 and H1, respectively.

The power can be then calculated as

βn = P
(
R(i)
n > z1−α or R

(i)
n < zα

∣∣∣H1

)
= P

(
D(i) +R(i)0

n > z1−α or D
(i) +R(i)0

n < zα

∣∣∣H1

)
= P

(
R(i)0
n > z1−α −D(i) or R(i)0

n < zα −D(i)
∣∣∣H1

)
, (3.144)

where R
(i)0
n stands for R

(i)
n under H0. Under the condition (3.24), we have

βn → 1, as n→∞.
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Table 3.1: Empirical sizes of the proposed test Sn and the re-normalized like-

lihood ratio test MLRn at 0.05 significance level for DGP(a) and DGP(b).

(p1, p2, n) Sn DGP(a) Sn DGP(b) MLRn DGP(a) MLRn DGP(b)

(10,20,40) 0.0458 0.0461 0.0481 0.0490

(20,30,60) 0.0480 0.0488 0.0440 0.0448

(30,60,120) 0.0475 0.0480 0.0530 0.0520

(40,80,160) 0.0464 0.0466 0.0420 0.0420

(50,100,200) 0.0503 0.0504 0.0487 0.0500

(60,120,240) 0.0490 0.0490 0.0574 0.0572

(70,140,280) 0.0524 0.0520 0.0570 0.0582

(80,160,320) 0.0500 0.0500 0.0632 0.0583

(90,180,360) 0.0521 0.0511 0.0559 0.0580

(100,200,400) 0.0501 0.0503 0.0482 0.0589

(110,220,440) 0.0504 0.0500 0.0440 0.0590

(120,240,480) 0.0513 0.0511 0.0400 0.0432

(130,260,520) 0.0511 0.0511 0.0520 0.0560

(140,280,560) 0.0469 0.0474 0.0582 0.0580

(150,300,600) 0.0495 0.0500 0.0590 0.0593

(160,320,640) 0.0514 0.0517 0.0437 0.0559

(170,340,680) 0.0498 0.0500 0.0428 0.0430

(180,360,720) 0.0509 0.0510 0.0580 0.0577

(190,380,760) 0.0488 0.0485 0.0388 0.0499

(200,400,800) 0.0491 0.0491 0.0462 0.0499

(210,420,840) 0.0491 0.0500 0.0450 0.0555

(220,440,880) 0.0515 0.0510 0.0572 0.0588

(230,460,920) 0.0493 0.0498 0.0470 0.0488

(240,480,960) 0.0482 0.0479 0.0521 0.0561

(250,500,1000) 0.0452 0.0450 0.0527 0.0545
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Table 3.2: Empirical sizes of the proposed test Tn at 0.05 significance level for

DGP(a) and DGP(b).

(p1, p2, n) Tn DGP(a) Tn DGP(b)

(100,50,60) 0.0582 0.0579

(140,70,80) 0.0591 0.0571

(180,90,100) 0.0549 0.0568

(200,100,120) 0.0561 0.0558

(240,120,130) 0.0571 0.0572

(280,140,150) 0.0540 0.0569

(320,160,170) 0.0551 0.0559

(360,180,190) 0.0542 0.0572

(400,190,200) 0.0571 0.0553

(440,220,230) 0.0532 0.0561

(480,240,250) 0.0540 0.0557

*The parameter t in the statistic Tn takes value of 0.5.
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Table 3.3: Empirical powers of the proposed test Sn at 0.05 significance level

for factor models.

(p1, p2, n) r=1 r=2 r=3 r=4

(10,20,40) 0.2690 0.6460 0.9420 0.9980

(30,60,120) 0.2930 0.8010 0.9760 0.9990

(50,100,200) 0.3110 0.7650 0.9770 1.0000

(70,140,280) 0.3240 0.7710 0.9830 0.9980

(90,180,360) 0.3450 0.7940 0.9870 1.0000

(110,220,440) 0.3330 0.7980 0.9800 0.9990

(130,260,520) 0.3460 0.7820 0.9780 0.9990

(150,300,600) 0.3510 0.7980 0.9720 0.9990

(170,340,680) 0.3250 0.7780 0.9750 1.0000

(190,380,760) 0.3480 0.7810 0.9810 1.0000

(210,420,840) 0.3210 0.7900 0.9700 1.0000

(230,460,920) 0.3300 0.7810 0.9790 1.0000

(250,500,1000) 0.3370 0.7890 0.9790 1.0000

*The powers are under the alternative hypothesis that x and y satisfy the factor model

(3.44). r is the number of factors.
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Table 3.4: Empirical powers of the proposed test Tn at 0.05 significance level

for factor models.

(p1, p2, n) r=1 r=2 r=3 r=4

(10,20,40) 0.3150 0.7440 0.9500 0.9830

(30,60,120) 0.4230 0.8550 0.9740 1.0000

(50,100,200) 0.3990 0.8760 0.9890 1.0000

(70,140,280) 0.4120 0.8690 0.9990 0.9980

(90,180,360) 0.4050 0.8820 0.9840 1.0000

(110,220,440) 0.4000 0.8740 0.9850 0.9990

(130,260,520) 0.3990 0.8910 0.9880 0.9990

(150,300,600) 0.4110 0.8570 0.9870 0.9990

(170,340,680) 0.4100 0.8800 0.9920 1.0000

(190,380,760) 0.3980 0.8690 0.9860 1.0000

(210,420,840) 0.3490 0.8790 0.9770 1.0000

(230,460,920) 0.3990 0.8730 0.9730 1.0000

(250,500,1000) 0.4100 0.8770 0.9800 1.0000

*The powers are under the alternative hypothesis that x and y satisfy the factor model

(3.44). r is the number of factors.



90 Chapter 3. Regularized Canonical Correlation Coefficients

Table 3.5: Empirical powers of the proposed test Sn at 0.05 significance level

for x and y with ARCH(1) dependent type.

(p1, p2, n) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5)

(10,20,40) 0.3480 0.4670 0.6380 0.7650 0.8500

(30,60,120) 0.4840 0.8090 0.9820 0.9990 1.0000

(50,100,200) 0.6190 0.9730 1.0000 1.0000 1.0000

(70,140,280) 0.7020 0.9980 1.0000 1.0000 1.0000

(90,180,360) 0.7900 1.0000 1.0000 1.0000 1.0000

(110,220,440) 0.8620 1.0000 1.0000 1.0000 1.0000

(130,260,520) 0.8970 1.0000 1.0000 1.0000 1.0000

(150,300,600) 0.9440 1.0000 1.0000 1.0000 1.0000

(170,340,680) 0.9520 1.0000 1.0000 1.0000 1.0000

(190,380,760) 0.9810 1.0000 1.0000 1.0000 1.0000

(210,420,840) 0.9880 1.0000 1.0000 1.0000 1.0000

(230,460,920) 0.9950 1.0000 1.0000 1.0000 1.0000

(250,500,1000) 0.9980 1.0000 1.0000 1.0000 1.0000

*The powers are under the alternative hypothesis that Yit = Zit

√
α0 + α1X2

it, i =

1, 2, . . . , p1;Yjt = Zjt, j = p1 + 1, . . . , p2. The pair of two numbers in this table is

the value of (α0, α1).
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Table 3.6: Empirical powers of the proposed test Tn at 0.05 significance level

for x and y with ARCH(1) dependent type.

(p1, p2, n) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5)

(100,50,60) 0.5620 05720 0.6880 0.8030 0.9430

(140,70,80) 0.6330 0.7590 0.8200 0.9170 0.9590

(180,90,100) 0.7190 0.8240 0.9560 0.9920 1.0000

(200,100,110) 0.7990 0.8370 0.9890 1.0000 1.0000

(240,120,130) 0.8810 0.9450 1.0000 1.0000 1.0000

(280,140,150) 0.9470 0.9780 1.0000 1.0000 1.0000

(320,160,170) 0.9790 0.9920 1.0000 1.0000 1.0000

(360,180,190) 0.9890 0.9990 1.0000 1.0000 1.0000

(400,200,210) 0.9860 0.9990 1.0000 1.0000 1.0000

(440,220,230) 0.9930 1.0000 1.0000 1.0000 1.0000

(480,240,250) 0.9970 0.9990 1.0000 1.0000 1.0000

*The powers are under the alternative hypothesis that Yit = Zit

√
α0 + α1X2

it, i =

1, 2, . . . , p1;Yjt = Zjt, j = p1 + 1, . . . , p2. The pair of two numbers in this table is

the value of (α0, α1). The parameter t in the statistic Tn takes value of 0.5.
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Table 3.7: Empirical powers of the proposed test Sn at 0.05 significance level

for uncorrelated but dependent case.

(p1, p2, n) ω = 4 ω = 10

(10,20,40) 0.8140 0.9690

(30,60,120) 0.8200 0.9510

(50,100,200) 0.8220 0.9600

(70,140,280) 0.8100 0.9610

(90,180,360) 0.8210 0.9640

(110,220,440) 0.8110 0.9670

(130,260,520) 0.8320 0.9740

(150,300,600) 0.8420 0.9740

(170,340,680) 0.8450 0.9760

(190,380,760) 0.8580 0.9680

(210,420,840) 0.8420 0.9670

(230,460,920) 0.8440 0.9810

(250,500,1000) 0.8620 0.9810

*The powers are under the alternative hypothesis that Yit = Xω
it, i = 1, 2, . . . , p1 and

Yjt = εjt, j = p1 + 1, . . . , p2; t = 1, . . . , n, where εjt, j = p1 + 1, . . . , p2; t = 1, . . . , n are

standard normal distributed and independent with Xit and ω = 4, 10.
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Table 3.8: Empirical powers of the proposed test Tn at 0.05 significance level

for uncorrelated but dependent case.

(p1, p2, n) ω = 4 ω = 10

(100,50,60) 0.6270 0.8130

(140,70,80) 0.6920 0.8430

(180,90,100) 0.7010 0.8380

(200,100,110) 0.7920 0.8460

(240,120,130) 0.8240 0.9330

(280,140,150) 0.8660 0.9650

(320,160,170) 0.9040 0.9780

(360,180,190) 0.9060 0.9830

(400,200,210) 0.9310 0.9920

(440,220,230) 0.9690 1.0000

(480,240,250) 0.9920 1.0000

*The powers are under the alternative hypothesis that Yit = Xω
it, i = 1, 2, . . . , p1 and

Yjt = εjt, j = p1 + 1, . . . , p2; t = 1, . . . , n, where εjt, j = p1 + 1, . . . , p2; t = 1, . . . , n are

standard normal distributed and independent with Xit and ω = 4, 10. The parameter t

in the statistic Tn takes value of 0.5.
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Table 3.9: P-values for (p1, p2) companies from basic industry section and

capital goods section of NYSE.

P-values (p1, p2, n) (p1, p2, n)

(10, 15, 20) (15, 20, 25)

P-value Interval No. of Exp. No. of Exp.

[0, 0.05] 41 53

[0.05, 0.1] 30 29

[0.1, 0.2] 12 10

[0.2, 0.3] 6 5

[0.3, 0.4] 8 2

[0.4, 0.5] 0 1

[0.6, 0.7] 2 0

[0.8, 0.9] 1 0

[0.9, 1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic

industry section and capital goods section, each of which has n closed stock prices during

the period 1990.1.1 − 2002.1.1. The number of repeated experiments are 100. All the

closed stock prices are from WRDS database. No. of Exp. is the number of experiments

whose P-values are in the corresponding interval.
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Table 3.10: P-values for (p1, p2) companies from public utility section and

capital goods section of NYSE.

P-values (p1, p2, n) (p1, p2, n)

(10, 15, 20) (15, 20, 25)

P-value Interval No. of Exp. No. of Exp.

[0, 0.05] 82 80

[0.05, 0.1] 9 16

[0.1, 0.2] 4 3

[0.2, 0.3] 2 0

[0.3, 0.4] 0 1

[0.4, 0.5] 0 0

[0.6, 0.7] 2 0

[0.8, 0.9] 1 0

[0.9, 1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic

industry section and capital goods section, each of which has n closed stock prices during

the period 1990.1.1 − 2002.1.1. The number of repeated experiments are 100. All the

closed stock prices are from WRDS database. No. of Exp. is the number of experiments

whose P-values are in the corresponding interval.
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Table 3.11: P-values for (p1, p2) companies from finance section and healthcare

section of NYSE.

P-values (p1, p2, n) (p1, p2, n)

(10, 15, 20) (15, 20, 25)

P-value Interval No. of Exp. No. of Exp.

[0, 0.05] 84 88

[0.05, 0.1] 7 10

[0.1, 0.2] 2 2

[0.2, 0.3] 4 1

[0.3, 0.4] 1 0

[0.4, 0.5] 0 0

[0.6, 0.7] 1 0

[0.8, 0.9] 1 0

[0.9, 1] 0 0

*These are P-values for (p1, p2) companies from different two sections of NYSE: basic

industry section and capital goods section, each of which has n closed stock prices during

the period 1990.1.1 − 2002.1.1. The number of repeated experiments are 100. All the

closed stock prices are from WRDS database. No. of Exp. is the number of experiments

whose P-values are in the corresponding interval.



Chapter 4
CLT for a sample covariance matrix

plus a perturbation

As stated in last Chapter, we need the central limit theorem for linear

spectral statistics of a perturbation matrix. This chapter is devoted to

providing the CLT for linear spectral statistics, quantities of the form

1

n

n∑
j=1

f(λj) =

∫
f(x)dFBn(x), (4.1)

where f is a function on [0,∞), λ1, . . . , λn denote the eigenvalues of random

matrices Bn and

Bn =
1

N
XX∗ + Tn. (4.2)

Here X = (Xij) is n×N with independent and identically distributed (i.i.d)

complex (real) standardized entries, Tn is a nonnegative Hermitian matrix,

and the empirical spectral distribution (ESD) of any square matrix A with

real eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn is denoted by

FA(x) =
1

n
#{i : µi ≤ x}, (4.3)
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where #{· · · } denotes the cardinality of the set {· · · }.

Silverstein (1995) discovers the limiting spectral distribution(LSD) Fc,H ,

the limit of FBn , which is given in Lemma 14 below for easy reference. The

Stieltjes transform of any distribution function G(x) is defined by

mG(z) ≡
∫

1

λ− z
dG(λ), Im(z) 6= 0. (4.4)

Lemma 14. Assume that

1. For each n, Xn = (Xn
ij), {Xn

ij : i = 1, . . . , n; j = 1, . . . , N} are i.d.;

for all n, i, j, {Xn
ij : n = 1, 2, . . . ; i = 1, . . . , n; j = 1, . . . , N} are

independent. Moreover, EX11 = 0 and E|X11|2 = 1.

2. n = n(N) with n/N → c > 0 as N →∞.

3. Tn is an n× n Hermitian nonrandom matrix for which FTn(x) con-

verges vaguely to a nonrandom distribution H(x),

then almost surely, FBn, the ESD of Bn, converges vaguely, as N → ∞,

to a nonrandom distribution Fc,H , whose Stieltjes transform m0(z), z ∈ C+

satisfies

m0(z) = mH

(
z − 1

1 + cm0(z)

)
, (4.5)

where mH(z) denotes the Stieltjes transform of H(x).

Remark 8. Indeed, Silverstein (1995) derives a more general equation than

(4.5) for the matrix 1
n
XAnX

∗ + Tn, where An is a diagonal matrix. If

we take An = diag
(
n
N
, n
N
, . . . , n

N

)
then the equation (4.5) for the matrix

Bn = 1
n
XX∗ + Tn follows. A similar result covering more general matrices

An can be found in Pan (2010).
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Before stating Theorem 6, we introduce some notation. Set

Gn(x) = n[FBn(x)− Fcn,Hn(x)], (4.6)

where Hn ≡ FTn , cn = n/N and Fcn,Hn(x) can be obtained from Fc,H(x)

with c and H(x) replaced by cn and Hn(x), respectively.

Let

mr(z) =

∫
dH(x)

(x− z +$(z))r
, $(z) =

1

1 + cm0(z)
,

s(z1, z2) =
1

1 + cm0(z1)
− 1

1 + cm0(z2)
. (4.7)

where r is a positive integer.

The main result of this chapter is Theorem 6.

Theorem 6. Assume that

(a) {Xij, i ≤ n, j ≤ N} are i.i.d. with EX11 = 0, E|X11|2 = 1 and

E|X11|4 <∞.

(b) Tn is n × n nonrandom Hermitian nonnegative definite with spectral

norm bounded in n, and with FTn D→ H, a proper c.d.f.

(c) n = n(N) with n/N → c > 0 as N →∞.

Let f1, . . . , fk be functions on R analytic on an open interval containing[
I(0,1)(c)(1−

√
c)2 + lim inf

n
λTn
min, (1 +

√
c)2 + lim sup

n
λTn
max

]
, (4.8)

where λTn
min and λTn

max denote the maximum and minimum eigenvalues of Tn

respectively. Then

(i) the random vector(∫
f1(x)dGn(x), . . . ,

∫
fk(x)dGn(x)

)
(4.9)

forms a tight sequence in n.

(ii) If X11 and Tn are real and EX4
11 = 3, then (4.9) converges weakly to a
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Gaussian vector (Xf1 , . . . , Xfk) with mean

EXf =
1

−2πi

∮
C
f(z)

c$2(z)m3(z) + c2$4(z)
(
m0(z)

)′
m3(z)− c2$3(z)

(
m0(z)

)′
m2(z)

1− c$2(z)m2(z)
dz

(4.10)

and covariance function

Cov(Xfi , Xfj) = − 1

2π2

∮
C

∮
C
fi(z1)fj(z2)[1 +

c(m0(z1))′

(1 + cm0(z1))2
+

c(m0(z2))′

(1 + cm0(z2))2

+
c(m0(z1))′

(1 + cm0(z1))2

c(m0(z2))′

(1 + cm0(z2))2
]

1

(z2 − z1 + s(z1, z2))2
dz1dz2.

(4.11)

The contours in (4.10) and (4.11) are closed and are taken in the positive

direction in the complex plane, each enclosing the support of Fc,H .

(iii) If X11 is complex with E(X2
11) = 0 and E(|X11|4) = 2, then the result

above also holds, except the mean is zero and the covariance function is 1/2

the function given in (4.11).

Remark 9. We investigate the matrix Bn = 1
N

XX∗ + Tn while Bai and

Silverstein (2004) studies the matrix of the form Sn = 1
N

R
1/2
n XX∗R

1/2
n ,

where R
1/2
n is a Hermitian square root of the nonnegative definite Hermitian

matrix Rn. The two matrices Bn and Sn are the same when the matrix Tn

becomes a zero matrix and Rn becomes an identity matrix. In this case,

the asymptotic means and covariances in Bai and Silverstein (2004) and in

Theorem 6 are the same, which is verified in the last part of this chapter.

4.1 Proof of Theorem 6

The proof of Theorem 6 follows a line similar to that in Bai and Silverstein

(2004). Throughout the proof K denotes a constant which may change

from line to line.
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4.1.1 Truncation, centralization and renormalization

We begin the proof by replacing the entries of Xn with truncated and

centralized variables. Since the argument for (1.8) in Bai and Silverstein

(2004) can be carried directly over to the present case, we can then select

positive sequences δn such that

δn → 0, δ−4
n

∫
{|X11|≥δn

√
n}
|X11|4 → 0. (4.12)

Set B̂n = 1
N

X̂nX̂
∗
n + Tn with X̂n (of size n × N) having the (i, j)th entry

XijI|Xij |<δn
√
n. Then we have

P (Bn 6= B̂n) ≤ nNP (|X11| ≥ δn
√
n) ≤ Kδ−4

n

∫
{|X11|≥δn

√
n}
|X11|4 = o(1).

Define B̃n = 1
N

X̃nX̃
∗
n + Tn with X̃n having (i, j)th entry (X̂ij − EX̂ij)/σn,

where σn = E|X̂ij − EX̂ij|2. From Bai and Silverstein (2004) we know that

both lim supn λ
Ĉn
max and lim supn λ

C̃n
max are almost surely bounded by (1+

√
c),

where Ĉn = 1
N

X̂nX̂
∗
n and C̃n = 1

N
X̃nX̃

∗
n. By Weyl’s inequality and the

assumption ||Tn|| ≤ M , we have that lim sup
n

λB̂n
max and lim supn λ

B̃n
max are

almost surely bounded by [(1 +
√
c) + M ]. We use Ĝn(x) and G̃n(x) to

denote the analogues of Gn(x) with the matrix Bn replaced by B̂n and B̃n

respectively.

Since Tn is a nonnegative definite matrix, we can write Tn = T
1/2
n T

1/2
n =∑n

i=1 tit
∗
i , where ti is the ith column of T

1/2
n . We may then write

Bn = FnF
∗
n, (4.13)

where

Fn = (r1, . . . , rN , t1, . . . , tn) (4.14)
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with ri = 1
N

X.i, i = 1, . . . , N and X.i standing for the ith column of Xn.

Define F̂n and F̃n to be the analogues of Fn with the matrix Xn replaced

by X̂n and X̃n respectively. For each j = 1, 2, . . . , k,∣∣∣ ∫ fj(x)dĜn(x)−
∫
fj(x)dG̃n(x)

∣∣∣ ≤ Kj

n∑
k=1

∣∣∣λB̂n
k − λ

B̃n
k

∣∣∣
≤ 2Kj

(
tr(F̂n − F̃n)(F̂n − F̃n)∗

)1/2(
n(λB̂n

max + λB̃n
max)

)1/2

,

where Kj is a bound on |f ′j(z)| and λA
k denotes the ith smallest eigenvalue

of the matrix A.

By the fact that

tr(F̂n − F̃n)(F̂n − F̃n)∗ = N−1tr(X̂n − X̃n)(X̂n − X̃n)∗,

and the result on page 560 of Bai and Silverstein (2004), i.e.(
N−1tr(X̂n − X̃n)(X̂n − X̃n)∗

)1/2

= o(δnn
−1/2)(λB̂n

max)
1/2 + o(δnn

−1),

we obtain ∫
fj(x)dGn(x) =

∫
fj(x)dG̃n(x) + oP (1).

Therefore, in the sequel, we shall assume

|Xij| < δn
√
n, EXij = 0, E|Xij|2 = 1, E|Xij|4 <∞,

and for the real case, E|X11|4 = 3+o(1) while for the complex case, EX2
11 =

o(1/n) and E|X11|4 = 2+o(1). For simplicity we suppress all the subscripts

and superscripts on variables.

4.1.2 From linear spectral statistics to Stieltjes trans-

forms

With notation Cn = 1
N

XX∗, by Weyl’s inequality we have

λBn
max ≤ λCn

max + λTn
max, λBn

min ≥ λCn
min + λTn

min. (4.15)
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From (1.9a) and (1.9b) of Bai and Silverstein (2004), we have

P (λBn
max ≥ η) = o(n−`), P (λBn

min ≤ θ) = o(n−`), (4.16)

for any η >
(

(1 +
√
c)2 + lim supn λ

Tn
max

)
, any 0 < θ <

(
I(0,1)(c)(1−

√
c)2 +

lim infn λ
Tn
min

)
and any positive `.

Write

Mn(z) = n
(
mn(z)−m0

n(z)
)

where mn(z) denotes the Stieltjes transform of FBn and m0
n(z) is m0(z)

with c,H replaced by cn, Hn respectively. By Cauchy’s integral formula

f`(x) =
1

2πi

∮
f`(z)

z − x
dz, (4.17)

we have for k ≥ 1, any complex constants a1, · · · , ak, and for all n large

with probability one,

k∑
`=1

a`

∫
f`(x)dGn(x) = −

k∑
`=1

a`
2πi

∮
C
f`(z)Mn(z)dz, (4.18)

where the contour C is specified below. Let v0 > 0 be arbitrary. Let xr be

any number greater than the right end point of interval (4.8). Let x` be

any negative number if the left end point of (4.8) is zero. Otherwise, choose

x` ∈
(
0, (1−

√
c)2 + lim infn λ

Tn
min

)
. Let

Cu = {x+ iv0 : x ∈ [x`, xr]}.

Set

C+ ≡ {x` + iv : v ∈ [0, v0]} ∪ Cu ∪ {xr + iv : v ∈ [0, v0]}.

Let C− be the symmetric part of C+ about the real axis. Then set C =

C+ ∪ C−.
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We define now the subsets C+
n and its symmetric part C−n of C when

Mn(·) agrees with M̂n(·), a truncated version of Mn(·) to be defined below.

Select a sequence {εn} such that for some ρ ∈ (0, 1)

εn ↓ 0, εn ≥ n−ρ.

Let

C` =

 {x` + iv : v ∈ [n−1εn, v0]}, x` > 0;

{x` + iv : v ∈ [0, v0]}, x` < 0,

and

Cr = {xr + iv : v ∈ [n−1εn, v0]}.

Set C+
n = C`∪Cu∪Cr. The process M̂n(·) can now be defined. For z = x+iv,

we have

M̂n(z) =



Mn(z), if z ∈ C+
n ∪ C−n ;

nv+εn
2εn

Mn(xr + in−1εn) + εn−nv
2εn

Mn(xr − in−1εn),

if x = xr, v ∈ [−n−1εn, n
−1εn];

nv+εn
2εn

Mn(xl + in−1εn) + εn−nv
2εn

Mn(xl − in−1εn),

if x = x` > 0, v ∈ [−n−1εn, n
−1εn].

(4.19)

With probability one, for all n large,∣∣∣ ∮
C
f(z)

(
Mn(z)− M̂n(z)

)
dz
∣∣∣

≤ Kεn

(∣∣∣max
(
(1 +

√
cn)2 + λTn

max, λ
Bn
max

)
− xr

∣∣∣−1)
+
∣∣∣min

(
I(0,1)(c)(1−

√
c)2 + λTn

min, λ
Bn
min

)
− x`

∣∣∣−1

→ 0.(4.20)

In view of this and (4.18), as discussed in Bai and Silverstein (2004), it

is enough to consider the limiting distribution of
∑k

`=1 a`M̂n(z`).
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4.1.3 CLT of the Stieltjes transform mn(z) of FBn

Recall the definitions of m(z, r), $(z) and s(z1, z2) in the introduction.

Lemma 15. Under conditions (a)-(c) of Theorem 6, {M̂n(z)} forms a tight

sequence on C. Moreover, if assumptions in (ii) or (iii) of Theorem 6 on

X11 hold, then M̂n(z) converges weakly to a Gaussian process M(z) for

z ∈ C under the assumptions in (ii),

EM(z) =
c$2(z)m(z, 3) + c2$4(z)

(
m0(z)

)′
m(z, 3)− c2$3(z)

(
m0(z)

)′
m(z, 2)

1− c$2(z)m(z, 2)

(4.21)

and for z1, z2 ∈ C

Cov(M(z1),M(z2)) = − 2

(z2 − z1)2
+ 2[1 +

c(m0(z1))′

(1 + cm0(z1))2
+

c(m0(z2))′

(1 + cm0(z2))2

+
c(m0(z1))′

(1 + cm0(z1))2

c(m0(z2))′

(1 + cm0(z2))2
]

1

(z2 − z1 + s(z1, z2))2
,

(4.22)

while under the assumptions in (iii) EM(z) = 0, and the covariance func-

tion similar to (4.22) is half of the right hand side of (4.22).

We first list (2.3) of Bai and Silverstein (2004) below as Proposition 2,

which holds as well in our setting.

Proposition 2. For any nonrandom n × n matrices Ak, k = 1, . . . , p and

B`, ` = 1, . . . , q, there exists∣∣∣E( p∏
k=1

r∗1Akr1

q∏
`=1

(r∗1B`r1 −N−1trB`)
)∣∣∣

≤ KN−(1∧q)δ(2q−4)∨0
n

p∏
k=1

||Ak||
q∏
`=1

||B`||, p ≥ 0, q ≥ 0. (4.23)
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Proof. We now start the proof of Lemma 15. Write Mn(z) = M
(1)
n (z) +

M
(2)
n (z), where

M (1)
n (z) = n

(
mn(z)− Emn(z)

)
, M (2)

n (z) = n
(
Emn(z)−m0

n(z)
)
.

By the discussion in Bai and Silverstein (2004), it suffices to prove the

following four statements.

1. Finite dimension convergence of M
(1)
n (z) on Cn.

2. M
(1)
n (z) is tight on Cn where Cn = C+

n ∪ C−n .

3. M
(2)
n (z) → EM(z), for z ∈ Cn, where M(z) is the limit of Mn(z) as

n→∞.

4. {M (2)
n (z)} for z ∈ Cn is bounded and equicontinuous.

4.1.3.1 Step 1: Convergence of M
(1)
n (z)

Let v0 = Im(z). To facilitate analysis we consider the case of v0 > 0 only.

We first introduce some notation as follows.

rj =
1√
N

X.j, D(z) = Bn − zI, Dj(z) = D(z)− rjr
∗
j ,

γj(z) = r∗jD
−1
j (z)rj −

1

N
EtrD−1

j (z), εj(z) = r∗jD
−1
j (z)rj −

1

N
trD−1

j (z),

δj(z) = r∗jD
−2
j (z)rj −

1

N
trD−2

j (z) =
d

dz
εj(z), βj(z) =

1

1 + r∗jD
−1
j (z)rj

,

βtrj (z) =
1

1 +N−1trD−1
j (z)

, bn(z) =
1

1 +N−1EtrD−1
1 (z)

.

As pointed out by Bai and Silverstein (2004), the later three variables are

all bounded by |z|/v0. Let E0(·) denote expectation and Ej(·) denote con-

ditional expectation with respect to the σ-field generated by r1, . . . , rj.
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Write

n
(
mn(z)− Emn(z)

)
= tr

(
D−1(z)− ED−1(z)

)
=

N∑
j=1

trEjD
−1(z)− trEj−1D

−1(z)

=
N∑
j=1

trEj

(
D−1(z)−D−1

j (z)
)
− trEj−1

(
D−1(z)−D−1

j (z)
)

= −
N∑
j=1

(Ej − Ej−1)βj(z)r∗jD
−2
j (z)rj, (4.24)

where the last equality uses

D−1(z)−D−1
j (z) = −D−1

j (z)rjr
∗
jD
−1
j (z)βj(z). (4.25)

By the identity

βj(z) = βtrj (z)−βj(z)βtrj (z)εj(z) = βtrj (z)−(βtrj (z))2εj(z)+(βtrj (z))2βj(z)ε2
j(z),

(4.26)

we have

(Ej − Ej−1)βj(z)r∗jD
−2
j (z)rj = Ej

(
βtrj (z)δj(z)− (βtrj (z))2εj(z)

1

N
trD−2

j (z)
)

−(Ej − Ej−1)(βtrj (z))2
(
εj(z)δj(z)− βj(z)r∗jD

−2
j (z)rjε

2
j(z)

)
.

By Proposition 2 one can prove that (Ej − Ej−1)(βtrj (z))2
(
εj(z)δj(z) −

βj(z)r∗jD
−2
j (z)rjε

2
j(z)

)
converges to zero in probability (One can refer to

page 569 of Bai and Silverstein (2004) for similar arguments).

Therefore it is sufficient to consider the sum
∑k

`=1 a`
∑N

j=1 Yj(z`), where

Yj(z) = Ej

(
βtrj (z)δj(z)− (βtrj (z))2εj(z)

1

N
trD−2

j (z)
)

= −Ej
d

dz
βtrj (z)εj(z).(4.27)

We next utilize Lemma 2.4 of Bai and Silverstein (2004), CLT for mar-

tingale differences. By Proposition 2 and using the same arguments as those

above (2.4) on page 570 of Bai and Silverstein (2004), we see that condition
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2 of Lemma 2.4 of Bai and Silverstein (2004) is satisfied and it is therefore

enough to find the limit in probability of

N∑
j=1

Ej−1

(
Yj(z1)Yj(z2)

)
. (4.28)

Consider the sum

N∑
j=1

Ej−1

(
Ej

(
βtrj (z1)εj(z1)

)
Ej

(
βtrj (z2)εj(z2)

))
. (4.29)

Since

∂2

∂z2∂z1

(4.29) = (4.28), (4.30)

by the same arguments as those on page 571 of Bai and Silverstein (2004)

we only need to show (4.29) converges in probability and to determine its

limit.

Note that the derivation above (4.3) of Bai and Silverstein (1998) is true

in the present case and hence

E| 1
N
trD−1

j (z)− 1

N
EtrD−1

j (z)|p ≤ KN−p/2. (4.31)

By the discussions above (2.7) of Bai and Silverstein (2004), we then have

N∑
j=1

Ej−1

(
Ej

(
βtrj (z1)εj(z1)

)
Ej

(
βtrj (z2)εj(z2)

))
−bn(z1)bn(z2)

N∑
j=1

Ej−1

(
Ej

(
εj(z1)

)
Ej

(
εj(z2)

)) i.p.→ 0.

Thus it remains to prove that

bn(z1)bn(z2)
N∑
j=1

Ej−1

(
Ej

(
εj(z1)

)
Ej

(
εj(z2)

))
(4.32)

converges in probability and to determine its limit.
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In the complex case, namely EX2
11 = o(1/n) and E|X11|4 = 2 + o(1), by

the identity

E(X∗.1AX.1 − trA)(X∗.1BX.1 − trB)

= (E|X11|4 − |EX2
11|2 − 2)

n∑
i=1

aiibii + |EX2
11|2trABT + trAB(4.33)

valid for n×n nonrandom matrices A = (aij) and B = (bij), (4.32) becomes

bn(z1)bn(z2)
1

N2

N∑
j=1

(
trEj

(
D−1
j (z1)

)
Ej

(
D−1
j (z2)

)
+ o(1)An

)
, (4.34)

where

|An| ≤ K
(
trEj

(
D−1
j (z1)

)
Ej

(
D̄−1
j (z1)

)
× trEj

(
D−1
j (z2)

)
Ej

(
D̄−1
j (z2)

))1/2

= O(N).

Thus it is sufficient to study

bn(z1)bn(z2)
1

N2

N∑
j=1

trEj
(
D−1
j (z1)

)
Ej

(
D−1
j (z2)

)
. (4.35)

In the real case, namely E|X11|4 = 3 + o(1), (4.32) should be double the

limit of (4.35).

The next aim is to investigate (4.35). To this end, set Dij(z) = D(z)−

rir
∗
i − rjr

∗
j ,

βij(z) =
1

1 + r∗iD
−1
ij (z)ri

, b1(z) =
1

1 +N−1EtrD−1
12 (z)

,

H−1(z) =
(
zI− N − 1

N
b1(z)I−Tn

)−1
.

Write

Dj(z1) + z1I−
N − 1

N
b1(z1)I−Tn =

N∑
i 6=j

rir
∗
i −

N − 1

N
b1(z1)I.

Multiplying by H−1(z1) on the left hand side, D−1
j (z1) on the right hand

side and using

r∗iD
−1
j (z1) = βij(z1)r∗iD

−1
ij (z1), (4.36)
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we conclude that

D−1
j (z1) = −H−1(z1) +

N∑
i 6=j

βij(z1)H−1(z1)rir
∗
iD
−1
ij (z1)

−N − 1

N
b1(z1)H−1(z1)D−1

j (z1)

= −H−1(z1) + b1(z1)A(z1) +B(z1) + C(z1), (4.37)

where

A(z1) =
∑
i 6=j

H−1(z1)(rir
∗
i −N−1I)D−1

ij (z1),

B(z1) =
∑
i 6=j

(
βij(z1)− b1(z1)

)
H−1(z1)rir

∗
iD
−1
ij (z1),

C(z1) = N−1b1(z1)H−1(z1)
∑
i 6=j

(
D−1
ij (z1)−D−1

j (z1)
)
.

It is easy to verify for any real t,∣∣∣1− 1

z
(
1 +N−1EtrD−1

12 (z)
) − t

z

∣∣∣−1

=
∣∣∣ z

(
1 +N−1

EtrD−1
12 (z)

)
(z − t)

(
1 +N−1EtrD−1

12 (z)
)
− 1

∣∣∣
≤

∣∣z(1 +N−1
EtrD−1

12 (z)
)∣∣

Im
[
(z − t)

(
1 +N−1EtrD−1

12 (z)
)] ≤ |z|(1 + n/(Nv0))

v0

,

where the last inequality uses

Im
[
(z − t)

(
1 +N−1

EtrD−1
12 (z)

)]
= v0 + Im

[
(z − t)N−1

EtrD−1
12 (z)

]
= v0 + Im

[
(z − t)N−1

n∑
i=1

E
1

λi − z

]
= v0 + Im

[
N−1

n∑
i=1

E
(z − t)(λi − t− (z̄ − t))

|λi − z|2
]

= v0 +N−1

n∑
i=1

E
(λi − t)v0

|λi − z|2
≥ v0,

with the fact that

λi ≥ t, ∀i = 1, 2, . . . , n,
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where λi, i = 1, 2, . . . , n are eigenvalues of D12 =
∑n

i 6=1,2 rir
T
i +Tn. It follows

that ∣∣∣∣∣∣H−1(z)
∣∣∣∣∣∣ =

∣∣∣∣∣∣(zI− N − 1

N
b1(z)I−Tn

)−1∣∣∣∣∣∣ ≤ 1 + n/(Nv0)

v0

. (4.38)

Moreover from (4.31) and (4.23) we have

E|γj(z)|p ≤ KN−1δ2p−4
n , p ≥ 2. (4.39)

Therefore the discussions for (2.11)-(2.13) of Bai and Silverstein (2004) still

work in our case. That is,

E|trB(z1)M| ≤ KMKN
1/2, E|trC(z1)M| ≤ KMK, (4.40)

when KM denotes the nonrandom bound of the spectral norm of M, an

n× n matrix; When M is non-random, we also have for any j,

E|trA(z1)M| ≤ K‖M‖N1/2, (4.41)

where ‖M‖ denotes the spectral norm of a matrix.

Using an identity similar to (4.25) yields

trEj
(
A(z1)

)
D−1
j (z2) = A1(z1, z2) + A2(z1, z2) + A3(z1, z2), (4.42)

where

A1(z1, z2) = −tr
∑
i<j

H−1(z1)rir
∗
iEj

(
D−1
ij (z1)

)
βij(z2)D−1

ij (z2)rir
∗
iD
−1
ij (z2)

= −
∑
i<j

βij(z2)r∗iEj
(
D−1
ij (z1)

)
D−1
ij (z2)rir

∗
iD
−1
ij (z2)H−1(z1)ri,

A2(z1, z2) = −tr
∑
i<j

H−1(z1)N−1
Ej

(
D−1
ij (z1)

)(
D−1
j (z2)−D−1

ij (z2)
)
,

A3(z1, z2) = tr
∑
i<j

H−1(z1)(rir
∗
i −N−1I)Ej

(
D−1
ij (z1)

)
D−1
ij (z2).
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By arguments similar to (2.15) in Bai and Silverstein (2004), (4.38) and

(4.23) we have

|A2(z1, z2)| ≤ K, E|A3(z1, z2)| ≤ KN1/2.

The arguments above (2.16) of Bai and Silverstein (2004) can be carried

over to the present setting and therefore we obtain

E

∣∣∣A1(z1, z2) +
j − 1

N2
b1(z2)tr

(
Ej

(
D−1
j (z1)

)
D−1
j (z2)

)
trD−1

j (z2)H−1(z1)
∣∣∣ ≤ KN1/2.

(4.43)

We conclude from (4.37)-(4.43) that

tr
(
Ej

(
D−1
j (z1)

)
D−1
j (z2)

)(
1 +

j − 1

N2
b1(z1)b1(z2)tr

(
D−1
j (z2)H−1(z1)

)
= −tr

(
H−1(z1)D−1

j (z2)
)

+ A4(z1, z2), (4.44)

where

E|A4(z1, z2)| ≤ KN1/2.

Applying the expression for D−1
j (z2) in (4.37), (4.40) and (4.41), we obtain

tr
(
Ej

(
D−1
j (z1)

)
D−1
j (z2)

)
×
(

1− j − 1

N2
b1(z1)b1(z2)trH−1(z1)H−1(z2)

)
= tr

(
H−1(z1)H−1(z2)

)
+ A5(z1, z2), (4.45)

where

E|A5(z1, z2)| ≤ KN1/2.

Since (b1(z)− 1
1+cnm0

n(z)
)→ 0 (indeed, the next subsection proves Emn(z)−

m0
n(z) = O(N−1)), we have

1

N
tr
(
Ej

(
D−1
j (z1)

)
D−1
j (z2)

)
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×
(

1− j − 1

N
cn

1(
1 + cm0

n(z1)
)(

1 + cm0
n(z2)

)∫
dHn(t)(

z2 − 1
1+cm0

n(z2)
− t
)(
z1 − 1

1+cm0
n(z1)
− t
))

= cn

∫
dHn(t)(

z2 − 1
1+cm0

n(z2)
− t
)(
z1 − 1

1+cm0
n(z1)
− t
) + A6(z1, z2),

(4.46)

where E|A6(z1, z2)| = o(1). Let

an(z1, z2) = cn
1(

1 + cm0
n(z1)

)(
1 + cm0

n(z2)
) ∫ dHn(t)(

z2 − 1
1+cm0

n(z2)
− t
)(
z1 − 1

1+cm0
n(z1)
− t
) .

We claim that

|an(z1, z2)| < 1. (4.47)

Indeed, by the Cauchy-Schwartz inequality, we have∣∣∣ cn(
1 + cnm0

n(z1)
)(

1 + cnm0
n(z2)

) ∫ dHn(t)(
z2 − 1

1+cnm0
n(z2)
− t
)(
z1 − 1

1+cnm0
n(z1)
− t
)∣∣∣

≤
(∫ cndHn(t)

|1 + cnm0
n(z1)|2|z1 − 1

1+cnm0
n(z1)
− t|2

)1/2

(∫ cndHn(t)

|1 + cnm0
n(z2)|2|z2 − 1

1+cnm0
n(z2)
− t|2

)1/2

.

(4.48)

Note that m0
n(z) satisfies an equality similar to (4.5)

m0
n(z) =

∫
dHn(t)

t− z + 1
1+cnm0

n(z)

. (4.49)

Taking the imaginary part of the both sides of (4.49) leads to

Im
(
m0
n(z)

)
=

∫ Im
(
t− z + 1

1+cnm0
n(z)

)
dHn(t)

|t− z + 1
1+cnm0

n(z)
|2

= v0

∫
dHn(t)

|t− z + 1
1+cnm0

n(z)
|2

+
cnIm(m0

n(z))

|1 + cnm0
n(z)|2

∫
dHn(t)

|t− z + 1
1+cnm0

n(z)
|2
.
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Dividing by Im
(
m0
n(z)

)
on both sides, we have

cn
|1 + cnm0

n(z)|2

∫
dHn(t)

|t− z + 1
1+cnm0

n(z)
|2

= 1− v0

Im
(
m0
n(z)

) ∫ dHn(t)

|t− z + 1
1+cnm0

n(z)
|2
< 1.

This, together with (4.48), yields (4.47).

It follows from (4.46) and (4.47) that (4.35) can be written as

an(z1, z2)
1

N

N∑
j=1

1

1−
(
(j − 1)/N

)
an(z1, z2)

+ A7(z1, z2),

where E|A7(z1, z2)| = o(1). We then conclude that

(4.35)
i.p.→ a(z1, z2)

∫ 1

0

1

1− ta(z1, z2)
dt =

∫ a(z1,z2)

0

1

1− z
dz,

where

a(z1, z2) =
c(

1 + cm0(z1)
)(

1 + cm0(z2)
) ∫ dH(t)(

z2 − 1
1+cm0(z2)

− t
)(
z1 − 1

1+cm0(z1)
− t
)

=
c
(
m0(z2)−m0(z1)

)(
1 + cm0(z1)

)(
1 + cm0(z2)

) 1

z2 − z1 + 1
1+cm0(z1)

− 1
1+cm0(z2)

=
s(z1, z2)

z2 − z1 + s(z1, z2)
= 1− z2 − z1

z2 − z1 + s(z1, z2)
,

where the second equality uses (4.5) and s(z1, z2) = 1
1+cm0(z1)

− 1
1+cm0(z2)

.

Therefore the limit of (4.28) under the complex case is

∂2

∂z2∂z1

∫ a(z1,z2)

0

1

1− z
dz =

∂

∂z2

(∂a(z1, z2)/∂z1

1− a(z1, z2)

)
.

=
∂

∂z2

[s(z1, z2) + (z1 − z2) c(m0(z1))′

(1+cm0(z1))2

(z2 − z1 + s(z1, z2))(z2 − z1)

]
=

∂

∂z2

[ 1

z2 − z1

− (1 +
c(m0(z1))′

(1 + cm0(z1))2
)

1

z2 − z1 + s(z1, z2)

]
= − 1

(z2 − z1)2
+[1+

c(m0(z1))′

(1 + cm0(z1))2
+

c(m0(z2))′

(1 + cm0(z2))2
+

c(m0(z1))′

(1 + cm0(z1))2

c(m0(z2))′

(1 + cm0(z2))2
]

× 1

(z2 − z1 + s(z1, z2))2
.
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4.1.3.2 Step 2: Tightness of M̂
(1)
n (z)

The tightness of {
∑k

`=1 a`M̂
(1)
n (z)} on z ∈ C can be proved in the same way

as that in Bai and Silverstein (2004).

4.1.3.3 Step 3: Convergence of M
(2)
n (z)

We first list some results from Sections 3 and 4 in Bai and Silverstein (2004),

which hold in the present setting as well. Consider z ∈ C+
n . As in (3.5),

(3.6) and the argument below (3.6) of Bai and Silverstein (2004) we have

E|γj|p ≤ KN−1δ2p−4
n , p ≥ 2 (4.50)

and

E|β1(z)|p ≤ K, p ≥ 1, |bn(z)| ≤ K. (4.51)

Similar to (3.1) and (3.2) in Bai and Silverstein (2004), by (4.16), we have

for any positive p

max
(
E||D−1(z)||p,E||D−1

j (z)||p,E||D−1
ij (z)||p

)
≤ K (4.52)

and via (4.23) and (4.12)∣∣∣E(a(v)

q∏
m=1

(
r∗1Bm(v)r1 −N−1trBm(v)

))∣∣∣ ≤ KN−(1∧q)δ(2q−4)∨0
n , q ≥ 0,

(4.53)

where the matrices Bm(v) are independent of r1 and

max(|a(v)|, ||Bm(v)||) ≤ K
(
1 + nsI(||Bn|| ≥ ηr or λ

B̃
min ≤ η`)

)
for some positive s, with B̃ being Bn or Bn with one or two of the rj’s

removed. Here ηr ∈
(
(1 +

√
c)2 + lim supn ||Tn||, xr

)
. If x` > 0, then
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η` ∈
(
x`, (1−

√
c)2 + lim infn λ

Tn
min

)
; if x` < 0, then η` < 0. Similar to (4.1)

in Bai and Silverstein (2004), one may prove as n→∞,

sup
z∈C+n
|Emn(z)−m0(z)| → 0. (4.54)

Let M be an n× n non-random matrix. With the same arguments as (4.7)

in Bai and Silverstein (2004) we obtain

E|trD−1
1 (z)M− EtrD−1

1 (z)M|2 ≤ K||M||2. (4.55)

We next show

sup
z∈C+n
||
(

(Eβ1)I− zI + Tn

)−1

|| <∞. (4.56)

Denote the supports of the distributions H and Fc,H by SH and SFc,H

respectively. We see that ||
(

(Eβ1)I− zI+Tn

)−1

|| is bounded by 21+n/(Nv0)
v0

on Cu by (4.38) and (4.39).

Consider x = x` or xr now. So x ∈ ScFc,H , where ScFc,H denotes the

complement of SFc,H . We next prove that t − x + 1
1+cm0(x)

6= 0 for any

t ∈ SH and x ∈ I ⊂ ScFc,H where I is an open interval by following a line

similar to Theorem 4.1 of Silverstein and Choi (1995). For any x0 ∈ I, let

m0 = m0(x0) and D = {z ∈ C : Imz > 0}. Let m = m(z) = z − 1
1+cm0(z)

∈

D (for z ∈ D). From (4.5) we have

z(m) = m+
1

1 + cmH(m)
. (4.57)

Since m′(x0) = 1 + (m0(x0))′

(1+cm0(x0))2
> 0, m(z) has an inverse z̃(m) in a neigh-

borhood V of x0 by the inverse function theory. By the open mapping

theorem m(V ) is open and includes (x0− 1
1+cm0

). It follows that z̃(m)→ x0

as m ∈ m(V ) → (x0 − 1
1+cm0

). However we must have z̃(m) = z(m) on
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m(V ∩D) = m(V )∩D due to (4.57) and (4.5). Therefore we have z(m)→ x0

as m ∈ D → (x0 − 1
1+cm0

).

(4.57) can be further rewritten as

mH(m) =
1

c(z(m)−m)
− 1

c
.

Hence mH(m) converges to a real number when m ∈ D → (x0 − 1
1+cm0

).

By Theorem 2.1 of Silverstein and Choi (1995) H ′(x0 − 1
1+cm0

) = 0. This

implies H
′
= 0 on the set J ≡ {x− 1

1+cm0(x)
: x ∈ I ⊂ ScFc,H} which is open

due to the monotonicity of (x − 1
1+cm0(x)

) on I. Hence H is constant on J

which implies that J ⊂ ScH . Therefore if t is in the support of H, we then

have t 6= x− 1
1+cm0(x)

, i.e. t− x+ 1
1+cm0(x)

6= 0.

Since m0(z) is continuous on C0 ≡ {x + iv : v ∈ [0, v0]}, there exist

positive constants η and κ such that for t0 in the support of H(x)

inf
z∈C0
|t0 − z +

1

1 + cm0(z)
| > η and sup

z∈C0
|m0(z)| < κ. (4.58)

Also from (4.50), (4.51) and (4.54) we have

sup
z∈C+n
|Eβ1 −

1

1 + cm0(z)
| → 0. (4.59)

Moreover, since FTn D→ H(x), for all large n, there exists an eigenvalue µ

of Tn such that

|µ− t0| < η/4. (4.60)

We conclude from (4.60), (4.59) and (4.58) that

inf
z∈C`∪Cr

|µ− z + Eβ1| > η/2, (4.61)

which ensures (4.56).
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With H1 = Eβ1(z)I− zI + Tn, write

D(z)−H1 =
N∑
j=1

rjr
∗
j − (Eβ1(z))I. (4.62)

Postmultiplying D−1(z) and premuliplying H−1
1 on the both sides, taking

expectation and using an equality similar to (4.36) we get

H−1
1 − ED−1(z) = H−1

1 E

[( N∑
j=1

rjr
∗
j − (Eβ1(z))I

)
D−1(z)

]
= H−1

1

N∑
j=1

E

(
rjβj(z)r∗jD

−1
j (z)

)
−H−1

1 (Eβ1(z))ED−1(z)

= NE
[
β1(z)

(
H−1

1 r1r
∗
1D
−1
1 (z)− 1

N
H−1

1 ED−1(z)
)]
. (4.63)

Taking trace on both sides, we have

n
(∫ dHn(x)

x− (z − Eβ1(z))
− Emn(z)

)
= NE

[
β1(z)

(
r∗1D

−1
1 (z)H−1

1 r1 −
1

N
trH−1

1 ED−1(z)
)]
. (4.64)

When there is no confusion, we below drop z from β1(z), γ1(z), bn(z),

etc. By (4.25), we have

EtrH−1
1 D−1

1 (z)− EtrH−1
1 D−1(z) = E

[
β1(z)trH−1

1 D−1
1 (z)r1r

∗
1D
−1
1 (z)

]
= bn(z)E

[
(1− β1γ1)r∗1D

−1
1 (z)H−1

1 D−1
1 (z)r1

]
, (4.65)

where the last equality uses β1 = bn − β1bnγ1. In view of (4.53), (4.50) and

(4.56), we obtain∣∣∣Eβ1(z)γ1r
∗
1D
−1
1 (z)H−1

1 D−1
1 (z)r1

∣∣∣ ≤ KN−1, (4.66)

which implies that∣∣∣(4.65)−N−1bnED−1
1 (z)H−1

1 D−1
1 (z)

∣∣∣ ≤ KN−1.



4.1 Proof of Theorem 6 119

Since β1 = bn − b2
nγ1 + β1b

2
nγ

2
1 we may write

NE(β1r
∗
1D
−1
1 (z)H−1

1 r1)− Eβ1EtrH
−1
1 D−1

1 (z)

= −b2
nNE(γ1r

∗
1D
−1
1 (z)H−1

1 r1)

+b2
n

(
NE(β1γ

2
1r∗1D

−1
1 H−1

1 r1)
(
Eβ1γ

2
1

)
EtrH−1

1 D−1
1 (z)

)
= −b2

nNE(γ1r
∗
1D
−1
1 (z)H−1

1 r1) + b2
n(z)Cov

(
β1γ

2
1 , trD

−1
1 (z)H−1

1

)
+b2

n

(
E[Nβ1γ

2
1r∗1D

−1
1 (z)H−1

1 r1 − β1γ
2
1trD

−1
1 H−1

1 ]
)
.

One may refer to a similar expansion on page 587 of Bai and Silverstein

(2004). It follows from (4.50), (4.56) and (4.53) that∣∣∣E[Nβ1(z)γ2
1(z)r∗1D

−1
1 (z)H−1

1 r1 − β1γ
2
1trD

−1
1 H−1

1 ]
∣∣∣ ≤ Kδ2

n.

By (4.51), (4.50), (4.56) and (4.55) we have∣∣∣Cov(β1γ
2
1 , trD

−1
1 (z)H−1

1

)∣∣∣
≤ (E|β1|4)1/4(E|γ1|8)1/4

(
E

∣∣∣trD−1
1 (z)H−1

1 − EtrD−1
1 (z)H−1

1

∣∣∣2)1/2

≤ Kδ3
nN
−1/4.

We conclude from (4.50), (4.51) and β1 = bn − β1bnγ1 that

Eβ1 = bn +O(N−1/2).

By the definition of γ1 we have

ENγ1r
∗
1D
−1
1 H−1

1 r1

= NE
[(

r∗1D
−1
1 r1 −N−1trD−1

1

)(
r∗1D

−1
1 H−1

1 r1 −N−1trD−1
1 H−1

1

)]
+N−1Cov

(
trD−1

1 , trD−1
1 (z)H−1

1

)
. (4.67)

In view of (4.55), we see the second term above is O(N−1). We conclude

from (4.64)-(4.67) that

n
(∫ dHn(x)

x− (z − Eβ1(z))
− Emn(z)

)
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= o(1) (4.68)

+b2
n(z)N−1

EtrD−1
1 H−1

1 D−1
1 (4.69)

−b2
nNE

[(
r∗1D

−1
1 r1 −N−1trD−1

1

)(
r∗1D

−1
1 H−1

1 r1 −N−1trD−1
1 H−1

1

)]
(4.70)

Using (4.33) on (4.68) and by the assumptions under the complex case, we

have

n
(∫ dHn(x)

x− (z − Eβ1(z))
− Emn(z)

)
→ 0, as N →∞,

while under the real case

n
(∫ dHn(x)

x− (z − Eβ1(z))
− Emn(z)

)
= −b2

nN
−1
EtrD−1

1 H−1
1 D−1

1 + o(1).

(4.71)

It is sufficient to find the limit of N−1
EtrD−1

1 H−1
1 D−1

1 . Applications of

(4.25),(4.51),(4.53) and (4.56) ensure that

EtrD−1
1 H−1

1 D−1
1 − EtrD−1H−1

1 D−1
1

and

EtrD−1H−1
1 D−1

1 − EtrD−1H−1
1 D−1

are bounded. Hence it then reduces to considering the limit of

N−1
EtrD−1H−1

1 D−1. (4.72)

From (4.62), similar to (4.63) we have

D−1(z) = H−1
1 −

N∑
j=1

βjH
−1
1 rjr

∗
jD
−1
j (z) +

(
Eβ1

)
H−1

1 D−1(z)

= H−1
1 +

(
Eβ1

)
A(z) +B(z) + C(z), (4.73)
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where

A(z) = −
N∑
j=1

H−1
1

(
rjr
∗
j −N−1I

)
D−1
j (z),

B(z) = −
N∑
j=1

(
βj − Eβ1

)
H−1

1 rjr
∗
jD
−1
j (z),

C(z) = −N−1
(
Eβ1

)
H−1

1

N∑
j=1

(
D−1
j (z)−D−1(z)

)
= −N−1

(
Eβ1

)
H−1

1

N∑
j=1

βjD
−1
j (z)rjr

∗
jD
−1
j (z).

It follows from (4.50) and (4.51) that

E|β1 − Eβ1|2 ≤ KN−1. (4.74)

For any n× n matrix M, by (4.52), (4.53), (4.51) and (4.74) we obtain

|N−1
EtrB(z)M| ≤ K

(
E|β1(z)− Eβ1(z)|2

)1/2(
E
∣∣r∗1r1||D−1

1 M||
∣∣2)1/2

≤ KN−1/2(E||M||4)1/4 (4.75)

and

|N−1
EtrC(z)M| ≤ KN−1

E|β1(z)|r∗1r1||D−1
1 (z)||2||M||

≤ KN−1(E||M||2)1/2. (4.76)

For any n× n nonrandom matrix M with a bounded spectral norm, we

write

trA(z)D−1(z)M = A1(z) + A2(z) + A3(z), (4.77)

where

A1(z) = −tr
N∑
j=1

H−1
1 rjr

∗
jD
−1
j (z)

(
D−1(z)−D−1

j (z)
)
M,
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A2(z) = −tr
N∑
j=1

H−1
1

(
rjr
∗
jD
−2
j (z)−N−1D−2

j (z)
)
M,

A3(z) = −tr
N∑
j=1

H−1
1 N−1D−1

j (z)
(
D−1
j (z)−D−1(z)

)
M.

Obviously EA2(z) = 0 and similar to (4.76), we obtain

|EN−1A3(z)| ≤ KN−1. (4.78)

From (4.50) and (4.51)

E|β1 − bn|2 ≤ KN−1. (4.79)

Using (4.53), (4.79) and (4.25) yields

EN−1A1(z) = E

[
β1r
∗
1D
−2
1 (z)r1r

∗
1D
−1
1 (z)MH−1

1 r1

]
= bnE

[(
N−1trD−2

1 (z)
)(
N−1trD−1

1 (z)MH−1
1

)]
+ o(1)

= bnE
[(
N−1trD−2(z)

)(
N−1trD−1(z)MH−1

1

)]
+ o(1).

By (4.55) and (4.52), we have∣∣∣Cov(N−1trD−2(z), N−1trD−1(z)MH−1
1

)∣∣∣
≤

(
E|N−1trD−2(z)|2

)1/2

N−1
(
E

∣∣∣trD−1(z)MH−1
1 − EtrD−1MH−1

1

∣∣∣2)1/2

≤ KN−1.

We thus have

EN−1A1(z) = bn

(
EN−1trD−2(z)

)(
EN−1trD−1(z)MH−1

1

)
+ o(1). (4.80)

Moreover, by (4.73), (4.75) and (4.76), we have

EN−1trD−1(z)H−2
1 = N−1tr

(
H−1

1 + EB(z) + EC(z)
)
H−2

1
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= cn

∫
dHn(x)(

x− z + Eβ1

)3 + o(1). (4.81)

From (4.73)-(4.81) we conclude that

N−1
EtrD−1(z)H−1

1 D−1(z)

= EN−1trD−1(z)H−2
1 + b2

n

(
EN−1trD−2(z)

)(
EN−1trD−1(z)H−2

1

)
+ o(1)

= cn

∫
dHn(x)(

x− z + Eβ1

)3 + b2
nc

2
nE

∫
dFn(x)

(x− z)2

∫
dHn(x)(

x− z + Eβ1

)3 + o(1).

(4.82)

This, together with (4.71), (4.56), (4.54) and (4.59), leads to

n
(∫ dHn(x)

x− (z − Eβ1)
− Emn(z)

)
(4.83)

= −cnb2
n

∫
dHn(x)(

x− z + Eβ1

)3 − b
4
nc

2
nE

∫
dFn(x)

(x− z)2

∫
dHn(x)(

x− z + Eβ1

)3 + o(1)

= −c$2(z)

∫
dH(x)(

x− z +$(z)
)3 −$

4(z)c2

∫
dFc,H(x)

(x− z)2

∫
dH(x)(

x− z +$(z)
)3 + o(1),

where the last step uses

sup
z∈Cn

∣∣∣E∫ dFn(x)

(x− z)2
−
∫

Fc,H(x)

(x− z)2

∣∣∣→ 0, as n→∞, (4.84)

which can be proved similarly to (4.1) in Bai and Silverstein (2004).

Let $n(z) = 1/(1 + cnm
0
n(z)). By (4.49) we then write

n
(
Emn(z)−m0

n(z)
)

= n
(
Emn(z)−

∫
dHn(x)

x− (z −$n(z))

)
(4.85)

= n
(
Emn(z)−

∫
dHn(x)

x− (z − Eβ1)

)
+n
(∫ dHn(x)

x− (z − Eβ1)
−
∫

dHn(x)

x− (z −$n(z))

)
= n

(
Emn(z)−

∫
dHn(x)

x− (z − Eβ1)

)
+n
(
$n(z)− Eβ1

)∫ dHn(x)(
x− (z −$n(z))

)(
x− (z − Eβ1)

) .
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We next find the limit of n
(
$n(z)− Eβ1

)
. Recall that βtrj (z) = 1/(1 +

1
N
trD−1

j (z)) and let βtr(z) = 1/(1+ 1
N
trD−1(z)) and b(z) = 1/(1+ 1

N
EtrD−1(z)).

Write

n
(
$n(z)− Eβ1

)
= n

(
$n(z)− Eβtr(z)

)
+ n
(
Eβtr(z)− Eβtr1 (z)

)
+n(Eβtr1 (z)− Eβ1(z)).

(4.86)

First, by the fact that

βtr(z) = b(z) + βtr(z)b(z)
(
cnEmn(z)− cnmn(z)

)
(4.87)

we have

n
(
$n(z)− Eβtr(z)

)
= nE

[
$n(z)βtr(z)(cnmn(z)− cnm0

n(z))
]

= nE
[
$n(z)b(z)(cnmn(z)− cnm0

n(z))
]

+nE
[
$n(z)b(z)βtr(z)

(
cnmn(z)− cnm0

n(z)
)(
Ecnmn(z)− cnmn(z)

)]
= n$n(z)b(z)E

(
cnmn(z)− cnm0

n(z)
)

+ o(1), (4.88)

where via (4.54), (4.55), (4.51) and (4.87)

nc2
nb(z)$n(z)E

[
βtr(z)

(
mn(z)−m0

n(z)
)(
Emn(z)−mn(z)

)]
(4.89)

= nc2
nb(z)$n(z)

[
E

(
βtr(z)

(
Emn(z)−m0

n(z)
)(
Emn(z)−mn(z)

))
−E
(
βtr(z)

(
Emn(z)−mn(z)

)2
)]

= o(1) + nc2
nb

2(z)$n(z)
[
E

(
Emn(z)−mn(z)

)2

− E
(
βtr(z)

(
Emn(z)−mn(z)

)3
)]

= o(1),

the last step using E|mn(z)− Emn(z)|6 = O(n−3) (see the argument above

(3.5) of Bai and Silverstein (2004)).
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As for the second term on the right side of (4.86), by (4.25), we obtain

n
(
Eβtr(z)− Eβtr1 (z)

)
=

n

N
E

[
βtr(z)βtr1 (z)tr

(
D−1

1 (z)−D−1(z)
)]

=
n

N
E

[
βtr(z)βtr1 (z)r∗1D

−2
1 (z)r1β1(z)

]
= c2$3(z)

∫
dFc,H(x)(
x− z

)2 + o(1),(4.90)

where the last step uses (4.54), (4.55), (4.51), (4.53), (4.84) and (4.79).

As for the third term on the right side of (4.86) we conclude from (4.26)

and (4.53) that

n
(
Eβtr1 (z)− Eβ1(z)

)
= −nE

(
(βtrj (z))2βj(z)ε2

j(z)
)

(4.91)

= −nE
(
ε2

1(z)
(
βtr1 (z)

)3
)

+ nE
(
ε3

1(z)βj(z)
(
βtr1 (z)

)3
)

= −nE
(
ε2

1(z)
(
βtr1 (z)

)3
)

+ o(1).

Moreover by (4.53), (4.55), (4.33) and (4.54) we have for the real case

nE
(
ε2

1(z)
(
βtr1 (z)

)3
)

= − Eε2
1(z)

(1 + cnEmn(z))3
+ o(1) = −2c2$3(z)

∫
dFc,H(x)

(x− z)2
+ o(1),

while the limit is half of the above in the complex case. This implies that

in the real case

n
(
Eβtr1 (z)− Eβ1(z)

)
→ −2c2$3(z)

∫
dFc,H(x)

(x− z)2
, as N →∞, (4.92)

while the limit is half of the above in the complex case.

Summarizing the above we conclude that

n
(
$n(z)− Eβ1(z)

)
(4.93)

=

cn$n(z)b(z)nE
(
mn(z)−m0

n(z)
)
− c2$3(z)

∫ dFc,H(x)

(x−z)2 + o(1) in the real case

cn$n(z)b(z)nE
(
mn(z)−m0

n(z)
)

+ o(1) in the complex case.

The proof for (4.47) also shows that

|cn$2
n(z)

∫
dHn(x)(

x− (z −$n(z))
)2 | < 1.
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This, together with (4.85), (4.93), (4.56) and (4.54), yields

n
(
Emn(z)−m0

n(z)
)

=


n

(
Emn(z)−

∫ dHn(x)
x−(z−Eβ1)

)
−c2$3(z)

∫ dFc,H (x)

(x−z)2
∫ dHn(x)(

x−(z−$n(z))

)2
1−cn$2

n(z)
∫ dHn(x)(

x−(z−$n(z))

)2 + o(1), in the real case

o(1), in the complex case

→


c$2(z)m3(z)+c2$4(z)

(
m0(z)

)′
m3(z)−c2$3(z)

(
m0(z)

)′
m2(z)

1−c$2(z)m2(z)
, in the real case

0, in the complex case

where we use

mr(z) =

∫
dH(x)

(x− z +$(z))r
,
(
m0(z)

)′
=

∫
dFc,H(x)

(x− z)2
.

4.1.3.4 Step 4: Boundness and equicontinuous of M
(2)
n (z)

Boundness and equicontinuous of M
(2)
n (z) can be similarly proved as in the

last paragraph of Section 4 in Bai and Silverstein (2004).

4.2 Verification of Remark 2

This section is to verify the asymptotic means and covariances in Theorem

1.1 of Bai and Silverstein (2004) and in Theorem 6 are the same when Tn

and Rn become zero matrix and identity matrix respectively, as pointed

out in Remark 2.

Consider (4.11) first. When Tn is a zero matrix, by (4.5) the Stieltjes

transform m0(z) satisfies the following equation

m0(z) =
1

1− z − c− cm0(z)
. (4.94)
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Define Bn = 1
N

X∗X and denote its limiting Stieltjes transform by m0(z).

Then m0(z) and m0(z) have the relation

m0(z) = −1− c
z

+ cm0(z). (4.95)

By (4.94) and (4.95), we have

m0(z) = − 1

zm0(z)
− 1. (4.96)

Moreover, from (4.5)

1

m0(z)
=

1

1 + cm0(z)
− z. (4.97)

Combining (4.96) with (4.97), we get

zm0(z) = − 1

1 + cm0(z)
. (4.98)

We then conclude from (4.98) that

c
(
m0(z)

)′(
1 + cm0(z)

)2 = −
( 1

1 + cm0(z)

)′
=
(
zm0(z)

)′
. (4.99)

It follows that

1 +
c(m0(z1))′

(1 + cm0(z1))2
+

c(m0(z2))′

(1 + cm0(z2))2
+

c(m0(z1))′

(1 + cm0(z1))2

c(m0(z2))′

(1 + cm0(z2))2

= 1 +
(
z1m

0(z1)
)′

+
(
z2m

0(z2)
)′

+
(
z1m

0(z1)
)′(
z1m

0(z1)
)′
. (4.100)

On the other hand, since (4.95) has an inverse (one may also see (1.2)

in Bai and Silverstein (2004))

z = − 1

m0(z)
+

c

1 +m0(z)
, (4.101)

we have

z
(
1 +m0(z)

)
= −1 + c− 1

m0(z)
. (4.102)
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From this, we have

(
zm0(z)

)′
=

(
m0(z)

)′(
m0(z)

)2 − 1. (4.103)

Thus by (4.98) and (4.102), we have

z2 − z1 + s(z1, z2) = z2

(
1 +m0(z2)

)
− z1

(
1 +m0(z1)

)
= − 1

m0(z2)
+

1

m0(z1)
=
m0(z2)−m0(z1)

m0(z1)m0(z2)
. (4.104)

We then conclude from (4.100), (4.103) and (4.104) that

[1 +
c(m0(z1))′

(1 + cm0(z1))2
+

c(m0(z2))′

(1 + cm0(z2))2
+

c(m0(z1))′

(1 + cm0(z1))2

c(m0(z2))′

(1 + cm0(z2))2
]

× 1

(z2 − z1 + s(z1, z2))2

=
[
1 +

(m0(z1))
′

(m0(z1))2
− 1 +

(m0(z2))
′

(m0(z2))2
− 1 +

( (m0(z1))
′

(m0(z1))2
− 1
)( (m0(z2))

′

(m0(z2))2
− 1
)]

×
(m0(z2)−m0(z1)

m0(z1)m0(z2)

)2

=
(m0(z1))

′
(m0(z2))

′

(m0(z1)−m0(z2))2
. (4.105)

In view of (4.105) we see that (1.7) in Bai and Silverstein (2004) and (4.11)

are the same when Tn is a zero matrix and Rn is an identity matrix.

We next consider the asymptotic mean (4.10). When Tn = 0, by (4.5),

we get

mr(z) = (m0(z))r. (4.106)

Moreover we obtain from (4.96) and (4.98)

m0(z) = − 1

z(m0(z) + 1)
, $(z) = −zm0(z). (4.107)

From (4.106) and (4.107), it follows that

$r(z)mr(z) =
(
m0(z)

)r(
1 +m0(z)

)−r
. (4.108)
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This ensures that EM(z) in (4.21) can be written as

EM(z) =
c(m0(z))3(1 +m0(z))−3

(
1

$(z)
+ c$(z)(m0(z))

′ − c(m0(z))
′ 1
m0(z)

)
1− c(m0(z))2(1 +m0(z))−2

.

(4.109)

Comparing (4.109) with (1.6) in Bai and Silverstein (2004), it is sufficient

to prove that

1

$(z)
+ c$(z)(m0(z))

′ − c(m0(z))
′ 1

m0(z)
=

1

1− c(m0(z))2(1 +m0(z))−2
.

(4.110)

In view of (4.107) we have

1

$(z)
+ c$(z)(m0(z))

′ − c(m0(z))
′ 1

m0(z)
= − 1

zm0(z)
+ c
(
m0(z)

)′
z.

(4.111)

Taking derivative with respect to z on the both sides of (4.95) we have

c
(
m0(z)

)′
z = (m0(z)

)′
z − 1− c

z
=
c
(
m0(z)

)2(
1 +m0(z)

)−1 −m0(z)

1− c
(
m0(z)

)2(
1 +m0(z)

)−2 − 1− c
z

,

(4.112)

the last step using the expression (4.101) for z.

In view of (4.110), (4.111) and (4.112) it is enough to show

− 1

z

( 1

m0(z)
+ 1− c

)
=

1 +m0(z)− c
(
m0(z)

)2(
1 +m0(z)

)−1

1− c
(
m0(z)

)2(
1 +m0(z)

)−2 . (4.113)

From (4.102) the left hand side of (4.113) becomes 1 +m0(z). Because it is

easy to check that(
1 +m0(z)

)(
1− c

(
m0(z)

)2(
1 +m0(z)

)−2
)

= 1 +m0(z)− c
(
m0(z)

)2(
1 +m0(z)

)−1
,

we get (4.113). The proof is completed.





Chapter 5
Independence Test For A Large Panel

Data

5.1 Theory and Methodology

Before we establish the main theory and methodology, we first introduce

the following assumptions:

Assumption 1. For each i = 1, . . . , p, X1i, · · · , Xni are independent and

identically distributed (i.i.d) random variables with mean zero and variance

one. When Xji’s are complex random variables, we require EX2
ji = 0.

Assumption 2. p = p(n) with p
n
→ c ∈ (0,∞) as n→∞.

We stack p time series one by one to form a data matrix X = (x1, · · · ,xp) .

Moreover, denote the sample covariance matrix by

An =
1

n
X∗X,

where X = (x1, . . . ,xp) = (y1, . . . ,yn)T , yTj denotes the j-th row of the

matrix X and X∗ is the Hermitian transform of the matrix X. The empirical
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spectral distribution (ESD) of the sample covariance matrix An is defined

as

FAn(x) =
1

p

p∑
i=1

I(λi ≤ x), (5.1)

where λ1 ≤ λ2 ≤ . . . ≤ λp are eigenvalues of An.

It is well–known that under Assumptions 1 and 2, if x1, · · · ,xp are

independent then FAn(x) converges with probability one to the Marcenko-

Pastur Law F c(x) (see Marcenko-Pastur (1967)) whose density has an ex-

plicit expression of the form

fc(x) =

 1
2πxc

√
(b− x)(x− a), a ≤ x ≤ b;

0, otherwise;
(5.2)

and a point mass 1 − 1/c at the origin if c > 1, where a = (1 −
√
c)2 and

b = (1 +
√
c)2.

When there is some correlation structure among x1, · · · ,xp, denote by

Tp the covariance matrix of each row, yTj , of X (more specifically, we need

to assume yj = T
1/2
p wj whose definitions are given in Assumption 3 below).

Then, under Assumptions 1 and 2, if FTp(x)
D−→ H(x), then FAn converges

with probability one to a non random distribution function F c,H whose

Stieltjes transform satisfies (see Silverstein (1995))

m(z) =

∫
1

x(1− c− czm(z))− z
dH(x), (5.3)

where the Stieltjes transform mG for any c.d.f G is defined as

mG(z) =

∫
1

λ− z
dG(λ), Imz > 0 (5.4)

and G can be recovered by the inversion formula

G{[x1, x2]} =
1

π
lim
ε→0+

∫ x2

x1

Im(mG(x+ iε))dx,



5.1 Theory and Methodology 133

where x1 and x2 are continuity points of G.

Moreover, equation (5.3) takes a simpler form when F c,H is replaced by

F c,H = (1− c)I[0,∞] + cF c,H , (5.5)

which is the limiting ESD of An = 1
n
XX∗. Its Stieltjes transform

m(z) = −1− c
z

+ cm(z) (5.6)

has an inverse

z = z(m) =
1

m
+ c

∫
x

1 + xm
dH(x). (5.7)

The construction of our test statistic relies on the following observa-

tion: the limit of the ESD of the sample covariance matrix An is the M-P

law by (5.2) when x1, · · · ,xp are independent and satisfy Assumptions 1

and 2, while the limit of the ESD is determined from (5.3) when there is

some correlation among x1, · · · ,xp with the covariance matrix Tp differ-

ent from the identity matrix. Moreover, preliminary investigations indicate

that when x1, · · · ,xp are only uncorrelated (without any further assump-

tions), the limit of the ESD of An is not the M-P law (see Ryan and Debbah

(2009)). From this point, any deviation of the limit of the ESD from the

M-P law is evidence of dependence. So, these motivate us to use the ESD of

An, FAn(x), as a test statistic. However, there is no central limit theorem

for (FAn(x) − F c(x)), as argued by Bai and Silverstein (2004). Therefore,

instead, we consider the characteristic function of FAn(x).

The characteristic function of FAn(x) is

sn(t) ,
∫
eitxdFAn(x) =

1

p

p∑
i=1

eitλi , (5.8)

where λi, i = 1, . . . , p are eigenvalues of the sample covariance matrix An.
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Our test statistic is then proposed as follows:

Mn =

∫ T2

T1

|sn(t)− s(t)|2dU(t), (5.9)

where s(t) := s(t, cn) is the characteristic function of F cn(x), obtained from

the M-P law F c(x) with c being replaced by cn = p/n, and U(t) is a weight

function with its support on a compact interval, say [T1, T2].

To develop the asymptotic distribution of Mn under a local alternative,

the following assumption is needed.

Assumption 3. Let Tp be a p × p random Hermitian nonnegative defi-

nite matrix with a bounded spectral norm. Let yTj = wT
j T

1/2
p , where T

1/2
p

is the p × p Hermitian matrix that satisfies (T
1/2
p )2 = Tp and wT

j =

(Wj1, · · · ,Wjp), j = 1, . . . , n are i.i.d random vectors, in which Wji, j ≤

n, i ≤ p are i.i.d with mean zero, variance one and finite fourth moment.

The empirical spectral distribution FTp of Tp converges weakly to a dis-

tribution H on [0,∞) as n → ∞; all the diagonal elements of the matrix

Tp are equal to 1.

Note that under Assumption 3, An becomes T
1/2
p W∗WT

1/2
p , where

W = (w1, · · · ,wn)T . The assumption that all the diagonal elements of

Tp are equal to 1 is used to guarantee that EX2
ji = 1. Under Assump-

tion 3, when Tp = Ip, the random vectors x1, . . . ,xp are independent and

when Tp 6= Ip, they are not independent. For convenience, we name this

dependent structure as ‘linear dependence’.

To develop the asymptotic distribution of the test statistic, write

Gn(x) = p[FAn(x)− F cn(x)]. (5.10)

Then, p(sn(t) − s(t)) can be decomposed as sum of the stochastic part
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and the non–stochastic part as follows:

p(sn(t)− s(t)) =

∫
eitxdGn(x)

=

∫
eitxd

(
p
[
FAn(x)− F cn,Hn(x)

])
+

∫
eitxd

(
p
[
F cn,Hn(x)− F cn(x)

])
,(5.11)

where F cn,Hn is obtained from F c,H with c and H replaced by cn = p/n and

Hn = FTp .

To simplify the statements of the following theorems, we introduce some

notation here:

δ1(t) = lim
n→∞

∫
cos(tx)dp

(
F cn,Hn(x)− F cn(x)

)
,

δ2(t) = lim
n→∞

∫
sin(tx)dp

(
F cn,Hn(x)− F cn(x)

)
, (5.12)

ρ1(t) =

∮
γ

cos(tz)
cm3(z)h2(z)

1− c
∫
m2(z)τ 2(1 + τm(z))−2dH(τ)

dz,

ρ2(tj, th) =

∮
γ1

∮
γ2

cos(tjz1)sin(thz2)

(m(z1)−m(z2))2

d

dz2

m(z2)
d

dz1

m(z1)dz1dz2,

ρ3(tj, th) =

∮
γ1

∮
γ2

cos(tjz1)sin(thz2)
d2

dz1dz2

[m(z1)m(z2)h1(z1, z2)]dz1dz2,

E(V re(t)) =
1

2πi

∮
γ

cos(tz)
c
∫
m3(z)τ 2(1 + τm(z))−3dH(τ)

(1− c
∫
m2(z)τ 2(1 + τm(z))−2dH(τ))2

dz

−EX
4
11 − 3

2πi
ρ1(t), (5.13)

Cov
(
V re(tj), Z

re(th)
)

= − 1

2π2
ρ2(tj, th)−

c(EX4
11 − 3)

4π2
ρ3(tj, th), (5.14)

E(V im(t)) = −E|X11|4 − 2

2πi
ρ1(t), (5.15)

and

Cov
(
V im(tj), Z

im(th)
)

= − 1

4π2
ρ2(tj, th)−

c(E|X11|4 − 2)

4π2
ρ3(tj, th).(5.16)

We now state the first theorem of this chapter.
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Theorem 7. In addition to Assumptions 1 and 2, let the fourth moment

of each Xji be finite.

1) Suppose that Assumption 3 and the following conditions hold:

1

n

n∑
i=1

e∗iT
1/2
p (m(z1)Tp+I)−1T1/2

p eie
∗
iT

1/2
p (m(z2)Tp+I)−1T1/2

p ei → h1(z1, z2)

(5.17)

and

1

n

n∑
i=1

e∗iT
1/2
p (m(z)Tp + I)−1T1/2

p eie
∗
iT

1/2
p (m(z)Tp + I)−2T1/2

p ei → h2(z),

(5.18)

where e∗i is the n-dimensional row vector with the i-th element being 1 and

others 0. Then the scaled proposed test statistic p2Mn converges in distri-

bution to a random variable R of the form

R =

∫ T2

T1

(|V (t) + δ1(t)|2 + |Z(t) + δ2(t)|2)dU(t), (5.19)

where (V (t), Z(t)) is a Gaussian vector and δj(t), j = 1, 2 are defined in

(5.12).

Denote (V (t), Z(t)) by (V re(t), Zre(t)) when X11 is real and the mean

of V re(t) is specified in (5.13). Replacing cos(tz) in E(V re(t)) by sin(tjz)

yields the expression of E(Zre(t)); the covariance of (V re(t), Zre(t)) is given

in (5.14).

Denote (V (t), Z(t)) as (V im(t), Zim(t)) when X11 is complex with EX2
11 =

0 and then the mean of V im(t) is specified in (5.15). Similarly replacing

cos(tz) in E(V im(t)) by sin(tjz) yields the expression of E(Zim(t)) in this

case; the covariance of (V im(t), Zim(t)) is given in (5.16).

In both cases, the definitions of Cov(V (tj), V (th)) and Cov(Z(tj), Z(th))

are similar to that of Cov(V (tj), Z(th)) except replacing cos(tjz)sin(thz) by

cos(tjz)cos(thz) and sin(tjz)sin(thz) respectively. The contours γ, γ1 and
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γ2 above are all closed and are taken in the positive direction in the complex

plane, each enclosing the support of F c,H . Also γ1 and γ2 are disjoint.

2) Under the null hypothesis H0 the scaled statistic p2Mn then converges

in distribution to

R0 =

∫ T2

T1

(|Ṽ (t)|2 + |Z̃(t)|2)dU(t), (5.20)

where the distribution of (Ṽ (t), Z̃(t)) can be obtained from that of (V (t), Z(t))

with H(τ) being the degenerate distribution at the point 1, m(z) being

the Stieltjes transform of the M-P law, h1(z1, z2) = 1
(m(z1)+1)(m(z2)+1)

and

h2(z) = 1
(m(z)+1)3

.

Remark 10. Assumption 1 assumes that all the entries of xi are identically

distributed. It is of practical interest to consider removing the identical

distribution condition. Instead of assuming identically distributed entries

for xi, we need only to impose the following additional assumptions: for

any k = 1, . . . , p; j = 1, . . . , n, E [Xjk] = 0, E
[
X2
jk

]
= 1, sup

j,k
E
[
X4
jk

]
<∞

and for any η > 0,

1

η4np

n∑
j=1

p∑
k=1

E
[
|Xjk|4I(|Xjk|≥η

√
n)

]
→ 0, as n→∞. (5.21)

A careful checking on the arguments of Theorem 1.1 of Bai and Silver-

stein (2004) and Theorem 1.4 of Pan and Zhou (2008) indicates that Lemma

20 listed in the Appendix still holds and hence Theorem 7 holds under (5.21).

For the expressions of the mean and covariance of the asymptotic random

vector, we substitute the fourth moment E|W11|4 in Lemma 20 with the

average of all the fourth moments of all the entries, i.e.
∑n,p
j=1,k=1 E|Wjk|4

np
.

Here we would like to point out that there is no need to impose condi-

tions (5.17) and (5.18) when establishing the asymptotic distribution of the
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test statistic under the null hypothesis (the second part of the above theo-

rem). Moreover, conditions (5.17) and (5.18) can be removed if E [W 4
11] = 3

in the real–number case or if E [W 2
11] = 2 in the complex–number case (see

Bai and Silverstein (2004)). The first part of the above theorem is concerned

with asymptotic distributions of the test statistic under a local alternative

hypothesis, i.e., Assumption 3. With respect to Assumption 3, we would

like to make the following comments, which are useful in the subsequent

application section.

If yTj = w̃T
j C, where C is any q × p nonrandom matrix and w̃j, j =

1, . . . , n are i.i.d. q × 1 random vectors with their respective entries being

i.i.d random variables, then Theorem 7 is still applicable. This is because

1
n
XX∗ in this case becomes 1

n
W̃CC∗W̃∗ and the nonnegative definitive

matrix CC∗ can be decomposed into CC∗ = T
1/2
q T

1/2
q , where T

1/2
q is a

q × q Hermitian matrix and W̃ = (w̃1, . . . , w̃n). Note that the eigenvalues

of 1
n
XX∗ differ from those of 1

n
T

1/2
q W∗WT

1/2
q by |p − q| zeros. Thus, we

may instead resort to CLT of 1
n
T

1/2
q W̃∗W̃T

1/2
q .

We can evaluate the power of the statistic Mn for a class of local alter-

natives, although it is difficult to establish an asymptotic distribution for

the test statistic under such a class of local alternatives.

Theorem 8. Let the following hold in probability,

lim sup
n→∞

p

∫
eitxd(FAn

H0
− FAn

H1
) =∞, (5.22)

where FAn
H0

stands for the ESD of An under H0 (satisfying Assumptions 1

and 2) and FAn
H1

is the ESD of An under H1. Then

lim
n→∞

P (p2Mn > γα|H1) = 1,

where γα is the critical value of n2Mn under H0 (determined by R in The-

orem 7) corresponding to the significance level α.
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Remark 11. Note that if FAn
H0

and FAn
H1

have different limits in probability,

then
∫
eitxd(FAn

H0
− FAn

H1
) converges in probability to a nonzero constant de-

pending t by Levy’s continuity theorem. This ensures (5.22) is true. Most

of the examples given in the subsequent sections satisfy (5.22).

5.2 Applications to Multiple MA(1), AR(1)

and Spatial Cross–sectional dependent

Structures

This section is to explore some applications of the proposed test. In the

last section, we have discussed the case where dependent vectors can be

expressed as linear combinations of independent random vectors, i.e. yj =

wjC. Although this chapter mainly focuses on the analysis of cross–sectional

dependence, many other dependent structures incurred by time series also

satisfy the dependent structure developed in the last section. As an il-

lustration of this point, we provide MA(1) and AR(1) models here. For

cross-sectional dependence of interest in panel data analysis, we give exam-

ples of some spatial models that can be discussed in a way similar to what

has been done in Section 2.

Example 3.1. Consider a multiple moving average model of order 1(MA(1))

of the form:

vt = zt + ψzt−1, t = 1, . . . , p, (5.23)

where |ψ| < ∞; zt = (Z1t, . . . , Znt)
T is an n-dimensional random vector

with i.i.d. elements, each of which has zero mean and unit variance; and

vt = (V1t, . . . , Vnt)
T . Denote by V̂T

j and ẐT
j respectively the j-th rows of

V = (Vjt)n×p and Z = (Zjt)n×(p+1).
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For each j = 1, . . . , n, the MA(1) model (5.23) can be written as

V̂T
j = ẐT

j C, (5.24)

where

C =



ψ 0 0 · · · 0 0

1 ψ 0 · · · 0 0

0 1 ψ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 ψ

0 0 0 · · · 0 1


(p+1)×p

. (5.25)

From Assumption 3, the preceding subsection and Theorem 7, our test

is able to capture the dependence of v1, · · · ,vp as n and p go to infinity in

the same order.

Example 3.2. Consider a vector autoregressive model of order 1 (VAR(1))

of the form:

vt = φvt−1 + zt, t = 1, . . . , p, (5.26)

where v0 = 1√
1−φ2

ε with ε being an n-dimensional random vector with

i.i.d elements whose means are zero and variances are unit, |φ| < 1; for

any t = 1, . . . , p, zt = (Z1t, . . . , Znt)
T is an n-dimensional random vector

with i.i.d. elements, each of which has zero mean and unit variance; and

vt = (V1t, . . . , Vnt)
T . The choice of 1√

1−φ2
in the definition of v0 is to ensure

that the first two moments of {vt}pt=0 are well defined. In order to writing

this VAR(1) model into the linear dependent structure proposed in the last

section, we add z0 = ε to the sequence {zt}pt=1 and thus {zt}pt=0 has the

same length with {vt}pt=0. Denote the j-th rows of V = (Vjt)n×(p+1) and

Z = (Zjt)n×(p+1) by V̂T
j and ẐT

j respectively.
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For each j = 1, . . . , n, the AR(1) model (5.26) can be written as

V̂T
j = ẐT

j D, (5.27)

where

D =



1 −φ (−φ)2 · · · (−φ)p−2 (−φ)p−1/
√

1− φ2

0 1 −φ · · · (−φ)p−3 (−φ)p−2/
√

1− φ2

0 0 1 · · · (−φ)p−4 (−φ)p−3/
√

1− φ2

...
...

...
. . .

...
...

0 0 0 · · · 1 −φ/
√

1− φ2

0 0 0 · · · 0 1/
√

1− φ2


. (5.28)

By Theorem 7, we can apply the proposed test Mn to this AR(1) model

as well.

Example 3.3. We now consider a panel data case. Let {vji : i =

1, . . . , p; j = 1, . . . , n} be the error components involved in a panel data

model. They may be cross–sectionally correlated. In panel data analysis, it

is of interest to consider the cross–sectional independence hypothesis, i.e.

H00 : Cov(vji, vjh) = 0 for all j = 1, . . . , n and all i 6= h;

against

H11 : Cov(vji, vjh) 6= 0 for some j and some i 6= h. (5.29)

Under the assumption that {vji : i = 1, . . . , p; j = 1, . . . , n} are normally

distributed, this hypothesis is equivalent to the independence hypothesis

that

H0 : x1, . . . ,xp are independent; against H1 : x1, . . . ,xp are not independent,

(5.30)
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where xi = (v1i, . . . , vni)
T , i = 1, . . . , p.

Modern panel data literature has mainly adopted two different approaches

to model error cross–sectional dependence: the spatial approach and the

factor-structure approach. For the spatial approach, there are three pop-

ular spatial models: the Spatial Moving Average (SMA), Spatial Auto-

Regressive (SAR) and Spatial Error Components (SEC) processes. They

are defined as follows:

SMA : vji =

p∑
k=1

ωikεjk + εji, (5.31)

SAR : vji =

p∑
k=1

ωikvjk + εji, (5.32)

SEC : vji =

p∑
k=1

ωikξjk + εji, (5.33)

where ωik is the i-specific spatial weight attached to individual k; {εji : i =

1, . . . , p; j = 1, . . . , n} and {ξji : i = 1, . . . , p; j = 1, . . . , n} are two sets with

i.i.d. random components with zero mean and unit variance; moreover,

{ξji : i = 1, . . . , p; j = 1, . . . , n} are uncorrelated with {εji, i = 1, . . . , p; j =

1, . . . , n}.

Denote the j-th row of V = (vji)n×p, ε = (εji)n×p and ξ = (ξji)n×p by

v̂Tj , ε̂Tj and ξ̂
T

j respectively. Set ω = (ωik)p×p.

Model SMA (5.31) may be rewritten as v̂Tj = ε̂Tj (ωT + Ip),∀j = 1, . . . , n

and hence Tp = (ω + Ip)(ω
T + Ip). For model SAR (5.32), assume that

ω−Ip is invertible. We then write v̂Tj = ε̂Tj (ωT−Ip)
−1,∀j = 1, . . . , n. Hence

Tp = (ω − Ip)
−1(ωT − Ip)

−1. Therefore the test statistic Mn can be used

to identify whether x1, · · · ,xp of models (5.31) and (5.32) are independent.

Hence it can capture the cross–sectional dependence for the SMA model

and SAR model
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As for the SEC model, whether the statistic Mn can detect the depen-

dence of the SEC model relies on the properties of the sample covariance

matrix in the form of

Bn =
1

n
(ωξ + ε)(ωξ + ε)T , (5.34)

where ξ = (ξ1, . . . , ξp)
T and ε = (ε1, . . . , εp)

T .

Under the null hypothesis H0, Dozier and Silverstein (2007) provides

the limit of the ESD of the matrix Bn whose Stieljes transform is

m̂(z) =

∫
dĤ(x)

x
1+cm̂(z)

− (1 + cm̂(z))z + 1− c
, (5.35)

where Ĥ(x) is the limit of F
1
n
εεT .

With this result, we know that the limit of the ESD of the matrix Bn

is not the M-P law so that condition (5.22) is satisfied. By Theorem 8, the

proposed test Mn can be applied to capture the dependence of the SEC

model (5.33).

5.3 A general panel data model

It is well known that there are two common used cross-sectional dependent

structures in panel data: spatial structures and factor models. As stated

in the last section, our developed dependent structure yj = wjC covers

some spatial structures in panel data. In this section, we consider a simple

factor model which is utilised to describe cross–sectional dependence. A

new asymptotic theory is established as a consequence of our discussion.

Note that the proposed test is based on the idea that the limits of ESDs

under the null and local alternative hypotheses are different. Yet, it may

be the case that there exists some dependence among the set of vectors of
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x1, · · · ,xp but the limit of the ESD associated with such vectors is the M-P

law. Then a natural question is whether the statistic Mn works in this case.

We below investigate the panel data model as an example.

Consider a panel data model of the form

vij = εij +
1
√
p
ui, i = 1, . . . , p; j = 1, . . . , n, (5.36)

where {εij, i = 1, . . . , p; j = 1, . . . , n} is a sequence of i.i.d. real random

variables with Eε11 = 0 and Eε2
11 = 1, and {ui, i = 1, . . . , p} are real

random variables, and independent of {εij, i = 1, . . . , p; j = 1, . . . , n}.

For any i = 1, . . . , p, set

xi = (vi1, . . . , vin)T . (5.37)

The aim of this section is to test the null hypothesis specified in (5.30)

for model (5.36).

Model (5.36) can be written as

X = ε+ ueT , (5.38)

where X = (x1, . . . ,xp)
T , u = ( 1√

p
u1, . . . ,

1√
p
up)

T and e is p× 1 vector with

all elements being one.

Consider the sample covariance matrix

Sn =
1

n
XXT =

1

n
(ε+ ueT )(ε+ ueT )T . (5.39)

By the rank inequality (see Lemma 3.5 of Yin (1986)) and the fact

that rank(ueT ) ≤ 1, it can be concluded that the limit of the ESD of the

matrix S is the same as that of the matrix 1
n
εεT , i.e. the M-P law. Even

so, we still would like to use the proposed statistic Mn to test the null

hypothesis of mutual independence. However, this model does not satisfy
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Assumption 1 because the elements of each vector xi are not independent

and they include the common random factor ui, and Theorem 7 thus can

not be directly applicable to this model. Therefore, we need to develop a

new asymptotic theory for the proposed statistic Mn for this model.

Theorem 9. Consider model (5.36) and let Assumption 2 hold. Addition-

ally, suppose that {εij} are i.i.d with mean zero, variance one and finite

fourth moment and that

E‖u‖4 <∞ and
1

p2
E

[
p∑
i 6=j

(u2
i − ū)(u2

j − ū)

]
→ 0 as n→∞, (5.40)

where ū is a positive constant number.

Then, the proposed test statistic p2Mn converges in distribution to the

random variable R2 given by

R2 =

∫ t2

t1

(
|W (t)|2 + |Q(t)|2

)
dU(t), (5.41)

where (W (t), Q(t)) is a Gaussian vector whose mean and covariance are

specified as follows:

EW (t) = − c

2πi

∮
γ

cos(tjz)
m3(z)(1 +m(z))

((1 +m(z))2 − cm2(z))2
dz

− c(EY 4
11 − 3)

2πi

∮
γ

cos(tjz)
m3(z)

(1 +m(z))2 − cm2(z)
dz

+
c

2πi

∮
γ

cos(tjz)
m(z)

z((1 +m(z))2 − cm2(z))
dz

− 1

2πi

∮
γ

cos(tjz)

cm(z)
z[(1+m(z))2−cm2(z)]

+ ū
∫

1
(λ−z)2dF

MP (λ)

ūzm2(z)− 1
dz;(5.42)

and

Cov(W (tj), Q(th)) = − 1

2π2

∮
γ1

∮
γ2

cos(tjz1)sin(thz2)

(m(z1)−m(z2))2

d

dz1

m(z1)
d

dz2

m(z2)dz1dz2

−c(EY
4

11 − 3)

4π2

∮
γ1

∮
γ2

cos(tjz1)cos(thz2)
d2

dz1dz2

[
m(z1)m(z2)

(1 +m(z1))(1 +m(z2))
]dz1dz2.
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(5.43)

Replacing cos(tjz) in E [W (tj)] by sin(tjz) yields the expression of E [Q(tj)].

The covariances Cov(W (tj),W (th)) and Cov(Q(tj), Q(th)) are similar ex-

cept replacing sin(thz) and cos(tjz) by cos(thz) and sin(tjz) respectively.

The contours in (5.42) and (5.43) both enclose the interval [(1 −
√
c)2 +

2cū, (1 +
√
c)2 + 2cū]. Moreover, the contours γ1 and γ2 are disjoint.

Remark 12. When u1, · · · , up are independent and hence v1, · · · ,vp are

independent, condition (5.40) holds automatically.

In view of Theorem 9, we see that the proposed test statistic Mn still

works mainly due to the involvement of the last term on the right–hand

side of (5.11). Section 5 below employs the proposed test to evaluate the

finite–sample performance and the practical applicability of the proposed

test.

5.4 Small sample simulation studies

This section provides some simulated examples to evaluate the finite sample

performance of the proposed test. In addition, we also compare the perfor-

mance of the proposed test with that of a likelihood ratio test proposed by

Anderson (1984). Simulations are used to evaluate both the empirical sizes

and powers of the proposed test. To show the wide applicability and effi-

ciency of our test, two kinds of dependent structures considered in Sections

3 and 4, such as multiple MA(1) and AR(1) model, SMA and the general

panel data model, are investigated.
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5.4.1 Empirical sizes and empirical power values

First we introduce the method of calculating empirical sizes and power

values. Let z 1
2
α and z1− 1

2
α be the 100(1

2
α)% and 100(1 − 1

2
α)% quantiles

of the asymptotic null distribution of the test statistic Mn respectively.

With K replications of the data set simulated under the null hypothesis,

we calculate the empirical size as

α̂ =
{] of MH

n ≥ z1− 1
2
α or M

H
n ≤ z 1

2
α}

K
, (5.44)

where MH
n represents the values of the test statistic Mn based on the data

simulated under the null hypothesis.

In our simulation, we choose K = 1000 as the number of repeated sim-

ulations. The significance level is α = 0.05. Since the asymptotic null

distribution of the test statistic is not a classical distribution, we need to

estimate the quantiles z 1
2
α and z1− 1

2
α. Naturally, we do as follows: gener-

ate K replications of the asymptotic distributed random variable and then

select the (K 1
2
α)-th smallest value ẑ 1

2
α and (K 1

2
α)-th largest value ẑ1− 1

2
α

as the estimated 100(1
2
α)% and 100(1 − 1

2
α)% quantiles of the asymptotic

distributed random variable.

With the estimated critical points ẑ 1
2
α and ẑ1− 1

2
α under the null hypoth-

esis, the empirical power is calculated as

β̂ =
{] of MA

n ≥ ẑ1− 1
2
α or M

A
n ≤ ẑ 1

2
α}

K
, (5.45)

where MA
n represents the values of the test statistic Mn based on the data

simulated under the alternative hypothesis.
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5.4.2 Comparisons with the classical likelihood ratio

test

For the proposed test, we generate n numbers of p–dimensional independent

and identical distributed random vectors {yj}nj=1, each with the mean vector

0p and the covariance matrix Σ. Under the null hypothesis, {yj}nj=1 are

generated in two scenarios:

1. Each wj is a p-dimensional normal random vector with the mean

vector 0p and the covariance matrix Σ = Ip; ∀j = 1, . . . n, yj = Tpwj

with Tp = Ip;

2. Each wj consists of i.i.d. random variables with standardized Gamma(4,2)

distribution, so they have zero means and unit variances; ∀j = 1, . . . n,

yj = Tpwj with Tp = Ip.

Under the alternative hypothesis, we consider the case:

T
1/2
p = (

√
0.95Ip,

√
0.051p), where 1p is a p-dimensional vector with 1 as

entries. In this case, the population covariance matrix of yj is Σ = 0.95Ip+

0.051p1
′

p, which is called the compound symmetric covariance matrix.

For the normally distributed data, the fourth moment of each element

is E [X4
11] = 3; for standardized Gamma(4,2) distributional data, E [X4

11] =

4.5. Anderson (1984) provides a likelihood ratio criterion (LRT) to test

independence for a fixed number of fixed dimensional normal distributed

random vectors. We compare it with the proposed test.

Under the null hypothesis, the distribution of L is the distribution of

L2L3 · · ·Lp, where L2, . . . , Lp are independently distributed with each Lk

having the distribution of Um,(k−1)m,n−1−(k−1)m. Furthermore, for any k =

2, . . . , p, as n → ∞, −(n − 3
2
− km

2
) log

(
Um,(k−1)m,n−1−(k−1)m

)
has a χ2
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distribution of (k − 1)m2 degrees of freedom (See section 8.5 of Anderson

(1984)).

From the construction of the LRT test, we can see that the LRT utilises

additional n observations of the random vectors x1, . . . ,xp under investi-

gation, while the proposed test does not need this information. However,

we can choose m = 1 and apply LRT to independence test of the random

vectors x̃1, . . . , x̃p, where for any i = 1, . . . , p, the elements of the vector x̃i

consist of its n observations. Hence the LRT test can test independence for

p numbers of random vectors with dimension n by choosing m = 1.

Tables 5.1 and 5.3 show the empirical sizes and empirical power values

of our proposed test and the LRT test for the normally distributed random

vectors respectively. From Table 5.1 and Table 5.3, we can see that the

LRT test does not work when p and n are both large while the proposed

test possesses good performance when p and n are both large and increase

at the same order. The LRT test is only applicable to the case where p is

fixed and n increases from n = 5 to n = 100. From Table 5.3, it can be seen

that the LRT fails when p is large at the same order as that of n. When the

difference between p and n is large, the sizes and the power values of the

proposed test become worse. This is because our test is proposed under the

restriction that p and n are required to increase and vary at the same order.

The proposed test also works well for gamma random vectors while the LRT

test is not applicable to gamma case, since, in theory, LRT test is originally

proposed only for normal random vectors. Tables 5.4 and 5.5 provide the

empirical sizes and power values of the proposed test for the gamma case.

In our simulation, we choose p, n = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for

the proposed test and the LRT test. The significant level α is chosen as

0.05. In each case, we run K = 1000 repeated simulations. Our simulation
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results for the empirical powers show that the proposed test can well test

independence for both normal and gamma vectors.

As comparison, without using the asymptotic distribution under the null

hypothesis, we use the bootstrap method to obtain a bootstrap critical value

(bcv) in each case to estimate the empirical sizes for normal and gamma

distributed data. The results are listed in Table 5.2. From the table, we

can see that the bootstrap sizes are better than those estimated from the

null asymptotic distribution.

5.4.3 Multiple MA(1), AR(1) and SMA model

Consider multiple MA(1) model

vt = zt + ψzt−1, t = 1, . . . , p. (5.46)

We choose ψ = 0.5 and zt
i.i.d∼ normal(0, In),∀t = 0, 1, . . . , p. The simula-

tion results in Table 5.6 show that the proposed test performs well for this

model.

Consider multiple AR(1)

vt = φvt−1 + zt, t = 1, . . . , p, (5.47)

where v0 = 1√
1−φ2

z0 and zt
i.i.d∼ normal(0, In),∀t = 0, 1, . . . , p. Let φ = 0.5.

The empirical powers for this model are provided in Table 5.7. As n and p

increase in the same order, the empirical power tends to 1.

As for the Spatial Moving Average (SMA) model, i.e.

vji =

p∑
k=1

ωikεjk + εji, (5.48)

we generate εjk
i.i.d∼ normal(1, 1),∀j = 1, . . . , n; k = 1, . . . , p. Apply the

proposed statisticMn for the sample matrix 1
n
V∗V and the empirical powers
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are illustrated in Table 5.8. These power values show that Mn performs well

for capturing the cross–sectional dependence for SMA model.

5.4.4 The general panel data model

We examine the finite sample performance of the proposed test for the

general panel data model (5.36), i.e.

vij = εij +
1
√
p
ui, i = 1, . . . , p; j = 1, . . . , n, (5.49)

where {εij, i = 1, . . . , p; j = 1, . . . , n} is a sequence of i.i.d. random variables

and Eε11 = 0, Eε2
11 = 1; {ui, i = 1, . . . , p} are independent of {εij, i =

1, . . . , p; j = 1, . . . , n}.

Under the null hypothesis, we generate ui
i.i.d∼ normal(1, 1), i = 1, . . . , p

and under the alternative hypothesis, we experiment with

u = ( 1√
p
u1,

1√
p
u2, . . . ,

1√
p
up) ∼ 1√

p
N(1p,Σ), where Σ = TTT and T is a

p× p matrix whose elements are generated tik
i.i.d.∼ U(0, 1), i, k = 1, . . . , p.

The simulation results including empirical sizes and power values in

Table 5.9 show that the proposed test can capture the dependence for the

general panel data model (5.36).

5.4.5 Some time series and Vandermonde matrix

Dependent structures of a set of random vectors are often described by

non-zero correlations among them, such as the linear dependent structure

developed in Section 3. However, there are some data which are not inde-

pendent but uncorrelated. We consider three such examples and test their

dependence by the proposed test.
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5.4.5.1 Nonlinear MA model

Consider nonlinear MA models of the form

Rtj = Zt−1,jZt−2,j(Zt−2,j + Ztj + 1), t = 1, . . . , p; j = 1, . . . , n; (5.50)

where zt = (Zt1, . . . , Ztn) is an n-dimensional random vector with i.i.d. ele-

ments, each of which has zero mean and unit variance; and rt = (Rt1, . . . , Rtn).

For any j = 1, . . . , n, the correlation matrix of (Rj1, Rj2, . . . , Rjp) is a diag-

onal matrix. This model is provided by Kuan and Lee (2004) which tests

the martingale difference hypothesis. Our proposed independence test can

be applied to this nonlinear MA model, and the powers in Table 10 show

that this test performs well for this model.

This result also implies that the limit of the ESD of the nonlinear MA

model (5.50) is not the M-P law since the proposed test statistic is estab-

lished on the characteristic function of the M-P law.

5.4.5.2 Multiple ARCH(1) model

Consider the multiple autoregressive conditional heteroscedastic(ARCH(1))

model:

Wtj = Ztj

√
α0 + α1W 2

t−1,j, t = 1, . . . , p; j = 1, . . . , n; (5.51)

where zt = (Zt1, . . . , Ztn) is an n-dimensional random vector with i.i.d. ele-

ments, each of which has zero mean and unit variance; and ωt = (Wt1, . . . ,Wtn).

For each j = 1, . . . , n, ARCH(1) model (W1j,W2j, . . . ,Wpj) is a martin-

gale difference sequence. ARCH(1) model has many applications in finan-

cial analysis. There exists no theoretical results stating that the limit of

the ESD of the sample covariance matrix for ARCH(1) model is the M-P

Law. A rigorous study is under investigation. For the ARCH(1) model, the
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proposed test can not capture the dependence of (ω1,ω2, . . . ,ωp) directly,

but we can test the dependence of (ω2
1,ω

2
2, . . . ,ω

2
p). Since this test can tell

us that (ω2
1,ω

2
2, . . . ,ω

2
p) are not independent, naturally it can be concluded

that (ω1,ω2, . . . ,ωp) are not independent either. Here we take α0 = 0.9

and α1 = 0.1. Table 5.11 shows the power values of our test for testing

dependence of ARCH(1) model.

5.4.5.3 Vandermonde matrix

Consider the n× p vandermonde matrix V of the form

V =
1√
n


1 1 · · · 1

e−iω1 e−iω2 · · · e−iωp

...
...

. . .
...

e−i(n−1)ω1 e−i(n−1)ω2 · · · e−i(n−1)ωp

 (5.52)

where ωi, i = 1, . . . , p are called phased distributions and are assumed i.i.d

on [0, 2π). Then the entries of V lie on the unit circle. Obviously, all

the entries of the rows of V are not independent while the columns are

independent. Denote the sample covariance matrix of V by D = VHV.

Vandermonde matrices play an important role in signal processing and

wireless applications such as direction of arrival estimation, pre-coding or

sparse sampling theory, etc.. ∅. Ryan and Debbah (2009) established that

as both n, p go to∞ with their ratio being a positive constant, the limiting

spectral distribution of D = VHV is not the M-P law. From Theorem 8

we see that the proposed test could capture the dependence structure of

the rows of the matrix V. It is easy to see that, for any k = 1, . . . , n − 1

and j = 1, . . . , p, E(e−ikωj)2 = 0 and E|e−ikωj |4 = 1. The empirical power

values in Table 5.12 show that the proposed test works well in detecting

dependence of Vandermonde matrices.
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5.5 Conclusions

This chapter has established a general test for testing independence among

a large number of high dimensional random vectors based on the charac-

teristic function of the empirical spectral distribution of the sample covari-

ance matrix of the random vectors. This test can capture various kinds of

dependent structures, e.g. MA(1), AR(1) model, nonlinear MA(1) model,

ARCH(1) model and the general panel data model established in the simula-

tion section. The conventional method (LRT proposed by Anderson (1984))

utilizes the correlated relationship between random vectors to capture their

dependence. This idea is only efficient for normal distributed data. It may

be an inappropriate tool for non-Gaussian distributed data, such as mar-

tingale difference sequences (e.g.ARCH(1) model), nonlinear MA(1) model,

the Vandermonde matrix, etc., which possess dependent but uncorrelated

structures. The proposed test is not restricted to normally distributed data.

In general, the proposed test is proposed for testing independence among a

large number of high dimensional random vectors.

5.6 Appendix

5.6.1 Some useful lemmas

Lemma 16 (Theorem 8.1 of Billingsley (1999)). Let Pn and P be probability

measures on (C,ϕ). If the finite dimensional distributions of Pn converge weakly

to those of P , and if {Pn} is tight, then Pn ⇒ P .

Lemma 17 (Theorem 12.3 of Billingsley (1999)). The sequence {Xn} is tight if

it satisfies these two conditions

(I) The sequence {Xn(0)} is tight.
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(II) There exists constants γ ≥ 0, α > 1, and a nondecreasing, continuous

function F on [0, 1] such that

E{|Xn(t2)−Xn(t1)|γ} ≤ |F (t2)− F (t1)|α (5.53)

holds for all t1, t2, and n.

Lemma 18 (Continuous Theorem). Let Xn and X be random elements defined

on a metric space S. Suppose g : S → S
′

has a set of discontinuous points Dg

such that P (X ∈ Dg) = 0. Then

Xn
d→ X ⇒ g(Xn)

d→ g(X). (5.54)

Lemma 19 (Complex mean value theorem (see Lemma 2.4 of Guo and Higham

(2006))). Let Ω be an open convex set in C. If f : Ω→ C is an analytic function

and a, b are distinct points in Ω, then there exist points u, v on L(a, b) such that

Re(
f(a)− f(b)

a− b
) = Re(f

′
(u)), Im(

f(a)− f(b)

a− b
) = Im(f

′
(v)), (5.55)

where Re(z) and Im(z) are the real and imaginary parts of z respectively; and

L(a, b) , {a+ t(b− a) : t ∈ (0, 1)}.

5.6.2 Proofs of the main theorems

This section provides the proofs of three main theorems. Lemmas 20 and 21

involved in the respective proofs of Theorem 7 and Theorem 9 are listed and

proved in Section 7.3 below.

Proof of Theorem 7. Let t belong to a closed interval I = [T1, T2]. To finish

Theorem 7, in view of Lemma 16 and Lemma 20, it suffices to prove the tightness

of {
(
φn(t), ψn(t)

)
: t ∈ I}. Thus it suffices to prove the tightness of p(sn(t) −

s(t)). Repeating the same truncation and centralization steps as those in Bai

and Silverstein (2004), we may assume that

|Xij | < δn
√
n, EXij = 0, E|Xij |2 = 1, E|Xij |4 <∞. (5.56)
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Set Mn(z) = n[mFAn (z)−mF cn,Hn (z)]. By the Cauchy theorem

f(x) = − 1

2πi

∮
f(z)

z − x
dz, (5.57)

we have, with probability one, for all n large,∫
eitxdp(FAn(x)− F cn,Hn(x)) = − 1

2πi

∮
C
eitzMn(z)dz. (5.58)

The contour C involved in the above integral is specified as follows. Let

Cu = {x+ iv0 : x ∈ [xl, xr]}, (5.59)

where v0 > 0, xr is any number greater than lim sup
n

λmax(Tn)(1 +
√
c)2, xl is

any negative number if c ≥ 1 and otherwise choose xl ∈ (0, lim sup
n

λmin(Tn)(1−
√
c)2). Then the contour C is defined by the union of C+ and its symmetric part

C− with respect to the x-axis, where

C+ = {xl + iv : v ∈ [0, v0]} ∪ Cu ∪ {xr + iv : v ∈ [0, v0]}. (5.60)

From Lemma 1 and the argument regarding equivalence in probability of

Mn(z) and its truncation version given in Page 563 in Bai and Silverstein (2004)

and Lemma 3 we have ∮
C
|Mn(z)||dz| D−→

∮
C
|M(z)||dz|, (5.61)

where M(z) is a Gaussian process, the limit of Mn(z).

We conclude from Lemma 19 that for any δ > 0

sup
|t1−t2|<δ,t1,t2∈I

∣∣ ∮
C
(eit1z − eit2z)Mn(z)dz

∣∣
≤ sup

|t1−t2|<δ,t1,t2∈I

∣∣∣ ∮
C

√(
Re(izeit3z)

)2
+
(
Im(izeit4z)

)2
δ|Mn(z)||dz|

∣∣∣
≤ Kδ

∣∣∣ ∮
C
|Mn(z)||dz|

∣∣∣ D−→ Kδ
∣∣∣ ∮
C
|M(z)||dz|

∣∣∣, as n→∞, (5.62)

where t3 and t4 lies in the interval [T1, T2], the last inequality uses (5.61) and the

fact that Re(izeit3z), Im(izeit4z) are bounded on the contour C and K (and in

the sequel) is a constant number which may be different from line to line.
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By (5.62), we have for any ε > 0,

P
(

sup
|t1−t2|<δ,t1,t2∈[0,1]

∣∣∣ ∮
C
(eit1z − eit2z)Mn(z)dz

∣∣∣ ≥ ε) ≤ P(Kδ∣∣∣ ∮
C
|Mn(z)||dz|

∣∣∣ ≥ ε)
(5.63)

and

lim
δ→0

lim sup
n→∞

P
(
Kδ
∣∣∣ ∮
C
|Mn(z)||dz|

∣∣∣ ≥ ε) = lim
δ→0

P
(
Kδ
∣∣∣ ∮
C
|M(z)||dz|

∣∣∣ ≥ ε) = 0.

(5.64)

Hence (5.63) and (5.64) imply that

lim
δ→0

lim sup
n→∞

P
(

sup
|t1−t2|<δ,t1,t2∈I

∣∣∣ ∮
C
(eit1z − eit2z)Mn(z)dz

∣∣∣ ≥ ε) = 0. (5.65)

By Theorem 7.3 of Billingsley (1999),
∫
eitxdp(FAn(x)− F cn,Hn(x)) is tight.

Moreover from the assumption we see that
∫
eitxdp(F cn,Hn(x)− F cn(x)) is tight

by Lemma 4.

Proof of Theorem 8. Consider p2Mn under the alternative H1 and rewrite it as

follows

p2Mn = p2

∫ T2

T1

|sn(t)−s(t)|2dU(t) =

∫ T2

T1

[
M cos,H1
n (t)

]2
dU(t)+

∫ T2

T1

[
M sin,H1
n (t)

]2
dU(t),

where

M cos,H1
n (t) =

∫
cos(tx)dp(FAn

H1
(x)−F cn(x)), M sin,H1

n (t) =

∫
sin(tx)dp(FAn

H1
(x)−F cn(x)).

We may further write[
M cos,H1
n (t)

]2
=
[
M cos,H0
n (t)

]2
+
[
M cos,H1,H0
n (t)

]2
+2
[
M cos,H1,H0
n (t)

][
M cos,H0
n (t)

]
,

where M cos,H0
n (t) is obtained from M cos,H1

n (t) with FAn
H1

(x) replaced by FAn
H0

(x)

and

M cos,H1,H0
n (t) =

∫
cos(tx)dp(FAn

H1
(x)− FAn

H0
(x)).
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By Holder’s inequality we obtain∣∣∣ ∫ T2

T1

[
M cos,H1,H0
n (t)

][
M cos,H0
n (t)

]
dU(t)

∣∣∣2 ≤ ∫ T2

T1

[
M cos,H1,H0
n (t)

]2
dU(t)

∫ T2

T1

[
M cos,H0
n (t)

]2
dU(t)

∣∣∣.
This, together with Lemma 20 (see Section 7.3 below) and the proof of Theorem

1, implies that∫ T2

T1

[
M cos,H1,H0
n (t)

][
M cos,H0
n (t)

]
dU(t) = op

(∫ T2

T1

(M cos,H1,H0
n (t))2+(M sin,H1,H0

n (t))2dU(t)
)
,

where

M sin,H1,H0
n (t) =

∫
sin(tx)dp(FAn

H1
(x)− FAn

H0
(x)).

Similarly[
M sin,H1
n (t)

]2
=
[
M sin,H0
n (t)

]2
+
[
M sin,H1,H0
n (t)

]2
+2
[
M sin,H1,H0
n (t)

][
M sin,H0
n (t)

]
and∫ T2

T1

[
M sin,H1,H0
n (t)

][
M sin,H0
n (t)

]
dU(t) = op

(∫ T2

T1

(M sin,H1,H0
n (t))2+(M sin,H1,H0

n (t))2dU(t)
)
,

where M sin,H0
n (t) is similarly defined. Note that∫ T2

T1

(M sin,H1,H0
n (t))2+(M sin,H1,H0

n (t))2dU(t) =

∫ T2

T1

∣∣∣ ∫ eitxdp(FAn
H1

(x)−FAn
H0

(x))
∣∣∣2dU(t).

Summarizing the above we have obtained

p2Mn =

∫ T2

T1

(
[
M cos,H0
n (t)

]2
+
[
M sin,H0
n (t)

]2
)dU(t)+

∫ T2

T1

∣∣∣ ∫ eitxdp(FAn
H1

(x)−FAn
H0

(x))
∣∣∣2dU(t)

+op

(∫ T2

T1

∣∣∣ ∫ eitxdp(FAn
H1

(x)− FAn
H0

(x))
∣∣∣2dU(t)

)
.

Thus, Theorem 8 follows from Theorem 1 and condition (5.22).

Proof of Theorem 9. As in the proof of Theorem 7, in view of Lemma 21 (see

Section 7.3 below), it suffices to prove the tightness of {p(sn(t) − s(t)) : t ∈ I}.

As before, write

p(sn(t)− s(t)) = p

∫
eitxd[FSn(x)− F cn(x)]
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= − 1

2πi

∮
γ
eitz(tr(Sn − zIp)−1 − pmcn(z))dz, (5.66)

where the contour γ is specified in Lemma 21.

From the formula (5.98), we have

trD−1
n (z) = trD−1

n (z) +
ε̄TD−2

n (z)ε̄

1− ε̄TD−1
n (z)ε̄

. (5.67)

This, together with (5.97), yields

trS−1
n (z)− pmcn(z) = trD−1

n (z)− pmcn(z) +
ε̄TD−2

n (z)ε̄

1− ε̄TD−1
n (z)ε̄

− v̄TD−2
n (z)v̄

1 + v̄TD−1
n (z)v̄

.

(5.68)

By (5.94) and noting that Mn(z) = trD−1
n (z) − pmcn(z), it is sufficient to

prove the tightness of the following three terms:

gn1(t) = − 1

2πi

∮
γ
eitzMn(z)dz, (5.69)

gn2(t) = − 1

2πi

∮
γ
eitz

ε̄TD−2
n (z)ε̄

1− ε̄TD−1
n (z)ε̄

dz, (5.70)

gn3(t) = − 1

2πi

∮
γ
eitz

v̄TD−2
n (z)v̄

1 + v̄TD−1
n (z)v̄

dz, (5.71)

The tightness of {gn1(t) : t ∈ I = [T1, T2]} has been proved in Theorem 7.

Next, via the same method adopted by Theorem 7, we prove the tightness of

{gni(t) : t ∈ I = [T1, T2]}, i = 2, 3 as follows.

By (5.102), (5.103) and Slutsky’s theorem, we have

sup
z∈γ

∣∣∣ ε̄TD−2
n (z)ε̄

1− ε̄TD−1
n (z)ε̄

+
cm(z)

z
(
(1 +m(z))2 − cm2(z)

)∣∣∣ i.p.−−→ 0. (5.72)

We conclude from (5.72), (5.123) and Lemma 3 that, as n→∞,∮
γ

∣∣ ε̄TD−2
n (z)ε̄

1− ε̄TD−1
n (z)ε̄

∣∣|dz| a.s.−−→ ∮
γ

∣∣ cm(z)

z
(
(1 +m(z))2 − cm2(z)

)∣∣|dz| (5.73)

and∮
γ

∣∣ v̄TD−2
n (z)v̄

1 + v̄TD−1
n (z)v̄

∣∣|dz| a.s.−−→ ∮
γ

∣∣∣ cm(z)
z[(1+m(z))2−cm2(z)]

+ ū
∫

1
(λ−z)2dF

MP (λ)

ūzm2(z)− 1

∣∣∣|dz|.
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(5.74)

By (5.73), (5.74) and the same proof as (5.62) to (5.65), the tightness of {gni(t) :

t ∈ I = [T1, T2]}, i = 2, 3 can be derived.

5.6.3 Proofs of Lemma 20 and Lemma 21

Bai and Silverstein (2004) established the remarkable central limit theorem for

functional of eigenvalues of An under the additional assumption that E|X11|4 = 3

while Pan and Zhou (2008) provided a supplement to this theorem by eliminating

the condition to some extent. From Theorem 4 of Pan and Zhou (2008) and (5.11)

we can directly obtain the following lemma.

Lemma 20. Under Assumptions 2 and 3, we have, for any positive integer k,(∫
cos(t1x)dGn(x), . . . ,

∫
cos(tkx)dGn(x),

∫
sin(t1x)dGn(x), . . . ,

∫
sin(tkx)dGn(x)

)
(5.75)

converges in distribution to Gaussian vectors (V1 + δ1(t1), . . . , Vk + δ1(tk), Z1 +

δ2(t1), . . . , Zk + δ2(tk)), where δ1(t), δ2(t) are, respectively, defined as

δ1(t) = lim
n→∞

∫
cos(tx)dp(F cn,Hn(x)− F cn(x)), (5.76)

δ2(t) = lim
n→∞

∫
sin(tx)dp(F cn,Hn(x)− F cn(x)). (5.77)

The means and covariances of Vj and Zj are specified as follows:

If X11 is real, then for any j = 1, . . . , k,

EVj =
1

2πi

∮
γ
cos(tjz)

c
∫
m3(z)τ2(1 + τm(z))−3dH(τ)

(1− c
∫
m2(z)τ2(1 + τm(z))−2dH(τ))2

dz

−EX
4
11 − 3

2πi

∮
γ
cos(tjz)

cm3(z)h2(z)

1− c
∫
m2(z)τ2(1 + τm(z))−2dH(τ)

dz.

Replacing cos(tjz) in EVj by sin(tjz) yields the expression of EZj. For any

j, h = 1, . . . , k,

Cov(Vj , Zh) = − 1

2π2

∮
γ1

∮
γ2

cos(tjz1)sin(thz2)

(m(z1)−m(z2))2

d

dz2
m(z2)

d

dz1
m(z1)dz1dz2
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−c(EX
4
11 − 3)

4π2

∮
γ1

∮
γ2

cos(tjz1)sin(thz2)
d2

dz1dz2
[m(z1)m(z2)h1(z1, z2)]dz1dz2.

If X11 is complex with EX2
11 = 0, then

EVj = −E|X11|4 − 2

2πi

∮
γ
cos(tjz)

cm3(z)h2(z)

1− c
∫
m2(z)τ2dH(τ)/(1 + τm(z))2

dz,

and the covariance

Cov(Vj , Zh) = − 1

4π2

∮
γ1

∮
γ2

cos(tjz1)sin(thz2)

(m(z1)−m(z2))2

d

dz2
m(z2)

d

dz1
m(z1)dz1dz2

−c(E|X11|4 − 2)

4π2

∮
γ1

∮
γ2

cos(tjz1)sin(thz2)
d2

dz1dz2
[m(z1)m(z2)h1(z1, z2)]dz1dz2.

The contours γ, γ1 and γ2 above are all closed and are taken in the positive

direction in the complex plane, each enclosing the support of F c,H . Also γ1 and

γ2 are disjoint.

The covariance structures Cov(Vj , Vh) and Cov(Zj , Zh) are similar to Cov(Vj , Zh)

except replacing (cos(tjz), sin(thz)) by (cos(tjz), cos(thz)) and (sin(tjz), sin(thz))

respectively.

Remark 13. When Tn = I, the mean and variance of the asymptotic Gaussian

distribution for power functions f(x) = xr, ∀r ∈ Z+ is calculated in Pan and

Zhou (2008) and Bai and Silverstein (2004). Hence the corresponding means

and covariances for f1(x) = sintx and f2(x) = costx can be derived by Taylor

series of sintx and costx.

While Lemma 21 below is only used in part of the proof of Theorem 3, it is

of some general interest and its proof is also not trivial. We thus include both

the statement of this lemma and its proof in this chapter.

Write

Hn(x) = p[FSn(x)− F cn(x)], (5.78)

where Sn is defined in (5.39).
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Lemma 21. Under the assumptions of Theorem 9, we have for any positive

integer k,(∫
cos(t1x)dHn(x), . . . ,

∫
cos(tkx)dHn(x),

∫
sin(t1x)dHn(x), . . . ,

∫
sin(tkx)dHn(x)

)
(5.79)

converges in distribution to a Gaussian vector (W1, . . . ,Wk, Q1, . . . , Qk) whose

mean and covariance are specified as follows:

EWj = − c

2πi

∮
γ
cos(tjz)

m3(z)(1 +m(z))

((1 +m(z))2 − cm2(z))2
dz

− c(EY 4
11 − 3)

2πi

∮
γ
cos(tjz)

m3(z)

(1 +m(z))2 − cm2(z)
dz

+
c

2πi

∮
γ
cos(tjz)

m(z)

z((1 +m(z))2 − cm2(z))
dz

− 1

2πi

∮
γ
cos(tjz)

cm(z)
z[(1+m(z))2−cm2(z)]

+ ū
∫

1
(λ−z)2dF

MP (λ)

ūzm2(z)− 1
dz; (5.80)

and

Cov(Wj , Qh) = − 1

2π2

∮
γ1

∮
γ2

cos(tjz1)sin(thz2)

(m(z1)−m(z2))2

d

dz1
m(z1)

d

dz2
m(z2)dz1dz2

− c(EY 4
11 − 3)

4π2

∮
γ1

∮
γ2

cos(tjz1)cos(thz2)
d2

dz1dz2
[

m(z1)m(z2)

(1 +m(z1))(1 +m(z2))
]dz1dz2.

(5.81)

Replacing cos(tjz) in EWj by sin(tjz) yields the expression of EQj. The co-

variances Cov(Wj ,Wh) and Cov(Qj , Qh) are similar except replacing sin(thz)

and cos(tjz) by cos(thz) and sin(tjz) respectively. The contours in (5.80) and

(5.81) both enclose the interval [(1−
√
c)2 + 2cū, (1 +

√
c)2 + 2cū]. Moreover, the

contours γ1 and γ2 are disjoint.

Proof of Lemma 21. Repeating the same truncation and centralization steps as

those in Bai and Silverstein (2004), we may assume that

|εij | < δn
√
n, Eεij = 0, E|εij |2 = 1, E|εij |4 <∞. (5.82)
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For the panel data model (5.36), let

vj = (v1j , . . . , vpj)
T , εj = (ε1j , . . . , εpj)

T , u = (
1
√
p
u1, . . . ,

1
√
p
up)

T , j = 1, . . . , n.

(5.83)

The model can be written in the vector form as

vj = εj + u, j = 1, . . . , n. (5.84)

We then define the sample covariance matrix by Sn = 1
n

n∑
j=1

vjv
T
j . Moreover

write

v̄ =
1

n

n∑
j=1

vj , ε̄ =
1

n

n∑
j=1

εj , (5.85)

and

Dn =
1

n

n∑
j=1

εjε
T
j , Sn =

1

n

n∑
j=1

(vj − v̄)(vj − v̄)T , Dn =
1

n

n∑
j=1

(εj − ε̄)(εj − ε̄)T .

(5.86)

Note that Sn = Dn. The sample covariance matrix Sn can be then expressed

as

Sn = Sn + v̄v̄T = Dn + v̄v̄T . (5.87)

By (5.40) and the Burkholder inequality we have

E|uT ε̄|4 ≤ 1

n4
E|

n∑
j=1

uTεj |4 ≤
K

n4
E|

n∑
j=1

uTu|2 +
K

n4

n∑
j=1

E|uTεj |4 = O(
1

n2
),

which, together with Borel-Cantelli’s Lemma, implies that

uT ε̄
a.s.−→ 0.

Also, condition (5.40) ensures that

uTu→ ū. (5.88)
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Therefore by (2.25) of Pan (2012) and (5.40), we have, as n→∞,

λmax(v̄v̄T ) = v̄T v̄ = ε̄T ε̄+ uTu + 2uT ε̄
a.s.→ c+ ū, as n→∞. (5.89)

Furthermore, Jiang (2004) proved that

λmax(Dn)→ (1 +
√
c)2, a.s. as n→∞ (5.90)

and Xiao and Zhou (2010) proved that, when c ≤ 1

λmin(Dn)→ (1−
√
c)2, a.s. as n→∞. (5.91)

By (5.89) (5.90) and (5.91), the maximal and minimal eigenvalues of Sn satisfy

with probability one

lim sup
n→∞

λmax(Sn) ≤ c+ ū+ (1 +
√
c)2, (5.92)

and

lim inf
n→∞

λmin(Sn) ≥ (1−
√
c)2. (5.93)

As in the proof of Theorem 7, we obtain from Cauchy’s formula, with prob-

ability one, for n large,

p

∫
f(x)d[FSn(x)− F cn(x)] =

p

2πi

∫ ∮
γ

f(z)

z − x
dzd[FSn(x)− F cn(x)]

=
p

2πi

∮
γ
f(z)dz

∫
1

z − x
d[FSn(x)− F cn(x)]

= − 1

2πi

∮
γ
f(z)(tr(Sn − zIp)−1 − pmcn(z))dz, (5.94)

where mcn(z) is obtained from m(z) with c replaced by cn. The contour γ is

specified as follows: Let v0 > 0 be arbitrary and set γµ = {µ+ iv0, µ ∈ [µ`, µr]},

where µr > c+ ū+(1+
√
c)2 and 0 < µ` < I(0,1)(c)(1−

√
c)2 or µ` is any negative

number if c ≥ 1. Then define

γ+ = {µ` + iv : v ∈ [0, v0]} ∪ γµ ∪ {µr + iv : v ∈ [0, v0]} (5.95)
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and let γ− be the symmetric part of γ+ about the real axis. Then set γ = γ+∪γ−.

Set

S−1
n (z) = (Sn − zIp)−1, S−1

n (z) = (Sn − zIp)−1,

D−1
n (z) = (Dn − zIp)−1, D−1

n (z) = (Dn − zIp)−1. (5.96)

Then we have

trS−1
n (z)− pmcn(z) =

(
trD−1

n (z)− pmcn(z)
)
− v̄TD−2

n (z)v̄

1 + v̄TD−1
n (z)v̄

, (5.97)

where we have used the identity

(C + rrT )−1 = C−1 − C−1rrTC−1

1 + rTC−1r
, (5.98)

where C and (C + rrT ) are both invertible; and r ∈ Rp. The first term on the

right hand of (5.97) was investigated in Pan (2012). In what follows we consider

the second term on the right hand of (5.97).

One may verify that

(C + qrvT )−1 =
C−1

1 + qvTC−1r
, (5.99)

where C and (C + qrvT ) are both invertible, q is a scalar and r,v ∈ Rp. This,

together with (5.84) and (5.98), yields

v̄TD−1
n (z)v̄ = ε̄TD−1

n (z)ε̄+ 2uTD−1
n (z)ε̄+ uTD−1

n (z)u

=
ε̄TD−1

n (z)ε̄

1− ε̄TD−1
n (z)ε̄

+ 2
uTD−1

n (z)ε̄

1− ε̄D−1
n (z)ε̄

+ uTD−1
n (z)u (5.100)

and

v̄TD−2
n (z)v̄ = ε̄TD−2

n (z)ε̄+ 2uTD−2
n (z)ε̄+ uTD−2

n (z)u

=
ε̄TD−2

n (z)ε̄

(1− ε̄D−1
n (z)ε̄)2

+
2uTD−2

n (z)ε̄

1− ε̄TD−1
n (z)ε̄

+
2uTD−1

n (z)ε̄ε̄TD−2
n (z)ε̄

(1− ε̄TD−1
n (z)ε̄)2

+ uTD−2(z)u.

(5.101)

It is proved in Section 2.5 and (4.3) of Pan (2012) that as n→∞,

sup
z∈γ

∣∣∣ε̄TD−2
n (z)ε̄− cm2(z)

(1 +m(z))2 − cm2(z)

∣∣∣ i.p.−−→ 0; (5.102)
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sup
z∈γ

∣∣∣ε̄TD−1
n (z)ε̄− (1 + zm(z))

∣∣∣ i.p.−−→ 0; (5.103)

and

sup
z∈γ

∣∣∣uTD−1
n (z)ε̄

∣∣∣ i.p.−−→ 0, (5.104)

(where we also use an argument similar to (2.28) of Pan (2012)). By (3.4) and

(4.3) in Pan (2012)), and (5.40), we have as n→∞,

sup
z∈γ

∣∣∣uTD−1
n (z)u− ūm(z)

∣∣∣ i.p.−−→ 0. (5.105)

The next aim is to prove that

sup
z∈γ

∣∣∣uTD−2
n (z)u− ū

∫
1

(λ− z)2
dFMP (λ)

∣∣∣ i.p.−−→ 0 (5.106)

and that

sup
z∈γ

∣∣∣uTD−2
n (z)ε̄

∣∣∣ i.p.−−→ 0. (5.107)

Consider (5.106) first. By the formula (5.98), we have an expansion

uTD−2
n (z)u = uTD−2

n (z)u +
2uTD−2

n (z)ε̄ε̄TD−1
n (z)u

1− ε̄TD−1
n (z)ε̄

+
uTD−1

n (z)ε̄ε̄TD−2
n (z)ε̄ε̄TD−1

n (z)u

(1− ε̄TD−1
n (z)ε̄)2

.

For any given z ∈ γ, we conclude from Theorem 1 of Pan (2012) and Helly-Bray’s

theorem that

uTD−2
n (z)u− ū

∫
1

(λ− z)2
dFMP (λ)

i.p.−→ 0 as n→∞. (5.108)

By the expansion of uTD−2
n (z)u and (5.102)-(5.104), to prove (5.106), it suffices

to prove the tightness of
{
K

(1)
n (z) = uTD−2

n (z)u − ū
∫

1
(λ−z)2dF

MP (λ), z ∈ γ
}

and
{
uTD−2

n (z)ε̄, z ∈ γ
}

.

To this end, as in Bai and Silverstein (2004), below introduce the truncated

version of uTD−2
n (z)u. Define γr = {µr + iv : v ∈ [n−1ρn, v0]},

γ` =

 {µ` + iv : v ∈ [n−1ρn, v0]}, µ` > 0,

{µ` + iv : v ∈ [0, v0]}, µ` < 0,
(5.109)
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where

ρn ↓ 0, ρn ≥ n−θ, for some θ ∈ (0, 1). (5.110)

Let γ+
n = γ` ∪ γµ ∪ γr and γ−n denote the symmetric part of γ+

n with respect to

the real axis. We then define the truncated process ̂uTD−2
n (z)u of the process

uTD−2
n (z)u for z = α+ iv by

̂uTD−2
n (z)u =


uTD−2

n (z)u z ∈ γn = γ+
n ∪ γ−n ,

nv+ρn
2ρn

uTD−2
n (zr1)u + ρn−nv

2ρn
uTD−2

n (zr2)u µ = µr, v ∈ I,
nv+ρn

2ρn
uTD−2

n (z`1)u + ρn−nv
2ρn

uTD−2
n (z`2)u µ = µ` > 0, v ∈ I,

(5.111)

where zr1 = µr + in−1ρn, zr2 = µr− in−1ρn, z`1 = µ`+ in−1ρn, z`2 = µ`− in−1ρn

and I = [−n−1ρn, n
−1ρn]. We then have

sup
z∈γ

∣∣∣ ̂uTD−2
n (z)u−uTD−2

n (z)u
∣∣∣ ≤ Kρn‖u‖2(

1

|λmax(Dn)− µr|
+

1

|λmin(Dn)− µl|
)
i.p.−→ 0.

(5.112)

It is proved in Section 3 of Bai and Silverstein (2004) that, for any positive

integer k and z ∈ γ+
n ∪ γ−n ,

max
(
E||D−1

n (z)||k
)
≤ K. (5.113)

It follows from independence between u and εj , j = 1, · · · , n that

E
∣∣uTD−2

n (z)u− ū
∫

1

(λ− z)2
dFMP (λ)

∣∣
≤ E|uTD−2

n (z)u|+
∣∣∣ū∫ 1

(λ− z)2
dFMP (λ)

∣∣∣
≤ E||uT ||2E||D−2

n (z)||2 +K ≤ K, (5.114)

which ensures Condition (1) of Lemma 17. Similarly, we can derive E|uTD−2
n (z)ε̄|2 ≤

K.

Next, we prove condition (2) of Lemma 17, i.e.

sup
n,z1,z2∈γ+n ∪γ−n

E|K(i)
n (z1)−K(i)

n (z2)|2

|z1 − z2|2
<∞, i = 1, 2. (5.115)
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Note that

A−1 −B−1 = A−1(B−A)B−1, (5.116)

where A and B are any two nonsingular matrices. We then conclude that

D−2
n (z1)−D−2

n (z2) = (z1 − z2)D−2
n (z1)D−1

n (z2) + (z1 − z2)D−1
n (z1)D−2

n (z2).

(5.117)

Then

K
(1)
n (z1)−K(1)

n (z2)

z1 − z2
= uTD−2

n (z1)D−1
n (z2)u + uTD−1

n (z1)D−2
n (z2)u

−ū
∫

(λ− z1) + (λ− z2)

(λ− z1)2(λ− z2)2
dFMP (λ). (5.118)

As in (5.114), we can obtain

E|uTD−2
n (z1)D−1

n (z2)u|2 ≤ K, E|uTD−1
n (z1)D−2

n (z2)u|2 ≤ K. (5.119)

Since f(λ) = (λ−z1)+(λ−z2)
(λ−z1)2(λ−z2)2

is a continuous function when z1, z2 ∈ γ, the integral∫
f(λ)dFMP (λ) is bounded. This, together with (5.119), implies

sup
n,z1,z2∈γ

E|K(1)
n (z1)−K(1)

n (z2)|2

|z1 − z2|2
<∞. (5.120)

By (2.38) in Pan (2012) and an argument similar to (5.117)-(5.120) we may verify

that uTD−2
n (z)ε̄ is tight for z ∈ γ. Summarizing the above we obtain (5.106).

Consider (5.107) now. From the last paragraph we see that it is enough to

consider the pointwise convergence of uTD−2
n (z)ε̄. As in (5.111) and (5.112) we

may define the truncated process ̂uTD−2
n (z)ε̄ of the process uTD−2

n (z)ε̄ and then

prove that their difference tends to zero in probability. As in (4.3) of Pan (2012)

one may prove that for given z ∈ γ+
n uTD−2

n (z)ε̄
i.p.−→ 0.

From (5.100) to (5.107) we have

sup
z∈γ

∣∣∣v̄TD−1
n (z)v̄ −

(1 + zm(z)

−zm(z)
+ ūm(z)

)∣∣∣ i.p.−−→ 0, (5.121)
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and

sup
z∈γ

∣∣∣v̄TD−2
n (z)v̄ −

( c

z2[(1 +m(z))2 − cm2(z)]
+ ū

∫
1

(λ− z)2
dFMP (λ)

)∣∣∣ i.p.−−→ 0.

(5.122)

We then conclude from Slutsky’s theorem that

sup
z∈γ

∣∣∣ v̄TD−2
n (z)v̄

1 + v̄TD−1
n (z)v̄

−
cm(z)

z[(1+m(z))2−cm2(z)]
+ ū

∫
1

(λ−z)2dF
MP (λ)

ūzm2(z)− 1

∣∣∣ i.p.−−→ 0.

(5.123)

The arguments of Theorem 1 of Pan (2012) show that the truncation version

of
(
trD−1

n (z)−pmcn(z)
)

converges in distribution to a two-dimensional Gaussian

process and that the difference between
(
trD−1

n (z)−pmcn(z)
)

and its truncation

version goes to zero in probability (see Page 563 of Bai and Silverstein (2004) and

(2.28) of Pan (2012)). Theorem 3 then follows from (5.123), (5.94) and (5.97),

Slutsky’s theorem and Lemma 3 (one may refer to Page 563 of Bai and Silverstein

(2004)).
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Table 5.1: Empirical sizes and power values of the proposed test at the 5%

significant level for standardized normally distributed random vectors.

p

n 5 10 20 30 40 50 60 70 80 90 100

Empirical sizes

5 0.069 0.064 0.027 0.039 0.034 0.052 0.035 0.033 0.037 0.043 0.047

10 0.049 0.059 0.048 0.046 0.055 0.044 0.043 0.048 0.048 0.038 0.046

20 0.045 0.042 0.047 0.051 0.052 0.052 0.051 0.041 0.042 0.046 0.041

30 0.034 0.035 0.052 0.053 0.068 0.063 0.050 0.049 0.047 0.040 0.046

40 0.055 0.050 0.052 0.061 0.056 0.038 0.042 0.064 0.054 0.044 0.066

50 0.038 0.041 0.048 0.044 0.050 0.052 0.050 0.058 0.046 0.053 0.041

60 0.064 0.061 0.043 0.049 0.047 0.049 0.050 0.049 0.059 0.046 0.048

70 0.047 0.042 0.051 0.039 0.052 0.055 0.058 0.044 0.037 0.038 0.049

80 0.028 0.032 0.033 0.041 0.052 0.054 0.047 0.042 0.047 0.046 0.040

90 0.042 0.037 0.032 0.048 0.054 0.044 0.053 0.041 0.037 0.051 0.042

100 0.037 0.046 0.036 0.035 0.045 0.029 0.045 0.056 0.048 0.047 0.056

Empirical power values

5 0.044 0.053 0.072 0.070 0.065 0.048 0.053 0.063 0.057 0.053 0.080

10 0.054 0.065 0.046 0.051 0.052 0.049 0.049 0.037 0.049 0.060 0.062

20 0.056 0.066 0.091 0.059 0.062 0.051 0.045 0.075 0.078 0.078 0.063

30 0.051 0.062 0.054 0.068 0.051 0.081 0.092 0.087 0.115 0.128 0.148

40 0.041 0.036 0.052 0.055 0.126 0.183 0.144 0.208 0.209 0.276 0.254

50 0.068 0.051 0.054 0.066 0.151 0.262 0.329 0.420 0.474 0.432 0.574

60 0.046 0.027 0.055 0.098 0.154 0.310 0.455 0.592 0.596 0.733 0.715

70 0.050 0.044 0.018 0.110 0.211 0.379 0.565 0.747 0.793 0.846 0.841

80 0.053 0.046 0.036 0.102 0.233 0.439 0.687 0.892 0.906 0.944 0.977

90 0.028 0.040 0.054 0.122 0.226 0.484 0.752 0.878 0.963 0.980 0.999

*The power values are under the alternative hypothesis that the population covariance

matrix is Σ = 0.95Ip + 0.051p1
′

p.
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Table 5.2: Bootstrap sizes and power values of the proposed test at the 5%

significant level for standardized normal and gamma(4,2) random vectors respec-

tively.

p

n 5 10 20 30 40 50 60 70 80 90 100

Normal Data

5 0.044 0.045 0.047 0.045 0.040 0.045 0.046 0.045 0.043 0.042 0.040

10 0.042 0.047 0.047 0.044 0.042 0.043 0.042 0.042 0.040 0.043 0.045

20 0.040 0.045 0.045 0.047 0.046 0.046 0.047 0.045 0.045 0.042 0.043

30 0.042 0.045 0.049 0.053 0.052 0.052 0.051 0.048 0.047 0.046 0.048

40 0.040 0.044 0.050 0.052 0.056 0.048 0.042 0.052 0.054 0.044 0.052

50 0.039 0.040 0.049 0.044 0.050 0.052 0.050 0.058 0.046 0.053 0.048

60 0.037 0.041 0.047 0.049 0.047 0.049 0.050 0.049 0.059 0.046 0.049

70 0.032 0.040 0.048 0.049 0.052 0.055 0.053 0.046 0.048 0.047 0.049

80 0.031 0.039 0.043 0.046 0.052 0.054 0.047 0.042 0.047 0.046 0.047

90 0.030 0.040 0.041 0.048 0.051 0.044 0.053 0.041 0.047 0.051 0.048

100 0.033 0.038 0.040 0.042 0.044 0.043 0.046 0.048 0.051 0.049 0.051

Gamma Data

5 0.065 0.064 0.060 0.065 0.063 0.065 0.069 0.066 0.073 0.072 0.070

10 0.068 0.062 0.060 0.063 0.061 0.058 0.062 0.058 0.060 0.063 0.065

20 0.069 0.061 0.059 0.058 0.062 0.056 0.057 0.055 0.058 0.057 0.060

30 0.062 0.059 0.062 0.057 0.058 0.055 0.054 0.053 0.055 0.056 0.058

40 0.063 0.065 0.061 0.056 0.057 0.055 0.055 0.053 0.056 0.054 0.054

50 0.064 0.063 0.063 0.059 0.058 0.054 0.054 0.054 0.056 0.053 0.052

60 0.069 0.071 0.064 0.060 0.054 0.052 0.049 0.050 0.055 0.052 0.053

70 0.073 0.072 0.067 0.063 0.055 0.050 0.053 0.051 0.048 0.050 0.050

80 0.074 0.074 0.067 0.064 0.058 0.052 0.049 0.052 0.049 0.049 0.050

90 0.072 0.070 0.068 0.067 0.058 0.052 0.050 0.051 0.049 0.051 0.049

100 0.076 0.072 0.071 0.067 0.059 0.053 0.052 0.049 0.051 0.049 0.050
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Table 5.3: Empirical sizes and power values of the LRT at the 5% significant

level for standardized normally distributed random vectors.

p

n 5 10 20 30 40 50 60 70 80 90 100

Empirical sizes

5 0.005 0.475 0.495 0 0 0 0 0 0 0 0

10 0.030 0.115 0.504 0.454 0 0 0 0 0 0 0

20 0.047 0.030 0.522 1 0.500 0 0 0 0 0 0

30 0.040 0.032 0.076 0.873 1 1 0 0 0 0 0

40 0.044 0.034 0.057 0.148 0.982 1 1 1 0 0 0

50 0.057 0.034 0.044 0.062 0.299 1 1 1 1 1 0

60 0.049 0.053 0.040 0.065 0.101 0.578 1 1 1 1 1

70 0.038 0.060 0.049 0.054 0.108 0.229 0.784 1 1 1 1

80 0.055 0.040 0.043 0.072 0.079 0.147 0.442 0.950 1 1 1

90 0.054 0.061 0.047 0.033 0.048 0.129 0.233 0.691 0.991 1 1

100 0.055 0.048 0.066 0.069 0.076 0.085 0.185 0.402 0.844 0.997 1

Empirical power values

5 0.005 0.504 0.505 0 0 0 0 0 0 0 0

10 0.033 0.125 0.506 0.485 0 0 0 0 0 0 0

20 0.051 0.049 0.587 1 0.496 0 0 0 0 0 0

30 0.056 0.062 0.121 0.912 1 1 0 0 0 0 0

40 0.061 0.077 0.139 0.311 0.990 1 1 1 0 0 0

50 0.092 0.090 0.150 0.206 0.576 1 1 1 1 1 0

60 0.088 0.142 0.220 0.266 0.420 0.849 1 1 1 1 1

70 0.102 0.170 0.222 0.320 0.463 0.691 0.984 1 1 1 1

80 0.133 0.169 0.246 0.392 0.478 0.666 0.883 0.994 1 1 1

90 0.122 0.190 0.331 0.404 0.526 0.666 0.819 0.983 1 1 1

100 0.153 0.232 0.411 0.550 0.658 0.713 0.842 0.952 0.995 1 1

*The power values are under the alternative hypothesis that the population covariance

matrix is Σ = 0.95Ip + 0.051p1
′

p.
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Table 5.4: Empirical sizes of the proposed test at the 5% significance level for

standardized gamma random vectors.

p

n 5 10 20 30 40 50 60 70 80 90 100

Empirical sizes

5 0.089 0.078 0.068 0.059 0.060 0.063 0.061 0.047 0.050 0.061 0.044

10 0.066 0.075 0.068 0.054 0.046 0.051 0.047 0.048 0.050 0.042 0.052

20 0.057 0.058 0.072 0.062 0.053 0.054 0.053 0.052 0.049 0.051 0.048

30 0.069 0.069 0.069 0.076 0.058 0.056 0.054 0.047 0.067 0.066 0.054

40 0.061 0.049 0.058 0.040 0.065 0.048 0.063 0.065 0.068 0.047 0.067

50 0.053 0.054 0.055 0.057 0.059 0.048 0.067 0.066 0.043 0.059 0.053

60 0.059 0.052 0.057 0.060 0.052 0.067 0.058 0.064 0.064 0.061 0.069

70 0.044 0.050 0.064 0.055 0.071 0.054 0.067 0.064 0.051 0.077 0.048

80 0.045 0.050 0.061 0.043 0.071 0.055 0.071 0.053 0.056 0.070 0.060

90 0.041 0.067 0.034 0.056 0.049 0.054 0.050 0.060 0.047 0.060 0.058

100 0.070 0.045 0.059 0.055 0.047 0.062 0.069 0.057 0.056 0.060 0.061

Table 5.5: Empirical power values of the proposed test at the 5% significance

level for standardized gamma random vectors.

p

n 5 10 20 30 40 50 60

Empirical powers

5 0.334 0.575 0.853 0.944 0.983 0.989 0.998

10 0.513 0.838 0.979 0.999 1 1 1

20 0.721 0.970 0.999 1 1 1 1

30 0.834 0.998 1 1 1 1 1

40 0.914 1 1 1 1 1 1

50 0.952 1 1 1 1 1 1

60 0.991 1 1 1 1 1 1

*The power values are under the alternative hypothesis that the population covariance

matrix is Σ = 0.95Ip + 0.051p1
′

p.
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Table 5.6: Empirical power values of the proposed test at the 5% significance

level for MA(1) model.

p

n 5 10 20 30 40 50 60

5 0.096 0.097 0.097 0.111 0.210 0.214 0.198

10 0.082 0.090 0.173 0.227 0.374 0.715 0.722

20 0.099 0.165 0.400 0.597 0.683 0.822 0.951

30 0.067 0.121 0.611 0.733 0.803 0.986 1

40 0.091 0.321 0.653 0.938 0.968 1 1

50 0.139 0.416 0.910 0.956 0.998 1 1

60 0.117 0.412 0.918 0.994 1 1 1

Table 5.7: Empirical power values of the proposed test at the 5% significance

level for AR(1) model.

p

n 5 10 20 30 40 50

5 0.130 0.094 0.264 0.253 0.181 0.169

10 0.167 0.289 0.482 0.640 0.668 0.609

20 0.230 0.544 0.878 0.271 0.954 0.994

30 0.205 0.602 0.993 0.999 0.671 0.936

40 0.344 0.916 0.998 1 1 0.982

50 0.541 0.984 1 1 1 1
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Table 5.8: Empirical power values of the proposed test at the 5% significance

level for SMA(1) model.

p

n 5 10 20 30 40

5 0.330 0.431 0.782 0.999 1

10 0.647 1 1 1 1

20 0.967 1 1 1 1

30 0.962 1 1 1 1

40 0.998 1 1 1 1
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Table 5.9: Empirical sizes and power values of the proposed test at the 5%

significance level for the general panel data model.

p

n 5 10 20 30 40 50 60 70 80 90 100

Empirical sizes

5 0.038 0.045 0.047 0.057 0.058 0.067 0.069 0.069 0.072 0.076 0.074

10 0.041 0.042 0.046 0.049 0.056 0.050 0.065 0.047 0.068 0.063 0.069

20 0.035 0.042 0.049 0.056 0.052 0.046 0.063 0.043 0.069 0.055 0.057

30 0.043 0.049 0.043 0.059 0.048 0.068 0.059 0.057 0.040 0.055 0.047

40 0.048 0.052 0.043 0.060 0.057 0.046 0.049 0.054 0.046 0.058 0.061

50 0.057 0.048 0.046 0.058 0.052 0.055 0.048 0.049 0.050 0.040 0.041

60 0.058 0.056 0.055 0.048 0.047 0.045 0.053 0.066 0.058 0.049 0.050

70 0.062 0.060 0.059 0.056 0.049 0.057 0.049 0.068 0.052 0.036 0.043

80 0.071 0.063 0.067 0.047 0.048 0.058 0.056 0.044 0.059 0.057 0.055

90 0.065 0.068 0.065 0.048 0.053 0.048 0.056 0.048 0.048 0.066 0.060

100 0.037 0.046 0.036 0.035 0.045 0.043 0.045 0.056 0.048 0.047 0.055

Empirical power values

5 0.150 0.238 0.345 0.417 0.484 0.529 0.549 0.615 0.611 0.668 0.692

10 0.125 0.247 0.452 0.526 0.568 0.633 0.669 0.737 0.765 0.751 0.800

20 0.206 0.343 0.493 0.615 0.673 0.752 0.788 0.813 0.860 0.864 0.876

30 0.111 0.404 0.535 0.684 0.757 0.756 0.855 0.875 0.882 0.909 0.953

40 0.308 0.393 0.605 0.698 0.786 0.820 0.878 0.898 0.944 0.959 0.953

50 0.207 0.450 0.603 0.718 0.815 0.889 0.923 0.938 0.966 0.973 0.980

60 0.268 0.430 0.594 0.780 0.826 0.918 0.913 0.926 0.974 0.976 0.984

70 0.144 0.434 0.649 0.798 0.888 0.883 0.944 0.968 0.971 0.982 0.996

80 0.171 0.454 0.678 0.796 0.872 0.921 0.938 0.967 0.989 0.992 0.995

90 0.204 0.431 0.683 0.834 0.874 0.916 0.963 0.985 0.985 0.994 0.994

100 0.291 0.398 0.687 0.836 0.884 0.931 0.973 0.987 0.992 0.994 1
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Table 5.10: Empirical power values of the proposed test at the 5% significance

level for nonlinear MA model.

p

n 5 20 30 40 50 60 70 80 90 100

5 0.033 0.004 0.008 0.005 0.007 0.008 0.007 0.009 0.014 0.070

20 0.804 0.703 0.614 0.581 0.511 0.447 0.340 0.306 0.257 0.216

30 0.854 0.777 0.779 0.780 0.740 0.662 0.662 0.597 0.579 0.555

40 0.878 0.856 0.856 0.845 0.825 0.779 0.770 0.772 0.702 0.698

50 0.884 0.868 0.884 0.864 0.888 0.860 0.875 0.869 0.828 0.820

60 0.892 0.882 0.904 0.920 0.923 0.933 0.900 0.892 0.892 0.882

70 0.896 0.906 0.927 0.934 0.921 0.952 0.925 0.943 0.917 0.926

80 0.936 0.925 0.921 0.952 0.950 0.943 0.943 0.958 0.953 0.936

90 0.922 0.939 0.935 0.958 0.959 0.955 0.982 0.962 0.957 0.954

100 0.926 0.920 0.937 0.952 0.964 0.970 0.975 0.978 0.970 0.965

Table 5.11: Empirical power values of the proposed test at the 5% significance

level for ARCH(1) model.

p

n 5 10 20 30 40 50 60 70 80 90 100

5 0.148 0.093 0.073 0.076 0.058 0.099 0.113 0.088 0.106 0.112 0.141

10 0.454 0.399 0.315 0.215 0.128 0.121 0.112 0.121 0.093 0.095 0.092

20 0.401 0.428 0.508 0.464 0.444 0.468 0.436 0.338 0.356 0.337 0.302

30 0.272 0.364 0.616 0.712 0.753 0.759 0.793 0.743 0.638 0.639 0.598

40 0.232 0.357 0.572 0.823 0.790 0.874 0.915 0.885 0.876 0.855 0.860

50 0.222 0.339 0.622 0.757 0.891 0.969 0.957 0.975 0.967 0.957 0.975

60 0.216 0.448 0.617 0.862 0.901 0.976 0.983 0.987 0.992 0.997 0.997

70 0.200 0.339 0.592 0.864 0.931 0.982 0.993 0.998 0.997 0.998 0.996

80 0.194 0.376 0.566 0.824 0.950 0.967 0.997 1 1 0.999 1

90 0.184 0.456 0.721 0.839 0.960 0.995 0.999 1 0.999 1 1

100 0.128 0.306 0.802 0.859 0.934 0.992 1 1 1 1 1
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Table 5.12: Empirical power values of the proposed test at the 5% significance

level for Vandermonde Matrix.

p

n 10 20 30 40 50 60 70 80 90 100 120

10 0.180 0.197 0.192 0.169 0.202 0.211 0.190 0.185 0.171 0.177 0.240

20 0.309 0.332 0.356 0.327 0.291 0.303 0.301 0.295 0.321 0.243 0.478

30 0.324 0.433 0.473 0.413 0.461 0.408 0.445 0.395 0.368 0.397 0.606

40 0.458 0.512 0.527 0.546 0.533 0.490 0.518 0.498 0.450 0.457 0.655

50 0.593 0.437 0.540 0.571 0.614 0.569 0.577 0.566 0.565 0.537 0.764

60 0.504 0.538 0.551 0.567 0.616 0.662 0.588 0.581 0.572 0.607 0.744

70 0.548 0.526 0.560 0.627 0.668 0.641 0.694 0.707 0.641 0.678 0.741

80 0.550 0.545 0.580 0.633 0.712 0.719 0.693 0.768 0.729 0.749 0.805

90 0.589 0.544 0.596 0.667 0.695 0.712 0.743 0.754 0.738 0.728 0.807

100 0.464 0.549 0.610 0.645 0.704 0.757 0.772 0.751 0.752 0.808 0.928

120 0.633 0.660 0.736 0.737 0.759 0.855 0.854 0.909 0.960 0.999 1



Chapter 6
Independence Test For Covariance

Stationary Time Series

6.1 Preliminary

The observed n random vectors xi = (X1i, X2i, . . . , Xpi)
′
with i = 1, 2, . . . , n

are grouped into a matrix X = (x1,x2, . . . ,xn). Denote the sample covari-

ance matrix by

S =
1

n
XXT . (6.1)

The goal is to do the following independence hypothesis test

H0 : x1,x2, . . . ,xn are independent; against H1 : x1,x2, . . . ,xn are dependent.

Throughout the chapter, we consider two types of high dimensional

random vectors xi. The first type xi is stationary time series specified as

follows.

Assumption 4. The n time series can be expressed as

Xjt =
∞∑
k=0

bkξj−k,t, j = 1, . . . , p; t = 1, . . . , n, (6.2)
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where for any t = 1, 2, . . . , n, {ξi,t}∞i=−∞ is an independent and identically

distributed (i.i.d) sequence with mean zero and variance one; {bk}∞k=0 is a

sequence of real numbers satisfying
∑∞

k=0 |bk| <∞.

This assumption covers many classical covariance stationary time series,

for example, the autoregressive (AR), moving average (MA), and autore-

gressive and moving average(ARMA) time series of finite orders, etc.. In

addition to ensuring stationary, the condition
∑∞

k=0 |bk| <∞ is imposed to

also guarantee that the spectral norm of the population covariance matrix

T1 of each time series under investigation is bounded, as will be seen from

the proof.

The second type xi is linearly generated by yi whose components are

independent, as defined below.

Assumption 5. Let xi = T
1/2
1 yi with yi = (Y1i, · · · , Ypi)T and T

1/2
1 being

a Hermitian square root of the nonrandom nonnegative definite Hermitian

matrix T1. For each i = 1, . . . , n, Y1i, · · · , Ypi are i.i.d with mean zero and

variance one.

Assumption 6. Let p be some function of n. Assume that n and p tend

to infinity in the same order, i.e.

c := lim
n→∞

p

n
∈ (0,+∞).

When {ξi,t} are normally distributed, Assumption 4 is a special case of

Assumption 5. Indeed, it is clear that each Xjt is Gaussian distributed and

each xi is multivariate Gaussian distribution, whose covariance matrix is a

Toeplitz matrix, if {ξi,t} are normally distributed. Then xi in Assumption

4 can be written as a form of T
1/2
1 yi as well. Here, to save notation, we

still use T1 as a covariance matrix of xi although it is a Toeplitz matrix.
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Therefore in this case the sample covariance matrices S associated with

Assumptions 4 and 5 have a unified expression

1

n
T

1/2
1 YYTT

1/2
1 , (6.3)

where Y = (y1, · · · ,yn).

Denote the sample covariance matrix in the form of (6.3) by S1. We are

now interested in its limiting spectral distribution (LSD) which is the limit

of the empirical spectral distribution(ESD) FS1(x). Here for any A of size

p× p with real eigenvalues, its ESD is defined by

FA(x) =
1

p

p∑
j=1

I(µj ≤ x),

where µ1 ≤ µ2 ≤ · · · ≤ µp are eigenvalues of the matrix A. A common way

to find the LSD is to first establish an equation of its Stieltjes transform,

which is defined as, for any cumulative distribution function (CDF) G(x),

mG(z) =

∫
1

λ− z
dG(λ), Im(z) 6= 0.

It can be then recovered by the Frobenius-Perron formula inversion formula

G{[a, b]} =
1

π
lim
η→0+

∫ b

a

Im
(
mG(ζ + iη)

)
dζ, (6.4)

where a, b are points of continuity of G(x).

Silverstein’s result (1995) shows that the LSD of S1 in (6.3) is Fc,H(x)

whose Stieltjes transform is the unique solution to

m(z) =

∫
1

τ
(

1− c− czm(z)
)
− z

dH(τ), (6.5)

in the set {m ∈ C : −1−c
z

+ cm ∈ C
+} if FT1 → H(τ). This also yields

the LSD of the sample covariance matrix S for linear stationary processes
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with the Gaussian entries because the condition that FT1 → H(τ) holds

automatically in the case of linear stationary time series. An alternative

expression of (6.5) for stationary time series will be given in the next section

by using its spectral density.

To propose a statistic to test the hypothesis H0 based on the feature

of Fc,H(x), we consider an alternative that the sample covariance matrix S

takes the form of

1

n
T

1/2
1 YT2Y

TT
1/2
1 , (6.6)

where T2 is an n×n deterministic Hermitian matrix. Hence the dependence

of the n time series is described by the matrix T2.

Denote the sample covariance matrix in the form of (6.6) by S2. Zhang

(2006) provides the LSD of the matrix S2 different from (6.5). For easy

reference, we state this result in the following lemma.

Lemma 22. In addition to Assumptions 5 and 6, we assume that as n→

∞, the ESDs of T1 and T2, denoted by FT1 and FT2 respectively, converge

weakly to two probability functions, H1 and H2, respectively. Then the ESD

of the matrix S2 converges weakly to a non-random CDF Fc,H1,H2 with proba-

bility one, for which if H1 ≡ 1[0,+∞) or H2 ≡ 1[0,+∞), then Fc,H1,H2 ≡ 1[0,+∞);

otherwise if for each z ∈ C+,
s(z) = −z−1(1− c)− z−1c

∫
1

1+q(z)x
dH2(x)

s(z) = −z−1
∫

1
1+p(z)y

dH1(y)

s(z) = −z−1 − p(z)q(z)

(6.7)

is viewed as a system of equations for the complex vector (s(z), p(z), q(z)),

then the Stieltjes transform of Fc,H1,H2, denoted by mFc,H1,H2
(z), together

with two other functions, denoted by g1(z) and g2(z), both of which are
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analytic on C
+, will satisfy that

(
mFc,H1,H2

(z), g1(z), g2(z)
)

is the unique

solution to (6.7) in the set{(
s(z), p(z), q(z)

)
: Im

(
s(z)

)
> 0, Im

(
zp(z)

)
> 0, Im

(
q(z)

)
> 0
}
.

From (6.5) and (6.7), we see that the LSD of the matrix S1 is different

from that of S2 since the latter one depends on the spectral distribution

of the matrix T2 which is an identity matrix under the null hypothesis

H0. Based on the observation, a natural idea is to utilize the difference

between the LSDs of S under H0 and H1 to distinguish independence from

dependence.

To this end let

Gn(λ) = p
(
FS(λ)− Fcn,Hn(λ)

)
(6.8)

and consider the linear spectral statistic of S:

Mn =

∫
f(λ)dGn(λ), (6.9)

where Fcn,Hn(λ) is obtained from the LSD Fc,H(λ) of S under H0 and As-

sumptions 4 or 5 with c and H replaced by cn = p/n and Hn respectively;

Hn = FT1 and f(λ) is a smooth function. Roughly speaking, the difference

between the LSDs of S under H0 and H1 is reflected in behaviour of Mn.

Indeed, if we rewrite the statistic Mn as

p
[ ∫

f(λ)d
(
FS(λ)−Fcn,Hn,H1(λ)

)]
+p
[ ∫

f(λ)d
(
Fcn,Hn,H1(λ)−Fcn,Hn(λ)

)]
,

(6.10)

where Fcn,Hn,H1(λ) denotes the LSD of S under the alternative hypothesis

H1, then we see that the last term of (6.10) captures the difference between

the LSDs of S under H0 and H1, not to mention the first term of (6.10).

One typical example of Fcn,Hn,H1(λ) could be Fc,H1,H2 in Lemma 22.
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Central limit theorems (CLT) of Mn corresponding to Assumptions 4

and 5 will be given in the next section. Based on it we then propose our

test statistic.

6.2 Main theorems and the test statistic

6.2.1 Covariance stationary time series

The aim of this subsection is to establish the LSD of S and CLT of the

linear spectral statistic Mn under the null hypothesis H0 and Assumption

4. Below we first present the LSD of S.

Theorem 10. Under Assumptions 4 and 6 and the null hypothesis H0,

with probability one, the ESD FS(x) converges to a nonrandom distribution

function Fc,φ(x) whose Stieltjes transform mφ(z) satisfies

z = − 1

mφ(z)
+

1

2π

∫ 2π

0

1

cmφ(z) +
(
φ(λ)

)−1dλ, (6.11)

where φ(λ) denotes the spectral density of xt

φ(λ) =
∞∑

k=−∞

φke
ikλ, λ ∈ [0, 2π),

with φk = Cov(Xjt, Xj+k,t).

Remark 14. This weakens the finite fourth moment condition imposed in

Yao (2012). In addition we would point out that (6.11) is just an alternative

expression of (6.5) in terms of the spectral density of xi. Therefore we use

Fc,φ(x) to denote Fc,H(x) in the case of stationary time series.

From (6.11), we see that the Stieltjes transform mφ(z) does not have

an explicit expression. In practice, we can adopt a numerical method to
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calculate it which is provided in Yao (2012). For easy reference, we state it

below:

Algorithm of calculating mφ(z): Choose an initial value m
(0)
φ (z) = u+iε,

where z = x+ iε with x a given value and ε a small enough number. Iterate

the following mapping below for k ≥ 0:

1

mφ(z)
= −z + A(mφ(z)), (6.12)

where

A(mφ(z)) =
1

2π

∫ 2π

0

1

cmφ(z) + φ−1(λ)
dλ,

until convergence. Let m
(K)
φ (z) be the final value.

We next develop CLT of Mn, which, we believe, is new in the literature.

Recall the definition of Gn(λ) in (6.8).

Theorem 11. In addition to Assumptions 4 and 6, we suppose that Eξ4
j−k,t =

3. Let f1, f2, . . . , fh be functions analytic on an open region containing the

support of Fcn,Hn. Then the random vector(∫
f1(λ)dGn(λ),

∫
f2(λ)dGn(λ), . . . ,

∫
fh(λ)dGn(λ)

)
(6.13)

converges in distribution to a Gaussian random vector
(
Xf1 , Xf2 , . . . , Xfh

)
with mean function for ` = 1, 2, · · · , h,

EXf` = − 1

2πi

∮
C
f`(z)

1
2π

∫ 2π

0
cm3

φ(z)φ2(λ)
(
1 + φ(λ)mφ(z)

)−3
dλ(

1− c 1
2π

∫ 2π

0
m2
φ(z)φ2(λ)

(
1 + φ(λ)mφ(z)

)−2
dλ
)2dz

and covariance element for `, r = 1, 2, · · · , h,

Cov(Xf` , Xfr) = − 1

2π2

∮
C1

∮
C2

f`(z1)fr(z2)(
mφ(z1)−mφ(z2)

)2

dmφ(z1)

dz1

dmφ(z2)

dz2

dz1dz2.

(6.14)



186
Chapter 6. Independence Test For Covariance Stationary Time

Series

The contours C above are closed and are taken in the positive direction in

the complex plane, each enclosing the support of Fc,φ(λ) and mφ(z) is the

Stieltjes transform of the LSD of the matrix S = 1
n
XTX.

Here mφ(z) can be obtained from mφ(z) of (6.11) because the spectra

of S differs from that of S by |n− p| zeros.

6.2.2 Linear independent structures

This subsection is to consider xi satisfying Assumption 5.

The CLT of the linear spectral statistic Mn defined in (6.9) has been

reported in Theorem 9.10 of Bai and Silverstein (2009). For easy reference,

we list it below.

Proposition 3. In addition to Assumptions 5 and 6 suppose that EY 4
11 = 3

and ‖T1‖, the spectral norm of T1, is bounded and FT1 converges weakly

to H(x). Then the random vector (6.13) converges in distribution to a

Gaussian vector with mean

EXf = − 1

2πi

∮
C
f(z)

c
∫ m3(z)t2dH(t)

(1+tm(z))3(
1− c

∫ m2(z)t2dH(t)
(1+tm(z))2

)2dz (6.15)

and covariance function being the same as (6.14) with mφ(z) replaced by

m(z). Here m(z), which can be obtained from m(z) in (6.5), is the Stieltjes

transform of the LSD of the matrix S = 1
n
XTX.

When T1 becomes the identity matrix, H(t) becomes a degenerate dis-

tribution at point 1 and we do not need to assume that EY 4
11 = 3 in this

case. Theorem 1.4 of Pan and Zhou (2008) gives CLT for the random vector

(6.13). We list it below.
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Proposition 4. In addition to Assumptions 5 and 6 suppose that EY 4
11 <

∞. Then the random vector (6.13) converges in distribution to a Gaussian

vector with mean

EXf = − 1

2πi

∮
C
f(z)

c m3(z)
(1+m(z))3(

1− c m2(z)
(1+tm(z))2

)2dz−
c(EX4

11 − 3)

2π2

∮
C
f(z)

m3(z)
(1+m(z))3

1− c m2(z)
(1+tm(z))

dz

(6.16)

and covariance

Cov(Xfl , Xfr) = − 1

π2

∮
C1

∮
C2

fl(z1)fr(z2)

(m(z1)−m(z2))2

d

dz2

m(z2)
d

dz1

m(z1)dz1dz2

−c(EX
4
11 − 3)

2π2

∮
C1

∮
C2
fl(z1)fr(z2)

d

dz1

[
1

1 +m(z1)
]
d

dz2

[
1

1 +m(z2)
]dz1dz2.

(6.17)

6.2.3 Test statistic

There are two questions to be addressed before proposing a test statistic

based on Theorem 11, Propositions 3 and 4. The first one is the choice of

the test function f(λ) associated with Mn in (6.9). The second one is that

the mean of the asymptotic distribution of Mn, which includes the spectral

density φ(λ) of time series xi or H(x) associated with linear independence

structures, is often unknown in practice no matter what f(λ) is.

For the first question, we choose two simple test functions f1(λ) = λ

and f2(λ) = λ2 for simplicity and consider their linear combination. To

overcome the second difficulty, we divide n time series into two groups,

each of which contains [n/2] time series, where [n/2] is the largest integer

smaller than n/2. By Theorem 11 or Proposition 3 we have

(∫
xdG(i)

n (x),

∫
x2dG(i)

n (x)
)

d−→
(
X(i)
x , X

(i)

x2

)
, as n→∞, i = 1, 2,(6.18)
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where G
(i)
n (x) = p

(
FS(i)

(x) − Fc
n(i)

,H
n(i)

(x)
)

with cn(i) = p/[n/2], Hn(i) =

Hn, Fc
n(i)

,H
n(i)

(x) is the analogue of Fcn,Hn but corresponding to S(i) =

1
[n/2]

X(i)X(i)′ and X(i) consisting of the i-th group of the divided time se-

ries, i = 1, 2 (X = (X(1),X(2)) when n is even). Here
(
X

(i)
x , X

(i)

x2

)
is the

limiting distribution corresponding to the i-th group time series. Since the

statistics on the left hand side of (6.18) for the two groups of time series

are independent under H0, we calculate the difference of the two statistics

and obtain(∫
xdG̃n(x),

∫
x2dG̃n(x)

)
d−→
(
X̃x, X̃x2

)
, as n→∞, (6.19)

where

G̃n(x) = G(1)
n (x)−G(2)

n (x) = p
(
FS(1)

(x)− FS(2)

(x)
)
, (6.20)

and X̃x = X
(1)
x −X(2)

x , X̃x2 = X
(1)

x2 −X
(2)

x2 .

It follows from Theorem 11 that (X̃x, X̃x2) is bivariate normal with mean

0 and covariance matrix Ω̃, where Ω̃ = 2Ω and Ω = (ωgh)2×2 is the asymp-

totic covariance matrix of (
∫
xdG

(i)
n (x),

∫
x2dG

(i)
n (x)) given by

ωgh = − 1

π2

∮
C1

∮
C2

fg(z1)fh(z2)

(mφ(z1)−mφ(z2))2

d

dz2

mφ(z2)
d

dz1

mφ(z1)dz1dz2. (6.21)

Note that (6.20) does not involve any unknown parameters. Therefore, we

propose the following testing statistic for H0:

Ln =
(∫

xdG̃n(x),

∫
x2dG̃n(x)

)
Ω̃
−1
( ∫

xdG̃n(x)∫
x2dG̃n(x)

)
. (6.22)

As for the linear independence structures, the statistic Ln is the same

except that mφ(z) in (6.21) should be replaced by the Stieltjes transform

m(z) given in Proposition 3.

The following theorem is a direct application of Theorem 11 or Propo-

sition 3.
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Theorem 12. Under the assumptions in Theorem 11 or in Proposition 3,

the test statistic Ln converges in distribution to χ2(2), which denotes the

chi–squared random variable with the degree of freedom being 2.

Remark 15. The proposed statistic Ln contains the inverse covariance ma-

trix Ω̃
−1

and this matrix contains the unknown parameter mφ(z). This

parameter can be estimated either by the algorithm provided above, or the

sample Stieltjes transform mn(z) = 1
p
tr(X

′
X − zIn)−1. Furthermore, the

asymptotic distribution is still χ2 after plugging in the estimator of mφ(z)

by the Slutsky theorem. In view of this the proposed statistic Ln is easy to

implement.

Remark 16. Traditionally, the method of dividing total samples into two

parts is to use one part to do test and the other part to estimate unknown

parameters. However, the strategy of dividing total samples into two parts

here serves as a different purpose, eliminating the unknown term involved

in the linear spectral statistic Mn. Indeed, we make use of the full strength

of all observations, because if the first group and the second group are not

independent or there is dependence among each group, then (6.19) is not

true.

We also considered a Bootstrap method as follows. By a parametric

bootstrap we may redraw a sample x∗ = {x∗1, ...,x∗n} from the p-variate

normal distribution with mean zero and the population covariance matrix S

defined in (6.1). Then consider the bootstrap linear spectral statistic∫
f(x)dG∗n(x), (6.23)

where G∗n(x) = p
[
FS3(x)− Fcn,FS(x)

]
and S3 = 1

n

n∑
i=1

x∗i (x
∗
i )
T . We can fur-

ther construct a statistic like (6.22) by replacing G̃n(x) with G∗n(x). More-
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over its asymptotic distribution can be directly obtained from Theorem 11

or Proposition 3.

However simulations show that the bootstrap statistic is not as powerful

as the one proposed based on the strategy of dividing observations. The

key reason is that the independence assumption under H0 is reflected in FS

and its limit only such that the difference p(FS − Fcn,Hn) is not used. As

a consequence it can not identify the alternatives whose limit is the same

as the one determined by (6.6) such as 1
n
XT3X

T with T3 = I + eeT (all

components of e are one).

6.2.4 The power under local alternatives

This section is to investigate the power for some local alternatives. The first

interesting example (local alternative) is that x1, · · · ,xn satisfy Assumption

5 but T1 there is assumed to be random, independent of {Yij}. Evidently,

x1, · · · ,xn are not independent in this case. Yet, Silverstein’s result (1995)

indicates that (6.5) still holds if {Yij} are independent and independent of

T1. This indicates that there may be the cases where the LSD of sample

covariance matrix is also determined by (6.5) even when x1, · · · ,xn are

not independent. A nature concern is whether the statistic Ln works in

this case. We now consider the case when the random T1 is the inverse of

another sample covariance matrix (S becomes the F matrix in this case). It

is then proved in Theorem 3.1 of Zheng (2012) that Ln has a central limit

theorem different from that for independent x1, · · · ,xp. The difference is

caused by randomness of T1 and one may refer to (6.32) in Step 2 of Zheng’s

proof.

Although it is difficult to provide a central limi theorem for the statistic

Ln for the general alternative hypothesis H1, we can still evaluate the power
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of Ln for a class of local alternatives. Specifically speaking, we consider a

kind of local alternative with a sample covariance matrix in the form of

XT2X
T , as in (6.6). Set

R
(i)
j = p

∫
xid
(
FS(j)

H1
(x)− FS(j)

H0
(x)
)
, i = 1, 2; j = 1, 2; (6.24)

where FS(j)

H0
stands for the ESD of S(j) under H0 while FS(j)

H1
is the ESD of

S(j) under H1.

Theorem 13. In addition to assumptions in Theorem 11 or Theorem 3,

suppose that in probability

lim
n→∞

∣∣∣R(i)
j

∣∣∣→∞, for any i, j. (6.25)

Then

lim
n→∞

P (Ln > γ1−α|H1) = 1,

where γ1−α is the critical value of χ2 under H0 corresponding to the signifi-

cance level α.

Remark 17. Suppose that each column of X satisfies either Assumption

4 or Assumption 5 and all columns are independent. Condition (6.25) is

equivalent to requiring

tr
(
X(j)T(j)(X(j))T

)i
− tr

(
X(j)(X(j))T

)i
→∞, for any i, j (6.26)

in probability, where X(j)T(j)(X(j))T denotes the sample covariance matrix

of the jth group of the observations under the alternative H1 with T(j) char-

acterizing the dependence among observations, while X(j)(X(j))T stands for

the sample covariance matrix of the jth group of the observations under the

null hypothesis H0.

If

T(j) = I + eeT ,
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where the elements of the vector e are all equal to one, then it is straight-

forward to verify that (6.26) is true. Moreover, most of the examples given

in the subsequent section satisfy (6.26).

6.3 Simulation results

This section provides some simulated examples to show the finite sample

performance of the proposed test statistic Ln. To show the efficiency of

our test, some classical time series models, such as MA(1), AR(1) and

ARMA(1,1) processes, are considered. As for the dependent structures,

we consider some dependent structures described by MA(1) model, AR(1)

model, ARMA(1,1) model and factor model. The factor model is commonly

used to illustrate cross-sectional dependence in cross-sectional panel data

analysis.

6.3.1 Empirical sizes and empirical powers

First we introduce the method of calculating empirical sizes and empirical

powers. Since the asymptotic distribution of the proposed test statistic Ln

is a classical distribution, i.e. χ2 distribution of degree 2, the empirical

sizes and powers are easy to calculate. Let z1− 1
2
α be the 100(1 − 1

2
α)%

quantile of the asymptotic null distribution χ2(2) of the test statistic Ln.

With K replications of the data set simulated under the null hypothesis,

we calculate the empirical size as

α̂ =
{] of LHn ≥ z1− 1

2
α}

K
, (6.27)

where LHn represents the value of the test statistic Ln based on the data

simulated under the null hypothesis.
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In our simulation, we choose K = 1000 as the number of repeated

simulations. The significance level is α = 0.05. Since the asymptotic null

distribution of the test statistic is a classical distribution, the quantile z1− 1
2
α

is easy to know. Similarly, the empirical power is calculated as

β̂ =
{] of LAn ≥ z1− 1

2
α}

K
, (6.28)

where LAn represents the value of the test statistic Ln based on the data

simulated under the alternative hypothesis.

6.3.2 Testing independence

In order to derive independent stationary time series {xi = (X1i, X2i, . . . , Xpi)
′

:

i = 1, . . . , n}, we generate data from the following three data generating

processes (DGPs):

DGP1 : Xji = Zji + θ1Zj−1,i, j = 1, 2, . . . , p; i = 1, 2, . . . , n; (6.29)

DGP2 : Xji = φ1Xj−1,i + Zji, j = 1, 2, . . . , p; i = 1, 2, . . . , n; (6.30)

DGP3 : Xji − φ1Xj−1,i = Zji + θ1Zj−1,i, j = 1, 2, . . . , p; i = 1, 2, . . . , n,

(6.31)

where {X0i, Zji : j = 1, 2, . . . , p; i = 1, 2, . . . , n} ∼ i.i.d N(0, 1). For each

DGP, we generate p+ 100 observations and then discard the first 100 data

in order to mitigate the impact of the initial values.

With these simulated data, we apply the proposed statistic Ln and cal-

culate the empirical sizes. Table 6.1, Table 6.3 and Table 6.5 establish the

empirical sizes for the three DGPs under different pairs of (p, n). The re-

sults show that our statistic Ln works well under the null hypothesis H0.
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Additionally, their empirical sizes from the bootstrap method proposed in

Remark 16 are illustrated in Table 6.2, Table 6.4 and Table 6.6 respectively.

6.3.3 Testing dependence

6.3.3.1 Three types of correlated structures

In this section, we test four dependent structures with the proposed test

and provide the powers under each case. As in the last part of this section,

we first generate data X = (x1,x2, . . . ,xn) under DGP 1. To describe the

cross-sectional dependence between xi1 and xi2 , ∀i1 6= i2, we generate new

data X̃ = XT, where T is a p×p Hermitian matrix which is the square root

of a covariance matrix. T is constructed by the following three methods.

1. MA(1) type covariance matrix ΣMA = (σMA
kh )pk,h=1:

σ
(MA)
kh =


(1 + θ2), k = h;

θ, |k − h| = 1;

0, |k − h| > 1.

(6.32)

Under this case, T = Σ
1/2
MA.

2. AR(1) type covariance matrix ΣAR = (σ
(AR)
kh )pk,h=1:

σ
(AR)
kh =

φ|k−h|

1− φ2
. (6.33)

Under this case, T = Σ
1/2
AR.

3. ARMA(1,1) type covariance matrix ΣARMA = (σ
(ARMA)
kh )pk,h=1:

σ
(ARMA)
kh =


1 + (φ+θ)2

1−φ2 , k = h;

φ+ θ + (φ+θ)2φ
1−φ2 , |k − h| = 1;

φ|k−h|−1(φ+ θ + (φ+θ)2φ
1−φ2 ), |k − h| ≥ 2.

(6.34)
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Under this case, T = Σ
1/2
ARMA.

The powers under the three cases are illustrated in Table 6.7, Table 6.8 and

Table 6.9. The true parameters are taken as φ = 0.8 and θ = 0.2. It can

be seen that the powers are near 1 as n and p tend to infinity in the same

order.

6.3.3.2 Factor model dependence

We consider a data generating process which comes from a dynamic factor

model, which is always used to describe cross-sectional dependence.

Xji = λ
′
fj + εji, i = 1, 2, . . . , n, j = 1, 2, . . . , p, (6.35)

with

fj = zj + θzj−1, i = 1, 2, . . . , n, j = 1, 2, . . . , p, (6.36)

where λ is an r × 1 deterministic vector whose elements are called factor

loadings; fj is an r×1 random vector generated from (6.36), whose elements

are called factors and the cross-section dependence between xi1 and xi2 are

caused by the common factors fj. {zj : j = 1, 2, . . . , p} ∼ i.i.d N(0r, Ir)

where 0r is an r×1 vector with elements 0 and Ir is an r×r identity matrix.

{εji : j = 1, 2, . . . , p; i = 1, 2, . . . , n} ∼ i.i.d N(0, 1) are idiosyncratic errors.

First, we generate the factor loadings in the vector λ from N(4, 1) before

generating data from (6.35) and (6.36). After generating the data, we can

apply the proposed test statistic Ln to the data and the empirical powers are

shown in Table 6.10. From this table, we can see that the powers increase

as the number of factors r increases. This is reasonable in the sense that

more factors should bring in stronger dependence.
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6.3.3.3 Common random dependence

We consider a special dependent structure which is caused by a common

random part. The data generating process is as follows.

xi = Ayi, i = 1, 2, . . . , n, (6.37)

where A is a p × p random matrix whose components are i.i.d standard

normal random variables; and yi, i = 1, 2, . . . , n are independent p × 1

random vectors, whose components are assumed to be i.i.d standard normal

random variables.

Therefore the random vectors x1,x2, . . . ,xn are dependent due to the

common random part A. The empirical powers are listed in Table 6.11.

From the table, we can see that the proposed statistic Ln is powerful to

capture this kind of dependence.

6.3.3.4 ARCH type dependence

It is known that dependent relations may be linear dependence or nonlinear

dependence. The examples above are all linear dependent structures. In

this section, we will present a nonlinear dependent structure.

Let us consider an autoregressive conditional heteroskedasticity (ARCH)

model of the form:

Xji = Zji

√
α0 + α1X2

j,i−1, i = 1, 2, . . . , n; j = 1, 2, . . . , p; (6.38)

where {Zji : j = 1, 2, . . . , p; i = 1, 2, . . . , n} are white noise error terms with

zero mean and unit variance. Here we take α0, α1 ∈ (0, 1) and 3α2
1 < 1,

since the fourth moment of the elements of Xji exists.

From this model, the sequences {x1,x2, . . . ,xn} are dependent but un-

correlated. Moreover, this sequence is a multiple martingale difference se-
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quence. The components of each vector xi are independent here. This sim-

plified assumption is imposed because the asymptotic theory is established

for covariance time series under the assumption that the fourth moment

equals 3 while the asymptotic theorem is provided for random vectors with

i.i.d. components without this restriction.

Simulation results indicate that the proposed test statistic Ln can not

detect this type of dependence between x1,x2, . . . ,xn. Nevertheless, if we

replace the elements Xjt by X2
jt, then our statistic Ln can capture the

dependence of this type. This efficiency is due to the correlation between

the high powers of {Xjt : t = 1, 2, . . . , n}.

Table 6.12 lists the powers of the proposed statistics Ln testing model

(6.38) in several cases, i.e. α0 and α1 take different values. From the

table, we can find the phenomenon that as α1 increases, the powers also

increase. This is consistent with our intuition that larger α1 brings about

larger correlation between x1,x2, . . . ,xn.

6.4 Conclusion

This chapter provides a novel approach for independence test among a large

number random vectors including covariance stationary time series of length

p by using the empirical spectral distribution of the sample covariance ma-

trix of the grouped time series under investigation. This test can capture

various kinds of dependent structures, e.g. MA(1) model, AR(1) model,

ARCH(1) model and the dynamic factor model established in the simula-

tion section. The conventional method(LRT proposed by Anderson (1984))

utilized the correlated relationship between random vectors with i.i.d com-

ponents to capture their dependence, instead of covariance stationary time
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series. Hong (1996) proposed a test statistic based on correlation functions

to investigate independence between two covariance stationary time series.

On the one hand, this idea is only efficient for normal distributed data.

It may be an inappropriate tool for non-Gaussian distributed data, such

as martingale difference sequences (e.g.ARCH(1) model), nonlinear MA(1)

model etc., which possess dependent but uncorrelated structures. On the

other hand, his method is only applicable to independence test for finite

number of covariance stationary time series. Then the proposed test is

more advantageous in these two points. The simulation results and an em-

pirical application to cross-sectional independence test for stock prices in

S&P500 highlight this approach.

6.5 Appendix

First, we present some lemmas and technical facts used in the proofs of the

main theorems.

6.5.1 Useful lemmas

We would point out that (3.52) can be obtained from the proof of Lytova

and Pastur (2009).

Our proof utilizes the generalized Fourier transform as follows:

Lemma 23 (Proposition 2.1 of Lytova and Pastur (2009)). Let g : R+ → C

be locally Lipshitzian and such that for some δ > 0

sup
t≥0

e−δt|g(t)| <∞

and let g̃ : {z ∈ C : Im(z) < −δ} → C be its generalized Fourier transform

g̃(z) = i−1

∫ ∞
0

e−iztg(t)dt.
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The inversion formula is given by

g(t) =
i

2π

∫
L

eiztg̃(z)dz, t ≥ 0,

where L = (−∞− iε,∞− iε), ε > δ, and the principal value of the integral

at infinity is used.

Denote the correspondence between functions and their generalized Fourier

transforms as g ↔ g̃. Then we have

g
′
(t)↔ i

(
g(+0) + zg̃(z)

)
;

∫ t

0

g(τ)dτ ↔ (iz)−1g̃(z);∫ t

0

g1(t− τ)g2(τ)dτ := (g1 ∗ g2)(t)↔ ig̃1(z)g̃2(z). (6.39)

Furthermore, we introduce a simple fact about exponential matrices

below.

Lemma 24 (Duhamel formula). Let W1,W2 be n×n matrices and t ∈ R.

Then we have

e(W1+W2)t = eW1t +

∫ t

0

eW1(t−s)W2e
(W1+W2)sds. (6.40)

Moreover, if
(
Wij(t)

)
1≤i,j≤n is a matrix-valued function of t ∈ R that is C∞

in the sense that each matrix element Wij(t) is C∞. Then

d

dt
eW(t) =

∫ 1

0

esW(t)W
′
(t)e(1−s)W(t)ds, (6.41)

where W
′
(t) is an n × n matrix with elements being the derivatives of the

corresponding elements of W(t).

Proof of Theorem 10: Since

E
(∫

λdFS(λ)
)

= E
(1

p
tr(

1

n
XX

′
)
)

=
∞∑
k=0

b2
k,
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the sequence E{FS(λ)} is tight. By Theorem B.9 of Bai and Silverstein

(2009), the proof of Theorem 10 is complete if we can verify the following

two steps:

1. For any fixed z ∈ C+, mn(z) − Emn(z) → 0, a.s. as n → ∞, where

mn(z) = 1
p
trG−1(z) with G−1(z) = (S− zIp)−1 and Ip being a p× p

identity matrix.

2. For any fixed z ∈ C+, Emn(z) → mφ(z), as n → ∞, where mφ(z) =∫
1

λ−zdFc,φ(λ).

The first step is omitted here, since it is similar to the proof on page 54 of

Bai and Silverstein (2009).

We will finish the second step by comparing Emn(z) for the Gaussian

case and nonGaussian case: as n→∞

Emn(z)− Em̂n(z)→ 0, (6.42)

Em̂n(z)→ mφ(z), (6.43)

where m̂n(z) is obtained from mn(z) with the elements Xjt =
∑∞

k=0 bkξj−k,t

replaced by X̂jt =
∑∞

k=0 bkξ̂j−k,t. Here {ξ̂j−k,t} are i.i.d Gaussian random

variables with mean zero and variance one and {ξ̂j−k,t} are independent of

{ξj−k,t}. (6.43) obviously holds by Yao (2012).

Let Im(z) = v > 0 and below we will frequently use the fact that |m̂n(z)|

and |mn(z)| are both bounded by 1/v without mention. We now consider

(6.42) and start with the truncation of underlying random variables. Define

Sτ =
1

n
Xτ (Xτ )T , Xτ = (Xτ

jt)p×n, (6.44)

Xτ
jt =

∞∑
k=0

bkξ
τ
j−k,t, ξ

τ
j−k,t = ξj−k,tI(|ξj−k,t| ≤ τ

√
n), (6.45)
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where τ = τn is a positive sequence satisfying

τ → 0,
1

τ
E(|ξ11|2I(|ξ11| > τ

√
n))→ 0. (6.46)

We claim that for every τ > 0,

lim
n→∞

∣∣∣Emn(z)− Emτ
n(z)

∣∣∣ = 0, (6.47)

where mτ
n(z) = 1

p
trG−1

τ (z) with G−1
τ (z) = 1

p
tr(Sτ −zIp)−1. In fact, we have∣∣∣Emn(z)− Emτ

n(z)
∣∣∣

≤
∣∣∣ 1

p
√
n

p,n∑
j,t=1

E
((

G−1
τ (z)G−1(z)

1√
n

X
)
jt

(
Xjt −Xτ

jt

))∣∣∣
+
∣∣∣ 1

p
√
n

p,n∑
j,t=1

E
((
Xjt −Xτ

jt

)(
G−1(z)G−1

τ (z)
1√
n

X
)
jt

)∣∣∣
≤ Cnp

p
√
n

∞∑
k=0

|bk|E|ξ11|I(|ξ11| ≥ τ
√
n) ≤ CE|ξ11|2I(|ξ11| ≥ τ

√
n)

τ

∞∑
k=0

|bk| → 0,

where the first inequality uses the resolvent identity

(A− zIp)−1 − (B− zIp)−1 = −(A− zIp)−1(A−B)(B− zIp)−1,

holding for any Hermitian matrices A and B and the second inequality uses∣∣∣(G−1
τ (z)G−1(z)

1√
n

X
)
jt

∣∣∣ ≤ 1

v
||G−1(z)

1√
n

X|| = 1

v
||G−1(z)

1

n
XXTG−1(z)||1/2

≤ 1

v
||G−1(z)||1/2 +

1

v
|z|1/2||G−1(z)|| ≤ C. (6.48)

Here ‖ · ‖ denotes the spectral norm of a matrix. Also throughout the

chapter we use C to denote constants which may change from line to line.

In view of (6.47) it is sufficient to prove that|Emτ
n(z) − Em̂n(z)| →

0, as n→∞.However for simplicity below we still use notationmn(z),X, Xjt, ξj−k,t

instead of using mτ
n(z),Xτ , Xτ

jt, ξ
τ
j−k,t and prove (6.42). But one should keep

in mind that |ξj−k,t| ≤ τ
√
n.
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We next prove (6.42) by an interpolation technique first introduced in

Lytova and Pastur (2009). To this end define the interpolation matrix

S(s) =
1

n
X(s)XT (s),X(s) =

(
Xθ,t(s)

)
= s1/2X + (1− s)1/2X̂, s ∈ [0, 1]

(6.49)

and

G−k(s, z) =
(
S(s)− zIp

)−k
, mn(s, z) =

1

p
trG−1(s, z), k = 1, 2.

Write Φjt(s) =
(
G−2(s, z) 1√

n
X(s)

)
jt

. We then have

Emn(z)− Em̂n(z) =

∫ 1

0

∂

∂s
Emn(s, z)ds =

−1

p

∫ 1

0

p,n∑
j,t=1

E
[
s−1/2 1√

n
XjtΦjt(s)

]
ds+

1

p

∫ 1

0

p,n∑
j,t=1

E
[
(1−s)−1/2 1√

n
X̂jtΦjt(s)

]
ds,

(6.50)

where we have used the formula below

∂G−1(s, z)

∂s
= −G−1(s, z)

∂S(s)

∂s
G−1(s, z).

Consider the second term in (6.50) first. Since X̂jt =
∑∞

k=0 bkξ̂j−k,t we

have

E
( 1√

n
X̂jtΦjt(s)

)
=
∞∑
k=0

bkE
( 1√

n
ξ̂j−k,tΦjt(s)

)
. (6.51)

Applying Lemma 10 to each summand in (6.51) we have

(1− s)−1/2

∞∑
k=0

bkE(
1√
n
ξ̂j−k,tΦjt(s)) =

1

n

∞∑
k=0

bk

p∑
θ=j−k

bθ−j+kE
(
Dθ,t(Φjt(s))

)
,

(6.52)

where the partial derivative Dθ,t = ∂/∂( 1√
n
Xθt(s)) and we used the fact

that

∂X̂θt

∂ξ̂j−k,t
= bθ−j+k,

∂Xθt(s)

∂X̂θt

= (1− s)1/2.
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Consider the first term in (6.50) now. As before, applying the fact that

Xjt =
∑∞

k=0 bkξj−k,t and Lemma 11 to each summand of the first term in

(6.50), we obtain

E
(
s−1/2 1√

n
XjtΦjt(s)

)
= s−1/2

∞∑
k=0

bkE
( 1√

n
ξj−k,tΦjt(s)

)
(6.53)

= s−1/2 1√
n

∞∑
k=0

bkκ1,τEΦjt(s) + s−1/2 1

n

∞∑
k=0

bkκ2,τ

p∑
ζ=j−k

bζ−j+kE
(
Dζ,t(Φjt(s))

)
+ ε1,

where κi,τ denotes the ith cumulant of the variable ξj−k,t with i = 1, 2,

|ε1| ≤
C1s

−1/2

n3/2

∞∑
k=0

|bk|E
(
|ξj−k,t|3 sup

|ξj−k,t|≤τ
√
n

|D̃2
j−k,t(Φjt(s))|

)
,

with

D̃2
j−k,t(Φjt(s)) = D̃j−k,t

( p∑
ζ=j−k

∂Φjt(s)

∂ 1√
n
Xζ,t(s)

∂ 1√
n
Xζ,t(s)

∂ 1√
n
Xζ,t

∂ 1√
n
Xζ,t

∂ 1√
n
ξj−k,t

)
= s

p∑
ζ=j−k

p∑
γ=j−k

bζ−j+kbγ−j+kDζ,t

(
Dγ,t(Φjt(s))

)
,

where D̃j−k,t = ∂/∂ 1√
n
ξj−k,t. Here we would point out that checking the

argument of Lemma 11 in Lytova and Pastur (2009) shows that sup
t∈R

in (3.52)

can be replaced by sup
|ξj−k,t|≤τ

√
n

in the remainder ε1 due to the truncation step.

We conclude from (6.50)-(6.53) that

Emn(z)− Em̂n(z) = −
∫ 1

0

[s−1/2

pn1/2

∞∑
k=0

bk

p,n∑
j,t=1

κ1,τEΦjt(s) +
1

p

p,n∑
j,t=1

ε1

+
s−1/2

np

∞∑
k=0

bk

p,n∑
j,t=1

(κ2,τ − 1)

p∑
ζ=j−k

bζ−j+kE
(
Dζ,t(Φjt(s))

)]
ds. (6.54)

The next aim is to prove that each of the three integrands goes to zero

as n tends to infinity. To this end, first let µ`,τ (µ`) and κ`,τ (κ`) be the
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`th moment and cumulant of the truncated ξjt and the untruncated (ξjt)

respectively. Then

|µ`,τ − µ`| ≤ CE
(
|ξ11|`I(|ξ11| > τ

√
n)
)
.

As a result we have

|κ`,τ − κ`| ≤ CE
(
|ξ11|`I(|ξ11| > τ

√
n)
)
≤ C

(τ
√
n)2−`E(|ξ11|2I(|ξ11| > τ

√
n).

(6.55)

This result uses the fact that cumulants can be expressed by moments as

follows

κj =
∑
λ

cλµλ,

where the sum is over all additive partitions λ of the set {1, . . . , j}, {c` :

` ∈ λ} are known coefficients and µλ =
∏

`∈λ µ`.

Second we provide the upper bound of Φjt(s), Dγ,t(Φjt(s)) andDζ,t

(
Dγ,t(Φjt(s))

)
.

For simplicity, we introduce more new notation.

I(ζ, γ) = eγe
T
ζ + eζe

T
γ , W(γ, t) = eγe

T
t

1√
n

XT (s) +
1√
n

X(s)ete
T
γ ,

J1(ζ) = G−1(s, z)W(ζ, t)G−2(s, z), J2(γ, ζ) = G−1(s, z)I(γ, ζ)G−2(s, z)

J3(γ, ζ) = G−1(s, z)W(γ, t)G−2(s, z)W(ζ, t)G−1(s, z),

J4(ζ, γ) = G−1(s, z)W(ζ, t)G−1(s, z)W(γ, t)G−2(s, z),

where eγ and ej are p × 1 unit vectors with the γ-th and j-th elements

being 1 respectively and others being zeros; and et is n × 1 a unit vector

with the t-th element being 1 and others being zeros. With these notation

by a simple but tedious calculation we obtain

Dγ,t(Φjt(s)) = −eTj G−2(s, z)eγ + eTj J1(γ)
1√
n

X(s)et + eTj JT1 (γ)
1√
n

X(s)et
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and

Dζ,t

(
Dγ,t(Φjt(s))

)
= eTj J1(ζ)eγ + eTj JT1 (ζ)eγ − eTj J4(ζ, γ)

1√
n

X(s)et

−eTj J4(γ, ζ)
1√
n

X(s)et − eTj J3(γ, ζ)
1√
n

X(s)et + eTj J1(γ)eζ − eTj JT1 (γ)eζ

−eTj J3(ζ, γ)
1√
n

X(s)et − eTj JT4 (γ, ζ)
1√
n

X(s)et − eTj JT4 (ζ, γ)
1√
n

X(s)et

+eTj J2(γ, ζ)
1√
n

X(s)et + eTj JT2 (γ, ζ)
1√
n

X(s)et.

From the expansions of Φjt(s), Dγ,t(Φjt(s)) and Dζ,t

(
Dγ,t(Φjt(s))

)
we

see that all the terms in such expansions include only three factors below:

D1 =
( 1√

n
XT (s)G−`(s, z)

1√
n

X(s)
)
tt
, D2 =

(
G−`(s, z)

1√
n

X(s)
)
kt
,

D3 = G−`(s, z)kk′ , ` = 1, 2, k, k
′
= j, ζ, or γ.

These three factors turn out to be bounded, as seen below.

Obviously |D3| ≤ v−`. Similar to (6.48) using

G−1(z)
1

n
X(s)XT (s) = I + zG−1(s, z). (6.56)

one may verify that

|D2| ≤
1

v`−1
‖G−1(s, z)

1√
n

X(s)‖ ≤ C, j = 1, 2

and

|D1| ≤ ‖
1√
n

XT (s)G−`(s, z)
1√
n

X(s)‖ =‖ G−`(s, z)
1

n
X(s)XT (s) ‖≤ C.

Therefore Φjt(s) and the two derivativesDγ,t(Φjt(s)), Dζ,t

(
Dγ,t(Φjt(s))

)
are bounded. This, together with (6.55) and (6.46), yields∣∣∣s−1/2

pn1/2

∞∑
k=0

bk

p,n∑
j,t=1

κ1,τEΦjt

∣∣∣ ≤ C

τ
E(|ξ11|2I(|ξ11| > τ

√
n))→ 0
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and ∣∣∣ 1

np

∞∑
k=0

bk

p,n∑
j,t=1

(κ2,τ − 1)

p∑
ζ=j−k

bζ−j+kE
(
Dζ,t(s)Φjt(s)

)∣∣∣
≤ CE(|ξ11|2I(|ξ11| > τ

√
n))→ 0.

Moreover since E|ξjt|3 ≤ τ
√
n and (6.46) we have∣∣∣1

p

p,n∑
j,t=1

ε1

∣∣∣ ≤ Cτ → 0, as n→∞.

These, together with (6.54), yield (6.42). The proof of this theorem is

complete.

Proof of Theorem 11: The strategy of the proof is the same as that in Ly-

tova and Pastur (2009). That is, we first establish CLT for the case when

{ξj−k,t} are i.i.d N(0, 1) and then generalize it to the general distributions.

When {ξj−k,t} are i.i.d N(0, 1), as stated in Section 2, under H0, the

matrix S can be written in the form that S = 1
n
T

1/2
1 XXTT

1/2
1 so that

Theorem 9.10 of Bai and Silverstein (2009) is applicable. The asymptotic

variance of Theorem 11 is the same as that in Bai and Silverstein (2009)

while the asymptotic mean is obtained from that in Bai and Silverstein

(2009) and the facts that (See Yao (2012) and Gray (2009))

lim
p→∞

1

p

p∑
k=1

f(σk) =

∫ ∞
0

f(x)dH(x) =
1

2π

∫ 2π

0

f(φ(λ))dλ.

However to apply Bai and Silverstein (2009), we have to make sure that the

spectral norm of the population covariance matrix T1 of each time series is

bounded. We claim that this is ensured by the condition
∑
|bj| < ∞. In

fact, let σk = Cov(Xjt, Xj+k,t). By the expression (2.2) of the time series

and a change of variables we have

∞∑
k=0

|σk| =
∞∑
k=0

|Cov(
∞∑
k1=0

bk1ξj−k1,t,

∞∑
k2=0

bk2ξj+k−k2,t)|
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=
∞∑
k=0

|
∞∑
k1=0

bk1bk1+k| < (
∞∑
k=0

|bk|)2 <∞. (6.57)

By Lemma 4.1 of Gray (2009) and (6.57) we conclude that

||T1|| ≤ 4
∞∑
k=0

|σk| <∞. (6.58)

We next adopt an interpolation trick and compare the CLT of the general

case with that of the Gaussian case. Recall the definition of Gn(λ) in (2.8).

Let

N ◦n [f ] =

∫
f(λ)dGn(λ), Nn[f ] =

∫
f(λ)dpFS(λ).

Define N̂ ◦n [f ] and N̂n[f ] to be obtained from N ◦n [f ] and Nn[f ] respectively,

with the entries Xjt =
∑∞

k=0 bkξj−k,t replaced by X̂jt =
∑∞

k=0 bkξ̂j−k,t where

{ξ̂j−k,t} are i.i.d. N(0,1) and independent of {ξj−k,t}. By the continuous

theorem of characteristic functions, it suffices to show that

Rn(x) := E
(
eixN

◦
n [f ]
)
− E

(
eixN̂

◦
n [f ]
)
→ 0, as n→∞. (6.59)

Since the integrand function f admits the Fourier transform

f̂(θ) =
1

2π

∫
e−iθλf(λ)dλ,

the Fourier inversion formula is

f(λ) =

∫
eiθλf̂(θ)dθ. (6.60)

Then the statistic Nn[f ] can be written as

Nn[f ] =

∫
f̂(θ)un(θ)dθ,

where

un(θ) = TrU(θ), U(θ) = eiθS. (6.61)
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By (6.60) we obtain

f
′
(S) = i

∫
f̂(θ)θU(θ)dθ. (6.62)

We still use the same truncation as that in (6.44) (and use the same

notation) but this time τ satisfies (see formula (9.7.7) of Bai and Silverstein

(2009))

τ → 0, τ−4E|ξj−k,t|4I(ξj−k,t| > τ
√
n)→ 0. (6.63)

Note that

P{X 6= Xτ} ≤
p,n∑
j,t=1

P{Xjt 6= Xτ
jt} ≤

1

τ 4n2

p,n∑
j,t=1

∞∑
k=0

bkE|ξj−k,t|4I(ξj−k,t| > τ
√
n)→ 0.

In view of this it is enough to prove that

E
(
eixN

◦
nτ [f ]

)
− E

(
eixN̂

◦
n [f ]
)
→ 0, as n→∞, (6.64)

where N ◦nτ [f ] is obtained from N ◦n [f ] with X replaced by Xτ .

As in the proof of Theorem 10 we still use notation ξj−k,t,X,Nn[f ] rather

than ξτj−k,t,X
τ ,N ◦nτ [f ] and below prove (6.59). Recall the interpolation

matrix defined in (6.49) and furthermore define

en(s, x) = exp
(
ixTrf

(
S(s)

))
, U(s, θ) = (Ujk) = eiθS(s).

By (6.62) we have

Rn(x) = an

∫ 1

0

∂

∂s
E
(
en(s, x)

)
ds

= ixan

∫ 1

0

E
[
en(s, x)Tr

(
f
′
(S(s))

(
s−1/2 1√

n
X− (1− s)−1/2 1√

n
X̂
) 1√

n
Xτ ′(s)

)]
ds

= −xan
∫ 1

0

ds

∫
θf̂(θ)(Dn −Bn)dθ, (6.65)

where an = exp(−ix
∫
fdpFcn,φn) and

Dn =
1√
ns

p,n∑
j,t=1

E
(
XjtΨjt(s)

)
, Bn =

1√
n(1− s)

p,n∑
j,t=1

E
(
X̂jtΨjt(s)

)
,
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with

Ψjt(s) = en(s, x)
(
U(s, θ)

1√
n

X(s)
)
jt
.

By Lemma 10 and a calculation similar to (6.51), (6.52) and (6.53) we

obtain

Bn =
1

n

p,n∑
j,t=1

∞∑
k=0

bk

p∑
k(1)=j−k

bk(1)−j+kE
(
Dk(1)t(Ψjt(s))

)
, (6.66)

where Dk(1)t = ∂/∂ 1√
n
Xk(1)t.

Also, by Lemma 11 with q = 3 we have

Dn =
3∑
`=0

T`τ + ε3, (6.67)

where

T0τ =
s−1/2

√
n

p,n∑
j,t=1

κ1,τ

∞∑
k=0

EΨjt(s),

T`τ =
s(`−1)/2

`!n(`+1)/2

p,n∑
j,t=1

κ`+1,τ

∞∑
k=0

bk

p∑
k(`),k(`−1),...,k(1)

bk(`)−j+kbk(`−1)−j+k · · · bk(1)−j+k

·E
(
Dk(`)tDk(`−1)t · · ·Dk(1)tΨjt(s)

)
, ` = 1, 2, 3;

and

|ε3| ≤
Cs2

n5/2

p,n∑
j,t=1

∞∑
k=0

|bk|
p∑

k(4),...,k(1)=j−k

|bk(4)−j+k| · · · |bk(1)−j+k|

·
∫ 1

0

E
[
|ξj−k,t|5Dk(4)t · · ·Dk(1)tΨjt(s)

∣∣
ξj−k,t=vξj−k,t

]
(1− v)3dv,(6.68)

where Ψjt(s)
∣∣
ξj−k,t=vξj−k,t

means that ξj−k,t involved in Ψjt(s) is replaced by

vξj−k,t and κ`,τ is the `th cumulant of ξj−k,t.

Next, we provide the upper bounds of derivatives:

Dk(`)tDk(`−1)t · · ·Dk(1)tΨjt(s), ` = 0, 1, 2, 3, 4.
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Let Y(s) = (Yrt(s)) = 1√
n
X(s). Applying the Duhamel formula of Lemma

23 to the entries, Ujk(`) , of U(s, θ) we have

Dβα(Ujk(`)) = i
[(

(UY(s))jα∗Uβ,k(`)
)

(θ)+
(

(UY(s))k(`)α∗Ujβ
)

(θ)
]
, (6.69)

where the convolution ∗ is defined in (6.39). Here and below we use U to

denote U(s, θ) when there is no confusion. In view of (6.69) and the fact

that Ip =
∑p

r=1 ere
′
r we have

Dk(`)t(UY(s))jt = Dk(`)t

( p∑
r=1

Yrt(s)Urj

)
= Uk(`)j + i

[(
(YT (s)UY(s))tt ∗ Uk(`)j

)
(θ) +

(
(UY(s))jt ∗ (UY(s))k(`)t

)
(θ)
]
,

(6.70)

Dk(d)t(Y
T (s)UY(s))tt = Dk(d)t

( p∑
r=1

(UY(s))rtYrt(s)
)

= 2(UY(s))k(d)t + 2i
(

(Yτ ′(s)UY(s))tt ∗ (UY(s))k(d)t

)
(θ), (6.71)

and by (6.62)

Dk(`)t(en(s, x)) = −2xen(s, x)

∫
θf̂(θ)(UY(s))k(`)tdθ, (6.72)

where `, d = 1, 2, 3, 4.

Since
∑n

t=1 |Uαt|2 = 1 and ||U|| = 1, from Hölder’s inequality, we obtain

|(UY(s))jt| ≤
( p∑
r=1

(Yrt(s))
2
)1/2

, |(YT (s)UY(s))tt| ≤
p∑
r=1

(Yrt(s))
2.(6.73)

Recalling the definition of Ψjt(s) and repeatedly using (6.69)-(6.73) one can

verify that∣∣∣Dk(`)tDk(`−1)t · · ·Dk(1)tΨjt(s)
∣∣∣ ≤ C+C

( p∑
r=1

(Yrt(s))
2
)(`+1)/2

, ` = 0, 1, 2, 3, 4.

(6.74)
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For example see (6.83) below for the expansion of Dk(1)tΨjt(s). Moreover

it is straightforward to check that ` = 0, 1, 2, 3, E
(∑p

r=1(Yrt(s))
2
)(`+1)/2

is

bounded by the fact that n2E|Yrt(s)|4 = E|Xrt(s)|4 <∞. We then conclude

that

E
∣∣∣Dk(`)tDk(`−1)t · · ·Dk(1)tΨjt(s)

∣∣∣ ≤ C`, ` = 0, 1, 2, 3. (6.75)

However, to prove ε3 → 0, (6.74) for the case ` = 4 is not enough for

our purpose since

E|Xrt(s)|5 ≤ Cτ
√
n, (6.76)

not bounded. To offset this
√
n, one key observation is that from (6.69)-

(6.72) we see that each term in the expansion of Dk(`)tDk(`−1)t · · ·Dk(1)tΨjt(s)

is a product or a convolution of some of the following factors

(UY(s))h1t, (U)h2h3 , (YT (s)UY(s))tt, en(s, x),

where hi can be j or any k(`), ` = 1, · · · , 4. Let m1 and m2 be the total

number of factors of types of (UY(s))h1t and (YT (s)UY(s))tt appearing

in each term of the expansion, respectively. Then from (6.69)-(6.72) and

(6.83) below we see that (m1 + 2m2) ≤ 5 (this explains (6.74) to some

extent). Consider the case when (m1 + 2m2) = 5 first. In this case from

(6.69)-(6.72) and (6.83) below we see that at least one (UY(s))h1t must

be contained in the expansion. We below show how to handle such terms

by demonstrating one example and all other cases can be similarly proved.

Consider the term

(UY(s))jt(U)k(2)k(3)(U)k(4)k(1)(Y
T (s)UY(s))2

tt (6.77)

(m1 = 1 and m2 = 2 in this case). Then for (6.68), it can be estimated as

follows

1

n5/2

p,n∑
j,t=1

∫ 1

0

E
[
|ξj−k,t|5

(
(UY(s))jt(U)k(2)k(3)(U)k(4)k(1)(Y

T (s)UY(s))2
tt

)∣∣
ξj−k,t=vξj−k,t

]
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×(1− v)3dv

=
1

n5/2

p,n∑
j,t=1

∫ 1

0

E
[
|η|5
(

(UY(s))jt(U)k(2)k(3)(U)k(4)k(1)(Y
T (s)UY(s))2

tt

)∣∣
ξj−k,t=vη

]
×(1− v)3dv

≤ 1

n5/2

n∑
t=1

∫ 1

0

E
[
|η|5
( p∑
j=1

|(UY(s))jt||(YT (s)UY(s))tt|
)∣∣

ξj−k,t=vη

]
(1− v)3dv

≤ 1

n5/2

n∑
t=1

∫ 1

0

E
[
|η|5√p

(
(

p∑
r=1

Y 2
rt)

5/2
)∣∣

ξj−k,t=vη

]
(1− v)3dv, (6.78)

where η has the same distribution as {ξr−k,t} and is independent of them,

and satisfies |η| ≤ τ
√
n; the first inequality uses the fact that |(U)h1h2| ≤

1; and the second inequality uses the second inequality of (6.73) and the

following estimation

p∑
j=1

|(UY(s))jt| ≤
√
p
( p∑
j=1

|(UY(s))jt|2
)1/2

=
√
p
( p∑
j=1

eTt YT (s)UTeje
T
j ŪY(s)et

)1/2

=
√
p
(
eTt YT (s)Y(s)et

)1/2

=
√
p
( p∑
r=1

Y 2
rt(s)

)1/2

, (6.79)

where the second equality uses the fact that U is a symmetric unitary

matrix. Moreover, since for any h = 1, 2, . . . , p, the coefficient of vη in the

expansion of Yrt
∣∣
ξj−k,t=vη

is br−j+k when ξj−k,t is replaced by vη, we have

( p∑
r=1

Y 2
rt(s)

∣∣
ξj−k,t=vη

)m/2
≤ C

nm/2

(
(

p∑
r=1

|br−h+k|)m(τ
√
n)m + (

p∑
r=1

X̃2
rt(s))

m/2
)

≤ C +
C

n

p∑
r=1

X̃m
rt (s), 2 ≤ m ≤ 5, (6.80)

where X̃rt(s) is Xrt(s) = s1/2
∑∞

`=0 b`ξr−`,t+(1−s)1/2X̂rt without the factor

ξj−k,t = vη; and the last inequality utilizes the condition that
∑∞

`=0 |b`| <
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∞. Note that X̃rt is independent of η. This, together with (6.80) and the

factE(|X̃rt|5(s)) ≤ Cτ
√
n, implies that

(6.78) ≤ Cτ → 0.

If (UY(s))jt in (6.77) is replaced by any (UY(s))k(i)t, i = 1, 2, 3, 4, then an

estimate similar to (6.78) also holds by exchanging the order of summation

as follows

p∑
j=1

∞∑
k=0

p∑
k(i)=j−k

bk(i)−j+k(UY(s))k(i)t =
∞∑
k=0

p∑
k(i)=1−k

(UY(s))k(i)t

k(i)+k∑
j=1

bk(i)−j+k .

(6.81)

Next consider the case when (m1 +m2) ≤ 4. By (6.74) and (6.80), one may

verify that

1

n5/2

p,n∑
j,t=1

∫ 1

0

E
[
|ξj−k,t|5

(
(UY(s))m1

h1t
(U)m3

k(2)k(3)
(U)m4

k(4)k(1)

(YT (s)UY(s))m2
tt

)∣∣
ξj−k,t=vξj−k,t

]
(1− v)3dv

≤ Cτ → 0,

where mi ≥ 0, i = 3, 4. Summarizing the above we may conclude that

|ε3| ≤ Cτ → 0. (6.82)

Recall the definition of T`τ in (6.67). Denote the analogues of T`τ by T`

with the truncated matrix X(s) replaced by the initial matrix X(s). Then

write

T`τ = T` + r`, ` = 0, 1, 2, 3,

where

|r`| ≤
s(`−1)/2

`!n(`+1)/2

p,n∑
j,t=1

|κ(`+1),τ − κ`+1|
∣∣∣ ∞∑
k=0

|bk|
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p∑
k(`),k(`−1),...,k(1)

|bk(`)−j+kbk(`−1)−j+k · · · bk(1)−j+k|E
(
Dk(`)tDk(`−1)t · · ·Dk(1)tΨjt(s)

)∣∣∣
≤ C

(τ)3−`E
(
|ξ11|4 · I(|ξ11| > τ

√
n)
)
→ 0,

where the last step uses (6.63), (6.75) and an estimate similar to (6.55).

By Lemma 25 below, (6.67), (6.82) and the facts that T0 = T3 = 0

(because κ1 = κ4 = 0) and that T1 = Bn (see (6.66)) we see

Dn = Bn + o(1).

This, together with (6.65), ensures (6.64) by the facts that |an| = 1 and that

the function f is an analytic function. The proof of theorem is complete.

Lemma 25.

T2 =
s1/2κ3

2n3/2

p,n∑
j,t=1

∞∑
k=0

bk

p∑
k(2),k(1)=j−k

bk(2)−j+kbk(1)−j+kE
(
Dk(2)t(s)Dk(1)t(s)Ψjt(s)

)
= o(1),

as n→∞.

Proof. It follows from (6.69)-(6.72) that the expansion of Dk(1)tΨjt(s) is

Dk(1)tΨjt(s) = en(s, x)
[
− 2x

∫
θf̂(θ)

(
UY(s)

)
k(1)t

dθ
(
UY(s)

)
jt

+ Uk(1)j

+i
(
Y
′
(s)UY(s)

)
tt
∗ Uk(1)j + i

(
UY(s)

)
jt
∗
(
UY(s)

)
k(1)t

]
.

(6.83)

By (6.69)-(6.72) we can further obtain the expansion of Dk(2)tDk(1)tΨjt(s).

Since such an expansion is complicated we do not list it here. However each

term of the expansion is a constant multiple of one of the following forms

A1 =
(
UY(s)

)
h1t
◦ Uh2h3en(s, x),
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A2 =
(
UY(s)

)
h1t
◦
(
YT (s)UY(s)

)
tt
◦ Uh2h3en(s, x),

A3 =
(
UY(s)

)
k(2)t
◦
(
UY(s)

)
k(1)t
◦
(
UY(s)

)
jt
en(s, x),

where “◦” denotes a product or a convolution; hi = k(2), k(1) or j with

i = 1, 2, 3 and h1 6= h2 6= h3. In view of this it then suffices to prove that

T2i =
1

n3/2

p,n∑
j,t=1

∞∑
k=0

bk

p∑
k(1),k(2)=j−k

bk(1)−j+kbk(2)−j+kEAi = o(1), i = 1, 2, 3.

Without loss of generality, we below consider h1 = j, h2 = k(1) and

h3 = k(2) only, otherwise one may first exchange the order of the summation

as in (6.81) when necessary and then proceed as follows. Consider T22. Note

that the fact that UY(s)YT (s) = Y(s)YT (s)U. A simple calculation then

yields

E
[ n∑
t=1

|
p∑
j=1

(
UY(s)

)
jt
|2
]

= E
[ p∑
j1,j2=1

(
UY(s)YT (s)ŪT

)
j1j2

]
= E

[ p∑
j1,j2=1

(
Y(s)YT (s)

)
j1j2

]
= O(n). (6.84)

By the Schwartz inequality, (6.73) and (6.84), we have

|T22|2 ≤
C

n3
E
[ n∑
t=1

|
(
YT (s)UY(s)

)
tt
|2
]
E
[ n∑
t=1

|
p∑
j=1

(
UY(s)

)
jt
|2
]

≤ C

n2
E
[ n∑
t=1

( p∑
r=1

Y 2
rt(s)

)2
]

= O(
1

n
). (6.85)

This argument also works for T21 and T23 and we ignore the details here.

Therefore

T2 = O(
1√
n

).
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Proof of Theorem 4. Set

X(i)
n =

∫
xidG̃n(x), i = 1, 2; Ω̃

−1
=

 a11 a12

a12 a22

 .

Furthermore, under H1, X
(i)
n , i = 1, 2, can be written as

X(i)
n = Y

(i)
1 + Y

(i)
2 , (6.86)

where

Y
(i)

1 = p

∫
xid
(
FS(1)

H1
(x)− FS(1)

H0
(x)
)

+ p

∫
xid
(
FS(2)

H0
(x)− FS(2)

H1
(x)
)

and

Y
(i)

2 = p

∫
xid
(
FS(1)

H0
(x)− FS(2)

H0
(x)
)
.

From (6.86) we have

a11(X(1)
n )2 + a22(X(2)

n )2 + 2a12X
(1)
n X(2)

n = W1 +W2 +W3,

where

W1 = a11(Y
(1)

2 )2 + a22(Y
(2)

2 )2 + 2a12Y
(1)

2 Y
(2)

2 ,

W2 = a11(Y
(1)

1 )2 + a22(Y
(2)

1 )2 + 2a12Y
(1)

1 Y
(2)

1

and

W3 = 2a11Y
(1)

1 Y
(1)

2 + 2a22Y
(2)

1 Y
(2)

2 + 2a12[Y
(1)

2 Y
(2)

1 + Y
(1)

1 Y
(2)

2 ].

Note thatW1 converges in distribution to χ2(2) by Theorem 11 or Propo-

sition 1. Also Y
(i)

2 , i = 1, 2 converge in distribution to Gaussian distribution

by Theorem 11 or Proposition 1. We next prove that W2 → ∞ in proba-

bility while W3 = op(W2). By Assumption (3.15) Y
(1)

1 → ∞ or Y
(2)

1 → ∞

in probability (we would point out that Y
(i)

1 ≥ 0). If Y
(1)

1 → ∞ and
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lim supY
(2)

1 < ∞ in probability, then W2 → +∞ in probability. It is then

easy to verify that W3 = op(W2). This argument also applies to the case

when Y
(2)

1 → ∞ and lim supY
(1)

1 < ∞ in probability. If Y
(1)

1 → ∞ and

Y
(2)

1 →∞ in probability then by Holder’s inequality

W2 ≥ 2(
√
a11

√
a22 + a12)Y

(1)
1 Y

(2)
1 → +∞

in probability, because

det(Ω̃
−1

) = a11a22 − a2
12 > 0.

It is then easy to verify that W3 = op(W2) in this case.

In view of the above we conclude from the definition of Ln that

P (Ln > γ1−α|H1) = P
(

(X(1)
n , X(2)

n )Ω̃
−1( X(1)

n

X
(2)
n

)
> γ1−α

∣∣∣H1

)
= P

(
(a11(X(1)

n )2 + a22(X(2)
n )2 + 2a12X

(1)
n X(2)

n > γ1−α

∣∣∣H1

)
= P

(
W1 +W2 +W3 >

√
γ1−α

∣∣∣H1

)
→ 1, as n→∞. (6.87)
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Table 6.1: Empirical sizes of the proposed test Ln at significant level 0.05 for

n time series generated from DGP 1 with θ1 = 0.8 in model (6.29).

p

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes

50 0.023 0.022 0.027 0.021 0.019 0.021 0.023 0.018 0.022 0.020

100 0.037 0.040 0.035 0.039 0.036 0.031 0.034 0.030 0.029 0.025

150 0.042 0.040 0.039 0.043 0.041 0.038 0.039 0.034 0.034 0.031

200 0.039 0.043 0.046 0.045 0.043 0.045 0.042 0.041 0.038 0.040

250 0.040 0.045 0.048 0.044 0.045 0.044 0.042 0.040 0.041 0.041

300 0.037 0.041 0.049 0.054 0.052 0.048 0.043 0.041 0.039 0.045

350 0.041 0.048 0.053 0.049 0.055 0.052 0.049 0.047 0.045 0.047

400 0.038 0.041 0.047 0.052 0.052 0.048 0.053 0.051 0.046 0.046

450 0.035 0.037 0.040 0.046 0.050 0.055 0.059 0.060 0.058 0.055

500 0.032 0.035 0.035 0.040 0.047 0.052 0.054 0.057 0.054 0.058

Table 6.2: Bootstrap sizes of the proposed test Ln at significant level 0.05 for

n time series generated from DGP 1 with θ1 = 0.8 in model (6.29).

p

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes

50 0.039 0.041 0.038 0.037 0.040 0.037 0.039 0.035 0.037 0.037

100 0.043 0.042 0.040 0.039 0.039 0.040 0.042 0.040 0.046 0.041

150 0.046 0.042 0.048 0.043 0.045 0.047 0.040 0.049 0.045 0.041

200 0.042 0.047 0.043 0.046 0.049 0.051 0.048 0.048 0.046 0.050

250 0.052 0.050 0.046 0.054 0.048 0.051 0.050 0.049 0.052 0.055

300 0.048 0.053 0.055 0.052 0.056 0.057 0.053 0.051 0.049 0.054

350 0.046 0.054 0.052 0.054 0.050 0.051 0.050 0.048 0.053 0.054

400 0.043 0.048 0.046 0.051 0.054 0.051 0.052 0.054 0.049 0.052

450 0.046 0.052 0.048 0.049 0.053 0.050 0.054 0.055 0.053 0.052

500 0.042 0.046 0.045 0.047 0.050 0.053 0.055 0.052 0.055 0.054
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Figure 6.1: Graphs of smoothed density function of the transformed data vs

standard normal distribution
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*These graphs contain the empirical density functions of the transformed data for all

96 stocks used in our empirical application. The blue line is the smoothed density

function of the transformed data for one stock and the red graph is standard normal

density function.
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Table 6.3: Empirical sizes of the proposed test Ln at significant level 0.05 for

n time series generated from DGP 2.

p

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes

50 0.037 0.035 0.030 0.031 0.034 0.029 0.032 0.030 0.030 0.028

100 0.040 0.043 0.045 0.042 0.040 0.037 0.040 0.035 0.035 0.032

150 0.042 0.043 0.048 0.043 0.045 0.040 0.040 0.039 0.037 0.037

200 0.041 0.046 0.051 0.045 0.049 0.053 0.047 0.043 0.040 0.041

250 0.044 0.049 0.053 0.051 0.047 0.052 0.044 0.047 0.045 0.045

300 0.040 0.042 0.046 0.046 0.050 0.055 0.047 0.044 0.046 0.048

350 0.038 0.046 0.049 0.053 0.054 0.051 0.053 0.046 0.045 0.046

400 0.039 0.041 0.043 0.047 0.055 0.051 0.058 0.056 0.051 0.053

450 0.037 0.039 0.039 0.043 0.049 0.053 0.055 0.048 0.050 0.048

500 0.037 0.035 0.042 0.047 0.045 0.055 0.047 0.054 0.052 0.055

*The data are simulated from model (6.30). φ1 = 0.2.

Table 6.4: Bootstrap sizes of the proposed test Ln at significant level 0.05 for

n time series generated from DGP 2.

p

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes

50 0.041 0.039 0.040 0.042 0.038 0.037 0.035 0.038 0.036 0.038

100 0.044 0.047 0.043 0.040 0.042 0.041 0.040 0.045 0.039 0.040

150 0.046 0.048 0.049 0.051 0.048 0.047 0.053 0.055 0.052 0.047

200 0.043 0.050 0.053 0.049 0.052 0.048 0.049 0.054 0.051 0.047

250 0.045 0.052 0.054 0.050 0.050 0.054 0.051 0.048 0.047 0.052

300 0.044 0.048 0.051 0.047 0.048 0.050 0.046 0.053 0.052 0.047

350 0.046 0.051 0.047 0.054 0.052 0.050 0.051 0.051 0.052 0.049

400 0.042 0.047 0.052 0.049 0.051 0.050 0.055 0.050 0.054 0.052

450 0.045 0.049 0.053 0.053 0.050 0.051 0.054 0.049 0.049 0.051

500 0.042 0.035 0.045 0.049 0.047 0.050 0.051 0.047 0.050 0.053

*The data are simulated from model (6.30). φ1 = 0.2.
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Table 6.5: Empirical sizes of the proposed test Ln at significant level 0.05 for

n time series generated from DGP 3.

p

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes

50 0.036 0.039 0.035 0.030 0.035 0.031 0.036 0.035 0.030 0.029

100 0.040 0.042 0.040 0.039 0.042 0.045 0.040 0.037 0.039 0.034

150 0.043 0.048 0.051 0.045 0.047 0.051 0.043 0.042 0.039 0.040

200 0.040 0.046 0.055 0.052 0.047 0.055 0.049 0.045 0.044 0.044

250 0.039 0.041 0.048 0.053 0.051 0.057 0.053 0.055 0.058 0.059

300 0.042 0.045 0.045 0.050 0.048 0.055 0.054 0.048 0.052 0.056

350 0.037 0.042 0.047 0.052 0.050 0.051 0.047 0.045 0.048 0.052

400 0.035 0.045 0.052 0.047 0.051 0.048 0.053 0.054 0.052 0.050

450 0.038 0.041 0.045 0.046 0.045 0.047 0.049 0.052 0.050 0.048

500 0.039 0.043 0.047 0.052 0.048 0.048 0.051 0.055 0.046 0.051

*The data are simulated from model (6.31). θ1 = 0.8 and φ1 = 0.2.

Table 6.6: Bootstrap sizes of the proposed test Ln at significant level 0.05 for

n time series generated from DGP 3.

p

n 50 100 150 200 250 300 350 400 450 500

Empirical sizes

50 0.040 0.042 0.045 0.037 0.035 0.034 0.032 0.036 0.034 0.038

100 0.043 0.045 0.048 0.046 0.039 0.042 0.046 0.047 0.044 0.044

150 0.047 0.052 0.049 0.055 0.057 0.050 0.046 0.045 0.040 0.043

200 0.045 0.048 0.053 0.050 0.051 0.052 0.055 0.055 0.056 0.052

250 0.047 0.048 0.051 0.055 0.054 0.056 0.056 0.052 0.054 0.053

300 0.045 0.049 0.050 0.053 0.050 0.053 0.058 0.054 0.053 0.055

350 0.048 0.053 0.057 0.053 0.052 0.050 0.049 0.047 0.053 0.055

400 0.045 0.048 0.050 0.055 0.051 0.054 0.053 0.056 0.055 0.056

450 0.042 0.044 0.051 0.048 0.053 0.054 0.050 0.051 0.053 0.053

500 0.045 0.048 0.050 0.054 0.050 0.049 0.050 0.053 0.053 0.054

*The data are simulated from model (6.31). θ1 = 0.8 and φ1 = 0.2.
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Table 6.7: Empirical powers of the proposed test Ln at significant level 0.05

for n time series with MA(1) type dependent structure.

p

n 50 100 200 300 350 400

Empirical sizes

50 0.210 0.279 0.429 0.445 0.505 0.614

100 0.469 0.513 0.725 0.779 0.794 0.805

200 0.712 0.793 0.814 0.889 0.903 0.921

300 0.787 0.899 0.932 0.921 0.945 0.962

350 0.823 0.956 0.983 0.972 0.989 0.994

400 0.921 0.993 0.994 0.999 1.000. 0.999

*The data are simulated from model (6.32). Each time series xi is generated from DGP

3 with θ1 = 0.8 and φ1 = 0.2. In (6.32), we take θ = 0.8.

Table 6.8: Empirical powers of the proposed test Ln at significant level 0.05

for n time series with AR(1) type dependent structure.

p

n 50 100 200 300 350 400

Empirical sizes

50 0.656 0.720 0.714 0.801 0.823 0.842

100 0.792 0.824 0.846 0.891 0.907 0.917

200 0.858 0.889 0.922 0.926 0.954 0.985

300 0.901 0.935 0.958 0.982 0.992 0.0.993

350 0.892. 0.970 0.992 0.995 0.999 0.999

400 0.941 0.989 0.999 1.000 1.000 1.000

*The data are simulated from model (6.33). Each time series xi is generated from DGP

3 with θ1 = 0.8 and φ1 = 0.2. In (6.33), we take φ = 0.2.
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Table 6.9: Empirical powers of the proposed test Ln at significant level 0.05

for n time series with ARMA(1,1) type dependent structure.

p

n 50 100 200 300 350 400

Empirical sizes

50 0.592 0.613 0.654 0.719 0.746 0.758

100 0.713 0.748 0.855 0.891 0.904 0.909

200 0.776 0.833 0.892 0.903 0.955 0.968

300 0.856 0.901 0.963 0.981 0.982 0.993

350 0.902 0.946 0.980 0.999 0.998 1.000

400 0.933 0.951 0.991 1.000 1.000 1.000

*The data are simulated from model (6.34). Each time series xi is generated from DGP

3 with θ1 = 0.8 and φ1 = 0.2. In (6.34), we take θ = 0.8 and φ = 0.2.

Table 6.10: Empirical powers of the proposed test Ln at 0.05 significance level

for the dynamic factor model.

(p, n) r=1 r=2 r=3 r=4

(50,50) 0.342 0.553 0.889 0.950

(50,100) 0.358 0.622 0.949 0.968

(100,100) 0.403 0.685 0.972 0.984

(200,100) 0.526 0.741 0.983 0.998

(300,200) 0.557 0.763 0.987 1.000

(200,300) 0.637 0.785 0.983 0.999

(100,200) 0.656 0.791 0.988 0.999

(200,400) 0.671 0.785 0.990 0.999

(400,200) 0.685 0.768 0.991 1.000

(100,300) 0.682 0.784 0.980 1.000

(300,100) 0.701 0.782 0.989 1.000

*The data are simulated from model (6.35) and (6.36).
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Table 6.11: Empirical powers of the proposed test Ln at significant level 0.05

for n random vectors with common random dependence.

p

n 50 70 90 110 130 150

Empirical sizes

50 0.894 0.920 0.923 0.942 0.966 0.959

70 0.910 0.948 0.955 0.975 0.980 0.995

90 0.960 0.958 0.969 0.984 0.989 0.999

110 0.941 0.956 0.984 0.992 0.994 1.000

130 0.930 0.972 0.990 0.995 0.999 1.000

150 0.952 0.980 0.989 1.000 1.000 1.000

*The data are simulated from model (6.37).

Table 6.12: Empirical powers of the proposed test Ln at 0.05 significance level

for ARCH(1) dependent type.

(p, n) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5)

(50,50) 0.257 0.396 0.425 0.605 0.732

(50,100) 0.597 0.879 0.890 0.899 0.998

(100,200) 0.727 0.978 0.997 0.998 0.999

(200,200) 0.738 0.990 0.999 1.000 1.000

(200,300) 0.828 0.992 0.998 1.000 1.000

(200,400) 0.887 0.997 1.000 1.000 1.000

(300,400) 0.906 1.000 1.000 1.000 1.000

(400,400) 0.922 1.000 1.000 1.000 1.000

*The data are simulated from model (6.38).
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Table 6.13: Ln under various scenarios for 5 randomly selected samples

(n,p) 5%critical values 1 2 3 4 5

(60,30) [0, 5.99] 395.44 462.76 481.85 443.79 481.46

(70,35) [0, 5.99] 595.84 642.31 620.96 592.63 632.87

(90,40) [0, 5.99] 902.55 928.89 1318.6 1173.9 914.25

*The critical values are the corresponding quantiles of the limiting distribution χ2(2) of

the statistic Ln for (n, p) = (60, 30), (70, 35), (90, 40) respectively.





Chapter 7
Discussion and Future Research

7.1 Conclusion

This research work develops some independence tests for high dimensional data

by the tool of large dimensional random matrix theory. Two types of indepen-

dence tests are considered.

For the independence test between two high dimensional random vectors, we

propose linear spectral statistics of classical and regularized canonical correlation

matrices respectively. Moreover, the LSD’s and CLT’s for these matrices are

developed by discussing the Gaussian case and the general case respectively.

Regard to the independence test between a large number of high dimensional

random vectors, we have talked about three cases. When the components of

each random vector are i.i.d., we propose a linear spectral statistic by using the

characteristic function of the ESD of the sample covariance matrix. When each

random vector has a linear dependent structure or is a covariance stationary

process, the first two moments of the ESD of the sample covariance matrix are

utilized to do the independence test. As an independent contribution in random

matrix theory, the LSD and CLT are developed for the sample covariance matrix

whose columns are independent covariance stationary processes.
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For each independence test, some simulation results are provided to show the

effectiveness of our proposed test statistics.

7.2 Future Research

In high dimensional data analysis, more complicated data appear rather than

just i.i.d. or stationary processes. We will use large dimensional random matrix

theory to investigate more practical data which appear frequently in economic

or finance, such as co-integrated time series, etc.

As this research work focuses on independence test for high dimensional data,

some other problems arise once the null hypothesis is rejected. As more and

more sections are grouped together, the appearance of cross-sectional dependence

is quite natural and common. In view of this, measuring the degree of cross-

sectional dependence is more important than testing its presence. A natural

question is how to model dependence between a large number of random vectors?

Modeling and Estimation of dependence are one of our main future research work.
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