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SUMMARY 
 

The state-of-art studies on mass customization in healthcare systems largely 

focus on medical sciences, informatics, management and technology domains, while 

little research has been devoted specifically to mass customization of healthcare 

services. Inspired by the success of mass customization in manufacturing industry and 

genetic value proposition of mass customization in terms of being demand driven, 

modularity, value co-creation and configuration, this research aims to investigate the 

theoretical feasibility and practical applicability of adopting mass customization for 

healthcare service delivery.  

As healthcare is essentially a type of service that deals mainly with processes, 

this research focuses on the development of a data-driven approach for process 

redesign to enable mass customization of healthcare services. Corresponding to basic 

principles of mass customization, this research addresses three main issues of 

enabling mass customization in healthcare, namely patient-centered pathway 

identification, healthcare process modularization, and healthcare service 

configuration, respectively.  

In patient-centered pathway identification, the basic rationale is to view 

healthcare services from the perspective of individual patients. This research develops 

a method based on process mining to extract the underlying structure of clinical 

pathways that reflect the mapping from individual patients’ medical needs to diversity 

of healthcare services. The Heuristics Miner algorithm is adopted and implemented to 

discover clinical pathways in a case study. By varying the dependency threshold 

levels, a series of pathways are generated. The all-activity-connected pathway 

achieves the highest values in all fitness measurements, which can serve as a basis to 

devise customized pathways according to a patient’s specific conditions.  
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Modularization is a key factor of mass customization to reduce process 

complexity and enhance flexibility in providing customized healthcare services. This 

research develops a process modularization and sequencing method based on design 

structure matrix (DSM), which groups closely interacted healthcare services into 

service modules through genetic algorithm (GA) to minimize total coordination cost. 

The performance of GA for modularization is analyzed by examining total 

coordination cost with respect to the key parameters. Sequences of service modules 

are adjusted in order to minimize feedback interactions among different modules. The 

clinical pathway is eventually redesigned into a modular clinical pathway based on 

the re-sequenced process modules and medical constraints.  

With modular clinical pathway redesigned, it becomes possible for individual 

patients to configure their healthcare services. A decision support model is developed 

to integrate individual patients into the healthcare delivery process by providing their 

key preferences. Healthcare service configuration is essentially to generate an 

appointment schedule for a patient to receive a package of healthcare services. The 

configuration is formulated as a dynamic resource-constrained project scheduling 

problem in this research. A bi-level GA-based scheduling algorithm is developed for 

problem solving. The algorithm for healthcare service configuration is demonstrated 

by examining different schedules and the associated resource utilization. What-if 

analysis is conducted to compare the appointment scheduling time and makespan 

between the as-is and to-be cases. It is found that healthcare service configuration 

enables the healthcare services to be customized and delivered with high efficiency. 

Mass customization of healthcare services is still a new concept. This research 

makes original contribution in terms of formulating the problem in a proper context 

and developing systematic methods towards its implementation.  
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CHAPTER 1 INTRODUCTION 

 
    This chapter first introduces challenges faced by the healthcare delivery 

system and recent developments as the general background of the proposed 

research. The research problem is then defined with specific objectives and 

scope articulated. The overall design of the research is outlined and key 

research issues are briefly discussed. Organization of the report is given at the 

end of the chapter.   

1.1  Introduction 

    Healthcare systems around the globe are faced with enormous challenges 

to deliver high quality healthcare services at affordable costs to an increasingly 

long living and aging population (WHO 2000). Despite increasing healthcare 

spending, the rapid growth of demand for healthcare services has outpaced that 

of the supply of medical resources in both developing and developed countries 

(WHO 2006), resulting in restricted access to care, congested hospitals, long 

waiting queues, and compromised quality, among many other problems 

(Worthington 1991; IOM 2001). Given the already high percentage of 

healthcare expenditures in many national economies, the long-term 

sustainability of a healthcare system cannot rely solely on capacity expansion in 

terms of more hospitals, doctors, nurses, and more public funds but requires a 

redesign of the healthcare delivery system to make it more efficient and cost 

effective (Reid et al., 2005).  

The healthcare delivery system has become a very complex service system. 

Increasingly specialized medical disciplines and care providers result in a large 

number of fragmented healthcare services offerings (Lenz and Kuhn 2004). The 
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delivery of healthcare services involves a wide range of distributed activities, 

performed by collaborative efforts of professionals with different skill sets, 

knowledge, and organizational culture, which often lead to high complexity, 

insufficient coordination, and lack of integration (Lenz and Reichert 2007, Mans 

2008 and 2009).  

A growing segment of the population exhibits more complex clinical 

manifestations and increasingly diversified healthcare needs who demands 

customized healthcare services. These patients are generally faced with 

different combinatory of multiple conditions (Drake and Lowenstein 1998; 

Vogeli et al. 2007). Patients with multiple conditions refer to people have two or 

more concurrent conditions including medical illnesses and physical problems 

(Anderson 2010). In the U.S., it is estimated that the number of patients with 

multiple conditions will increase from 63 million in year 2005 to 81 million in 

year 2020 (Anderson and Jane Horvath 2002). In current healthcare delivery 

system, patients are treated by standard disease-specific care pathways and 

advised to go through various departments, clinics and providers for care 

services (e.g. consultation, test, treatment) which are similar to jobs to be 

processed in a mass production factory. The supply-driven healthcare delivery 

system with increasingly specialized disciplines is becoming ineffective to 

fulfill the increasingly diversified patients’ needs for healthcare services. 

Inefficiencies display in many aspects, i.e. long waiting time, high risks of 

conflicting medical advices, duplicate tests and unnecessary hospitalization 

(Bodenheimer 2008). In terms of medication, the complex clinical 

manifestations often results in recommendations of additional medications. 

Patients have the potential for harms associated with adverse drug-drug 
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interactions (Tinetti et al. 2004). Evidence can be found in Anderson (2001) and  

Vogeli et al. (2007) and is summarized in Figure 1.1. 

 

Figure 1.1: Comparison on patient with different number of conditions 

    Patients with multiple conditions see up to 14 different physicians annually 

and on average visit care providers 12 times while patients with a single 

condition only consult 4 physicians and visit care providers less than twice 

annually. It can be seen that these patients have to make many appointments 

with different specialties and visit care providers multiple times to get treatment. 

Furthermore, patients with multiple conditions are prescribed as many as 34 

drugs which are 17 times more than patients with a single condition. Problems 

are going to be much more serious as there are a growing number of individuals 

with diversified and specific medical needs who need customized healthcare 

services to be tailored for them.  

    Given the enormous diversity in both patients’ needs and healthcare 

service offerings, the healthcare delivery system is confronted with the 

challenge to offer an increasing variety of healthcare services according to 

individual patient’s medical needs while in the meantime to control rapidly 
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increasing healthcare cost. A fundamental research problem to be addressed in 

this research is how to fulfill a rapidly growing and increasingly diversified 

demand for healthcare services with a rapidly expanding portfolio of offerings 

but limited financial resources.  

    This is not simply a clinical problem but requires solution on the system 

level. The Institute of Medicine (2001) of U.S. has called for a redesign of the 

healthcare delivery system so that “care is customized according to patient 

needs and values” and “the patient is the source of control”. Similarly, the 

World Health Organization (2000) advocates three goals, namely good health, 

responsiveness to the expectation of the population, and fairness of financial 

contribution.  

    If history could be of some reference, this challenge is not unique to the 

healthcare industry per se, but has been confronting manufacturing industries 

for decades. What is inspiring here is that the manufacturing industry has 

advanced to the age of mass customization, under which manufacturers are able 

to produce and deliver goods according to individual customers’ specific needs 

with high efficiency and low cost (Pine 1993; Tseng et al., 1996). Is mass 

customization an appropriate paradigm for healthcare? On the one hand, 

healthcare is similar to manufacturing in many ways and the healthcare industry 

has been historically learning from the manufacturing industry in both 

management innovation and technology adoption (Christensen et al., 2009). 

Some researchers have explicitly called for a redesign of the healthcare system 

based on mass customization (e.g. Chao 2003; Davila 2002), and other streams 

of research, e.g. consumer-driven health care (Herzlinger 2002; Herzlinger and 

Parsa-Parsi 2004) and personalized medicine (Langreth and Waldholz 1999; 
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Abrahams et al., 2005), are also pointing in this direction. On the other hand, 

healthcare remains fundamentally different from manufacturing in the sense 

that it is essentially a service where people’s health or life is at stake (Tien and 

Goldschmidt 2009; WHO 2000). The different quality standards, regulatory 

framework, and industry structures make it a legitimate concern regarding how 

far the analogy between manufacturing and healthcare can be carried when it 

comes to adopting mass customization for healthcare.  

    However, up to date, little research has been devoted specifically to mass 

customization of healthcare services, although the topic has been touched upon 

in many fields of research including medical research, operations management, 

informatics and technology management etc.    

1.2  Research Objective and Scope 

    This research aims to investigate the theoretical feasibility and practical 

applicability of adopting mass customization for healthcare service delivery. As 

healthcare is essentially a type of service that deals mainly with processes 

instead of products as in manufacturing, this research focuses on the 

development of a data-driven approach for process redesign to enable mass 

customization of healthcare services according to individual patient’s needs 

with high efficiency.   

    However, there is a large spectrum of healthcare services, not all of which 

are suitable for mass customization. Two prerequisite conditions for mass 

customization are the existence of demand for customized products/services and 

the availability of flexible processes (Hart 1995). Based on these two 

dimensions, this research focuses on patients with multiple conditions as the 

main subject of study, as these patients tend to have non-regular and 
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individual-specific needs for healthcare services (Piette and Kerr 2006).  

    In the medical domain, this research focuses on the healthcare services that 

can be delivered with relatively high accuracy and precision, which corresponds 

to the “precision medicine” and “empirical medicine” as defined by Christensen 

et al. (2009). More specifically, the precision medicine refers to care for 

diseases that can be diagnosed precisely and for which treatments are 

predictably effective through algorithm-driven interventions. The empirical 

medicine refers to care for diseases that treatment outcomes can be described in 

probabilistic terms. This research leaves out “intuitive medicine”, which refers 

to care for conditions that are diagnosed by symptoms and treated with 

therapies of uncertain efficacy. If patients are with complicated problems and 

precise diagnosis is impossible, treatments must be given through intuitive 

testing and pattern recognition by experienced professionals. The intuitive 

medicine has been traditionally provided with customization, but it is not 

suitable for mass customization, which aims to provide customized services on 

a large scale with high efficiency.  

    It should be noted that the scope of healthcare services that are suitable for 

mass customization is dynamic instead of static. The scientific progress in 

diagnostic imaging, genetic identification and biochemistry has long been 

shifting diseases along the spectrum from intuitive toward precision medicine 

(Christensen et al. 2009). Many deadly diseases in the past can be cured with 

innovative drugs or therapies with routine procedures nowadays. In general, 

those patients whose diseases can be diagnosed precisely or at least well 

understood and verifiable, treatments can be delivered through the precision 

medicine or the empirical medicine, and healthcare services can be customized 
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according to individual patients’ needs.  

1.3  Research Approach 

    Mass customization has been proven an effective production paradigm in 

the manufacturing industry. Although healthcare differs from manufacturing in 

many significant ways, the basic value proposition of mass customization in 

terms of being demand driven, modularity, and value co-creation is generic and 

can be transferred for healthcare service delivery. Mass customization requires 

alignment of processes based on individual customers’ needs, simplifying 

internal complexity while maintaining external variety to meet diversified needs, 

and integrating customers into value co-creation. Corresponding to these basic 

principles of mass customization, this research addresses three main issues of 

enabling mass customization in the context of healthcare: (1) patient-centered 

pathway identification, (2) healthcare process modularization, and (3) 

healthcare service configuration. The research framework is outlined in Figure 

1.2. 

 
Figure 1.2: The proposed research framework 
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1) Patient-centered pathway identification 

    A key principle of mass customization is that it is a demand driven, 

customer-centric system. In the context of healthcare, this means healthcare 

services need to be delivered based on patients’ individual-specific needs. To 

enable mass customization of healthcare services, a clear matching between an 

individual patient’s needs and healthcare processes is necessary. The 

patient-centered pathway, from a patient’s point of view, describes required 

healthcare services according to a patient’s medical needs. However, the 

complexity involved in both diversified medical needs and numerous medical 

service offerings causes the difficulty to identify patient-centered pathway. 

    This research proposes a method based on process mining for 

patient-centered pathway identification. This method starts with an event log. 

The event log contains information extracted from electronic medical records 

(EMRs) of patients with the same or similar medical conditions. It details 

healthcare services execution information based on individual patients. The 

process discovery algorithm uses a statistical way to learn from the event log 

and distill a well-structured process network (i.e. clinical pathway).  The 

discovered pathway essentially establishes the matching between a patient’s 

medical needs with healthcare services by aggregating a group of patients’ 

healthcare processes.  

2) Healthcare process modularization 

    Modularity has been seen as a good way for low cost and efficient product 

design in mass customization. Healthcare process modularization is able to 

break up loosely linked healthcare services and arrange them into modules that 

can greatly reduce complexity and be performed rather independently. 
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Modularized healthcare processes facilitate care delivery to be better 

coordinated through flexible combination or configuration according to a 

patient’s medical needs. 

    This research develops a process modularization method using DSM to 

represent dependencies between healthcare services from the complicated 

graph-based process model. Care modules are identified by grouping closely 

interdependent care services into clusters and at the same time minimizing 

interactions between different modules. The identified care modules are 

re-sequenced with the purpose of minimizing feedback information. The 

clinical pathway is redesigned based on the re-sequenced process modules and 

medical constraints. The outcome is a modular clinical pathway. It provides a 

foundation to support mass customization through flexible configuration. 

3) Healthcare service configuration 

    With the redesigned modular clinical pathway, it becomes possible for 

individual patients to configure their healthcare services themselves or with the 

help of health professionals. Mass customization aims to integrate patients into 

the medical decision making in the healthcare package design and value 

co-creation.  

    Unlike product configuration in manufacturing, healthcare service 

configuration is to generate a schedule for a patient to receive different 

healthcare service modules. In other words, the configured healthcare package 

is essentially an appointment for a patient to receive a package of healthcare 

service modules. Healthcare service configuration is formulated as a multiple 

resource-constrained single project scheduling problem. The objective is to find 

optimum or near-optimum solutions that best fit the individual patient’s 
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preferences, which takes into account the process constraint and resource 

availability in medical diagnosis. Eventually, the outcome is a healthcare 

service package which contains a serial of healthcare service modules for a 

patient. 

    In summary, by focusing on patient-centered pathway identification, 

healthcare process modularization, and healthcare service configuration, this 

research tackles some of the most important challenges in the transition from a 

physician-centered healthcare system that still operates on the doctrines of mass 

production towards mass customization of healthcare services, in which 

healthcare processes are organized around individual patients and value is 

collaboratively created by physicians and patients in terms of best meeting 

individual patients needs with high efficiency and low cost.  

1.4  Report Organization 

    The remainder of this report is organized as follows: Chapter 2 is literature 

review which broadly surveys mass customization and healthcare service 

delivery research. The basic concept and recent development in each of these 

research streams are critically reviewed, and the gap in the existing literature on 

mass customization of healthcare services is summarized. The three main 

research issues in Fig. 1.2 will be addressed further in terms of significance to 

enable mass customization of healthcare services, proposed methodology for 

problem solving from Chapter 3 to Chapter 5. In Chapter 3, the motivation for 

patient-centered pathway identification is discussed. A method based on process 

mining is developed. A case study is used to illustrate the Heuristics Miner 

algorithm for clinical pathway identification. Chapter 4 presents the importance 

of modularity in healthcare. The clinical pathway redesign problem is 
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formulated using the DSM technique. A modularization and sequencing 

algorithm is developed using GA. A case is adopted to demonstrate the 

developed methods. In Chapter 5, a decision framework is proposed to enable 

individual patients to be integrated into the healthcare delivery process. In this 

framework, the healthcare service configuration is modeled as a 

resource-constrained project scheduling problem (RCPSP). A bi-level 

GA-based scheduling algorithm is developed to match a patient’s medical needs 

and preferences with available resources. The feasibility of healthcare service 

configuration is demonstrated by a case study. Comparison and discussion on 

healthcare service delivery performance are given at the end of the chapter. 

Finally, Chapter 6 summaries research work that has been done and discusses 

contribution and limitation of this research. 
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CHAPTER 2 LITERATURE REVIEW 
 
    This chapter reviews relevant literature in mass customization and 

healthcare service delivery research. The basic concept and recent development 

in each of these research streams are surveyed and critically reviewed, and the 

research gap is summarized at the end of the chapter.  

2.1  Mass Customization  

2.1.1 Mass Customization Concept  

    The concept of mass customization was first expressed in Toffler’s book 

Future Shock, in which he predicted that future manufacturing enabled by 

information technology would be able to provide customized products on a 

large scale with little or no extra cost (Toffler 1970). The term ‘mass 

customization’ was first coined by Davis (1987) in his book Future Perfect, in 

which he described a trend where companies sought to micro-segment markets 

and offer unique products and services to customers. It was Pine and his 

colleagues who had popularized the concept of mass customization and ignited 

a wave of academic research and industrial experimentation (Pine et al., 1993; 

Pine 1993). In their work, mass customization was defined as the ability to 

provide individually designed products and services to every customer through 

high process agility, flexibility, and integration. Many authors propose more 

practical definitions by describing mass customization as a system that uses 

information technology, flexible processes, and organizational structures to 

deliver a wide range of products and services that meet specific needs of 

individual customers at a cost near that of mass-produced items (e.g. Hart 1995; 

Tseng et al., 1996).  
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Mass customization has attracted tremendous interests from both academia 

and industry in the past decades. The work involves many aspects in terms of 

theory development and implementation. Comprehensive and up-to-date 

literature reviews on mass customization are presented in Da Silveira et al. 

(2001) and Fogliatto et al. (2012). 

2.1.2 Value Creation in Mass Customization 

    Although mass customization shares many common features with craft 

production, mass production, and lean production, it entails different ways of 

engaging customers and a different system for value creation. Table 2.1 

summarizes key characteristics of different production paradigms. 

Table 2.1: Production paradigms and their key characteristics 

 Craft production Mass production Lean production 
Mass 

customization 

Goal Customization,  
high quality 

High efficiency, 
low cost 

High quality, low 
cost 

Customization,  
low cost 

Economics Differentiation and 
customer integration Economies of scale Waste reduction 

Economies of 
scope, customer 
integration 

Focus 
Customer need 
identification and 
satisfaction  

Efficiency through 
standardization 
and aggregation 

Efficiency through 
continuous process 
improvement 

Variety and 
customization 
through 
flexibility  

Product 
Custom products 
designed/engineered 
to order 

Standard products 
built to inventory 

Standard products 
built to order 

Standard 
modules 
assembled to 
order 

Market Focused niche 
markets 

Homogeneous 
mass market 

Homogeneous 
market segments 

Heterogeneous 
niche markets 

Customer 
Involvement High Minimum Low Medium  

It is important to note that the production paradigms described above are 

not mutually exclusive. Elements of craft production, mass production, and lean 

production can be found in mass customization. More specifically, 

identification of customer needs and definition of custom solutions in mass 
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customization are similar to those in craft production; standard modules used in 

mass customization can be mass produced in large batches; and order 

fulfillment in mass customization is essentially a pull-based system that is 

similar to lean production. Depending on the point of customer involvement, 

mass customization consists of a continuum of strategies between pure craft 

production and mass production with different levels of customization (Piller et 

al., 2004; Da Silveira et al., 2001).Mass customization heralds a new way of 

labor division between customers and manufacturers. Under mass 

customization, customers are no longer passively involved in the value creation 

process as in mass production but act proactively as a co-designer or 

co-producer by providing key design or production inputs. The key principles 

underlying mass customization are economies of scope and customer 

integration (Piller et al., 2004).  

    A precondition of mass customization is that there exists a fragmented 

market with diversified customer needs (Zipkin 2001). By offering a large 

variety of products and engaging customers into the product creation process, 

mass customization is able to best fulfill customers’ individual-specific needs in 

terms of fit, function, and/or aesthetics. As a result, customers are generally 

willing to pay a premium for a customized product relative to a mass produced 

product that is designed for an “average customer”. From a manufacturer’s 

perspective, the success of mass customization hinges upon its capability to 

counter balance the additional costs associated with large product variety, 

increased operational complexity, and loss of economies of scale. In the last two 

decades, many methodologies and technologies have been developed to address 

these challenges in mass customization. For example, platform-based design 
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methodologies have been developed to design product families that can cater to 

diversified customers’ needs while maintaining a relatively stable architecture 

that can be reused (Tseng et al., 1996); flexible and reconfigurable 

manufacturing systems have been developed to handle the dynamic production 

setups and changeovers; decoupling and postponement have been recognized as 

effective supply chain strategies that can achieve high responsiveness to 

customer orders with minimum inventory costs; and information technologies 

like user toolkits are able to facilitate the task of customer need elicitation and 

product definition. 

    In general, the value proposition of mass customization can be 

summarized as giving customers choices that best match their individual needs 

and enabling manufacturers to interact directly with customers thus efficiently 

utilize resources with minimum wastage. The key to the success of mass 

customization lies in the capability to seamlessly engage customers into the 

value creation process by involving them in the right tasks and giving them the 

right tools, and to effectively control cost by reducing operational complexity 

and/or increasing process flexibility. The continuing fragmentation of mass 

markets and advancement of enabling technologies make mass customization 

an increasingly more viable strategy (relative to mass production) in many 

industries.  

2.1.3 Mass Customization in Service Industries 

Although mass customization has been discussed in the context of 

manufacturing, its basic principles and concepts can be applied to service 

industries as well (Pine 1993, Da Silveira et al. 2001; Piller and Tseng 2010). It 

has been generally recognized that services are fundamentally different from 
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products in the sense that they are intangible, perishable, and their production 

and consumption are simultaneous (Fitzsimmons and Fitzsimmons 2008). As a 

result, services cannot be kept as inventory or delivered in an intermediate form. 

Despite these apparent differences, there are many similarities between 

manufacturing and service operations. Many management and technology 

innovations originally developed in manufacturing industries have found 

applications in service industries with significant improvement in efficiency. 

Citing examples like McDonalds, Levitt (1972) considered services as 

“manufacturing in the field” and advocated a production line approach to 

manage service operations. Sundbo (1994) postulated a thesis of convergence 

between service and manufacturing organizations based on modularization of 

service production.  

  Services have an inherent element of customization as customers are both 

the recipients and co-producers of the services (Fitzsimmons and Fitzsimmons 

2008). A critical challenge faced with many service operations is how to 

efficiently handle customer introduced variability (Frei 2006). The general 

value proposition of services in terms of customer integration, customization 

and efficiency is consistent with that of mass customization in the context of 

manufacturing. Key concepts of mass customization, e.g. value co-creation, 

modularity and flexibility, can be generally transferred from manufacturing to 

the service context. Similar to modular product families, modular service 

portfolios have been proposed as a methodology for service design (Jiao et al. 

2003, Sundbo 1994). Flexible service processes have been proposed as a 

solution to handle the high variability in customized service requests (Hart 

1995). Mass customization is gradually finding applications in a wide range of 
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service industries that include finance, education, wireless communication etc. 

(Piller and Kumar 2006; Chen and Pau 2010). Deep discussions on service 

mass customization specific challenges can be found in Haas and Kunz (2010).  

2.2  Healthcare Delivery  

2.2.1 The Nature of Healthcare 

    There is ongoing debate regarding what healthcare really is and how it is 

different from manufacturing and other service industries. On the one hand, 

healthcare, like other products and services, is an economic resource that is 

subject to market dynamics in supply and demand (e.g. Herzlinger and 

Parsa-Parsi 2004; Porter and Teisberg 2006). Patients can be taken as 

consumers who demand healthcare to fulfill their medical needs. Healthcare 

providers supply healthcare in terms of medicines and/or treatments in 

exchange of a fee. The decision upon transaction is subject to patients’ and 

healthcare providers’ economic means and incentives. In this sense, the 

provision and consumption of healthcare are not that different from the 

production and consumption of manufactured products. On the operational level, 

there are also many similarities between healthcare delivery and goods 

production. Patients can be treated analogously as “jobs” to be processed, 

doctors as “technicians”, hospitals as “factories”, patient pathways as “routings”, 

and the analogy goes on (e.g. McCarthy 2006; Shih 2008). Based on such 

similarities, many operations management techniques originated in 

manufacturing are finding increasing applications in healthcare, including 

hospital capacity planning, emergency department staffing, and surgery room 

scheduling (e.g. Brandeau et al., 2004; Reid et al., 2005).  

    On the other hand, healthcare is fundamentally different from 
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manufacturing in the sense that it is essentially a type of service, which is 

generally characterized by such properties as simultaneity, perishability, and 

intangibility (Fitzsimmons and Fitzsimmons 2008). The 

diagnosis-and-prescription involved in healthcare is basically a problem solving 

process that is experimental in nature, which resembles that of other 

professional services such as legal counseling, financial advisory, and business 

consulting (Bohmer 2009). But, healthcare differs fundamentally from these 

services as well because it deals with people’s health, which biologically 

defines the well-being of a human being. As succinctly pointed out by Miller 

(1978), “of all the objects in the world, the human body has a peculiar status: it 

is not only possessed by the person who has it, it also possesses and constitutes 

him.” This basic biological difference between health and other assets makes it 

difficult to determine a market value for healthcare, and it exaggerates other 

forms of market failure such as moral hazard and asymmetric information 

(WHO 2000). As a result, healthcare carries significant social and moral values 

that go beyond its economic value, and human rights and dignity are important 

aspects of healthcare.  

    The above two camps of arguments reflect a fundamental gap of 

understanding regarding the nature of healthcare between engineering and 

medicine, with the former emphasizing the “economic and technical” aspects of 

healthcare while the latter emphasizing the “biological and social” aspects 

(Reid et al., 2005). Some researchers argue that such a dichotomy of views is 

over simplified and they suggest that there is a spectrum of healthcare between 

these extremes. For example, Christensen et al., (2009) define three categories 

of healthcare, namely precision medicine, empirical medicine, and intuitive 
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medicine. Precision medicine refers to care for diseases that can be diagnosed 

precisely and for which treatments are predictably effective through 

algorithm-driven interventions; empirical medicine refers to care for diseases 

that treatment outcomes can be described in probabilistic terms, and intuitive 

medicine refers to care for conditions that are diagnosed by symptoms and 

treated with therapies of uncertain efficacy. Precision medicine is close to 

manufacturing in nature while intuitive medicine is close to professional 

services, and empirical medicine is somewhere in between. 

2.2.2 Healthcare Delivery System and Evolution  

    A health system is defined to include all the activities whose primary 

purpose is to promote, restore or maintain health (WHO 2000). Such activities 

include formal health services like the professional delivery of personal medical 

attention, all use of medication, home care, public health promotion and disease 

prevention, health insurance, regulation, as well as medical education etc. 

Similar to the Institute of Medicine (IOM) of U.S. (2001), this research defines 

a healthcare delivery system as a subset of a health system by focusing on 

activities that are directly involved in the provision, transaction, and 

consumption of healthcare services. Figure 2.1 illustrates the structure of a 

general healthcare delivery system.  
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Figure 2.1: The structure of a general healthcare delivery system 

    The backbone of a healthcare delivery system lies in the 

suppliers-providers-patients axis. The suppliers (including pharmaceutical 

companies and medical device manufacturers etc.) supply medicine and 

medical equipment, based on which healthcare providers (including hospitals, 

clinics, nursing homes, and households etc.) provide healthcare services in 

terms of diagnoses, prescriptions, and/or surgeries to patients. The product and 

service flow is quite straightforward, but the reverse capital flow is more 

complicated.  Patients’ payment for healthcare services depends on their 

insurance plans. For those without any insurance, the whole price of healthcare 

services is borne by the patients. For those with insurance (universal coverage 

provided by government, health benefits offered by employers, or 

self-purchased health insurance from insurers), patients pay a proportion for the 

healthcare services as co-payment and 3rd party payers (including government 

and insurers) are responsible for the rest. There is usually a complex contracting 

and auditing relationship among patients, employers, 3rd party payers and 

healthcare providers regarding the insurance premiums and claims of healthcare 

expenses. Furthermore, healthcare delivery systems are usually highly regulated 
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by various government agencies regarding various healthcare issues including 

safety, quality, and equality etc. 

    The evolution of the healthcare delivery system relative to the 

manufacturing industry indicates that the healthcare system has been a follower 

of the manufacturing industry in terms of management innovations. Figure 2.2 

sketches a historical timeline of the major paradigm shifts in the evolution of 

healthcare delivery systems relative to manufacturing systems. 

 

Figure 2.2: Evolution of healthcare delivery system and manufacturing system 

  Both healthcare and manufacturing started as cottage industries, in which 

healthcare services and manufacturing products were customized to the needs 

of individual patients and customers, respectively. The invention of machines 

during industrial revolution and the adoption of standard, interchangeable parts 

eventually led to the rise of mass production as a dominant paradigm for 

manufacturing, epitomized by Henry Ford’s assembly line in the early 20th 

century. In the meantime, modern medicine based on chemistry and biology 

gradually became the foundation for healthcare, and hospitals emerged as a 

central place to house medical equipment and provide medical treatment. It was 

an interesting anecdote that Henry Ford funded and built one of the biggest 
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general hospitals in Detroit in 1920s based on a blueprint adopted from mass 

production (Smits et al. 2003). Championed by Toyota, lean production 

emerged in the 1960s as a new manufacturing paradigm, in which production is 

demand driven pulled by actual customer orders instead of demand forecast. 

Activities that do not contribute to fulfilling customer demand were deemed as 

wastage in a lean paradigm and should be removed relentlessly. By aligning 

production with demand and streamlining production and distribution processes, 

lean production was able to deliver high customer value with low cost. Recently, 

lean production as a conceptual framework has been adopted to improve quality, 

reduce cost, and improve patient satisfaction in healthcare (Jimmerson et al. 

2005). Other initiatives have been witnessed towards establishing a new 

paradigm for healthcare delivery system, such as managed care (Miller and Luft 

1994), and total quality management (Shortell et al. 1995). Developments in the 

healthcare system show that most of paradigms were originated in the 

manufacturing industry. 

  A drawback of lean production lies in its inefficiency in handling highly 

diversified demand. Mass customization has emerged as a new manufacturing 

paradigm that promises to deliver products and services according to individual 

customers’ needs with high efficiency that is comparable to mass production 

(Pine 1993, Tseng et al. 1996). The healthcare industry is currently faced 

similar challenges as patients are biologically different and have 

individual-specific needs for healthcare services.  

2.3  Towards Mass Customization of Healthcare Services 

    Current healthcare delivery systems are still operated mainly based on a 

mass production paradigm and the concept of mass customization can be 
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applied to service industries in general. Healthcare, like other products and 

services, is an economic resource that is subject to market dynamics in supply 

and demand (e.g. Herzlinger 2004; Porter and Teisberg 2006). Generally, 

patients can be taken as consumers who demand healthcare to fulfill their 

medical needs. Healthcare providers supply healthcare in terms of medicines 

and/or treatments in exchange of a fee. The decision upon transaction is subject 

to patients’ and healthcare providers’ economic means and incentives. In this 

sense, the provision and consumption of healthcare services are not that 

different from the production and consumption of manufactured products like a 

computer or car. Operations in most hospitals, like factories, are composed of 

different functional departments staffed with different health professionals, and 

patients flow through the system undergoing different treatments in a similar 

way as a product going through an assembly line. Thus, on the operational level, 

there are many similarities between healthcare delivery and manufacturing 

production. Based on this reasoning, the basic value proposition of mass 

customization can be transferred for healthcare service delivery.  

    In addition, mass customization has a special appeal to healthcare delivery 

as every patient is biologically different and has individual specific needs for 

healthcare services. By mass customization of healthcare services, care 

providers are able to provide customized healthcare services based on 

individual patient’s medical profiles and specific needs. Growing research in a 

wide range of fields is contributing towards mass customization of healthcare 

services. Technological advancement and innovations are leading the healthcare 

industry into a new era of mass customization (Pine and Gilmore 2001; 

Laiacona 2001). Science and technology advancement both in medicine and in 
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other disciplines like information and communication has fundamentally 

changed the ways that how physicians and patients can interact and how 

healthcare services can be delivered. There is an underlying shift in the 

relationship between physician and patient. New technologies and new medical 

science enable physicians to diagnose increasingly precisely and for which 

treatments are tailored with predictably effective for individual patients. 

Focused value adding processes on treatment contribute to improve efficiency 

while reducing cost in care providers. At the same time, new information and 

new communication technologies make patients to be more informed and 

educated. Patients know much better about their own health so that they are 

capable of participating in care delivery by self-caring and in charge of both 

cost and health. Together these changes are helping shape a new framework for 

healthcare delivery - one that is centered on mass customized care. 

2.3.1 Evidence-based and Personalized Medicine  

    Much like physics and chemistry are the scientific foundation of modern 

manufacturing, healthcare service delivery is fundamentally governed by the 

science of medicine. Traditionally, medical prescription and treatment were 

conducted through physical symptoms observation, intuitive experimentation, 

and a process of trial-and-error. With the advancement of medical knowledge 

and technology, physicians are able to diagnose and deliver treatment with 

increasing accuracy and precision. Christensen’s (2009) “intuitive  empirical 

 precision” framework provides a succinct description of the transition of 

healthcare service provision as our knowledge in medicine accumulates and 

advances. Figure 2.3 illustrates a general paradigm shift of medicine towards 

enabling mass customization of healthcare services. 
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Figure 2.3: Medicine paradigm transit 

The predominant methodology for medicine development is to seek a 

blockbuster, one-size-fits-all solution for a mass market. New medicine is 

usually developed targeting a representative condition or an “average” patient 

in a market segment. The developed drug is then tested with selected patients in 

clinical trials. Results are compiled statistically to determine the effectiveness 

of the drug, based on which drugs are produced in accordance to the “average” 

patient so that maximum market can be addressed. However, increasing 

evidence has shown that many patients, especially those with unique medical 

conditions, are often not responsive to the so-called blockbuster drugs; and even 

worse, significant adverse effects are often observed (Robert et al., 2004). On 

the front of healthcare service delivery, it has been often quoted that “medicine 

is more an art than a science”. It was also found that medical decisions are 

complex, highly uncertain, and prone to human errors (Wennberg and 

Gittelsohn 1973). For the same illness, there is a wide range of variation in 

terms of treatments and effectiveness across different physicians, hospitals, and 

regions. Such variations imply a “quality chasm” in healthcare service delivery 
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(IOM 2001).  

    Evidence-based medicine seeks to address variability and its associated 

quality issues in healthcare service delivery by anchoring medical decision 

making upon verifiable evidences. Evidence-based medicine is defined as “the 

conscientious, explicit and judicious use of current best evidence in making 

decisions about the care of individual patients” (Sackett et al., 1996). The basic 

premise of evidence-based medicine is that: there is one and only one best 

prescription and treatment for a given condition of a specific patient. Although 

every patient is unique in terms of medical conditions and needs, the delivery of 

healthcare should be under discretion of individual physicians who are able to 

synthesize all of the important information about the patient, the relevant 

research readily available, and experiences with previous patients to determine 

the best course of action (Eddy 2005). Recent development in healthcare 

information (e.g. clinical trials, medicine effects, and intervention reviews etc.) 

and communication have made it possible for health professionals to integrate 

clinical expertise and external evidence in making decisions about the care of 

individual patient. The rapid accumulation of medical evidences paves the way 

towards standardization in diagnosis and treatment. With sufficient amount of 

evidences, medical decision making could be implemented via some form of 

algorithm, which takes into account all the evidence available and suggests the 

best prescription or treatment accordingly. Thus, development in 

evidence-based medicine establishes a foundation that is able to capture 

medical knowledge on a population level, while in the meantime allowing 

customization of healthcare services tailored to individual patients based on 

individual-specific conditions.  
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    Advancement in the field of genomics further pushes the boundary of 

medical knowledge and makes it possible to develop personalized medicine, 

which promises more potent and precise medical treatment according to 

individual patients’ genetic information and other unique characteristics 

(Gurwitz and Manolopoulos 2007; Amir-Aslani and Mangematin 2010). 

Personalized medicine is prescribed based on an individual patient’s genetic 

profiles, susceptible health conditions, and responses to a particular therapy. In 

other words, personalized medicine can eliminate unnecessary treatments, 

minimize the potential for adverse drug events, and, ultimately, improve patient 

outcomes. As personalized medicine is increasingly becoming a reality, 

healthcare services can be customized for each individual patient. Personalized 

medicine thus paves a foundation to design a healthcare delivery system based 

on the concept of mass customization.  

2.3.2 Consumer-driven Healthcare  

Most contemporary healthcare systems can be described as supply-driven 

and physician-centered, in which physicians choose the products/services 

purchased by patients or by third-party payers on behalf of the patients (WHO 

2000; Powell and Laufer 2010). The physician centric structure generates a 

number of inefficiencies. First, there is an inherent conflict of interest. 

Healthcare providers are usually paid based on the services they provided, a 

practice that is often referred to as “fee for service”. Under this compensation 

structure, physicians are motivated to over-treat a patient by means of 

additional tests or expensive procedures, even though the clinical benefit of the 

incremental care might not justify the associated risk (Harshbarger and Bohmer 

1999). Such conflict of interest also occurs upstream in healthcare supply chain. 
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The financial arrangement between healthcare providers and suppliers of 

medicine or medical devices may steer clinical decisions towards high cost 

solutions (Christensen et al., 2000). Second, the high costs of litigation and 

malpractice insurance motivate physicians to practice defensive medicine, 

which often has minimal clinical value for the patient (Kessler and McClellan 

1996). Empirical studies have shown that there is over-prescription of 

non-necessary diagnostic procedures across a wide range of medical disciplines. 

Third, as patients bear little of the direct cost of healthcare in traditional health 

coverage, they tend to over-consume medical resources by demanding 

expensive medicines or treatments. Given the loopholes listed above, there are 

enormous efforts by insurers to audit and control medical claims and by 

governments to regulate the healthcare industry, which translate into high 

overhead cost.  

    Consumer-driven healthcare is emerging as a new model of health 

coverage that promises to address many of the inefficiencies inherent in a 

supply-driven healthcare system. Herzlinger (2002) describes consumer-driven 

healthcare as “a new model of health coverage”, which “places control over 

both costs and care directly into the hands of employees (patients)”. Powell and 

Laufer (2010) define consumer-directed healthcare as “a systems approach that 

motivates individuals to shop for providers based on publicly available 

information regarding price and quality”. Despite the differences in definitions, 

consumer-driven (or consumer-directed, these two terms are used 

interchangeably in this thesis) healthcare generally refers to a market-based 

approach for health insurance transaction, in which patients purchase health 

plans based on their needs and the price of different healthcare services. By 
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putting patients in charge of healthcare dollars through personal Health Savings 

Accounts (HSAs) or other similar payment products, consumer-driven 

healthcare motivates patients to be discretionary in healthcare spending and 

forces healthcare providers to compete for patients’ patronage. Thus, a shift 

towards consumer-driven healthcare can potentially realign the incentives of 

various parties in a healthcare system towards delivering superior value to 

patients, and the competitive pressure among providers could spur productivity 

and innovation that will improve quality and drive down cost (Herzlinger and 

Parsa-Parsi 2004).   

    There is ongoing debate regarding the novelty and viability of 

consumer-driven healthcare. Proponents believe it to be a revolution that will 

change the entire system while critics consider it as no more than a tweak of the 

current system (Scandlen 2005). Supporters believe consumer-driven healthcare 

will encourage patients to become better-informed, more cost-conscious users 

of healthcare while opponents worry that patients will obtain fewer necessary 

and nonessential services alike (Wilensky 2006). In recent years, a number of 

studies have been reported in literature regarding the implementation issues and 

performance implications of consumer-driven healthcare. Herzlinger and 

Parsa-Parsi (2004) cite Switzerland as an example that has a functioning 

national customer-driven healthcare system, which achieves universal insurance 

and high quality of care at significantly lower costs than the employer-based US 

system. Buntin et al., (2006) confirm that consumer-driven plans are associated 

with both lower costs and lower cost increasing, but their effects on quality are 

non-conclusive with evidence of both appropriate and inappropriate changes in 

care use. Their studies indicate that consumer-driven healthcare plans do reduce 
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healthcare consumption, especially when patients share a large proportion of the 

cost.  

    In general, consumer-driven healthcare attempts to bring commercialism 

into healthcare and employs the invisible but powerful hand of market 

competition as the driving force to improve efficiency, quality, and reduce costs. 

Although commercialism is controversial and equality of care might be 

compromised, it is the most promising if not the only route towards realigning 

the incentives and unleashing innovation in an increasingly complex and 

dysfunctional healthcare system. As pointed out by WHO (2000), “If services 

are to be provided for all, then not all services can be provided”. The real debate 

is not whether we should embrace commercialism or not but how we can 

engage patients and best utilize the power of market. Despite various challenges 

in its early implementations, consumer-driven healthcare will rise and transform 

the healthcare systems towards the needs and value of individual patients. 

2.3.3 Consumer Health Informatics 

    In parallel to the development in fundamental medical science and 

medicine technology, there has been tremendous progress in the communication 

and information technology on the front end with patients. Traditionally, 

physicians had tight control over all medical information. But there is an 

increasing trend on reaching patients directly through computer networks in the 

recent decades to support and facilitate education, decision-making, 

communication, and many other activities. So that consumer health informatics 

emerged in response and is defined as “the branch of medical informatics that 

analyses consumers' needs for information; studies and implements methods of 

making information accessible to consumers; and models and integrates 



 

31 

 

consumers' preferences into medical information systems” (Eysenbach and 

Diepgen 2000).  

Through the Internet such as web service, open data source and digital 

television, widely available and accessible medical information greatly 

influences and changes the way patients learn, think and communicate. Firstly, 

patients are well equipped with fundamental medical knowledge including 

sickness prevention, disease symptoms, self-management, self-treatment and 

functional recovery etc. Although, these information do not and cannot replace 

physician visit; they can make it possible for individual patients to be actively 

engaged in healthcare decision making and encountered more productive for 

both doctor and patient (e.g. Bodenheimer et al., 2002; McDaniel et al., 2008). 

Secondly, Electronic Health Records (EHR) has found increasing applications 

in healthcare and promises great potential for efficiency improvement and cost 

saving (Makoul et al., 2001; Hillestad et al., 2005). This is because, on the one 

side, different care providers can access to the level of details regarding 

patient’s drug allergy, kidney or liver function, lab results and other institutions’ 

diagnosis; on the other side, patients are informed with their own health and 

taking more response to therapy. Last but not least, the development of 

consumer informatics based expert systems can support complex medical 

decisions making by synchronizing patient’s self-updated treatment outcome, 

personal risk factors, scientific evidence and even patient’s satisfaction. As a 

result, care services can be tailored to individual patients on a value co-creation 

base. 

    Information technology as a powerful force is leading healthcare moving 

towards mass customization. The availability of consumer informatics provides 
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cheap and effective means to link personal information to healthcare resources. 

Healthcare providers can communicate with individual patients and involve 

them into the healthcare delivery process, not simply as passive services 

recipients, but as active value co-producers. And, this helps to break down the 

barrier of information asymmetry and information stickiness that is often 

encountered in mass customization. Patients are becoming better informed and 

are more actively involved in the healthcare delivery process with the 

development of health informatics (Bodenheimer et al., 2002). 

2.3.4 Healthcare System Decentralization and Integration 

The delivery of the healthcare is essentially a type of service that deals 

mainly with processes instead of products as in manufacturing. On the 

operational level, the healthcare delivery process is as a collection of care 

services, which consume resources and constitute points in time. We are seeing 

a shift towards an increasingly complex and decentralized healthcare system 

(Scott et. al, 2000). Provision of healthcare is gradually moving from 

over-congested general hospitals into community hospitals, nursing homes, or 

even households. The problem now is that there is a knowledge gap of what are 

going on in various providers. There are emerging trends towards individual 

patient involvement in the healthcare delivery and system-level integration.  

    The development in the information technologies (e.g. smart phones, 

electronic health records, social network and home health monitoring 

technologies) is having big impacts on self-care, health coaching and patient 

groups, as data can be shared among patients, researchers, and provider 

communities. Self-care is exercising by individual patients to maintain health. 

People search and learn from the Internet to prevent themselves and their 
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families to be ill through eating balance, practicing good hygiene and avoiding 

health hazards. At the same time, people also take care of minor ailments, long 

term conditions, or their own health after discharge hospitals. For those patients 

with similar conditions, they form different groups to discuss symptom, 

treatment, and medical effectiveness in order to monitor their health over time 

and learn from real-world outcomes. For example, a social networking health 

site called PatientLikeMe enables members to find and communicate with 

patients like them, gain social support, and learn first-hand about ways to cope 

and manage (Brownstein et al., 2009).  

    The traditional healthcare delivery system centralized around hospitals is 

giving way to a more decentralized system that involves community hospitals, 

nursing home, and individual households. The lack of system integration 

problem has been discussed (Casalino et al., 2003; Stille et al., 2006; 

Bodenheimer 2008). For example, an increasing number of patients with 

chronic diseases require various care services across different providers. 

Patients have to act as a self-coordinator most of the time (Bodenheimer 2008). 

Poorly-coordinated care between acute and long-term providers can result in ad 

hoc transitions and non-optimum care delivery. Many patients have experiences 

on conflict medical advice, duplicate tests and unnecessary visits. Porter and 

Teisberg (2004) address the issue by suggesting that information transparency 

and pricing mechanisms across different providers in the healthcare system 

should be established.  

    Christensen et al. (2009) proposed “focused value-adding process” 

hospitals and clinics as a strategy to strike a balance between efficiency and 

organizational flexibility. Focused value-adding processes are built in the sense 
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of optimizing the procedure to achieve consistent delivery of standard care. By 

focusing on a specific and well defined condition or procedure, focused 

value-adding processes are able to significantly reduce cost and improve quality. 

From a system-level point of view, complementary or partially over-lapping 

value-adding process hospitals and general hospitals are able to respond 

flexibly to a dynamic mixture of custom and standardized healthcare processes. 

The “focused value-adding processes” are similar in concept to the “focused 

factory” in the manufacturing context.  

    There has also been a growing stream of research concerning strategic 

system integration and coordination in literature. Bohmer (2005) puts forward a 

patient-oriented approach to fit heterogeneous and homogeneous medical 

demands through custom and standard care processes respectively. Sets of 

standardized clinical sub-processes are selected from a pre-defined protocol and 

combined seamless to treat patient from one to another. This approach enables 

the healthcare system to master both custom care and consistent standard care 

to obtain advantages in quality, cost and diversification. Dowd (2005) proposed 

“coordinated agency” and “autonomous consumers” two models. In the former 

model, care providers act as patent’s agent and address challenges in market on 

patient’s behalf. In the latter, consumer-directed health plan model envisions 

autonomous, well-informed, price-conscious consumers shopping among 

providers unconstrained by organizational affiliations. Meyer et al. (2007) 

propose a platform-based approach for healthcare services design. The platform 

is a set of sub-processes which are common to all patients, while modular sets 

of processes for individual services. The authors apply modular approach to 

designing service packages and show improvements in care delivery. Recent 



 

35 

 

papers concern more about effects of patient’s behaviors. Qu and Shi (2011) 

present a model to capture appointment scheduling in open access clinics when 

considering patient choice of appointments. And authors investigate impacts of 

patient choice on the performance of provider capacity policies. De Blok et al. 

(2013) explain how interpersonal behavior responsive to individual patient’s 

needs and values can be accommodated in modular care provision in the 

healthcare system context.  

    In sum, healthcare system integration tends to engage patients in care 

delivery process so that they are able to participate in medical decision-making 

and take responsibilities of their own health. Integration also facilitates 

coordination among care providers so that comprehensive healthcare services 

based on individual patient’s needs can be offered in an efficient manner. 

System integration as a means brings about patient involvement and a 

cost-effective way to achieve mass customization of healthcare services. 

Literature on general transition trends in a healthcare delivery system towards 

mass customization of healthcare services is summarized in Figure 2.4. 
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2.4  Summary 

    Mass customization has been proven an effective strategy to fulfill customers’ 

individual specific needs with high efficiency and low cost in the manufacturing 

industry. Although healthcare differs from manufacturing in many significant ways, 

the basic value proposition of mass customization in terms of being demand driven, 

standardization, and value co-creation is generic and can be transferred for healthcare 

service delivery. The advancement and convergence of multidisciplinary studies 

reviewed above point to potential application of mass customization as a new 

paradigm for healthcare service delivery.  

    Mass customization of healthcare services however is still a new concept both in 

academic research and industry application. Despite growing interest in research 

topics that are related to mass customization of healthcare services, researches have 

been currently devoted in various fields of different disciplines including medicine, 

information technology, operations research and management etc. There is a lack of a 

unified conceptual framework to study mass customization of healthcare services in 

academic research. There is also a lack of systematic methodology to assist 

practitioners in the transition of a healthcare service delivery system that works on the 

doctrines of mass production towards a system that operates on the principles of mass 

customization. 
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CHAPTER 3 PATIENT-CENTERED PATHWAY 

IDENTIFICATION USING PROCESS MINING 
 
    The patient-centered pathway identification is a prerequisite to enable the 

transition towards mass customization of healthcare services. This chapter proposes to 

apply process mining for patient-centered pathway identification. Literature review on 

process mining is given in Section 3.2 which mainly covers discovery algorithms and 

its applications. A method of applying Heuristics Miner algorithm on pathway 

identification for patients with multiple conditions is presented in Section 3.3. A case 

study is adopted to illustrate the algorithm in the study.  

3.1  Motivation for Patient-centered Pathway Identification 

    A key principle of mass customization is that it is a demand driven, 

customer-centric system. In the context of healthcare, this means healthcare processes 

to be delivered based on patients’ individual-specific needs. A prerequisite of enabling 

mass customization of healthcare services is to understand how healthcare services are 

delivered from individual patients’ perspective. In other words, it is essential to 

establish the mapping relationship between clinical pathways and individual patients’ 

medical needs. A clinical pathway refers to a patient’s journey through the healthcare 

system. It outlines steps of professional healthcare services (e.g. consultation, test, 

treatment) that are likely to happen on the patient's journey. Unlike customers 

demanding physical products in the manufacturing industry to fulfill their needs, what 

a patient actually demands is a package of healthcare services determined by his/her 

medical profile. For patients with multiple conditions in this study, the problem is to 

know how a particular patient with certain conditions flows through the healthcare 

delivery system. The overall journey of an individual patient is what we called a 
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patient-centered pathway. 

    Given difficulties such as complex patient flow, desultory data, and incorrect 

documentation, studies on developing systematic methodologies for pathway 

identification are needed. Pathways with correct ordering and network constructs are 

essential to provide the mapping from patients’ medical profiles to healthcare services. 

Therefore, we propose a method based on process mining to identify patient-centered 

pathway.  

3.2  Process Mining 

    Process mining technique is pioneered by Agrawal et al. (1998), and Cook and 

Wolf (1998). The basic idea of process mining is to learn from an event log which 

contains data extracted from information systems. Patterns are identified from the 

event log using statistical methods and process networks are discovered to present the 

process flow and constructs. Figure 3.1 shows an overview of process mining 

relationship. 

 
Figure 3.1: An overview of process mining (Van der Aalst 2011) 

    Information systems in an organization records activities that have been executed. 

The stored information is also known as event logs which provide detailed 

information (e.g. timestamp of the activity and the originator or performer of the 
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activity), which allows the discovery of process networks. 

Process mining has demonstrated its capability to learn from a given event log 

and distill a well-structured process model in a wide range of service industries 

including software, insurance, healthcare etc (Cook and Wolf 1998; Rozinat et al. 

2008; Mans et al. 2008). Furthermore, process mining is able to handle vast amounts 

of inaccurate data in event logs and it can discover a process network that strikes the 

right balance between generality and specificity (Rozinat et al. 2007). 

Along the development in EMRs, laboratory information system (LIS) and 

financial information system (FIS), the healthcare services that patients have gone 

through are able to be obtained. Detailed healthcare services delivery information (e.g. 

consultation, test, treatment) are recorded in the form of event logs. In the context of 

health, healthcare services can be treated analogously as activities with timestamp and 

originator (e.g. nurse, doctor).  

Process mining method can help us to capture the patients’ medical needs and 

map to the clinical pathway shown in the form of process network. Of course, if the 

relevance medical knowledge is available and the provision of care for diseases can be 

precisely diagnosed, patients can be treated with rule-based therapies and predictably 

effective services. Process mining is no longer needed to figure out the mapping.  

3.2.1 Process Mining Discovery Algorithms 

    Studies of process mining method generally fall in following three aspects, namely 

discovery, conformance, and enhancement. Process discovery techniques is one of the 

aspects have been intensively studied. Process discovery techniques refer to those 

algorithms that can automatically construct process models based on knowledge learnt 

from an event log. Tiwari et al. (2008) and Van Dongen et al. (2009) provide a 

comprehensive review on various process mining algorithms. In general, the widely 
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used algorithms can be categorized into three types. The representative algorithms and 

mining procedures for each type of algorithm are summarized in Table 3.1. 

Table 3.1: Process discovery techniques category  

Type of algorithm Representative algorithms 

Abstraction-based 
α-algorithm (Van der Aalst et al. 2004) 
α+-algorithm (De Medeiros et al. 2004) 
Tsinghua α-algorithm (Wen et al. 2004). 

Heuristic-based Heuristics Miner 
(Weijters and Van der Aalst 2003, Weijters et al. 2006) 

Search-based Genetic Algorithm Miner (De Medeiros 2006) 
Duplicates Genetic Algorithm Miner (De Medeiros et al. 2007). 

    Evaluation on various process mining discovery algorithms has been conducted. 

Van Dongen et al. (2009) compare some of the representative discovery algorithms on 

handling process constructs including sequence, parallelism, choice, loop, duplicate 

task, etc. Goedertier (2011) compares discovery algorithms’ performance on accuracy, 

comprehensibility and justifiability.  

3.2.2 Process Mining Applications 

    Process mining technique has been applied into real-life processes (e.g. Van der 

Aalst et al. 2007; Rozinat et al. 2008; Goedertier et al. 2011). Literature also shows 

that process mining has been applied to discover clinical pathways. Mans et al. (2008 

and 2009) apply the Heuristics Miner algorithm to discover how stroke patients are 

treated in different hospitals and how care services are delivered to gynecological 

oncology patients in the AMC hospital in Amsterdam. The discovered process 

networks were confirmed by the staff of hospital, and also compared with an a priori 

flowchart of the process, with good results. Lang et al. (2008) studies the radiology 

workflows in the Erlangen University Clinic. During the study several control-flow 

mining techniques were evaluated. Authors conclude that   algorithm and the 

Multi-phase algorithm are not able to produce valid process models as these two 
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algorithms are severely affected by the incompleteness and noise present in clinical 

logs, while the Heuristics Miner algorithm and the Genetic Algorithm Miner produced 

the best results in the presence of noisy data. However, Gupta (2007) evaluates the 

Heuristics Miner algorithm in the healthcare domain. Gupta points out that the 

discovered process networks are generally spaghetti-like due to the complex and 

unstructured nature of healthcare processes. Such spaghetti-like pathways are not 

useful for understanding and further analysis.  

Results of studies from Mans et al. (2008 and 2009) and Lang et al. (2008) 

demonstrate the applicability of Heuristics Miner algorithm to real clinical pathway 

identification. Heuristics Miner algorithm is particularly suitable to handle ubiquitous 

noise and incompleteness in event logs from healthcare. We also understand the 

limitations of the Heuristics Miner algorithm such as spaghetti-like process model. 

However, process mining has a great potential to facilitate understandings of clinical 

pathways and their variants. Thus, the Heuristics Miner algorithm is proposed in this 

study to identify patient-centered pathway. 

3.3  Patient-centered Pathway Identification 

Traditionally, medical prescription and treatment were conducted through 

physical symptoms observation, intuitive experimentation, and a process of 

trial-and-error. With the advancement of medical knowledge and technology, 

physicians are able to diagnose and deliver treatment with increasing accuracy and 

precision (Christensen et al. 2009). As we have discussed in Section 2.3, the medical 

and technological advancement enables precisely diagnosis by the cause of a 

condition rather than the symptom. When a disease can be diagnosed and treated in 

terms of precision medicine and empirical medicine, rule-based therapy is becoming 
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possible. Therefore, knowledge of an individual patient’s pathway can come from the 

medical records of other patients who have suffered from the same or similar 

conditions or come from the genetic information of the subject patient. In such 

situation, process mining can be applied to patient-centered pathway identification. A 

procedure is proposed and illustrated in Figure 3.2. 

 

Figure 3.2: The procedure of pathway identification 

EMRs of other patients with the same conditions are first extracted. Based on the 

extracted EMRs, the next step is to prepare an event log. Each individual patient’s 

overall journey is viewed as a process instance. A process instance typically contains 

information about activities with timestamp. In the context of healthcare, activities 

here refer to all kinds of healthcare services such as evaluations, diagnosis, and 

treatments received by a patient. Sometimes, a process instance also stores 

information about the originator of an activity, i.e. who performed which activity or 

initiated an event. After having an event log, process mining is used to distill 

pathways. More specifically, the Heuristics Miner algorithm is adopted in this study to 
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learn from the given event log. Activities’ dependency relationships and process 

constructs are identified through analyzing the event log. Process networks are 

eventually discovered to represent clinical pathways. The process networks tell us 

how an individual patient with certain conditions most likely flow through the 

healthcare system. Notations and formulas used in the Heuristics Miner algorithm are 

defined by De Medeiros et al. (2007). 

    The steps of the Heuristics Miner algorithm are explained in the following 

subsections. 

3.3.1 Dependency Matrix Construction 

    The event log is a starting point of process mining. The first step is to analyze 

dependencies between activities. Let W be an event log over a set of activities A . 

Activity ia  and activity ja  are a pair of activities where ,i ja a A . The 

dependency ratio ( , )i jD a a  is defined to measure the strength of dependency between 

Notations: 

A  is a finite set of activities, i.e., ,  1, 2,3..., .ia A i n   

  is an activity trace.  

   is a set of activity traces,   . 

 W is an event log which is a multi-set of activity traces, W  .  

i w ja a   is a direct follower iff there is a trace 1 2... ... .i j na a a a a   

i w ia a     is a length-one loop iff there is a trace 1 2 ... ... .i i na a a a a   

i w ja a  is a length-two loop iff there is a trace 1 2... ... .i j i na a a a a a   
( , )i jD a a  is dependency ratio between activity ia  and activity ja . 

DM  is dependency matrix. 
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activity ia  and ja : 

                

 if                              (3-1)
1

( , )

 if                                                   (3-2)
1

i W j j W i
i j

i W j j W i
i j

i W i
i j

i W i

a a a a
a a

a a a a
D a a

a a
a a

a a

   
  
       
      

 

where 

     i W ja a  is the number of times that activity ia  is followed by activity ja . 

     j W ia a  is the number of times that activity ja
 
is followed by activity ia . 

     i W ia a  is the number of times that activity ia followed by itself. 

    By introducing “+1” in the denominator, the ( , )i jD a a  value of Eq. (3-1) and Eq. 

(3-2) is (-1, 1). In Eq. (3-1), if the value of ( , )i jD a a  is close to 1, this means a strong 

positive dependency relation between activity ia  and ja . In other words, for most 

of the process instances in the event log, it can be observed that activity ia  is 

followed by ja  most of the time rather than the other way around. If the value of 

( , )i jD a a  is approaching to -1, this simply means a negative dependency relation 

which is opposite to positive dependency relation. On the other hand, a zero value of 

( , )i jD a a  indicates a non-dependency relationship between activity ia  and ja . The 

idea is similar for Eq. (3-2), a high absolute value of ( , )i jD a a  shows a strong 

dependency relation and a zero value means no dependency relation between activity 

ia  and itself. 

    However, the dependency measurement presented above is not capable to deal 

with the repeated execution of activities. This is because the calculated value of 

( , )i jD a a  is always close to zero. The result may lead us to a wrong decision that 
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these two activities almost have no dependency relationship. Thus Eq. (3-3) is defined 

to handle the length-two dependency measure for activity in a loop. 

                 ( , )                                   (3-3)
1

i W j j W i
i j

i W j j W i

a a a a
D a a

a a a a

   
 
     

 

where                                 

     i W ja a  is the number of times that sequence of activity i j ia a a occurrence; 

     j W ia a  is the number of times that sequence of activity j i ja a a occurrence 

    The basic idea of Eq. (3-3) is to measure total how many times that activity ia  

is followed by ja  and activity ja  is followed by ia  can be observed from process 

instances in the event log among all co-occurrence between activity ia  and ja . The 

more times we observed, the stronger dependency relationship between activity ia  

and ja .  

Finally, a frequency-based Dependency Matrix ( DM ) is constructed to describe 

the dependencies between any pair of activities. A DM  is a square matrix with 

identical column and row headings corresponding to the activities in the event log and 

entries in the matrix corresponding to the dependency ratio between a pair of activities 

(e.g. ( , )i jD a a ). Reading through a row reveals strength to its dependent activities. 

3.3.2 Dependency Graph Construction 

    The construction of the dependency graph starts with the search in the DM . But 

the amount of information reflected on the graph is dependent on the parameter 

settings. The first parameter is “use all-activities-connected heuristic”. The 

“all-activities-connected” means that for each non-start activity there should be at 
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least one other activity as its input, while each non-final activity must have at least 

one dependent activity as its output. When constructing the dependency graph, the 

“start” activity is easy to recognize, which is the activity with a positive value in the 

row. In contrast, the “complete” activity is the row that has no positive entry. Next, we 

use “all-activities-connected” heuristic information to search for the “best candidate” 

in order to build correct relations (Weijter et al. 2006).  

    The other type of parameter is Dependency Threshold r , which indicates 

dependency strength between a pair of services. When searching for dependency 

graph, a parameter Dependency Threshold r  is defined to control what activities and 

interrelationships are going to be included in the graph. Only those pairs of activities 

which dependency ratios ( , )i jD a a  larger than r  will be included. Based on the 

length between activities, the specific threshold parameters include:  

 Direct Dependency Threshold: ignores the relationships whose direct 

dependency measurement is below the value of this parameter;  

 Length-one Loop Dependency Threshold: means that a self-loop will be inserted 

if the value of corresponding measurement is above the value of this parameter;  

 Length-two Loop Dependency Threshold: indicates that a length-two loop will 

be inserted if the value of measurement is above the value of this parameter. 

The third parameter is Positive Observation. It means that the activity will be 

included in the process model if the observed times of activity occurrence is higher 

than the value of this parameter. The fourth parameter is Relative-to-best Threshold 

which compares a dependency ratio with the best dependency ratio in the DM . If the 

difference between them is smaller than the defined value of Relative-to-best 

Threshold, the dependency relationship will be shown in the process network. 

However, when we use the parameter “Use all activities-connected heuristic”, all 
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other parameters will have no effect on the graph construction. By varying parameters’ 

input values, different analyses can be conducted. For this study, we only consider two 

types of parameter, namely “Use all-activities-connected heuristic” and “Dependency 

Threshold” as they are major factors to affect the result of process mining.   

3.3.3 AND/XOR-split/join Constructs Identification 

    From the dependency graph, we are able to know each activity’s input/output 

expression and dependency relationship. For a particular activity, however, if there is 

more than one activity in its input or output expression, the problem is the dependency 

relationship in between is not known. For a particular activity ia , if it has two 

activities ja  and ka  in the input expression. The question is whether activities ja  

and ka  are parallel activities. That is to say, before executing activity ia , whether 

both activity ja  and ka  need to be done or only one activity needs to done. If both 

activities need to be done, this relationship is called AND relationship. If only one 

activity needs to be done, this relationship is called XOR relationship. The semantics 

of the AND/XOR-split/join constructs are identified by Eq. (3-4). 

                                                      (3-4)
1

j W k k W j
i j k

i W j i W k

a a a a
a a a

a a a a

  
  

                    

    The denominator i W j i W ka a a a    calculates the number of positive 

observation that activity ja  or ka  directly follows activity ia
 
in the event log. The 

numerator j W k k W ja a a a    counts the number of times ja  and ka  

co-occurrence directly after each other. If the value of i j ka a a   is close to 1, 

activity ja  and ka  are in an AND-relationship. If the value is close to 0, activity 
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ja  and ka  are in an XOR-relationship. In a process model, there are some points 

that one flow could split into multiple flows and/or join into one flow later. These 

points are defined as split/join constructs in a process network. For example, 

AND-join means all activities before the join point need to be executed. XOR-join is 

a notation to choose only one activity among a number of activities to do that 

originates before the join point. 

3.3.4 Process Model Evaluation 

    Process model evaluation is to assess the ability of the discovered process 

network to reflect the behavior observed in the event log. By comparing against the 

event log, evaluation is made mainly through three perspectives. The first is fitness. 

The purpose of fitness test is to exam how much of the behavior observed in the event 

log is reflected by the discovered process model. The second is complexity. A good 

process model is one that contains comprehensive information while understandable 

by the user. The complexity is generally indicated by the number of nodes or arcs in 

the discovered model. The last is structure. Due to data noise and low frequent 

process instances in the event log, the discovered process model should have a right 

balance between specificity and generality. The structure test is to exam how accurate 

the discovered model is by replaying observed behavior, and how general the 

discovered model is by allowing discover unobserved behavior. The process model 

evaluation is subjective. It depends on the problem that it exist in and also the user’s 

requirement. But, a well-structured process model, in general, must be high in fitness, 

low in complexity and not over-specific or over-general in structure. 

    In Heuristics Miner algorithm, the discovered process model usually shows in a 

graphic form called Heuristic Net. The Proper Completion basically is to measure the 
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number of correctly parsed process instances over the total process instances in the 

event log. However, some process instances cannot be correctly parsed. Errors may 

occur when parsing or replaying process instances (Weijters et al. 2006). It is 

suggested to measure the fitness of the model by using the number of successfully 

parsed events (i.e. activities) rather than the number of successfully parsed traces. 

Stop Semantics is defined to measure the fitness of the discovered process model by 

replaying the process instances in the event log and stopping parsing whenever an 

error occurs. However, this is not a good fitness indicator due to the inability to 

determine if the parsing was stopped at the early stage or towards the end. To 

overcome this problem, another measure is proposed to measure the fitness by 

replaying a process instance in the event log and not stopping even problems are 

encountered. This measurement is known as Continuous Semantics. Based on the 

similar idea but extended to exam all process instances in the event log, Improved 

Continuous Semantics is defined to measure the fitness on a population of process 

instances rather than an individual process instance.  

    To determine the structural appropriateness, a conversion from the Heuristic net 

to a Petri net is required. A Petri net is a graphical representation of places and 

transitions. In a marked Petri net, circles indicate places in which tokens reside. And 

rectangles represent transitions (i.e. activities). Tokens are consumed to enable a firing 

of a transition expressing the execution of a particular activity. After firing a transition, 

new tokens are produced according to the process structure. Structure test is done by 

analyzing the behavioral appropriateness of tokens in a Petri net. When replaying a 

process instance   in the event log on the discovered process model N , transitions 

need consume tokens for firing and produce tokens after transition been fired. Four 

different scenarios may encounter. ,Nc   is the number of token consumed for firing a 
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transition. ,Np   is the number of token produced by successful fired transition. If 

tokens consumed to fire transitions ( ,Nc  ) are not produced by the Petri net itself but 

arbitrarily added to enable certain transitions. These added tokens are called missing 

tokens ( ,Nm  ). If produced tokens ( ,Np  ) are not consumed by transitions, some 

tokens will be left in the Petri net when replaying is finished. These are called 

remaining tokens ( ,Nr  ). Both missing tokens and remaining tokens may lead to extra 

behaviors in a Petri net such as firing additional transitions. The token-based fitness 

( , )Pf N   is defined as in Eq. (3-5). 

               , , , ,
1 1( , ) (1 ) (1 )                             (3-5)
2 2P N N N Nf N m c r p         

 

    At the beginning of evaluation, ( , )Pf N   is initialized as 1, which means a 

particular process instance in the event log can be replayed without any problem. In 

other words, there is no missing token added and no remaining token is left in the 

Petri net. By giving equal penalty to extra behaviors ( , )Pf N   is calculated by 

deducting the sum of corresponding proportion from the initial value. The first part of 

Eq. (3-5) is , ,(1 )N Nm c  . It computes the number of missing token as a fraction of 

the number of consumed token. More missing tokens added to the Petri net, the value 

of , ,(1 )N Nm c   will be smaller. A value close to zero indicates that too many 

missing tokens result in an extreme low fitness. The second part of the formula 

, ,(1 )N Nr p   calculates the fraction of remaining tokens compared to tokens 

consumed. The idea is similar to the first part. More tokens left in the Petri net could 

result in a lower fitness. The Eq. (3-5) studies behaviors of replaying one process 

instance. To measure all process instances in the event log ( )W  , the following 



 

52 

 

fitness ( , ( ))Lf N W   for the entire event log is defined as Petri Net Fitness. 

      , ,

, ,

( ) ( )1 1
(1 ) (1 )

2 ( ) 2 ( )
( , ( ))                     (3-6)W N W N

W N W N
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W m W r

W c W p
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 
  

 

   
   

   
 

    This formulation is similar to the definition of the fitness ( , )Pf N   of each 

process instance in the way that it is aggregates the fitness of all the process instances 

in the event log. 

    In summary, the flow of the Heuristics Miner algorithm is described in Figure 

3.3. 

 

Figure 3.3: The Heuristics Miner algorithm flow chart 
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3.4  A Case Study of Patient-centered Pathway Identification 

3.4.1 Case Background 

Clinical pathways for patients with multiple conditions tend to be more 

complicated than patients with single condition. In addition, we need to look at the 

clinical pathway from a patient’s point of view instead of the condition’s point of view. 

In other words, what we need to know is how they flow through the healthcare system 

considering co-existing various conditions rather than isolated condition. In this case 

study, we will focus on patient-centered clinical pathway identification for patients 

with multiple conditions. 

In Singapore, growing number of patients are suffering from combinatory of 

multiple conditions. We observed a prevalent trend of patients having both 

cardiovascular condition and ophthalmological problem from published statistics. 

Healthcare services delivered to those patients are generally based on standard 

disease-specific care pathways, which cannot fulfill their complex medical needs. 

They need for customized healthcare services. To enable customized healthcare 

service delivery, a key challenge is to understand the healthcare services that a patient 

with both cardiovascular and ophthalmological conditions needs to go through. 

Process mining provides a means to map required healthcare services onto medical 

conditions. 

    We collaborated with Tan Tock Seng Hospital (TTSH) to conduct this case study. 

TTSH is the second largest acute general hospital in Singapore. There are 36 clinical 

and allied health departments, 15 specialist centers covering 27 medical disciplines 

and is operated by more than 6,000 healthcare staff. EMRs of outpatients with 

cardiovascular condition and ophthalmological problem have been extracted from the 

information system. Specialist Outpatient Clinics (SOC) at the hospital during May of 
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2009. Appendix A gives a part of Excel file which depicts the information 

summarized from outpatients’ EMRs given by TTSH.  

    These patients are identified by their identification number. Due to 

the confidentiality of the patient information, we use serial number to replace 

identification number. So, each patient is traced by the unique serial number. Surveys 

basically record the patient flow during every visit. In other words, main information 

includes what healthcare services have been delivered to a patient, which doctor a 

patient has visited, and how long each service takes etc. From the data, we find that 

patients have at least two times medical visits to SOCs in TTSH for cardiovascular 

condition and ophthalmological problem.  

3.4.2 Event Log Extraction and Preparation 

    To identify patient-centered pathway, we look at the patient flow through the 

viewpoint of a patient instead of a condition/disease. That means each individual 

patient’s overall journey is viewed as a process instance. As the scope of this case is to 

study patients with both cardiovascular condition and ophthalmological problem, 

information of 59 patients who are suffering both conditions is extracted from the 

survey data. An event log episode is shown in Table 3.2.  

Table 3.2: An event log episode 

Process Instance Activities Time Stamp (Start) Time Stamp (End) 
1 Registration 04-05-2009 11:04 04-05-2009 11:06 
1 Eye Sight Test 04-05-2009 11:12 04-05-2009 11:16 
1 1st Eye Consultant 04-05-2009 11:43 04-05-2009 11:48 
1 Humphrey Visual Field Test 04-05-2009 12:40 04-05-2009 14:43 
1 2nd Eye Consultant 04-05-2009 15:32 04-05-2009 15:37 
1 1st Cardiology Consultation 04-05-2009 15:45 04-05-2009 15:48 
1 Billing and Payment 04-05-2009 16:00 04-05-2009 16:05 
2 Registration 04-05-2009 15:08 04-05-2009 15:10 
2 ECG 04-05-2009 16:20 04-05-2009 16:25 
 … 
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    In the event log, an individual patient’s flow is viewed as a Process Instance 

identified by their identification number. The number being tagged to each Process 

Instance indicates a particular patient. For a Process Instance, the sequence of 

healthcare services that a particular patient has gone through is shown in the column 

named as Activities. The time attribute associating with each activity’s starting and 

ending time is represented in the column Time Stamp (Start) and Time Stamp (End), 

respectively. Process in this study is defined as the care flow of all cardiovascular 

condition and ophthalmological problem patients. The number of patients is 

represented by the number of Process Instance in the event log. 

    The next step of event log preparation is to make the event log readable by the 

Process Mining Framework (ProM) software (Van der Aalst et al. 2007). The ProM 

reads log files in the Macromedia Flex Markup Language (MXML) format. The 

Mining function performs the actual process mining. To have the required MXML 

format, we first convert the event log in the Excel format into Comma-Separated 

Value (CSV) format. After that, the ProM Import Framework software is used to 

convert the event log from the CSV format into the MXML format. The event log is 

now ready for process network discovery using ProM software.  

3.4.3 Process Network Discovery through ProM 

    For this study, different values for the dependency threshold will be used to show 

how different clinical pathways can be discovered. A process model is mined in the 

form of a Heuristic Net. The Heuristic Net shows activities’ sequential relationship 

and AND/XOR-split/join structure. Each node in the Heuristic Net shows the name of 

the care service. The number in a node indicates the frequency of the service appears 

in the event log. The arc that connects two nodes shows the dependency relationship 

between two services. The first number on the arc indicates the value of dependency 
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ratio between services, while the second number indicates the co-occurrence 

frequencies. A process network is obtained by applying all-activity-connected 

heuristics shown in Figure 3.4.  

 
Figure 3.4: A heuristic net representation of process model with all-activity-connected 

This model ignores the minimum dependency threshold requirement but includes 

all services in the event log into the discovered process network. In the network, node 

“Eye Sight Test” is followed by node “1st Eye Consultant” with the dependency ratio 
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0.983. As the value of dependency ratio is close to 1, it indicates there is a strong 

positive dependency relationship between these two healthcare services. That is to say 

“1st Eye Consultant” is pretty sure to be executed after service “Eye Sight Test” based 

on observation of the event log. 

The Dependency Threshold parameter is one of the most important parameters in 

the Heuristics Miner algorithm as we have discussed in Subsection 3.3.2. We use it to 

demonstrate how varying parameter values can affect generated process networks. A 

serious of generated process networks can be found in Appendix B with Dependency 

Threshold parameter from 0.95 to 0.8 decreased by 0.05 each time. Through 

observation, we found that as the value of the dependency threshold decreases, the 

process model become less compact and structural. This can also be explained by 

definition of Dependency Threshold as this parameter is defined to only include pairs 

of activities which dependency ratios are greater than its value in the process network. 

By setting different parameters at different values, health professionals are able to 

generate various process networks and find the most suitable one for patients with 

particular disease or combination of diseases. 

3.4.4 Process Network Conformance 

With the discovered Heuristic Nets, Fitness measurements defined in Subsection 

3.3.4 are used to evaluate their ability to reflect behaviors observed in the event log. 

In addition, Heuristic Nets are converted into Petri Nets and shown in Appendix C 

Petri Net Fitness measurement is applied to check the process structure and replay 

process instances. These measurements give us different perspectives for assessing the 

obtained process models. Table 3.3 shows the values of each process model.  
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Table 3.3: Fitness measurements for various process networks 

Fitness Measurement All-activity-
connected 

Dependency 
Threshold = 

0.95 

Dependency 
Threshold = 

0.9 

Dependency 
Threshold = 

0.85 

Dependency 
Threshold = 

0.8 

Proper Completion 0.5424 0.3431 0.4746 0.4746 0.4755 

Stop Semantics 0.6061 0.5422 0.5620 0.5620 0.5730 

Continuous Semantics 0.7118 0.6628 0.7006 0.7006 0.7260 

Improved Continuous  
Semantics 0.9639 0.8572 0.9400 0.9400 0.9415 

Petri Net fitness 0.9723 0.9137 0.9666 0.9666 0.9666 

    We observed that the process network using all-activity-connected heuristics has 

the highest fitness values in all measurements. This indicates that the discovered 

process network is able to closely reflect information observed in the event log by 

ignoring all variable parameters. The reason is mainly because the 

all-activity-connected process network does not exclude any observed event in the log. 

We also noticed that a lower dependency threshold results in higher conformance 

level as more services and interrelationships are included in the process network. 

There is a trade-off between the dependency threshold value defined and the goodness 

of the discovered process model. 

    The discovered process network basically is what we called the patient-centered 

clinical pathway in this study. It tells us what healthcare services that a patient with 

both cardiovascular condition and ophthalmological problem most likely to go 

through. In other words, the discovered clinical pathway establishes the matching 

between a patient’s medical profile and the care services required. 

3.5  Summary 

     In summary, this chapter evaluated the application of process mining on 

patient-centered pathway identification. Heuristics Miner algorithm is applied to 

extract the underlying structures of process networks which reflect pathway variants. 
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Various process networks are generated by varying the dependency threshold levels in 

the case study. Fitness measurements are used to compare the results of mined process 

networks. It is found that all-activity-connected heuristics network achieves the 

highest fitness values in all measurements.  

The results of case study demonstrate that process mining is able to present most 

behavior observed in the event log in the process network. The proposed method is 

promising in terms of identifying well-structured pathways to establish the mapping 

from individual patients’ medical needs to diversity of healthcare services.  
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CHAPTER 4 MODULAR HEALTHCARE PROCESS REDESIGN 

USING DESIGN STRUCTURE MATRIX 

 
    Modularization is an important approach to reduce process complexity and 

enhance flexibility in manipulating pre-identified service modules. This chapter 

introduced DSM technique for healthcare process modularization. In Section 4.3, a 

DSM-based modularization and sequencing algorithm is developed to allocate 

healthcare services into service modules using GA and enumerate all possible 

sequences of services within a module and sequences of modules to support modular 

clinical pathway redesign. The proposed algorithm is implemented in the same case as 

in Chapter 3. The redesigned modular clinical pathway is visualized in a process 

network diagram. 

4.1  Motivation for Process Modularization 

Modular product architecture has been seen as a good way for low cost and 

efficient product design in mass customization. Standard modules can be mass 

produced in large batches and be configured according to customer’s requirements. 

Although the modularity principle originates from the manufacturing industry, it has 

been used for complex process design in services (e.g. Meyer and Detore 1999 and 

2001; Pekkarinen and Ulkuniemi 2008; Moon et al. 2009 and 2011; Xu and Jiao 

2009a and 2009b). Process modularity is similar but it refers to the practice of 

standardizing process modules. Pine (1993) pointed out that the traditional tightly 

coupled production processes should be broken apart and modularized. Modules in 

processes are able to be adjusted easily by adding, removing or re-sequencing to 

create different process capabilities (Cooper 1999). The flexibility of modular process 

delivery is able to enhance customization. 
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The process model generated through process mining is a direct reflection of 

what patients have historically gone through. Although the process model helps to 

uncover the mapping relationship between individual patients’ medical profile and 

required healthcare services, it might be very complicated and unstructured due to 

large variety of healthcare services offering and different combination of medical 

conditions. Spaghetti-like pathways are hard to comprehend and apply in practice 

(Bose and van der Aalst 2009). The significance of introducing modularization into 

mass customization of healthcare services manifests in two major aspects. Firstly, 

modularization facilitates process complexity reduction by grouping closely interacted 

healthcare services into modules. Secondly, modularization enables 

better-coordination flexibly combining modules to fulfill diversified medical needs. 

From a system’s point of view, modularization breaks up loosely linked 

healthcare services and arranges them into modules that can great reduce complexity 

and be performed rather independently. With modular healthcare processes, patients 

can have better-coordinated care by flexibly combine multiple modules that suit 

his/her conditions. First steps on healthcare process modularity and platform design 

have been made (e.g. McLaughlin and Kaluzny 2000; Bohmer 2005; Bohmer and 

Lawrence 2008; De Blok et al. 2010). However, further researches are needed to 

develop rigorous approaches for process module identification and process 

configuration. 

4.2  Design Structure Matrix 

    The DSM is a matrix representation of a graph with identical column and row 

headings corresponding to the nodes of the graph and entries in the matrix 

corresponding to the arrows in the graph illustrate presence or absence of a 
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relationship between pairs of elements (Eppinger et al. 1994, Browning 2001, Yassine 

2004). Thus DSM is a compatible way to represent architecture of the discovered 

clinical pathway in Chapter 3 as the discovered pathway describes mainly about 

dependencies between pairs of healthcare services. In addition, matrix representation 

is able to overcome the size and visual complexity of the graph-based clinical 

pathway and is amenable to computer manipulation. 

    The DSM has seen considerable use for process-modeling as well as applications 

associated with modular design (Eppinger et al. 1994; Whitfield et al. 2002; Yassine 

2004). Studies have been conducted in many domains such as process decomposition 

and project management through developing DSM-based algorithms (Eppinger et al. 

1991; Steward 1991). These studies established a foundation for us to use the DSM as 

a tool for modules identification in a clinical pathway.  

    The DSM generally can be categorized into two types: static DSM and 

time-based DSM (Browning 2001). Static DSM represents simultaneously existing 

elements, such as components of a product or teams of an organization. Time-based 

DSM models interdependent elements, such as activities in a process network or a 

document of an information flow. In the time-based DSM, the ordering of the rows 

and columns indicates a sequence over time. An off-diagonal entry implies the 

“feedforward” dependency of one element on another. An upper-diagonal entry 

signifies the “feedback” relationship between a pair of elements. Activity-based DSM 

is a branch of time-based DSM which is used for modeling process and activity 

networks based on activities. An activity-based DSM captures the input and output 

relationships between activities and describes the dependency structure of a process 

model based on information flow. In a process, information is generated, used and 

transferred associated with each activity. The quality of any process lies in effective 
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communication and data exchange across activates. When requisite information or 

output from other elements is not available to execute a particular activity, the arrival 

of information or change of output will lead to rework (Denker et al. 1999; Browning 

2001). This kind of information or output is called a feedback and shown as an 

upper-diagonal entry in an activity-based DSM. For a complex process, rework is 

costly and risky, especially the healthcare delivery process dealing with people’s body 

or mental health.  

    Once a process model is mapped to a DSM, analysis and improvement of the 

process can be conducted to minimize feedback by re-sequencing rows and columns. 

The wildly-practiced algorithms are called partitioning and tearing. Partitioning is to 

re-sequence the tasks to maximize the availability of information required at each 

stage in the process (Steward 1981; Kusiak and Wang 1993). The procedure of 

partitioning is to manipulate the sequence of rows and columns to make the DSM into 

a lower triangular form or as a block along the main diagonal of DSM. A number of 

studies have been conducted on developing partitioning algorithms. Path searching 

algorithm is first proposed by Compare Gebala and Eppinger (1991). The procedure 

of partitioning may be undertaken through trial and error approach and the results are 

very dependent on expertise. More systematic computer-based approaches have been 

developed for complex processes such as application of GA and simulation. Rogers et 

al. (1999) propose to apply GA to optimize the sequence of the process flow within 

iterative sub-cycles to reduce design cycle time and cost. The algorithm is developed 

to re-sequence the activities in a DSM aimed at minimizing the number of feedbacks 

above the diagonal. Scott (1999) also makes use of GA to re-sequence the activities 

based on DSM to minimize the number of feedbacks with particular focus on 

concurrency issue. In addition, simulation-based approaches have been proposed by 
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McCulley et al. (1997) and Cho and Eppinger (2005). Partitioning results in a lower 

matrix or a block diagonal matrix in the case of coupled activities. Ideal sequencing 

without feedback entries is unlikely to exist. Thus, coupled activities within a loop 

require additional reordering algorithms. Tearing is a process with the aim of 

removing feedback marks (Kron 1963). Tearing is typically to be conducted manually 

by professionals with domain knowledge.  

    The goal of modularization is to find a clustering arrangement where modules 

minimally interact with each other while elements within a module maximally interact 

with each other (Fernandez 1998). In other words, these identified modules absorb 

most of the interactions between elements internally and the interactions between 

modules are minimized or even eliminated. Modularization related research has 

developed mainly in the areas of product and service architecture. Product 

architecture is to arrange functional elements/components into physical modules for a 

product or for a family of products. Modularization is generally achieved by 

applications of clustering techniques. Jain et al. (1999) and Xu and Wunsch (2005) 

give a comprehensive review of clustering algorithms and approaches. Pimmler and 

Eppinger (1994) use DSM to reorder elements with an algorithm that optimizes a 

distance penalty. Fernandez (1998) and Thebeau (2001) used the simulated annealing 

technique to find good DSM clustering arrangements. Advantages of modular product 

architecture show in aspects of simplicity and reusability.  

    Modularization is also increasingly recognized in service industries as a 

cost-effective way to support process design and management (e.g. Sundbo 1994; 

Pekkarinen and Ulkuniemi 2008; Moon et al. 2009). For example, a modular service 

platform for business services has been developed in the paper of Pekkarinen and 

Ulkuniemi (2008). Research concerning strategic healthcare process design and 
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delivery by applying modularization has been found in recent literature (e.g. Bohmer 

2005 and 2008; Meyer et al. 2007; De Blok et al. 2010).  

4.3  Modular Healthcare Process Redesign 

    The redesign of healthcare process in the DSM requires several considerations. 

The primary objective of modularization is to maximize interactions between services 

within modules while minimizing interactions between modules. The second issue is 

to identify the sequence of modules to minimize feedback information in order to 

streamline the modularized clinical pathway.  

    Professional care services are linked with technical constraints as a whole in a 

clinical pathway through the information transition, resource sharing and people 

interaction. Four important dimensions regarding clinical pathway modularization are 

events, components, modules, and interfaces. The definition is similar to what De 

Blok et al. (2010) and Perters and Saidin (2000) stated. A care service, which aims to 

achieve a clearly defined purpose or function, is viewed as a process component (i.e. 

tissue testing and X-ray examination). A process component may contain a single 

event or a combination of several events to gain particular ends. A module is a cluster 

of two or more components that closely interact or inter-depend with each other to 

assist clinical decision making such as a serial of pre-examinations associated with an 

operation. Interfaces are interactions or interdependencies between components. 

Generally, the strength of interaction is a key factor to affect the size of service 

modules. Strongly interacted services are grouped into a module. A clinical pathway 

with combination of different healthcare service components and/or service modules 

is referred to a modular clinical pathway. Combining and connecting various 

components or modules by means of interfaces creates a healthcare service package 
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offered.  

    This research develops a process modularization and sequencing approach based 

on DSM, which groups care services with strong interactions into modules and adjusts 

the sequence of modules to minimize feedback in the process. Due to the particularity 

of healthcare delivery, the feasibility of care modules identified and sequences of 

modules in the clinical pathway are evaluated by the health professional from medical 

and operational perspective. In this thesis, the words module and cluster can be 

interchanged without changing the context's meaning. 

4.3.1 Healthcare Process Modularization and Sequencing Formulation  

    We aim to model the total coordination cost in order to decide which services can 

be grouped together. In a healthcare delivery process, individual care service needs to 

be performed as a part of a whole. To manage coordination between care services is 

difficult or costly. The cost of managing coordination increases associated with the 

number of services included in a process. Moreover, the cost of managing 

coordination is also affected by the strength of interaction between services. Closely 

interacted care services within a module are easy to manage because originators or 

performers (e.g. doctors, nurses, and technicians) can work efficiently through 

collective planning, quick communication and joint delivery. It is generally believed 

that the cost of coordination is lower within a module but higher across modules. As 

the number of interaction and the strength of interaction between modules increase, 

delays or errors are more likely to occur due to waiting for information from other 

modules. Thus, the inter-module coordination should be relatively weak by putting 

loosely interacted care services in different modules. The total coordination cost is 

defined to capture both. Based on the total coordination cost, the major steps in 

modular healthcare process redesign are: 1) Cluster activities into modules; 2) 
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Generate sequences of services in modules and sequences of modules; and 3) Identify 

feasible sequences for redesign.  

The clustering approach that we present in this study is inspired by the work of 

Thebeau (2001). In his thesis, two problems are addressed to deal with tasks 

performed in a product development project. The first problem is to “identify the set 

of interdependent tasks” and the second one is to “group project tasks into clusters 

that are loosely connected with each other, while each cluster consists of densely 

connected inter-coupled tasks”. Interdependencies between tasks are quantified and 

captured in a DSM. To determine clusters, an algorithm based on simulated annealing 

is proposed to decrease the value of a total coordination cost function iteratively. It 

was Thebeau (2001) who introduced the notion of coordination cost function to 

evaluate different clustering arrangements within DSM. Even though no prior 

knowledge on the number and the size of clusters are available, the total coordination 

cost can effectively measure the strength of interdependencies of activities within or 

between clusters. Due to this reason, the total coordination cost function is used as a 

basis for healthcare service modularization.  

The DSM  in this study is a square matrix with identical row and column 

headings corresponding to the nodes (i.e. healthcare services) in the process network 

which is discovered in Chapter 3. Entries in DSM  are corresponding to the 

dependency ratio on arrows in the discovered process network. The entries illustrate 

the presence or absence of a relationship between a pair of healthcare services. In 

addition, the entries indicate the strength of interdependency between a pair of 

services. Interrelationship and strength of interrelationship in the DSM  provide a 

means of process analysis. 

We developed a GA-based modularization algorithm and extended Thebeau’s 
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work to solve re-sequence problem for healthcare service modules. Notations used in 

the algorithm are defined as follow: 

Notations: 

DSM     is the DSM representing the discovered clinical pathway.  

,i ja a      is the activity ia  and ja  in the matrix. 

( , )DM i j  is the dependency value between activity ia  and ja .  

TCC      is the total coordination cost. 

( )iCC a    is the coordination of ia  with respect to all other activities. 

size       is the size of DSM which indicates the number of activities in DSM . 

( )size k    is the number of activities in the cluster k . 

_pow c    is a parameter indicating the penalty assigned to the size of the cluster.  

TFB      is the total feedback of all clusters. 

( )FB l     is the feedback of cluster l . 

clDSM    is the compressed DSM  by clusters. 

clsize      is the size of clDSM  which indicates the number of clusters in clDSM . 

_fb num  is the number cells containing feedback. 

    For each service ia  in DSM , we calculate ( )iCC a considering 

interrelationships between ia  and all other services. For any pair of service ia  and 

ja . The cost is calculated using entries (i.e. dependency ratios) in the DM  and the 

size of a cluster which includes both activates. There are two situations that both 

service ia  and ja are either in a cluster k  or not. The size of the cluster is decided 

by either the number of services in cluster k  or the number of services in the DM . 

The summation of the coordination cost of each service gives a total coordination cost 

for the whole clinical pathway. So, the objective is to minimize TCC .   
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    If both service ia  and ja  belong to the same module k . Eq. (4-2) is defined 

to calculate the coordination cost for service ia . If no cluster contains both service 

ia  and ja , the entire DSM  acts as a whole to contain both of them. And the 

coordination cost for service ia  is computed using Eq. (4-3). In Eq. (4-2) and Eq. 

(4-3), we introduce a parameter _pow c  as a control parameter indicating the 

penalty assigned to the size of the module. Through introducing _pow c  parameter, 

we are able to control the size of each module not too large or too small. The default 

value of _pow c  is 1. If the value of _pow c  increases, ( )iCC a  will increase 

exponentially to limit the module size. After finding the minimum TCC , we are able 

to know what services are grouped together into a cluster k  and the total number of 

clusters.  

    The next step is to arrange these identified modules in sequence to maximize the 

availability of information required by each cluster in the process. So, 

interrelationship between healthcare services within a cluster will temporarily not be 

taken into consideration. The DSM  is compressed by clusters into a clDSM . 

Basically, clDSM  captures the interactions between clusters while treats interactions 

between services within a cluster as a whole. clDSM  is a time-based DSM with 

clsize  number of clusters. 
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    The healthcare process is characterized by highly interdependent healthcare 

services. If a healthcare service begins to work without necessary information, the 

arrival or change of that information will cause rework believably due to poor service 

sequencing or lack of coordination. Rework is costly and risky, especially in the 

healthcare delivery process dealing with people’s body or mental health. The 

unavailable information in a time-based DSM is indicated by the feedback entries in 

the up diagonal. In this study, the cluster sequencing basically is to re-sequence 

clusters in order to eliminate or reduce the feedback entries by minimizing TFB . 

TFB  is the summation of each cluster’s feedback ( )FB l  multiplied by the number 

of feedback marks _fb num . We take the number of feedback marks into 

consideration because more cells containing feedback marks means more unavailable 

information required. More unavailable information may lead to more re-execution of 

care services. For a particular cluster l , ( )FB l  is calculated by Eq. (4-5), which is 

the summation of entries in the upper diagonal of clDSM . 

                   
1

 ( ( )* _ )                                    (4-4)
clsize

l
Minimize TFB FB l fb num


   

where 

                   
1

( ) ( , )                                                   (4-5)
cl clsize size

cl
l l m l

FB l DSM l m
  

                        

If feedback marks exist in a particular service module, the above defined 

equations for TFB  and ( )FB l  can also apply to calculate total feedback of the 

module by changing clsize  to the size of the module. 

In summary, service modules are identified by minimizing the clinical pathway’s 

total coordination cost. Strongly interacted care services are grouped into the same 
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module while loosely interacted services are grouped into different modules. 

Identified modules are sequenced to find minimum total feedback information. This 

procedure helps to better streamline care modules through reducing feedback entries. 

However, not every sequence is feasible if we consider the precedence 

relationship between care services. Health professional knowledge is necessary to 

carefully review and re-sequence healthcare service modules. The outcome of 

redesigned clinical pathway is in a form of modular process.   

4.3.2 A New Modularization and Sequencing Algorithm 

    To redesign a clinical pathway into a modular clinical pathway, a new algorithm 

is needed to not only group closely interacted healthcare services into modules but 

also re-sequence identified modules to streamline the process. This problem is 

essentially a combinatorial optimization problem with discrete nature, while GA is 

reported with excellent performance in a combinatorial problem. Thus, we develop a 

GA-based modularization and sequencing algorithm to support healthcare process 

redesign.  

For a combinatorial problem, the difficulty grows exponentially as problem size 

increases known as a NP-complete problem. A rich number of techniques have been 

developed by researchers to solve the including exhaustive search techniques, 

heuristic-based search techniques and random-based search techniques. The global 

optimum can be guaranteed by mathematical approach (e.g. branch-and-bound search) 

and enumeration. However, exhaustive search leads to large amount of computer 

processing time. Applying techniques based on heuristics (e.g. greedy heuristics) is 

fast in computation to search in solution space. However, in a large search space, the 

issue is that the search always moves towards the nearest favorable regions. A local 

optimum with a high probability tends to be obtained rather than a global optimum. 
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Applying random-based search techniques is able to jump out of local optimum 

regions and converge at a global optimum region. However, a purely random search 

technique consumes a large amount of computational efforts even though it can find 

the global optimum by chance. Thus, some random-based directed search techniques 

have been developed to explore better solutions through directed search such as GA. 

GA is a search heuristic, which uses techniques inspired by natural evolutionary 

process (e.g. selection, crossover and mutation) to generate solutions.  GA is 

pioneered by Holland and his students (1975). GA is more effective and efficient than 

purely random-based algorithms. The GA-based technique has been tested on various 

sized problems and proved to achieve good solutions in discrete optimization 

problems (Goldberg 1989).  

A GA-based procedure is proposed to allocate healthcare services into clusters 

with the lowest TCC . Then, enumeration is used to find all possible sequences of 

clusters with minimum TFB  to support modular clinical pathway redesign. The 

flowchart of the algorithm is show in Figure 4.1.  

After loading data from DSM and setting parameter _pow c  value, a modified 

GA is applied in the first part of the proposed algorithm. Key elements in the GA 

algorithm design are explained in the following paragraphs. 

Traditionally, a binary individual encoding is used with the GA. The values of 

parameters are represented by a string of 0 and 1 and then concatenated. The binary 

coding has the advantage of simplicity in gene representation. However, when dealing 

with the modularization problem, a concatenation of binary numbers to represent an 

activity tends to be inadequate. This is because new individuals can be easily created 
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Figure 4.1: A GA-based modularization algorithm 

to contain some of the activities more than once while some other activities not at all. 

In this study, we modify the individual encoding such that an individual is represented 

by a sequence of n  integers within which the thi  position can range from 1 to n . 

n  is equal to the number of healthcare services in DSM . The digit at the thi  
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position represents the corresponding service belongs to which cluster. The modified 

encoding approach enables not only the application of common crossover and 

mutation operators but also the elimination of prior knowledge on the number of 

modules. An illustrative example of individual encoding is shown in Figure 4.2. 

 

Figure 4.2: Individual encoding for modularity 

    Individual 1 represents that three services are allocated to three different clusters 

with cluster tag 1, 2 and 3 respectively. Individual n, the last individual in this 

population, indicates that service 2a  and 3a  are in the same cluster, while service 

1a  in a different cluster with tag 3. Totally three services are grouped into two 

clusters. The digit at each position is randomly chosen from the range between 1 and 

the number of services. In other words, there is at least one cluster containing all 

services in DSM  if all services are with the same cluster tag. The maximum number 

of clusters is as many as the number of services in DSM . This situation happens 

when each cluster contains only one service. 

    Based on this kind of individual encoding, an initial population containing a set 

of potential solutions is randomly generated. Each individual’s fitness value is 

evaluated by calculating TCC . If it converges insufficiently, a population will evolve 

by selecting the fitter individuals and generating new individuals. The roulette wheel 

is used to select individuals with bigger fitness value have a greater probability to be 

selected as parents to contribute offspring in the next generation.  

a1 a2 a3 Services in DSM: 

3 2 2 

1 2 3 Individual 1: 

… 

Individual n: 
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    Once fit individuals have been selected in to a mating pool, pairs of individuals 

in the mating pool are randomly selected and altered in hopes of improving their 

fitness for the next generation. The single-point crossover operator is applied. In 

single-point crossover, a random crossover point on the two individuals is set. This 

refers to the crossover rate or probability. One individual contributes its entire genes 

before that point and the other contributes its entire genes after that point to produce 

an offspring. When the crossover does not occur, the two parents are transferred to the 

child population unchanged. After a crossover is performed, the mutation operator is 

applied to change randomly one gene to another. Each gene has a user-specified 

mutation probability to be mutated. So mutation in GA causes small alterations in an 

individual. This operator helps to maintain genetic diversity and avoids falling into a 

local optimum.   

    The fitness value of each individual in the new generation is evaluated. And the 

above mentioned evolution procedure will repeat for many iterations until the average 

fitness of the population converges. The outcomes are number of clusters, services in 

each cluster, and TCC  value. Thus, healthcare services in DSM  are clustered into 

mutually interacted service modules. If we treat dependency relationship between 

healthcare services within a cluster as a whole, the original DSM  can be compressed 

into clDSM  by emphasizing interrelationships between modules.  

    The second part of the proposed algorithm is to re-sequence identified service 

modules to find all possible sequences with minimum TFB  through enumeration. 

The result of commonly used partitioning and tearing algorithms in DSM is one good 

sequence with minimum feedbacks instead of all possible sequences. In the clinical 

pathways re-design, a comprehensive understanding of all possibilities is essential. 

The re-sequence procedure also applies to decide the order of healthcare services if 
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feedback marks exist within a module. 

    Finally, we can redesign clinical pathways into modular clinical pathways 

considering possible sequences of modules, sequences of healthcare services in a 

module, technical constraints (e.g. precedence constraint) and medical knowledge. 

The redesigned modular clinical pathway is with great simplification for further 

analysis and application.   

4.4  A Case Study of Modular Healthcare Process Redesign 

    In Section 3.4, we discovered patient-centered clinical pathways for patients with 

both cardiovascular condition and ophthalmological problem. Based on the 

discovered pathways, the method proposed in Section 4.3 is applied for process 

redesign. For the sake of comprehension of the information in the event log, the 

all-activity-connected process network (shown in Figure 3.4) is used as a basis for 

clinical pathway redesign.  

4.4.1 DSM Representation of the Clinical Pathway 

    Dependency relationship and strength of interdependencies between pairs of 

healthcare services are captured in DSM shown in Table 4.1.  

Table 4.1: The DSM of all-connected-activity process network 

  From 

  A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 

To 

A1 0 0 0 0 0 0 0 0 0 0 0 0 
A2 0.983 0 0 0 0 0 0 0 0 0 0 0 
A3 0 0.983 0 0 0 0 0 0 0 0 0 0 
A4 0 0 0.966 0 0 0 0 0 0 0 0 0 
A5 0 0 0.923 0 0 0 0 0 0 0 0 0 
A6 0 0 0.833 0 0 0 0 0 0 0 0 0 
A7 0 0 0 0.966 0.923 0 0 0 0 0 0 0 
A8 0.967 0 0 0 0 0 0 0 0 0 0 0 
A9 0.968 0 0 0 0 0 0 0.967 0 0 0 0 

A10 0 0 0 0 0 0 0 0 0.5 0 0 0 

 
A11 0 0 0 0 0 0 0 0 0 0.5 0 0 

 
A12 0 0 0.938 0 0 0.833 0.975 0 0.983 0 0.5 0 
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   Notes:            

  A1 Registration A7 2nd Eye Consultant 

  A2 Eye Sight Test A8 ECG 

  A3 1st Eye Consultant A9 1st Cardiology Consultation 
  A4 Fundus Flourescein Angiography A10 X-ray 
  A5 Humphrey Visual Field Test A11 2nd Cardiology Consultation 
  A6 Laser Procedure A12 Bill & Payment 

    The DSM is a square matrix with identical row and column headings. Column 

and row headings 1A  to 12A  are corresponding to the nodes (i.e. healthcare services) 

in the all-activity-connected process network (shown in Figure 3.4). Descriptions of 

headings can be found from the notes of the DSM. The entries in the DSM 

corresponding to the arrows in the process network illustrate presence or absence of a 

relationship between a pair of healthcare services. For example, if there is an arrow 

from node 1A  to node 2A  with dependency ratio 0.983 on the arrow, then 0.983 is 

placed in the cell of column 1A  and row 2A . Reading through a column reveals the 

outcome or information of the healthcare service in this column affects what 

healthcare services else and their strength. Off-diagonal entries signify the feed 

forward dependency relationship of one healthcare service to another, while 

upper-diagonal entries imply the feedback dependencies. For example, healthcare 

service 2A  provides something to healthcare service 3A , while it depends on 

something from healthcare service 1A . Obviously, healthcare services 1A , 2A  and 

3A  are in sequence. 

4.4.2 Results of Modularization  

When applying the proposed modularization and sequencing algorithm (refer to 

Subsection 4.3.2, the Matlab code of the algorithm can be found in Appendix D) to 

the case study, parameters in the GA are factors to affect the result of modularization. 

Design of Experiments (DOE) technique provides a means to simultaneously gain 
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insight into the individual and interactive effects of these factors on the result. 

Therefore, a 33 full factorial experiment with factors Population Size, Crossover Rate, 

and Mutation Rate is used to test which parameters significantly affect the response 

variable and determine the parameters values. Detailed description of the experiment 

is included in Appendix E. The values of the GA parameters are selected to be 

Population Size = 100, the Crossover Rate = 0.5 and the Mutation Rate = 0.1. 

    With different parameter settings the healthcare services are clustered into 

different service modules. Results of modularization can be found in Appendix F. For 

example, the lowest TCC at 82.864 can be achieved by clustering 12 healthcare 

services 1A  to 12A  into 4 service modules with module tag from Module 1 (i.e. 1M ) 

to Module 4 (i.e. 4M ). The number of modules and value of TCC  with respect to 

the parameter _pow c  are displayed in Figure 4.3. The solid line describes the 

change on number of modules affects TCC  when _pow c  = 1, while the dashed 

line describes the relationship when _pow c  = 2.  

 

Figure 4.3: Effect of number of modules on TCC   

    If we looked at the solid line relative to the horizontal axis, it is found that the 

number of modules when _pow c  = 1 ranges between 4 and 9. This means that the 
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12 healthcare services in this case study can be grouped into up to 9 healthcare service 

modules. When increasing _pow c  from 1 to 2, the number of modules reduces to 

the range between 3 and 6. This is because _pow c  is a parameter indicating the 

penalty assigned to the size of the cluster. It avoids all healthcare services being 

clustered into one big module. At the same time it excludes the possibility of each 

healthcare service being a module. In other words, it helps to strike a balance in terms 

of coordination cost between healthcare services within module and across module.  

    We also found that the value of TCC  generally increases with the number of 

modules for both lines. It is because cost of coordination across modules raises when 

the number of modules increases. In addition, large value of _pow c  leads to a great 

growth of TCC . This indicates that the number of modules is preferable to be small in 

practical implementation in order to maintain a small value of TCC .  

The effect of Population Size on TCC  is mapped out in Figure 4.4. Square and 

triangle markers represent the variance of TCC  on varied Population Size with 

_pow c  = 1 and _pow c  = 2 respectively.  

 

Figure 4.4: Effect of population size on TCC  
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    Through observation we found that larger Population Size results in smaller 

variance on TCC  and closer value to the minimum TCC  no matter the value of

_pow c . This indicates that the GA performs better with larger Population Size mainly 

because that large population provides a sufficient sample size. However, there is no 

reduction on TCC  with Population Size from 150 to 200. This means that there is no 

need to have a very large population size when actually implementing the algorithm.  

We shared our findings with relevant institutions and health professionals in 

order to seek advice on a proper process modularization for this case study. From the 

clinical practice’s point of view, professionals suggested to select the process module 

structure shown in the 2nd column of Table 4.2 although its TCC  is not the minimum 

value 82.864. During discussions, we understood that 6A  is a clinical procedure 

which is performed by licensed doctors. Before proceeding to the procedure, eye sight 

test and doctor consultation (namely 2A  and 3A ) are compulsory to go through. 

During the procedure, the patient’s conditions have been examined and 2nd 

consultation is not necessary to have. However, services 4A  and 5A  are two 

medical tests. Results are required to be reviewed by the doctor for decision making 

on further medical treatment, medication or follow-up visits. It is more practical and 

operational to cluster services 4A , 5A , 7A  and 2A , 3A , 6A  into two different 

service modules rather than put them all together into one module. 

Table 4.2: The comparison of healthcare services in each module 

Module Tag The selected module structure The lowest TCC  module structure 

1M  4A  5A  7A  2A  3A  4A  5A  6A  7A  
2M  12A  12A  
3M  2A  3A  6A  1A  
4M  1A  8A  9A  10A  11A  
5M  8A  9A  10A  11A  

- 

TCC  83.302 82.864 
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Total 12 healthcare services in the clinical pathway are clustered into 5 modules. 

Each module contains no more than 4 healthcare services. Healthcare services in the 

clinical pathway have been clustered into mutually interacted healthcare service 

modules for patients with both cardiovascular and ophthalmological conditions. The 

DSM  representation of modules is given in Table 4.3. Healthcare services within a 

module are shaded. 

Comparing to the original DSM  shown in Table 4.1, the sequence of healthcare 

services has been adjusted in order to put services in a module together. The adjusting 

of healthcare services’ sequence leads to the occurrence of feedback entries on the 

upper-diagonal cells.  

Table 4.3: The DSM representation of modules 

 
 

 
From 

 
 

 
A4 A5 A7 A12 A2 A3 A6 A1 A8 A9 A10 A11 

To 

M1 

A4 0 0 0 0 0 0.966 0 0 0 0 0 0 

A5 0 0 0 0 0 0.923 0 0 0 0 0 0 

A7 0.966 0.923 0 0 0 0 0 0 0 0 0 0 

M2 A12 0 0 0.975 0 0 0.938 0.833 0 0 0.983 0 0.5 

M3 

A2 0 0 0 0 0 0 0 0.983 0 0 0 0 

A3 0 0 0 0 0.983 0 0 0 0 0 0 0 

A6 0 0 0 0 0 0.833 0 0 0 0 0 0 

M4 A1 0 0 0 0 0 0 0 0 0 0 0 0 

M5 

A8 0 0 0 0 0 0 0 0.967 0 0 0 0 

A9 0 0 0 0 0 0 0 0.968 0.967 0 0 0 

A10 0 0 0 0 0 0 0 0 0 0.5 0 0 

A11 0 0 0 0 0 0 0 0 0 0 0.5 0 

4.4.3 Results of Sequencing and Redesign 

By emphasizing interrelationships between modules, the Table 4.3 is compressed 

into clDSM  shown in Table 4.4. 
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Table 4.4: The compressed clDSM  representation by modules 

  
From 

  
M1 M2 M3 M4 M5 

To 

M1 1.889 0 1.889 0 0 

M2 0.975 0 1.771 0 0.983 

M3 0 0 1.816 0.983 0 

M4 0 0 0 0 0 

M5 0 0 0 1.935 1.967 

    In the clDSM , we can find that executing 2M  depends on something (i.e. 

information, output) from 3M  with total dependency strength 1.771. However, the 

sequence of clDSM  indicates that 2M  is executed before 3M . Something from 

3M  is called feedback as 3M  has not started when doing 2M . Entry with zero value 

in the matrix indicates that there is no relationship between modules. 

    Having the clDSM , the next step is to re-sequence identified service modules to 

find sequences with minimum TFB . All possible sequences of modules are generated 

by enumeration. Figure 4.5 shows the change of TFB  along all sequences. The dots 

in triangle are the three sequences with minimum TFB . 

 

Figure 4.5: The total feedback history for re-sequencing of care modules 

    The minimum TFB  is found at value 17.016 in sequence number 26, 32 and 36. 
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Results of modules sequence are shown in Table 4.5. The execution sequence of 

service modules, for example, can be 4M  5M  3M  1M  2M .  

Table 4.5: Information of minimum TFB  

Minimum total 
feedback at Iteration 

The lowest Total 
Feedback value Modules sequence 

26 17.016 4M  5M  3M  1M  2M  

32 17.016 4M  3M  5M  1M  2M  

36 17.016 4M  3M  1M  5M  2M  

After considering precedence constraint among healthcare services, the clinical 

pathways is redesigned and represented by a network diagram in which nodes 

represent service modules. The relationships between modules are represented by 

arrows between the nodes. The AND/XOR-split/join constructs are marked. Figure 

4.6 is the redesigned clinical pathway of the case.  

 
Figure 4.6: The redesigned modular clinical pathway 
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    From the network diagram, we know that a particular patient must go through 

4M  (i.e. the registration) before he/she continues his/her journey to receive 

healthcare services. Then, both 3M  and 5M  are required to conduct. But the 

sequence of executing which module first is not necessary. 3M  is considered as a 

precedence of 1M . So, the start time of 1M  cannot be earlier than the finish time of 

3M . The final module that a patient needs to go through is 2M . According to the 

redesigned clinical pathway, all the possible pathways for a patient to flow through 

are 4M  5M  3M  1M  2M , 4M  3M  5M  1M  2M , and 4M  3M  1M

 5M  2M . The redesigned clinical pathway actually covers all three modules 

sequences with minimum TFB . We can see from the redesigned modular clinical 

pathway, it greatly simplifies the clinical pathway identified by the process mining 

method through clustering closely interrelated healthcare services into service 

modules. The healthcare delivery process is further streamlined by adjusting 

healthcare service modules’ sequence with the purpose of minimizing feedback. The 

case study demonstrates the applicable of the proposed DSM based technique for 

clinical pathway redesign.  

4.5  Summary  

In summary, the findings from this chapter suggest that the DSM-based 

modularization and sequencing algorithm is able to provide a practical support in 

modular clinical pathway redesign. Healthcare services allocation to care modules is 

achieved by minimizing TCC through GA procedure while the sequencing is 

accomplished by enumeration to find all sequences with minimum TFB. The 

performance of GA for modularization is analyzed by examining TCC with respect to 

the number of modules, the population size, the crossover rate, as well as the mutation 
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rate. The compressed DSM is constructed to study the relationship between sequence 

of modules and TFB. The clinical pathway is eventually redesigned into a modular 

clinical pathway based on the re-sequenced process modules and medical constraints. 

The redesigned pathway provides a foundation to support mass customization of 

healthcare services through flexible configuration. 
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CHAPTER 5 HEALTHCARE SERVICE CONFIGURATION 

BASED ON PROJECT SCHEDULING 

 
     To configure healthcare service modules according to individual patient’s needs 

involves enormous complexities and uncertainties. A decision support model is 

necessary to enable mass customization of healthcare services while leverage resource 

utilization. In the decision model, the healthcare services configuration problem is 

formulated as a RCPSP. A bi-level GA-based scheduling algorithm is developed and 

applied to a case study to illustrate the application of healthcare service configuration.    

5.1  Significance of Healthcare Service Configuration  

    A key principle of mass customization is that it is a demand driven, customer 

centric system (Pine 1993, Tseng et al. 1996). In the context of healthcare, this means 

individual patients need to be actively involved into the healthcare delivery process by 

providing key inputs that include their medical needs and preferences. However, there 

is information asymmetry between patients and physicians, and patients are generally 

less informed and unable to make critical medical decisions or select medical services 

on their own. Thus, decision support is necessary to integrate individual patients into 

the healthcare delivery process. With patient-specific pathway identified and process 

modules defined, it becomes possible for individual patients to configure their 

healthcare services by themselves or with the help of healthcare professionals. 

However, a challenge is that there are a large variety of medical services currently 

available. Decision support is thus needed in aligning a patient’s needs and 

preferences with the relevant medical services and available resources. To integrate 

individual patients into the healthcare delivery process, a healthcare service 

configuration system is developed and shown in Figure 5.1. 
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The framework consists of three modules: a decision support model at the 

foundation and two interfaces for patients and care providers, respectively. An 

individual patient’s medical profile will be automatically analyzed by the decision 

support model and alternative feasible healthcare service packages will be suggested 

accordingly. In more details, the decision support model first takes the patient’s 

medical profile and extracts EMRs of other patients with the same medical conditions. 

Based on these historical records, process mining technique is used to identify 

patient-centered process network. The identified process network basically indicates 

an individual patient’s medical needs. We use DSM technique to streamline and 

redesign the identified process network into modular clinical pathway in order to 

guide patient care flow. At the same time, processing time for healthcare services or 

service modules are estimated from extracted EMRs. Then, an individual patient’s 

preferences are taken as inputs and matched with the available resources from the care 

providers via a scheduling algorithm. The resource capability indicates the required 

resource(s) for executing a particular care service. The resource availability refers to a 

resource timetable to denote a resource is available or not in a certain time slot. The 

output of the scheduling algorithm would be in terms of a healthcare service package. 

If the patient is not satisfied with the configured healthcare service package, he or she 

can reconfigure the services by reselecting the options that best match his preferences. 

There could be a wide range of options for the patient to select from, for example, the 

date and time, the care provider, the doctor and the level of wards. Once the 

configuration confirmed, the healthcare service package will update the resource 

capacity available for the next patient.  

5.2  Resource-constrained Project Scheduling 

    The healthcare service configuration essentially is handling services in healthcare 
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to create service packages. A healthcare service package, in substance, is a 

well-coordinated schedule generated for a patient to go through different healthcare 

services (e.g. tests and consultations). Given a modular healthcare process, the 

healthcare service configuration can be viewed as selecting and combining 

components (i.e. care service) and modules (i.e. a cluster of two or more services) in 

order to find a schedule that matches available resources and satisfies all the 

constraints and a patient’s preferences.  

    From an operational point of view, a healthcare service package can be treated 

analogously as a project which is defined as a collection of tasks. Hence, the 

healthcare service package configuration problem is formulated as a RCPSP. The 

purpose is to search for an optimum or near optimum solution to assign a start time 

for each component or module in the pathway to achieve certain objectives (e.g. the 

minimal overall process time or the minimal cost). The solution should satisfy 

constraints such as the patient’s preference, precedence relationship and resources’ 

requirements.  

    However, there are some inherent uncertainties in medical diagnosis which 

display unique characteristics in the healthcare service configuration. Different from 

project scheduling with a given set of tasks, healthcare services to be scheduled 

sometimes are not completely known. Decisions on what healthcare services need to 

be taken depend on examination results and clinical judgments. Instead of scheduling 

the whole healthcare services for a patient, we generate schedules stage by stage. The 

set-up of the healthcare package specification procedure is illustrated in Figure 5.2. 
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Figure 5.2: Healthcare package specification procedure 

    For those healthcare services that can be determined before the 

diagnosis-and-prescription phase, a preliminary package would be generated to give a 

schedule for a patient to receive those confirmed care services. For those healthcare 

services decided during diagnosis-and-prescription phase, the scheduling can only be 

started when the relevant information is available.  

The RCPSP has received extensive research since the early days of operations 

research (Wiest 1967; Pritsker et al. 1969; Davis and Patterson 1975). The objective of 

classical RCPSP is to determine the feasible start time for each task of the project in 

order to achieve certain objectives functions. Resource limitations and tasks’ 

sequential relationship make project scheduling essentially a combinatorial problem. 

Based on the number of projects and resources required by the projects, one can 

classify such a problem into four broad categories as shown in Figure 5.3. 

 
 
 
 
 
 
 
 

Figure 5.3: Classification of RCPSP 

    As we have discussed in previous section, a healthcare service package 

essentially is a schedule generated for a particular patient to go through different 
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healthcare services. A healthcare service package can be treated analogously as a 

single project with a series of healthcare services to be delivered. Health professionals 

and pharmaceutical equipment are multiple resources used to process healthcare 

services. In the literature review, main emphasis is on methods solving the multiple 

resources constrained single project scheduling problem.  

    The RCPSP is essentially a combinatorial problem because there are many 

possible options for the starting time of particular activities. There are various solution 

techniques have been proposed to solve RCPSP (e.g. Davis 1969; Patterson and Huber 

1974; Stinson et al. 1978). Generally, they can be categorized into optimization 

procedures and heuristic procedures.  

    Optimization procedures can be subdivided into two main streams namely 

mathematical programming and enumerative method to get the optimum solution. 

Firstly, the mathematical programming formulates and solutes the scheduling problem 

using integer programming based formulations (Talbot 1982; Patterson et al. 1989). 

Secondly, enumerative methods use some branch-and-bound techniques to search over 

a precedence tree procedure for optimum solution. Branch-and-bound methods start 

with an early work of Johnson (1967). A variety of branch-and-bound algorithms have 

been developed (Christofides et al. 1987; Patterson et al. 1989; Demeulemeester and 

Herroelen 1992). Most of them use partial schedules which are associated with the 

vertices of the enumeration tree. The branching process consists of extending the partial 

schedule in different ways like the precedence tree, delay alternatives, extension 

alternatives block extensions.  

Most heuristic procedures are priority-rule based scheduling which establishes 

activity priorities and then uses priority values to select a good combination rather than 

the best solution (Davis and Patterson 1975). Wiest (1967) is one of the earliest 
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researchers to propose a heuristics model on scheduling large project with limited 

resources. His procedure is applied on single project single resource with 

deterministic activity. Later, the heuristics have been extended to solve multiple 

resources constrained project scheduling and multiple resources constrained 

multi-project scheduling by Mohanty and Siddiq (1989). In general, priority-rule 

based heuristics have the advantage of being intuitive, easy to implement, and fast in 

terms of computational effort.  

A priority rule based scheduling heuristic is made up of two components, a 

schedule generation scheme and a priority rule. Two different schemes can be 

distinguished: 1) serial approaches and 2) parallel approaches. A serial approach is to 

rank all activities of the project in order of priority as a single group, and then scheduled 

one at a time (serially). In this procedure, the priority of the activity is established only 

once and you do not change it during the application of the algorithm. A parallel 

approach, on the contrary, all activities starting in a given time period are ranked as 

group and resources allocated. At each successive time period a new rank ordering of 

all eligible activities is made and the process continued. Generally, parallel procedures 

are proved to be more efficient. A specific priority rule is then employed in order to 

choose one or more activities from the decision set which then is scheduled. Large 

numbers of priority rules have been discovered. Browning and Yassine (2010) 

compared the performance of various priority rules.  

Many research studies on the RCPSP recently employed GA, which has been 

recognized as a powerful and applicable method. GA has been used successfully to 

solve the standard RCPSP (e.g. Demeulemeester and Herroelen 1992 and 1997; 

Mingozzi et al. 1998; Klein and Scholl 1999). An extensive review of RCPSP can be 

found in Brucker et al. (1999). The major disadvantage of the general GA is, however, 
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that it requires a relatively large amount of computational time to reach the solution 

space before the solution is finally attained (Espinoza et al. 2005).  

5.3  Healthcare Service Configuration  

    Healthcare service configuration is formulated as a RCPSP to allocate available 

medical resources over time so that a well-coordinated schedule is generated for a 

patient to receive different healthcare services.  

5.3.1 Healthcare Service Scheduling Formulation 

    In this study, healthcare service scheduling for an individual patient is formulated 

as a single project with multiple resources constraints, services precedence 

relationship, and patient’s preferences. The following notations are used in the 

formulation: 

Notations: 

m     is the set of service modules to be scheduled, 1,2,..., .m M  

  t      is the index for time slot, 1,2,..., .t T  

T     is the maximum time slot which indicates the time horizon for study. 

mpt    is the estimated processing time of the service module m .  

Pr me   is the predecessor set of the service module m . 

'm     is a predecessor of the service module m , ' Pr mm e . 

( )iR m  is the service module m  required the thi  resource.  

( )iR t   is the thi  resource available at time slot t . 

t     is the patient’s preferred starting time slot.  

From the redesigned modular clinical pathway, we are able to know all or at least 

parts of healthcare services that a particular patient needs to go through. Before the 

diagnosis-and-prescription phase, a set of must-go healthcare services are already 

known from the modular clinical pathway. A patient is going to receive M  healthcare 
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service modules labeled by 1,2,...m M . The processing time of the service module 

m  is denoted as mpt . The precedence relations are given by the Pr me  which 

indicates a set of predecessors of the service module m . Each service module 

requires certain amounts of resources to be performed. Resources are considered to be 

renewable and constant available over time. The service module m  requires ( )iR m  

units of the thi  resource in each time slot. It is assumed that once a service starts, its 

progress is not interrupted. Also the number of different resources required and the 

amount required of each resource by an activity are assumed to be constant. The 

amount of the thi  resource available at time slot t  is constant at ( )iR t . The 

healthcare service package configuration problem is formulated as below: 

Given: m , Pr me , mpt , T , ( )iR m , ( )iR t , t  

                

1 1                                    (5-1) ( )+MMt t tptMinimize t x t x t x t      

where  

               
1, if activity  starts at time period ,  1,2,... .

0,  otherwise.
mt

m t m M
x






                                           

subject to 

             
' Pr

' '                                                      (5-2)max   
mm e

mt m t mt x t x pt


     
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The objective is to find a schedule which makes the makespan (i.e. total 

processing time) for an individual patient as short as possible and at the same time 

keeps the starting time as close as possible to the preferred time slot *t . The objective 

is formulated as (5-1) to minimize the summation of makespan of healthcare service 

package and the difference between the starting time and the patient’s preferred 

starting time slot. The makespan refers to the difference between the starting time of 

the last service module (i.e. MMt ptt x  ) and the starting time of the first service 

module (i.e. 1tt x ). In the objective function, decision variables are mtx  which 

indicate activities starting time period. If the activity m  starts at time period t , mtx  

is equal to 1, otherwise 0. Activities precedence relationships are maintained by 

Constraint (5-2). An activity (i.e. a service) can only start when all activities in its 

precedence set have finished. Constraint (5-3) makes sure there is no redundant 

activity in an acyclic process network. Constraint (5-4) and (5-5) insure 

non-preemptive activity. A patient can only receive a service at a time. When the 

patient is receiving a service, no other service can interrupt and conduct on this patient. 

Resource restriction is imposed by Constraint (5-6). In each time period, total 

resources consumption cannot exceed the amount of available resource. In summary, 

these constraints insure that a service is conducted on a patient only if sufficient 

resources are available and its precedent service has been finished. 

5.3.2 A Bi-level Scheduling Algorithm  

    To solve the healthcare service scheduling problem, there are two main 

challenges. One challenge of the scheduling is that the sequence of activities in the 

process network is not deterministic. The other challenge is how to schedule resources 

to conduct the sequence of activities. These two challenges are hierarchical 
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decision-making problems where the search spaces are different. The feasible 

sequences of activities affect resources allocated to execute the process. At the same 

time, the resources arrangement has impact on makespan for an individual patient. 

Therefore, a bi-level GA scheduling algorithm is developed for solving RCPSP in a 

same framework. An overall framework of the proposed algorithm is given in Figure 

5.4. 

 

Figure 5.4: An overall framework of a bi-level GA scheduling algorithm 

    As we have discussed in Section 5.2, healthcare service package may not be able 

to generate in a whole at one time. Before we obtain more detailed medical 

information, we may only schedule activities up to certain point. With given 

information on process network, we first decide what activities need to be executed on 

the particular patient. Then, bi-level scheduling algorithm is applied. The first layer 

GA is used to perform an initial search in order to exam the feasibility of activity 

e.g. a1 a2 a3 
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sequences. Only the feasible activity sequence (i.e. the sequence with high fitness 

value) obtained from the first layer will be an input to the second layer of the 

algorithm. The second layer GA is employed to search for a near optimum time 

arrangement to allocate resources according to resource capability, resource 

availability and the patient’s preferences. The purpose is to generate a schedule 

containing a serial of healthcare services within a minimum time horizon. Therefore, a 

healthcare service package is generated for patient to make a choice. The patient can 

reconfigure until the generated package can best match his preferences. Once a 

package confirmed, the resource availability information will be updated and the 

algorithm is ready for the next patient to conduct configuration. Figure 5.5 details the 

operation of the proposed bi-level scheduling algorithm. 

    The purpose of the first layer GA is to generate feasible activity sequences. The 

project specific schedule data and the parameters for global search are prepared at the 

very beginning of the operation. The random number generator produces an initial 

population composed of activity sequence individuals. Each individual is encoded as a 

vector which indicates an activity sequence for the problem. Each gene stands for an 

activity number which assigns an integer number between 0 and as many as service 

modules (or healthcare services) in the clinical pathway. 

    In GA, a fitness value of an individual in a population is needed to conduct the 

optimization procedure. However, it is not easy to calculate the fitness value directly 

in our study. Therefore, we substitute a cost function for a fitness function. In contrast 

to calculate how good an individual is, the cost function indicates how bad an 

individual is. In other words, an individual with lower cost is better. The Activity 

Sequence Cost (ASC) is initialized at infinite large which means an individual is 

totally not a feasible sequence. A set of tests are designed to exam the sequence  
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Figure 5.5: A bi-level GA scheduling algorithm 

feasibility, namely precedence relationship test, non-redundancy test and AND/XOR 

relationship test. If an individual pass one of the tests ASC will be reduced by certain 

amount (i.e. one_pass_cost). For an individual, the more tests it can pass the lower 
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cost it is. Only the individuals with low ASC values are feasible sequences. Their 

ASC values will be updated by Real Cost (RC) after going through the second layer 

GA. Other individuals’ ASC values keep as the same. Thus, we will obtain the 

partially updated population. Then, an evolution process is achieved if the termination 

criterion is not satisfied, that is to say, the search does not converge. Three basic 

operators are applied in the evolution process. They are roulette wheel selection, 

single-point crossover, and uniform mutation. Elaborations of these operators have 

been given in Appendix E. The iterations will go on until the termination criterion is 

satisfied. The final results contain activity sequence, time arrangement of resources 

and RC. 

    The time arrangement of resources corresponding to a feasible activity sequence 

is gotten from the second layer GA. For each of the feasible activity sequence 

identified in the first layer, the randomly generated initial population in the second 

layer consists of activity starting time. The encoding of each individual indicates a 

sequence of starting time slot allocating to an activity. Each gene stands for an 

activity’s starting time slot by assigning an integer number between time 0 and the 

time horizon T . Following the same consideration, we use a Time Arrangement Cost 

(TAC) function to decide the direction of learning. Considering constrains on 

resources availability, activities’ non-preemptive relation, and the patient’s preferred 

starting time, we subtract certain value of cost from the initial TAC if one of the tests 

is passed. For an individual, if it passes all above mentioned three tests, RC is 

calculated to show the sum of makespan for a particular activity sequence and the 

difference between the stating time slot and the preferred time slot. The iterations of 

evolution will keep on until the search converges.  
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5.4  Healthcare Service Configuration 

    With the redesigned modular clinical pathway in Subsection 4.4.3, how the 

decision support model proposed in Section 5.1 enables healthcare service 

configuration is illustrated in the following subsections. The values of the GA 

parameters are decided by applying the DOE technique. A 24 factorial experiment is 

conducted and shown in Appendix H. 

    The redesigned pathway (shown in Figure 4.6) serves as a fundamental input to 

the decision support model (see A in Figure 5.1) in the case study. The redesigned 

pathway basically tells us the service modules to be scheduled ( m ), the predecessor 

set ( Pr me ) and process structure between service modules and services in each module. 

The processing time is assumed to follow a lognormal distribution. For each 

healthcare service, the processing time is estimated from the event log extracted from 

outpatients’ EMRs from TTSH (see B in Figure 5.1). The processing time for a 

service module ( mpt ) is estimated by aggregating all individual care services in the 

same cluster. For example, the processing time of 1M  is estimated to follow a 

lognormal distribution with   and   equal to 2.7762 and 0.7980 respectively. 

Figure 5.6 draws the cumulative distribution function of 1M  processing time.  

 

Figure 5.6: CDF of 1M  processing time (LogN(2.7762, 0.7980)) 
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    The point 0.9 with corresponding time value 44.65 minutes implies that 90% 

probability will be found that patients can finish their healthcare service 1M  within 

45 minutes. In other words, the service level is 90%.  

    As the healthcare service configuration problem is formulated as a discrete time 

scheduling problem, we considered two scenarios of the processing time, namely 80% 

and 90% service level. Every 5 minutes interval is represented by a time slot. The 

above mentioned information is summarized into Table 5.1. 

The resource capability (see C in Figure 5.1) indicates which resource(s) has the 

capability of executing a particular care service and how many unit(s) is going to be 

consumed for execution. The resource availability ( ( )iR t ), refers to a resource 

timetable to denote if a resource is available or not in a certain time slot (see D in 

Figure 5.1). In this specialist outpatient clinic case study, we limit our consideration 

mainly on resources of health professionals. It is assumed that medical equipments 

(e.g. X-ray machine, ECG) and technicians are available throughout the study period. 

The detailed staff managing information of resource availability is obtained from 

TTSH. A normal working day is divided into 2 work shifts, namely the morning and 

afternoon shift. The morning shift is 8:00-13:00 and the afternoon shift is 14:00-17:00. 

The doctors at clinics are present for consultation and treatment only periodically 

according to their shift schedule. We notice that each doctor is associated with a nurse 

for assistance. A summary of resource availability and capability in the morning of 

May 4, 2009 in Clinic 3B and Clinic 2A is in Table 5.2 for the ease of applying the 

proposed bi-level scheduling algorithm. 
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For the purpose of clear demonstration and comparison of the healthcare service 

configuration, we will focus on a particular doctor, the Dr Lim, in Clinic 3B 

(Cardiology Clinic) who has appointments with 14 patients in the morning shift on 

May 4, 2009. This is because a general high peak of patients’ visits is shown on 

Monday. The patients’ visiting schedules are extremely important for coordinate  

healthcare service delivery to achieve high service expectations. Moreover, according 

to the patients’ EMRs, there are 5 of them also suffered from an eye problem. The 5 

patients made appointments with different oculists in Clinic 2A (Eye Clinic) on 

another day. Comparison is able to be conducted between their actual procedures and 

our developed methods. 



 

10
4 

 

 

 

T
ab

le
 5

.2
 (a

): 
R

es
ou

rc
e 

av
ai

la
bi

lit
y 

an
d 

ca
pa

bi
lit

y 
in

 C
lin

ic
 3

B
 

Re
so

ur
ce

 
N

o.
 

Re
so

ur
ce

 N
am

e 
Re

so
ur

ce
 T

yp
e 

Av
ai

la
bi

lit
y 

on
 

M
ay

 4
, 2

00
9 

Re
so

ur
ce

 C
ap

ab
ili

ty
 

M
1 

M
2 

M
3 

M
4 

M
5 

8:
00

-1
3:

00
 

A4
 

A5
 

A7
 

A1
2 

A2
 

A3
 

A6
 

A1
 

A8
 

A9
 

A1
0 

A1
R1

 
Dr

 L
im

 / 
N

ag
a 

 
Ca

rd
io

lo
gi

st
/ N

ur
se

 
 

- 
- 

- 
- 

- 
- 

- 
- 

1 
1 

- 
1 

R2
 

Pr
of

 C
ul

le
n/

 V
er

en
a 

 
Se

ni
or

 C
ar

di
ol

og
ist

/ N
ur

se
 

 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1 
- 

1 
R3

 
Fi

za
h 

Ra
di

ol
og

y 
Te

ch
ni

ci
an

 
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1 
- 

R4
 

Ja
m

ila
h 

Ra
di

ol
og

y 
Te

ch
ni

ci
an

 
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1 
- 

T
ab

le
 5

.2
 (b

): 
R

es
ou

rc
e 

av
ai

la
bi

lit
y 

an
d 

ca
pa

bi
lit

y 
of

 C
lin

ic
 2

A
 

Re
so

ur
ce

 
N

o.
 

Re
so

ur
ce

 N
am

e 
Re

so
ur

ce
 T

yp
e 

Av
ai

la
bi

lit
y 

on
 

M
ay

 4
, 2

00
9 

Re
so

ur
ce

 C
ap

ab
ili

ty
 

M
1 

M
2 

M
3 

M
4 

M
5 

8:
00

-1
3:

00
 

A4
 

A5
 

A7
 

A1
2 

A2
 

A3
 

A6
 

A1
 

A8
 

A9
 

A1
0 

A1
1 

R5
 

Dr
 F

oo
 / 

Id
ah

 
O

cu
lis

t/
 N

ur
se

 
 

- 
- 

1 
- 

- 
1 

- 
- 

- 
- 

- 
- 

R6
 

Dr
 N

g/
 G

an
ga

 
Se

ni
or

 O
cu

lis
t/

 N
ur

se
 

 
- 

- 
1 

- 
- 

1 
- 

- 
- 

- 
- 

- 
R7

 
PS

A:
 F

ar
a 

Ey
e 

Te
st

in
g 

Te
ch

ni
ci

an
 

 
- 

1 
- 

- 
1 

- 
- 

- 
- 

- 
- 

- 
R8

 
PS

A:
 K

av
ith

a 
Ey

e 
Te

st
in

g 
Te

ch
ni

ci
an

 
 

- 
1 

- 
- 

1 
- 

- 
- 

- 
- 

- 
- 

R9
 

Ch
in

 C
ho

i L
an

 
La

sik
 O

T 
 

- 
- 

- 
- 

- 
- 

1 
- 

- 
- 

- 
- 

R1
0 

Ru
ey

 
O

ph
th

al
m

ic
 Te

ch
ni

ci
an

 
 

1 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

T
ab

le
 5

.2
 (c

): 
R

ec
ep

tio
n 

an
d 

pa
ym

en
t s

er
vi

ce
s 

Re
so

ur
ce

  
N

o.
 

Re
so

ur
ce

 N
am

e 
Re

so
ur

ce
 T

yp
e 

Av
ai

la
bi

lit
y 

on
 

M
ay

 4
, 2

00
9 

Re
so

ur
ce

 C
ap

ab
ili

ty
 

M
1 

M
2 

M
3 

M
4 

M
5 

8:
00

-1
3:

00
 

A4
 

A5
 

A7
 

A1
2 

A2
 

A3
 

A6
 

A1
 

A8
 

A9
 

A1
0 

A1
1 

R1
1 

PS
A:

 C
ec

ili
a 

Re
ce

pt
io

n 
Cl

er
k 

 
- 

- 
- 

- 
- 

- 
- 

1 
- 

- 
- 

- 
R1

2 
PS

A:
 M

as
 

Re
ce

pt
io

n 
Cl

er
k 

 
- 

- 
- 

- 
- 

- 
- 

1 
- 

- 
- 

- 
R1

3 
PS

A:
 Je

ya
 

Pa
ym

en
t C

le
rk

 
 

 
- 

- 
- 

1 
- 

- 
- 

- 
- 

- 
- 

- 
R1

4 
PA

S:
 P

ris
ci

lla
 

Pa
ym

en
t C

le
rk

 
 

 
- 

- 
- 

1 
- 

- 
- 

- 
- 

- 
- 

- 
  



 

105 

 

The detailed information of the 14 patients’ EMRs is summarized in Table 5.3. 

The table also shows individual patient’s makespan which is the length of time 

between patient’s registration and finishing the last healthcare service module. In 

other words, the makespan describes the time of receiving healthcare services and 

waiting to be served. 

Table 5.3: Patient current appointment and makespan 

Patient No. 
Appointment in Clinic Actual Makespan in Clinic 

Clinic Date Time Doctor Registration 
Time 

Finishing  
Time 

Makespan 
Minutes Time slots 

1 
3B 2009-5-4 9:35 Dr Lim 9:55 10:25 0:30 6 
2A 2009-5-6 11:05 Dr Foo 10:04 12:29 02:25 29 

2 3B 2009-5-4 11:30 Dr Lim 11:50 12:31 0:41 8 
3 3B 2009-5-4 11:50 Dr Lim 11:26 12:10 0:44 9 
4 3B 2009-5-4 10:20 Dr Lim 10:10 11:30 1:20 16 
5 3B 2009-5-4 11:30 Dr Lim 11:25 12:04 0:39 8 

6 
3B 2009-5-4 11:20 Dr Lim 11:21 12:02 0:41 8 
2A 2009-5-6 09:00 Dr Foo 07:56 08:45 00:49 10 

7 3B 2009-5-4 10:40 Dr Lim 09:25 11:35 2:10 26 

8 
3B 2009-5-4 10:05 Dr Lim 09:45 10:45 1:00 12 
2A 2009-5-6 16:10 Dr Foo 15:21 16:50 01:29 18 

9 
3B 2009-5-4 10:00 Dr Lim 09:40 10:25 0:45 9 
2A 2009-5-7 08:35 Dr Ng 08:23 09:39 01:16 15 

10 3B 2009-5-4 11:40 Dr Lim 11:10 11:45 0:35 7 
11 3B 2009-5-4 10:15 Dr Lim 09:46 10:36 0:50 10 
12 3B 2009-5-4 10:35 Dr Lim 10:22 11:08 0:46 9 

13 
3B 2009-5-4 10:30 Dr Lim 10:04 10:48 0:44 9 
2A 2009-5-6 09:20 Dr Ng 08:59 10:32 01:33 19 

14 3B 2009-5-4 09:40 Dr Lim 09:23 10:19 0:56 11 

    Now, an individual patient can configure the healthcare services by selecting the 

options that best match his preferences (see E in Figure 5.1). If we consider the 

healthcare service configuration from a system level, there could be a wide range of 

options such as the preferred care providers (e.g. TTSH, SGH, and NUH), the 

preferred doctors (e.g. senior doctor or registry doctor), the preferred visiting date and 

time, and the preferred wards (e.g. A1, B4 or C). However, the case study we 
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conducted in this research focused on the patients who visit both Clinic 2A and Clinic 

3B in TTSH. The options considered limit to the preferred doctor, date and time. Once 

a patient selected the preferred doctor option, the resources required to execute the 

healthcare service “Consultant” have been determined. When a patient chose a 

preferred date and time, the corresponding time slot ( t ) in the scheduling algorithm 

is defined. The preferred time slot indicates that the suggested healthcare service 

package should not be far away from the particular time slot.  

With the given information, a healthcare service package can be configured by 

using the bi-level GA-based scheduling algorithm (for Matlab codes see Appendix G). 

To demonstrate how the healthcare configuration decision support model works, we 

assume all information is the same as the as-is situation. A patient was suffered from 

both cardiovascular condition and eye problem. He made his choices on options in the 

decision support model. He would like to see Dr Lim a Cardiologist at 9:35am for his 

cardiovascular condition. At the same time, he would like to consult Dr Foo for his 

eye problem in the same hospital visit. So he ticked the corresponding options. He had 

no specific requirement on technicians for his medical tests or examinations. The 

selected options are shown in Table 5.4.  

Table 5.4: Selected options 

Resource Name Resource Type Options Preferred Time Options 
Dr Lim Cardiologist   8:00  
Fizah Radiology Technician   8:05  

Dr Foo Oculist    8:10  
Dr Ng Senior Oculist  …  

PSA: Fara Eye Testing Technician  9:35  
PSA: Kavitha Eye Testing Technician  …  

Chin Choi Lan Lasik OT    
Ruey Ophthalmic Technician  12:30  

    The algorithm is able to automatically generate an appointment schedule specific 
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for him. The generated healthcare serive package and resources utilization status are 

exhibited in Figure 5.7. 

 

 

 

 

Figure 5.7: The schedule and resources utilization status  

As indicated in the graph, the blue triangle shows the patient’s preferred time slot 

(the same as the current appointment time) and the orange line shows the suggested 

healthcare service package. The package basically tells the sequence of going through 

different healthcare service modules by taking the patient’s preferences (i.e. options) 

and resource availability and capability into consideration. In this case study, the first 

patient select 9:35 am (i.e. 21t  ) as his preferred time slot. The configured 

healthcare package indicates that the patient need go through healthcare service 

module in the sequence of 4M  3M  5M  1M  2M . If the patient confirmed his 

package, corresponding resources will be reserved during the execution time slots as 

shown by lines in the upper part of the figure. For instance, resource 1R  and 2R

namely Dr Lim/Nurse: Naga and Radiology Technician: Fizah will be reserved to 
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conduct service module 5M . And the resources availability will be updated for the 

next patient to do configuration. If the patient is not satisfied with the suggested 

healthcare service package, he can reconfigure by reselecting different options until 

the suggested package matches his preferences the best. 

The above demonstration exhibits how an individual patient can configure 

his/her healthcare service package by providing key inputs including medical needs 

and preferences. Schedules for a sequence of healthcare services or modules are 

suggested for the patient to select from. Next, we are going to conduct what-if 

analysis to compare the appointment time and makespan of the as-is and to-be cases.  

The current appointment of an individual patient is obtained from EMRs and 

illustrated in Figure 5.8 using a blue triangle. We can see that appointments basically 

are scheduled on an interval of 5 minutes (i.e. one time slot). And appointments are 

centralized during the period of time slot 21 to time slot 46. The allocation of 

appointments mainly considers the availability of doctor.  

    In the proposed healthcare service configuration, the objective is to minimize the 

makespan of an individual patient and simultaneously to schedule the package as 

close as to the patient’s preferred time slot. When conducting scheduling, the resource 

availability, the resource capability and healthcare service modules’ relationship are 

considered as constraints. The healthcare service package scheduled for each patient is 

shown as a solid green color line for 80% service level and a dotted red line for 90% 

service level in the following Figure 5.8. The lines indicate the starting time of 

executing the first healthcare service module of the patient until finishing the last 

healthcare service module. 

    From the graph, we notice that all patients have their healthcare service package 

to be scheduled for both cardiovascular condition and eye problem in one hospital 
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visit. There are 5 patients whose packages start right at their preferred time slot 

(assume that their current appointment time slot is the patient’s preferred time slot). 

The maximum difference between the preferred time slot and the starting time of 

healthcare service package appears on the patient number 13 with service level 90%. 

The patient is scheduled 30 time slots earlier than his/her preferred time. The reason 

may lie on the fact that some resources have been reserved by patients who 

configured earlier. We conclude that higher service level results in a larger deviation 

of healthcare service package starting time from the preferred time slot. It is due to 

longer resources reservation period. 

 

Figure 5.8: The scheduled healthcare service package 

    Even though some healthcare service packages cannot be all scheduled at the 

patient’s preferred time slot, the makespan for an individual patient reduces 

significantly. As an individual patient with both cardiovascular condition and eye 

problem need visit Clinic 2A and Clinic 3B with different appointments, the 
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makespan, from the patient’s point of view, is the sum of two visits. The current 

makespan of a patient in both clinics is compared against the makespan of the 

proposed method in Figure 5.9.  

 

Figure 5.9: The current makespan vs. makespan of the proposed method 

    The current makespan of 14 patients are shown as a blue dash line with circle 

markers. The first patient is found to have the longest makespan 35 time slots (i.e. 175 

minutes). The green dotted line with triangle markers and the red solid line with 

square markers illustrate the makespan of an individual patient through healthcare 

service configuration with 80% and 90% service level, respectively. Over 14 

scheduled patients, 13 patients’ makespans are shorten and 1 patient’s makespan (i.e. 

the patient no. 10) breaks even. The makespan of patient no. 7 reduces the greatest (a 

decrease of 95-100 minutes). On average the reduction of an individual patient’s 

makespan is 39.75% and 28.66% for service level 80% and 90%, respectively. A 

major cause of the reductions is that the configuration facilitates better coordination 

on medical resources across clinics and departments. Consequently, the waiting time 

between healthcare services is reduced. In addition to makespan reduction, patients 
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(i.e. patient no. 1/6/8/9/13) with both cardiovascular condition and eye problem are 

scheduled in a single clinical visit rather than two visits on different days.  

    However, there are some variations on patients’ arriving time and healthcare 

service processing time when delivering healthcare services in practice. In order to 

ensure the proposed healthcare service packages to be delivered under such situation, 

the resources are reserved longer than the actual required healthcare service makespan. 

This way leads to a decrease in the resource utilization rate. The resource utilization 

rate is a ratio of actual healthcare service processing time over the resource 

reservation time for an individual patient. The trend of resource utilization rate is 

described in the Figure 5.10 with respect to the change of resource reservation time.  

 

Figure 5.10: Resource utilization rate vs. healthcare package resource reservation time 

    We can find from the graph that the longer the healthcare service package 

reserving medical resources the lower the resource utilization rate. Resource 

utilization rate of healthcare package with 90% service level is always lower than that 

with 80% service level. The comparison indicates that careful decisions on the patient 

service level need to be made when implementing healthcare service configuration.   

5.5  Summary 

A decision support model is developed in this chapter to integrate individual 
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patients into the healthcare service configuration process. The healthcare service 

configuration is formulated as a RCPSP, for which a bi-level GA-based scheduling 

algorithm is developed and demonstrated in a case study by examine different 

schedules and the associated resource utilization. What-if analysis is justified by 

comparing the makespan of the as-is and to-be cases. Change of resource utilization 

rate over the resource reservation time verifies the consistency of the trend of 

utilization rate and different satisfaction levels. Healthcare service configuration 

essentially enables the healthcare services to be customized and delivered with high 

efficiency.  
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CHAPTER 6 CONCLUSION AND FUTURE WORK 
 
    This chapter first summarizes research has been done and highlights the original 

contributions. Limitations are discussed and prospective works are stated in the 

following sections.  

6.1  Research Summary 

    There are an increasing number of patients, especially those with multiple 

medical conditions, who demand customized healthcare services that are tailored to 

their individual-specific needs. However, the delivery of healthcare services in most 

current healthcare systems are centralized at care providers and patients need go 

through different functional departments to receive care. The mainstream healthcare 

service delivery is similar to a product going through an assembly line in a 

manufacturing system that operates based on the principle of mass production. The 

supply-driven healthcare delivery system with increasingly specialized disciplines is 

becoming ineffective to fulfill the increasingly diversified patients’ needs for 

healthcare services. Inspired by the success of mass customization in delivering 

customized goods according to individual customers’ needs with high efficiency and 

low cost in manufacturing industry, this research makes an original contribution by 

investigating the theoretical feasibility and practical applicability of adopting mass 

customization for healthcare service delivery.  

    This research conducts a survey of literature that is most relevant to the proposed 

research, which includes the basic concept of mass customization and recent 

development in healthcare delivery system research. It is found that although 

healthcare differs from manufacturing in many significant ways, the basic value 

proposition of mass customization in terms of being demand-driven, modularity, and 
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value co-creation via configuration is generic and can be generally transferred into 

service industry in general and healthcare services in particular. Recent development 

on healthcare service delivery researches including evidence-based medicine, 

personalized medicine, consumer-driven healthcare, consumer healthcare informatics, 

and integrated healthcare delivery, are all pointing in the direction of mass 

customization of healthcare services from different angles.  

    This research makes contribution by developing a data-driven process redesign 

methodology to enable mass customization of healthcare services. The fundamental 

difference between healthcare and manufacturing lies in the former being a type of 

service and it mainly deals with processes instead of products. However, the basic 

concepts and principles are generic for both product and service systems and hence 

can be transferred to healthcare service delivery. Corresponding to these basic 

concepts and principles of mass customization, this research focuses on addressing 

three main research issues, namely patient-centered pathway identification, healthcare 

process modularization, and healthcare service configuration, which are the key 

enablers for mass customization of healthcare service. The results and findings on 

each of these research issues are summarized in the following.  

1) Patient-centered pathway identification  

    Mass customization is essentially a pull-based system that is driven by the 

demand of individual customer (patients in the context of healthcare). It is a 

prerequisite to start healthcare services delivery process with individual patient’s 

specific needs. In the transition towards mass customization of healthcare services, the 

first thing to do is to understand patient’s needs and match them with corresponding 

healthcare services,  which can be summarized in a clinical pathway. However, the 

complexity involved in both patients’ diversified medical needs and the large number 
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of medical service offerings adds to the difficulty of establishing appropriate 

relationship between them.  

    The method based on process mining is able to sift through a large number of 

patients’ activities in event logs, which record detailed healthcare services provision to 

individual patients, and match them with patients’ medical profiles. Through 

identifying the activities’ dependency relationship by aggregating a group of patients, 

the correct ordering of activities and process constructs are discovered and reflected in 

a process model, which represents the clinical pathway for a patient with a particular 

medical profile. The identified clinical pathway describes the main observed behavior 

in the event log and provides a clear insight into what services are consumed. The 

case study demonstrates the capability of process mining in extracting a 

well-structured process model, which can serve as a basis to devise customized 

pathways according to patient’s specific conditions. 

2) Healthcare process modularization 

    Traditionally, customization has been associated with high variety, which often 

leads to high complexity and low efficiency. A key dimension that mass customization 

differs from traditional customization is its ability to offer high variety of 

products/services to customers while controlling internal complexity and cost in 

operations. This is often achieved through modularity, which entails partition of 

products or services into standard modules that can be produced or delivered with 

high efficiency individually and can be combined flexibly to form a large number of 

variants to cater to diversified needs. In the context of healthcare delivery system, 

medical services are often closely interrelated with each other through information 

exchange and resources sharing. Unlike modularity in manufacturing, mass 

customization of healthcare services requires modularity of processes, which 
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decomposes healthcare processes into sub-processes (i.e. service modules) that are 

composed of a group of activities (i.e. components) defined based on a specific 

function. The dependence among process modules is relatively low and standard 

modules can interact with each other through interfaces either in parallel or in 

sequence relationship. Modular process design is a general method to decrease system 

complexity, increase efficiency and achieve both flexibility and variety due to the 

features of “encapsulation” and “plug-and-play”. So, modularization is a key factor to 

achieve mass customization of healthcare services.  

    This research develops a process modularization method using activity-based 

DSM. The matrix records pathway networks based on services’ information flow and 

dependencies relationship. By identifying closely interacted healthcare services across 

a group of different patients, the clinical pathway is clustered into service modules. 

The DSM further provides the ability to adjust service modules’ sequences in order to 

minimize feedback among different modules so as to cut the cost and support redesign. 

The case study shows that implementing GA-based modularization and sequencing 

algorithm is able to cluster strongly interacted healthcare services into service 

modules and re-sequence service modules in order to minimize the feedback 

information. The clinical pathway is eventually redesigned into a modular clinical 

pathway that provides a foundation to support mass customization of healthcare 

services through flexible configuration. 

3) Healthcare service configuration 

    Mass customization of healthcare services aims to fulfill individual patients’ 

needs. With patient-specific pathway identified and process modules defined, it 

becomes possible for individual patients to configure their healthcare services 

themselves or with the help of health professionals. The configuration through the 
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proposed decision support model facilitates patients actively involved in the 

healthcare package design by providing their preference. So that the decision support 

model is able to suggest a solution that matches providers’ resource capability and 

availability with patients’ specific preference. An individual patient is able to select a 

healthcare service package that best fit his/her needs. 

    This research formulates healthcare service configuration as a RCPSP. The 

objective is to generate a healthcare service package that best fits an individual 

patient’s needs with minimum makespan. A bi-level GA-based algorithm has been 

developed to solve the configuration problem. The feasibility of adopting RCPSP for 

healthcare service configuration was demonstrated by the case study. From 

comparison analysis, we found the proposed healthcare service package is able to 

significantly reduce the makespan of patients through coordinating healthcare services 

from various clinics or departments. Configuration essentially enables the healthcare 

services to be customized and delivered with high efficiency.  

6.2  Limitations and Future Work 

    Mass customization of healthcare services is still a novel concept both in academic 

research and industry applications. Up to date, this research has been focused on 

defining and formulating a research problem in a proper context, establishing a unified 

conceptual framework, and developing a set of methodologies. The applicability and 

feasibility of proposed methodologies in this thesis are demonstrated by a case study on 

processes of healthcare delivery in a hospital setting. In general, mass customization 

provides a promising concept and a framework that can potentially transform the 

design of healthcare service delivery systems. However, some limitations of the 

methodologies proposed need further improvement and implementation.  
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An appropriate and accurate process model representation is of critical importance 

in the quality of mapping and modular process design. Process mining is proposed to 

establish the mapping through statistical correlation analysis. To integrate generic 

medical knowledge into process network discovery deserves future studies. The 

algorithm applied to analyze and abstract information from event log is Heuristics 

Miner, which is weak of handling duplicate activities. Future improvement on the 

algorithm is needed. The application of the proposed method is limited in a small scale 

case study. Future studies on broader scale cases to investigate the practical 

applicability of applying process mining for patient-centered clinical pathway 

identification. 

The process modularization and sequencing method is developed based on DSM 

through GA-based searching and enumeration two steps. And current studies focus on 

cluster healthcare services into modules by considering interrelationships between 

services. An optimization formulation can be proposed in the future by treating the 

sequence of process and cost of forming a module as optimization constraints. 

Healthcare services in the case study are based on a simple outpatient process. To test 

the proposed method on a more complicated process is necessary. Detailed analysis 

and systematic evaluation by medical professionals need to be carried out in the 

future. 

The performance of developed bi-level GA-based algorithm for healthcare 

package configuration is evaluated by comparison between as-is and to-be scenarios. 

More rigorous performance will be validated through simulation experiments. And 

studies on comparing GA-based algorithms with other heuristic or exact solutions will 

be carried out in the future. In the case study, only one resource type is used for 

illustration. More types of resources and considerations on handling of constraints 
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among the resources (e.g. conflicts of availability) will be included in the future study. 

This research has made some progresses to enable mass customization of 

healthcare services and will continue the work towards the actual implementation.  
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Column No. Variable Code & Description 
1 SERIAL Serial Number 
2 DATES Date (yyyy-mm-dd) 
3 SP_DESC Specialty 
    03 - Cardiology 
    04 - Cardiothoracic Surgery 
    05 - Colorectal Surgery 
    …   
    08 - Endocrinology 
    09 - ENT 
    10 - Eye 
4 DRCODE Doctor MCR number 
5 APP_T1 Appointment time given to patient 
      
6 ARR_T1 Time patient arrived for Registration/ given Room "Q" number  
7 ATT_T1 Time patient attended by Nurse Clinician or staff from "Investigation/ Procedure" room 
8 LEFT_T1 Time patient left the Nurse Clinician or "Investigation/ Procedure" room 

9/14 R11_TYP If patient went for "Investigation/ Procedure" prior consultation, please specify the type of 
    01 -  A Scan 
    02 -  B Scan 
    03 -  FFA  (Fundus Flourescein Angiography) 
    04 -  GVF 
    05 -  HVF (Humphrey Visual Field Testing） 
    06 -  ICG 
    07 -  Laser Procedure 
    08 -  Orthoptist Assessment 
    09 -  Refraction 
    10 -  ECG （Electrocardiography） 
    11 -  X-Ray 
    12 -  Blood/ Lab Test 
    13 -  TOC 
    14 -  URO/RU 
    15 -  U Combur 9 
    16 -  Financial Con./Patient Edu. 
    99 -  Others 

10 CONST_T1 Time patient first contact with    
11 LEFT_CON Time patient left the Consultation room 
12 ATT_T2 Time patient attended by Nurse Clinician or staff in "Investigation/ Procedure" room  
13 LEFT_T2 Time patient left the Nurse Clinician or "Investigation/ Procedure" room  
15 REWD_T1 Time patient seen by doctor for review 
16 LCON_T1 Time patient left the Consultation room 
17 ST_T1 Start Time patient attended by billing / appointment staff  
18 END_T1 End Time patient attended by billing / appointment staff 
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Appendix B – Heuristic Nets of Process Models 

 

 
Figure B.1: A heuristic net representation of process model with dependency 

threshold 0.95 
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Figure B.2: A heuristic net representation of process model with dependency 
threshold 0.90 
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Figure B.3: A heuristic net representation of process model with dependency 

threshold 0.85 
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Figure B.4: A heuristic net representation of process model with dependency 

threshold 0.80 
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Appendix C – Petri Nets of Process Models  

 
Figure C.1: A heuristic net representation of process model with 

all-activity-connected 
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Figure C.2: A heuristic net representation of process model with dependency 
threshold 0.95 
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Figure C.3: A heuristic net representation of process model with dependency 

threshold 0.9 
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Figure C.4: A heuristic net representation of process model with dependency 
threshold 0.85 

 
 

 

 

 

 

 

 
Figure C.5: A heuristic net representation of process model with dependency 

threshold 0.8 
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Appendix D – The code of GA-based clustering and sequencing algorithm 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Description: Genetic Algorithm 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [y costhistory] = 
optimize_genetic_algorithm(objective_function, gene_length, gene_size, 
population_size, min_generation, max_generation, epsilon, display_info) 
  
  % set default parameters if they are ignored 
  if nargin <= 2; gene_size          = 1;     end; 
  if nargin <= 3; population_size   = 50;    end; 
  if nargin <= 4; min_generation    = 30;    end; 
  if nargin <= 5; max_generation    = 100;   end; 
  if nargin <= 6; epsilon             = 0.01; end; 
  if nargin <= 7; display_info       = 1;     end; 
  
  % set random seed 
  helper_random_seed_stack('save', 89123); 
  
  % initialize population 
  y = []; 
  gene_cache = []; 
  costhistory=[]; 
  costsum=[]; 
     
  for i = 1:population_size 
       solution = ceil(rand(1, gene_length) * gene_size); 
       gene = calculate_gene_cost(objective_function, solution, 
gene_cache); 
    y = [y gene]; 
  
    if display_info == 1 
      disp(sprintf('ga individual %d: %f %s', i, gene.cost, 
helper_strcat_vector(gene.solution))); 
      costsum = [costsum; gene.cost]; 
    end 
    costhistory = costsum; 
    end 
  u = y; % trial vectors, clones from y (deep copy, not reference) 
  
  % evolution 
  for generation = 1:(max_generation - 1) 
    % sort solutions by costs 
    for i = 1:size(y, 2) 
      t = i; 
      for j = (i + 1):size(y, 2) 
        if y(j).cost < y(t).cost; t = j; end; 
      end 
  
      if t > i 
        gene = y(i); 
        y(i) = y(t); 
        y(t) = gene; 
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      end 
    end 
  
    if display_info == 1 % output optima 
      optima = y(1); 
      disp(sprintf('cost: %f', optima.cost)); 
      disp(sprintf('solution: %s', 
helper_strcat_vector(helper_remove_zeros(optima.solution)))); 
      disp(sprintf('data: %s', helper_strcat_vector(optima.data))); 
    end 
  
    % converged? 
    if i > min_generation 
      sum_cost = 0; 
      for i = 1:size(y, 2) 
        sum_cost = sum_cost + y(i).cost; 
      end 
      diff = abs(sum_cost / population_size - y(1).cost); 
      if diff < epsilon; break; end; 
    end 
     
    % evolution 
    costsum1=[]; 
     
    for i = 1:population_size 
      trial = u(i).solution; 
  
      r = i; 
      while (r == i) 
        for j = 1:population_size 
          if rand < 0.1 
            r = j; 
            break; 
          end 
        end 
      end 
         
      crossover_gene = y(r); 
      old_gene       = y(i); 
  
      j_rand = ceil(gene_length * rand) + 1;  
      for j = 1:gene_length 
        % crossover 
        if (j == j_rand || rand < 0.9) 
          trial(j) = crossover_gene.solution(j); 
        else 
          trial(j) = old_gene.solution(j); 
        end 
  
        % mutate 
        if (rand < 0.1) 
          old_block = trial(j); 
          while old_block == trial(j) 
            trial(j) = ceil(rand * (gene_size + 1));  
          end 
        end 
      end 
      % end of mutation & recombination 
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      % evaluate the trial solution 
      u(i) = calculate_gene_cost(objective_function, trial, gene_cache); 
         
      if display_info == 1 
        disp(sprintf('ga %d trial %d: %f %s', generation, i, u(i).cost, 
helper_strcat_vector(trial))); 
        costsum1(i) = [u(i).cost]; 
      end 
     costhistory = [costhistory; costsum1(i)]; 
    end 
    % end of calculation for trial vectors 
        
    % selection 
    successful_updates = 0; 
    for i = 1:population_size 
      if u(i).cost <= y(i).cost 
        y(i) = u(i); 
        successful_updates = successful_updates + 1; 
      end 
    end 
  
    if display_info == 1 
      disp(sprintf('one evolution cycle ended. successful updates: %d', 
successful_updates)); 
    end 
  end 
  % end of the main iteration 
  
  if display_info == 1 
    disp('genetic algorithm finished calculation.'); 
  end 
   
  helper_random_seed_stack('restore', 89123); 
   
  return; 
   
function y = calculate_gene_cost(objective_function, solution, 
gene_cache) 
  for i = 1:size(gene_cache, 2) 
    if sum(gene_cache(i).solution - solution) == 0 
      y = gene_cache(i); 
      return; 
    end 
  end 
  
  y = Gene; 
  y.solution = solution; 
  [y.cost, y.data] = objective_function(solution); 
   
   
  gene_cache = [y gene_cache]; 
  if size(gene_cache, 2) > 3000 
    gene_cache = gene_cache(1:3000); 
  end 
   
  return; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% 
% Description: function of helper in Genetic Algorithm 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
function helper_random_seed_stack(method, random_seed) 
  persistent history_seeds; if isempty(history_seeds); history_seeds = 
[]; end; 
   
  if strcmp(method, 'clear') 
    while length(history_seeds) > 0; helper_random_seed_stack('restore', 
1); end; 
  end 
   
  if nargin <= 1 || isempty(random_seed) || random_seed <= 0; return; end; 
   
  if strcmp(method, 'init') 
    helper_random_seed_stack('clear'); 
    helper_random_seed_stack('save', random_seed); 
  end 
   
  if strcmp(method, 'save') 
    renv.rs = rand('state'); renv.ns = randn('state'); 
    history_seeds = [history_seeds, renv];     
    rand('state', random_seed); randn('state', random_seed); 
  end 
   
  if strcmp(method, 'restore') 
    hist_len = length(history_seeds); 
    if hist_len == 0; return; end; 
    renv = history_seeds(hist_len); 
    rand('state', renv.rs); randn('state', renv.ns); 
    history_seeds(hist_len) = []; 
  end 
 
function y = helper_remove_zeros(x) 
  y = []; 
  for i = 1:size(x, 2) 
    if x(i) > 0; y = [y x(i)]; end; 
  end 
  return; 
 
function y = helper_strcat_vector(v, precision) 
  if nargin <= 1; precision = 10; end; 
  str_format = sprintf('%d', precision); 
  str_format = ['%6' '.' str_format 'f']; 
  ret = ''; 
  for i = 1:(size(v, 2) - 1) 
    ret = [ret, sprintf(str_format, v(i)), ',', ' ']; 
  end 
  if size(v, 2) > 0 
    ret = [ret, sprintf(str_format, v(size(v, 2)))]; 
  end 
  y = ret; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Description: calculate the objective "Total coordination cost  
% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [cost, data] = total_coord_cost(solution) 
  
% input the DSM of process network 
matrix=[0   0   0   0   0   0   0   0   0   0   0   0 
0.983   0   0   0   0   0   0   0   0   0   0   0 
0   0.983   0   0   0   0   0   0   0   0   0   0 
0   0   0.966   0   0   0   0   0   0   0   0   0 
0   0   0.923   0   0   0   0   0   0   0   0   0 
0   0   0.833   0   0   0   0   0   0   0   0   0 
0   0   0   0.966   0.923   0   0   0   0   0   0   0 
0.967   0   0   0   0   0   0   0   0   0   0   0 
0.968   0   0   0   0   0   0   0.967   0   0   0   0 
0   0   0   0   0   0   0   0   0.5 0   0   0 
0   0   0   0   0   0   0   0   0   0.5 0   0 
0   0   0.938   0   0   0.833   0.975   0   0.983   0   0.5 0]; 
  
extract_elements = [1 12]; 
  
% set system parameters to zero to remove their influence during clustering 
for i = 1: length(extract_elements) 
   matrix(extract_elements(i),:) = 0; 
   matrix(:,extract_elements(i)) = 0; 
end 
  
pow_c = 1;   
activity_in_cluster = [];        % which activity in the cluster 
activity_out_cluster = []; 
no_of_cluster = 0;                % number of cluster 
size_of_cluster = 0;              % number of activity in a cluster 
temp = []; 
in_cluster_cost = 0; 
out_cluster_cost = 0; 
coord_cost = []; 
  
% set cluster lable 
cluster_lable = unique(solution); 
 
% calculate total in_cluster_cost of activity i  
for a = 1:length(cluster_lable) 
    activity_in_cluster = find(solution == cluster_lable(a)); 
    size_of_cluster = length(activity_in_cluster); 
    for i = 1:size_of_cluster 
        for j = 1:size_of_cluster 
          in_cluster_cost = in_cluster_cost +   
(matrix(activity_in_cluster(i),activity_in_cluster(j)) + 
matrix(activity_in_cluster(j),activity_in_cluster(i))) * 
size_of_cluster^pow_c;            
        end 
  
% calculate total out_cluster_cost of activity i  
        activity_out_cluster = setdiff((1:length(matrix)), 
activity_in_cluster); 
        for k = 1:length(activity_out_cluster) 
          out_cluster_cost = out_cluster_cost + 
(matrix(activity_in_cluster(i),activity_out_cluster(k)) + 
matrix(activity_out_cluster(k),activity_in_cluster(i))) * 
length(matrix)^pow_c; 



 

146 

 

        end 
        % calculate total coordination cost of activity i  
        coord_cost(activity_in_cluster(i),1) = in_cluster_cost + 
out_cluster_cost; 
        in_cluster_cost = 0; 
        out_cluster_cost = 0; 
    end 
end 
  
% calculate total coordination cost of all activities in the DSM   
cost=sum(coord_cost); 
data=[]; 
 
return; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Description: apply Genetic Algorithm for activity clustering 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% set up the run-time environment 
clear all 
close all 
  
diary off 
  
% input the DSM of process network 
matrix=[0   0   0   0   0   0   0   0   0   0   0   0 
0.983   0   0   0   0   0   0   0   0   0   0   0 
0   0.983   0   0   0   0   0   0   0   0   0   0 
0   0   0.966   0   0   0   0   0   0   0   0   0 
0   0   0.923   0   0   0   0   0   0   0   0   0 
0   0   0.833   0   0   0   0   0   0   0   0   0 
0   0   0   0.966   0.923   0   0   0   0   0   0   0 
0.967   0   0   0   0   0   0   0   0   0   0   0 
0.968   0   0   0   0   0   0   0.967   0   0   0   0 
0   0   0   0   0   0   0   0   0.5 0   0   0 
0   0   0   0   0   0   0   0   0   0.5 0   0 
0   0   0.938   0   0   0.833   0.975   0   0.983   0   0.5 0]; 
  
% apply Genetic Algorithm 
number_of_activities = size(matrix, 2); 
[population,costhistory] = optimize_genetic_algorithm(  ... 
  @total_coord_cost,                   ... % objective function 
  number_of_activities,                ... % gene length 
  number_of_activities,                ... % gene size 
  100,                                    ... % population size 
  20,                                     ... % min iteration 
  1000,                                   ... % max iteration 
  5                                       ... % epsilon 
); 
  
% output the results 
for i = 1:size(population, 2) 
  disp(sprintf('%d %d %d ', i, population(i).cost, 
population(i).solution)); 
end 
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optima = population(1); 
disp('Final Results:'); 
disp(sprintf('cost: %f', optima.cost)); 
cluster_flag = unique(optima.solution); 
disp(sprintf('number of clusters: %d', length(cluster_flag))); 
  
for f=1:length(cluster_flag) 
    disp(sprintf('elements in cluster %d: ', f)); 
    [x y]=find(optima.solution==cluster_flag(f)); 
disp(sprintf('activity%d ', y)); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Description: re-sequence clusters to minimize “Total Feedback” 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [y]=perms_partition(Com_New_DSM_matrix) % compress activities 
in a cluster together and given the cluster index 
 
% input the compressed DSM of service modules 
Com_New_DSM_matrix=[1.889   0   1.889   0   0 
0.975   0   1.771   0   0.983 
0   0   1.816   0.983   0 
0   0   0   0   0 
0   0   0   1.935   1.967]; 
  
c = []; 
v = perms(1:size(Com_New_DSM_matrix)); % per mutation 
vrow = size(v,1); 
for vs=1:vrow                               % column reposition 
    a=zeros(size(Com_New_DSM_matrix)); 
    b=zeros(size(Com_New_DSM_matrix)); 
    tem=v(vs,:); 
      for i=1:size(Com_New_DSM_matrix,1) 
          a(:,i)=Com_New_DSM_matrix(:,tem(i)); 
      end 
      for j=1:size(Com_New_DSM_matrix,1)  % row reposition 
          b(j,:)=a(tem(j),:); 
      end 
    bu=triu(b);               % Extract upper triangular part of matrix 
    nonzero=find(bu~=0);    % Find non-zero elements 
    count=size(nonzero,1);  % Count how many non-zero elements 
    depsum=zeros(1); 
      for k=1:count 
        depsum=depsum+bu(nonzero(k)); 
      end 
      c(vs,:)=[depsum(1,:) count]; 
end 
  
totalcost=[c(:,1).*c(:,2)]; 
y=[totalcost v] 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%              
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Appendix E –33 Full Factorial Experimental Design 

The application of DOE technique has been found in many disciplines and 

proved useful to improve process yields, reduce variability and reduce overall costs. 

The main purpose of using DOE in our study is to determine which factors are most 

influential on the response variable. For process modularization problem, TCC  is the 

response variable. This study limits the factors to be the following three parameters. 

Table E.1 summarizes the factors and corresponding factor levels in DOE. 

1) The Population Size: It defines how many individuals are in a population in a 

generation. In our experiments, the population size ranges from 20 to 100. 

2) The Crossover Rate: It controls the application frequency of the crossover operator. 

Generally, the higher the crossover rate, the more quickly new structures are 

introduced into the population. Empirical studies show that the effective range of 

crossover rate is between 0.5 and 1.00 (Lin et al. 2003). The crossover rate in our 

experiments varied from 0.5 to 0.9 in increments of 0.2.  

3) The Mutation Rate: It controls the probability of each gene to undergo a random 

change in the new population. Typical range of mutation rate is reported about 0.001 - 

0.1 (Angelova and Pencheva 2011). The current experiments cover three of the 

mutation rate namely 0.01, 0.05 and 0.1. 

Table E.1: Factors and levels 

Factor Type Levels Values 
Population Size fixed 3 20 50 100 
Crossover Rate fixed 3 0.5 0.7 0.9 
Mutation Rate fixed 3 0.01 0.05 0.1 

The effects of these variables were evaluated and analyzed in a 33 full factorial 

experiments. The genetic algorithm was repeated 2 times for each probability on full 

combination of different levels of these three factors. TCC is tabulated in Table E.2.  
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Table E.2: TCC Changing according to factor levels 

Population  

Size 

Crossover Rate 
0.5 0.7 0.9 

Mutation Rate 
0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

20 104.130 98.496 83.302 100.996 85.434 89.544 142.804 116.276 144.144 
104.130 98.496 83.302 100.996 85.434 89.544 142.804 116.276 144.144 

50 98.462 84.996 83.302 89.152 84.996 85.470 116.938 85.434 87.930 
98.462 84.996 83.302 89.152 84.996 85.470 116.938 85.434 87.930 

100 98.462 84.996 83.302 89.152 84.996 85.470 116.938 85.434 87.930 
98.462 84.996 83.302 89.152 84.996 85.470 116.938 85.434 87.930 

From the table, we observed that increase in Population Size from 20 to 50 

significantly decreases TCC . However, there is no more change on TCC  when 

further increasing the Population size to 100. We also found that the middle level of 

Crossover Rate seems to give lower TCC compared to the other two levels. However, 

the lowest TCC  are always achieved by given Crossover Rate = 0.5 and Mutation 

Rate = 0.1. Thus, Crossover Rate = 0.5 and Mutation Rate = 0.1 are going to be used 

in the modularization algorithm for the case study. Based on experimental results, the 

analysis of variance (ANOVA) is calculated and displayed in Table E.3. In the table, 

we have excluded all higher order which involved 3 factors interactions as the effects 

are relatively small if compare with the main effects and 2 factors interactions. Those 

higher interactions are taken as the error for the experiment.  

Table E.3: Analysis of Variance for TCC  

Source of Variation Degree of 
Freedom 

Sum of 
Squares 

Mean Square F0 P-Value 
Crossover Rate 2 881.37 440.69 14.20 0.001 
Mutation Rate 2 363.65 181.83 5.86 0.017 
Population Size 3 4547.35 1515.78 48.83 0.000 

Crossover Rate * Mutation Rate 4 233.58 58.39 1.88 0.179 
Crossover Rate * Population Size 6 311.93 51.99 1.67 0.210 
Mutation Rate * Population Size 6 1491.84 248.64 8.01 0.001 

Error 12 372.48 31.04   
Total 35 8202.21    

Through observation, we found that Population Size with the lowest p-value = 

0.000. This implies that there is significant evidence for a Population size effect on 
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TCC  at 0.05 significance level. Although experimental results indicate no 

improvement on performance of GA with increasing in the Population Size, it is not 

clear which level of Population Size should be set in GA. The convergence of TCC

over generation for varied Population Size at 20/50/100/150 is mapped out in Figure 

E.1. Solid lines in the figure represent the change of average TCC  over generations. 

Dashed lines describe the trend of the best TCC over generations. Generally, the GA 

performs poorer with smaller Population Size. This is mainly because that the 

population provides an insufficient sample size. The best TCC converges the fastest 

when the Population Size is 100 (see the pink dashed line). On the other hand, 

increase of the Population Size to 150 results in a slow rate of convergence (see the 

green dashed line). This means that there is no need to have a large population size.  

 

Figure E.1: Total coordination cost history with Population Size = 20/50/100/150 

In summary, the values of the GA parameters are decided by applying the DOE 

technique. In particular, the Population Size = 100, the Crossover Rate = 0.5 and the 

Mutation Rate = 0.1. 
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Appendix F – Results of modularization 

 

pow_
c 

Pop. 
Size 

Cros. 
Rate 

Mut. 
Rate 

No. of 
Modules TCC 

Healthcare Services in Module 
M1 M2 M3 M4 M5 M6 M7 M8 M9 

1 20 0.5 0.01 6 104.13 3 5 6 12 8 9 10 4 7 1 2 11 
   

1 20 0.5 0.1 5 83.302 4 5 7 12 2 3 6 1 8 9 10 11     
1 20 0.5 0.5 5 85.438 12 3 4 5 

6 7 
2 8 9 10 11 1     

1 20 0.7 0.01 5 100.996 3 4 6 12 8 9 10 11 1 5 7 2     
1 20 0.7 0.1 5 89.544 1 6 12 3 4 5 7 8 9 10 11 2     
1 20 0.7 0.5 5 83.338 2 3 4 5 7 12 8 9 10 11 1 6     
1 20 0.9 0.01 9 142.804 5 11 12 3 4 8 9 1 6 2 7 10 

1 20 0.9 0.1 7 144.144 1 6 5 7 8 12 3 4 2 9 10 11 
  

1 20 0.9 0.5 6 85.434 1 8 9 12 2 3 6 10 11 4 5 7 
   

1 50 0.5 0.01 7 98.462 8 9 1 4 5 7 2 3 6 10 11 12 
  

1 50 0.5 0.1 4 83.302 1 12 8 9 
10 

2 3 6 4 5 7 
     

1 50 0.5 0.5 5 84.996 8 9 2 3 4 
5 6 7 

1 12 10 11 
    

1 50 0.7 0.01 6 89.152 2 3 4 6 8 9 10 11 1 5 7 12 
   

1 50 0.7 0.1 5 85.47 1 2 3 4 
5 7 

10 11 8 9 6 12 
    

1 50 0.7 0.5 5 83.338 6 1 2 3 4 5 7 12 8 9 10 11     
1 50 0.9 0.01 6 116.938 4 1 11 

12 
5 7 8 9 10 2 3 6    

1 50 0.9 0.1 5 87.93 11 12 2 3 4 5 6 7 8 9 10 1     
1 50 0.9 0.5 6 85.434 8 9 10 

11 
12 4 5 7 1 2 3 6    

1 100 0.5 0.01 4 82.864 2 3 4 5 6 7 12 1 8 9 10 11      
1 100 0.5 0.1 4 82.864 8 9 10 11 12 1 2 3 4 5 6 7      
1 100 0.5 0.5 5 83.302 12 8 9 

10 
4 5 7 1 2 3 6     

1 100 0.7 0.01 5 96.33 12 1 6 4 5 7 8 9 10 11 2 3     
1 100 0.7 0.1 5 84.996 1 12 10 11 2 3 4 5 6 7 8 9     
1 100 0.7 0.5 5 83.302 8 9 10 11 4 5 7 12 1 2 3 6     
1 100 0.9 0.01 6 88.98 2 3 5 6 8 9 4 7 12 10 11 1    
1 100 0.9 0.1 5 83.302 12 4 5 7 1 2 3 6 8 9 10 11     
1 100 0.9 0.5 5 83.302 12 8 9 

10 
2 3 6 1 4 5 7     

1 150 0.5 0.01 4 82.864 2 3 4 5 6 7 12 1 8 9 10 11      
1 150 0.5 0.1 4 82.864 8 9 10 11 12 1 2 3 4 5 6 7      
1 150 0.5 0.5 4 82.864 8 9 10 11 12 1 2 3 4 5 6 7      
1 150 0.7 0.01 4 82.864 8 9 10 11 12 1 2 3 4 5 6 7 

     
1 150 0.7 0.1 4 82.864 2 3 4 5 6 7 12 1 8 9 10 11 

     
1 150 0.7 0.5 4 82.864 8 9 10 11 12 1 2 3 4 5 6 7 

     
1 150 0.9 0.01 4 82.864 2 3 4 5 6 7 12 1 8 9 10 11 

     
1 150 0.9 0.1 4 82.864 2 3 4 5 6 7 12 8 9 10 11 1 

     
1 150 0.9 0.5 4 82.864 8 9 10 11 12 1 2 3 4 5 6 7 
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pow_

c 

Pop. 

Size 

Cros. 

Rate 

Mut. 

Rate 

No. of 

Modules 
TCC Healthcare Services in Module 

M1 M2 M3 M4 M5 M6 M7 M8 M9 

2 20 0.5 0.01 4 558.504 2 3 4 5 6 7 8 9 1 12 10 11      
2 20 0.5 0.1 5 673.666 2 3 6 4 5 7 8 9 10 11 1 12     
2 20 0.5 0.5 5 633.69 6 8 9 10 11 1 12 2 3 4 5 7     
2 20 0.7 0.01 5 673.666 12 1 4 5 7 2 3 6 8 9 10 11     
2 20 0.7 0.1 3 465.712 2 3 4 5 6 7 8 9 10 11 1 12       
2 20 0.7 0.5 6 633.69 6 10 11 8 9 1 12 2 3 4 5 7    
2 20 0.9 0.01 5 558.504 12 2 3 4 5 6 7 8 9 10 11 1     
2 20 0.9 0.1 4 465.712 1 12 2 3 4 5 6 7 8 9 10 11      
2 20 0.9 0.5 4 540.898 6 2 3 4 5 7 8 9 10 11 1 12 

     
2 50 0.5 0.01 5 558.504 12 8 9 1 2 3 4 5 6 7 10 11 

    
2 50 0.5 0.05 4 465.712 12 1 8 9 10 11 2 3 4 5 6 7 

     
2 50 0.5 0.1 5 558.504 2 3 4 5 6 7 8 9 1 10 11 12 

    
2 50 0.5 0.5 5 558.504 12 1 2 3 4 5 6 7 10 11 8 9 

    
2 50 0.7 0.01 5 673.666 4 5 7 1 12 8 9 10 11 2 3 6 

    
2 50 0.7 0.05 4 558.504 8 9 2 3 4 5 6 7 10 11 1 12 

     
2 50 0.7 0.1 5 766.458 10 11 4 5 7 1 12 8 9 2 3 6 

    
2 50 0.7 0.5 4 465.712 12 8 9 10 11 2 3 4 5 6 7 1      
2 50 0.9 0.01 5 986.538 8 9 4 5 7 10 11 12 2 3 1 6     
2 50 0.9 0.05 5 558.504 8 9 1 12 2 3 4 5 6 7 10 11     
2 50 0.9 0.1 6 766.458 8 9 12 4 5 7 10 11 2 3 6 1    
2 50 0.9 0.5 4 465.712 2 3 4 5 6 7 8 9 10 11 1 12      
2 100 0.5 0.01 4 465.712 2 3 4 5 6 7 8 9 10 11 1 12      
2 100 0.5 0.1 4 465.712 2 3 4 5 6 7 8 9 10 11 1 12      
2 100 0.5 0.5 4 465.712 8 9 10 11 1 2 3 4 5 6 7 12      
2 100 0.7 0.01 5 558.504 10 11 2 3 4 5 6 7 1 8 9 12     
2 100 0.7 0.1 5 558.504 2 3 4 5 6 7 1 10 11 8 9 12     
2 100 0.7 0.5 4 465.712 12 8 9 10 11 2 3 4 5 6 7 1      
2 100 0.9 0.01 6 781.128 8 9 10 12 4 5 7 1 2 3 6 11    
2 100 0.9 0.1 5 558.504 2 3 4 5 6 7 10 11 12 8 9 1     
2 100 0.9 0.5 4 465.712 2 3 4 5 6 7 8 9 10 11 12 1      
2 150 0.5 0.01 4 465.712 2 3 4 5 6 7 8 9 10 11 12 1      
2 150 0.5 0.1 4 465.712 1 2 3 4 5 6 7 8 9 10 11 12      
2 150 0.5 0.5 4 465.712 2 3 4 5 6 7 8 9 10 11 12 1 

     
2 150 0.7 0.01 4 465.712 12 8 9 10 11 2 3 4 5 6 7 1 

     
2 150 0.7 0.1 4 465.712 2 3 4 5 6 7 8 9 10 11 12 1 

     
2 150 0.7 0.5 4 465.712 12 1 2 3 4 5 6 7 8 9 10 11 

     
2 150 0.9 0.01 4 465.712 12 8 9 10 11 2 3 4 5 6 7 1 

     
2 150 0.9 0.1 4 465.712 2 3 4 5 6 7 8 9 10 11 12 1 

     
2 150 0.9 0.5 4 465.712 12 1 2 3 4 5 6 7 8 9 10 11 
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Appendix G – The code of bi-level GA-based scheduling algorithm 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Description: the definition of the classes 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
classdef Activity 
  properties 
    duration                 % time cost for this activity 
    resources                % resources need for performing this activity 
    sub_activities          % sub activities that must do 
    xor_sub_activities     % xor sub activities 
  end 
end 
 
 
classdef Application 
  properties 
    % global settings 
    activities               % all activities in the process network 
    resources                % all available resources at this point of time 
  
    time_end                 % where the time arrangement search ends 
    cost_infinite           % the objective value for infeasible solutions 

one_pass_cost           % when pass one condition, decrease the cost  
                           % by this value 

     
    % run-time variable 
    activity_sequence       % the current activity sequence. 

% the second layer of searching needs to find a time arrangement based 
% on this sequence 

 
    % patient preferences 

patient_pref_start_time        % at when to start the first activity 
    patient_pref_importance_coef  % the patient's preference importance 
 end 
end 
 
 
classdef Gene 
  properties 
    solution 
    cost 
    data 
  end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
% Description: Genetic Algorithm, to minimize 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function y = optimize_genetic_algorithm(objective_function, gene_length, 
gene_size, population_size, min_generation, max_generation, epsilon, 
display_info) 
  
  % set default parameters if they are ignored 
  if nargin <= 2; gene_size          = 1;     end; 
  if nargin <= 3; population_size    = 50;     end; 
  if nargin <= 4; min_generation     = 30;   end; 
  if nargin <= 5; max_generation     = 100;   end; 
  if nargin <= 6; epsilon            = 0.01;   end; 
  if nargin <= 7; display_info       = 1;      end; 
  
  % set random seed 
  helper_random_seed_stack('save', 89123); 
  
  % initialize population 
  y = []; 
  gene_cache = []; 
  for i = 1:population_size 
    solution = floor(rand(1, gene_length) * (gene_size + 1)); 
    gene = calculate_gene_cost(objective_function, solution, 
gene_cache); 
    y = [y gene]; 
  
    if display_info == 1 
      disp(sprintf('ga individual %d: %f %s', i, gene.cost, 
helper_strcat_vector(gene.solution))); 
    end 
  end 
  u = y;  
  
  % evolution 
  for generation = 1:(max_generation - 1) 
    % sort solutions by costs 
    for i = 1:size(y, 2) 
      t = i; 
      for j = (i + 1):size(y, 2) 
        if y(j).cost < y(t).cost; t = j; end; 
      end 
  
      if t > i 
        gene = y(i); 
        y(i) = y(t); 
        y(t) = gene; 
      end 
    end 
  
    if display_info == 1 % output optima 
      optima = y(1); 
      disp(sprintf('cost: %f', optima.cost)); 
      disp(sprintf('solution: %s', 
helper_strcat_vector(helper_remove_zeros(optima.solution)))); 
      disp(sprintf('data: %s', helper_strcat_vector(optima.data))); 
    end 
  
    % converged? 
    if i > min_generation 
      sum_cost = 0; 
      for i = 1:size(y, 2) 
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        sum_cost = sum_cost + y(i).cost; 
      end 
      diff = abs(sum_cost / population_size - y(1).cost); 
      if diff < epsilon; break; end; 
    end 
     
    % evolution 
    for i = 1:population_size 
      trial = u(i).solution; 
  
      r = i; 
      while (r == i) 
        for j = 1:population_size 
          if rand < 0.1 
            r = j; 
            break; 
          end 
        end 
      end 
             
      crossover_gene = y(r); 
      old_gene       = y(i); 
  
      j_rand = floor(gene_length * rand) + 1;  
      for j = 1:gene_length 
 
        % crossover 
        if (j == j_rand || rand < 0.5) 
          trial(j) = crossover_gene.solution(j); 
        else 
          trial(j) = old_gene.solution(j); 
        end 
  
        % mutate 
        if (rand < 0.1) 
          old_block = trial(j); 
          while old_block == trial(j) 
            trial(j) = floor(rand * (gene_size + 1)); 
          end 
        end 
      end % end of mutation & recombination 
  
      % evaluate the trial solution 
      u(i) = calculate_gene_cost(objective_function, trial, gene_cache); 
  
      if display_info == 1 
        disp(sprintf('ga %d trial %d: %f %s', generation, i, u(i).cost,  
helper_strcat_vector(trial))); 
      end 
    end % end of calculation for trial vectors 
     
    % selection 
    successful_updates = 0; 
    for i = 1:population_size 
      if u(i).cost <= y(i).cost 
        y(i) = u(i); 
        successful_updates = successful_updates + 1; 
      end 
    end 
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    if display_info == 1 
       disp(sprintf('one evolution cycle ended. successful updates: %d', 
successful_updates)); 
    end 
  end % end of the main iteration 
  
  if display_info == 1 
     disp('genetic algorithm finished calculation.'); 
  end 
   
  helper_random_seed_stack('restore', 89123); 
   
  return; 
   
function y = calculate_gene_cost(objective_function, solution, 
gene_cache) 
  for i = 1:size(gene_cache, 2) 
    if sum(gene_cache(i).solution - solution) == 0 
      y = gene_cache(i); 
      return; 
    end 
  end 
  
  y = Gene; 
  y.solution = solution; 
  [y.cost, y.data] = objective_function(solution); 
  
  gene_cache = [y gene_cache]; 
  if size(gene_cache, 2) > 3000 
    gene_cache = gene_cache(1:3000); 
  end 
   
  return; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Description: function of helper in Genetic Algorithm 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
function helper_random_seed_stack(method, random_seed) 
  persistent history_seeds; if isempty(history_seeds); history_seeds = 
[]; end; 
   
  if strcmp(method, 'clear') 
    while length(history_seeds) > 0; helper_random_seed_stack('restore', 
1); end; 
  end 
   
  if nargin <= 1 || isempty(random_seed) || random_seed <= 0; return; end; 
   
  if strcmp(method, 'init') 
    helper_random_seed_stack('clear'); 
    helper_random_seed_stack('save', random_seed); 
  end 
   
  if strcmp(method, 'save') 
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    renv.rs = rand('state'); renv.ns = randn('state'); 
    history_seeds = [history_seeds, renv];     
    rand('state', random_seed); randn('state', random_seed); 
  end 
   
  if strcmp(method, 'restore') 
    hist_len = length(history_seeds); 
    if hist_len == 0; return; end; 
    renv = history_seeds(hist_len); 
    rand('state', renv.rs); randn('state', renv.ns); 
    history_seeds(hist_len) = []; 
  end 
 
function y = helper_remove_zeros(x) 
  y = []; 
  for i = 1:size(x, 2) 
    if x(i) > 0; y = [y x(i)]; end; 
  end 
  return; 
 
function y = helper_strcat_vector(v, precision) 
  if nargin <= 1; precision = 10; end; 
  str_format = sprintf('%d', precision); 
  str_format = ['%6' '.' str_format 'f']; 
  ret = ''; 
  for i = 1:(size(v, 2) - 1) 
    ret = [ret, sprintf(str_format, v(i)), ',', ' ']; 
  end 
  if size(v, 2) > 0 
    ret = [ret, sprintf(str_format, v(size(v, 2)))]; 
  end 
  y = ret; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% Description: the main program for healthcare activity optimization. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% set up the run-time environment 
clear all 
close all 
diary off 
  
% input data 
global app 
 
app = Application; 
app.cost_infinite                    = 1e20; 
app.one_pass_cost                    = 1e10; 
app.time_end                          = 61; 
app.patient_pref_start_time        = 20; 
app.patient_pref_importance_coef  = 1; 
  
% resources set up 
r1 = Resource; % Cardiologist: Dr Lim Su An/ Nurse: Naga  
r1.schedules = [1 61 1]; 
  
r2 = Resource; % Senior Cardiologist: Prof Cullen/ Nurse: Verena  
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r2.schedules = [1 61 1]; 
  
r3 = Resource; % Radiology Technician: Fizah  
r3.schedules = [1 61 1]; 
  
r4 = Resource; % Radiology Technician: Jamilah 
r4.schedules = [1 61 1]; 
  
r5 = Resource; % Oculist: Dr Foo Fong Yee/ PSA: Idah 
r5.schedules = [1 61 1]; 
             
r6 = Resource; % Senior Oculist: Dr James Ng/PSA: Ganga 
r6.schedules = [1 61 1]; 
  
r7 = Resource; % Eye Testing Technician: PSA: Fara 
r7.schedules = [1 61 1]; 
  
r8 = Resource; % Eye Testing Technician: PSA: Kavitha 
r8.schedules = [1 61 1]; 
  
r9 = Resource; % Lasik OT: Chin Choi Lan 
r9.schedules = [1 61 1]; 
  
r10 = Resource; % Ophthalmic Technician: Ruey 
r10.schedules = [1 61 1]; 
            
r11 = Resource; % Reception Clerk PSA: Cecilia 
r11.schedules = [1 61 1]; 
  
r12 = Resource; % Reception Clerk PSA: Mas 
r12.schedules = [1 61 1]; 
  
r13 = Resource; % Payment Clerk: PSA: Jeya 
r13.schedules = [1 61 1]; 
 
r14 = Resource; % Payment Clerk PAS: Priscilla 
r14.schedules = [1 61 1]; 
  
app.resources = [r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14]; 
 
% build up the processing network by defining the modules 
%                    
%                         a1(M4) 
% 
%                a2(M3)    AND    a3(M5) 
% 
%           a4(M1)                     
%                          XOR 
%                         a5(M2) 
% 
 
a1 = Activity;                          % service module M4 
a1.duration               = 1;          % 6.16 minutes (1.23 time slot) 
a1.resources              = [12];       % resource 11 and 12 interchangeable 
a1.sub_activities        = [2 3]; 
a1.xor_sub_activities   = []; 
  
a2 = Activity;                           % service module M3 
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a2.duration               = 6;           % 30.42 minutes (6.08 time slot) 
a2.resources              = [5 7 9];    % [5/7] selected by the patient 
                                             % can select [6/8] 
a2.sub_activities        = [4]; 
a2.xor_sub_activities   = []; 
  
a3 = Activity;                           % service module M5 
a3.duration               = 3;           % 14.1 minutes (2.82 time slot) 
a3.resources              = [1 3];      % [1] selected by the patient  
                                             % can select [2] 
a3.sub_activities        = []; 
a3.xor_sub_activities   = [5]; 
  
a4 = Activity;                          % service module M1 
a4.duration               = 9;          % 44.65 minutes (8.93 time slot) 
a4.resources              = [5 7 10];  % [5/7] determined by previous 
                                            % service module M3 
a4.sub_activities        = []; 
a4.xor_sub_activities   = [5]; 
  
a5 = Activity;                          % service module M2 
a5.duration               = 3;          % 12.48 minutes (2.50 time slot) 
a5.resources              = [13];       % resource 13 and 14 interchangeable 
a5.sub_activities        = []; 
a5.xor_sub_activities   = []; 
  
  
app.activities = [a1 a2 a3 a4 a5]; 
  
% run the main procedure 
number_of_activities = size(app.activities, 2); 
population = optimize_genetic_algorithm(  ... 
  @activity_sequence_cost,                ... % objective function 
  number_of_activities,                   ... % gene length 
  number_of_activities,                   ... % gene size 
  500,                                     ... % population size 
  5,                                      ... % min iteration 
  40,                                     ... % max iteration 
  5                                       ... % epsilon 
); 
  
% output the results 
for i = 1:size(population, 2) 
  disp(sprintf('individual %d: %f %s', i, population(i).cost, 
helper_strcat_vector(helper_remove_zeros(population(i).solution), 
0))); 
end 
  
optima = population(1); 
disp('Final Results:'); 
disp(sprintf('cost: %f', optima.cost)); 
disp(sprintf('activity sequence: %s', 
helper_strcat_vector(helper_remove_zeros(optima.solution), 0))); 
disp(sprintf('time arrangement: %s', helper_strcat_vector(optima.data, 
0))); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% Description: objective function of the sequence 
% 



 

160 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [cost, time_arrangement] = activity_sequence_cost(x) 
  global app 
  
  % default return values 
  cost = app.cost_infinite; 
  time_arrangement = []; 
   
  % remove all zeros 
  sequence = helper_remove_zeros(x); 
  
  % apply other network rules 
  cost = processing_network_test(sequence); 
  if cost > 0; return; end; 
  
  % search for a possible time arrangement 
  % here's the second layer of search 
  app.activity_sequence = sequence; 
  population = optimize_genetic_algorithm( ... 
    @time_arrangement_cost,                    ... % objective function 
    size(sequence, 2),                          ... % gene length 
    app.time_end,                                ... % gene size 
    size(sequence, 2) * 100,                   ... % population size 
    5,                                              ... % min iteration 
    50,                                             ... % max iteration 
    5,                                              ... % epsilon 
    0                                                ... % debug info 
    ); 
  
  % return 
  cost = population(1).cost; 
  time_arrangement = population(1).solution; 
  
  return; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% Description: to check if the activity sequence is feasible according 
% to the process network 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function y = processing_network_test(sequence) 
  global app 
  
  y = app.cost_infinite; % default value, not compatible 
  
  % the first activity must be the first activity to be scheduled 
  if size(sequence, 2) == 0 || sequence(1) > 1; return; end; 
  y = y - app.one_pass_cost; 
  
  % each activity to be scheduled once 
  for i = 1:size(sequence, 2) 
    for j = (i + 1):size(sequence, 2) 
      if sequence(i) == sequence(j); return; end; 
    end 
  end 
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  y = y - app.one_pass_cost; 
   
% if an activity is in the sequence, then one of its parents must be in 
% the sequence and prior to this activity 
  % except activity number one 
  for a1_location = 2:size(sequence, 2) 
    a1 = sequence(a1_location); 
    found_a_valid_parent = 0; 
    for i = 1:size(app.activities, 2) 
      parent_location = element_location(sequence, i); 
      if parent_location <= 0; continue; end; 
  
      children = [app.activities(i).sub_activities 
app.activities(i).xor_sub_activities]; 
      if element_location(children, a1) > 0 && parent_location < 
a1_location 
        found_a_valid_parent = 1; 
        break; 
      end 
    end 
  
    if found_a_valid_parent == 0; return; end; 
  end 
  y = y - app.one_pass_cost; 
  
  % checking for every activity   
  for a1 = 1:size(app.activities, 2) 
    a1_location = element_location(sequence, a1); 
    if a1_location <= 0; continue; end; 
     
    % handle AND relationships 
    sub_activities = app.activities(a1).sub_activities; 
    for i = 1:size(sub_activities, 2) 
      a2 = sub_activities(i); 
      a2_location = element_location(sequence, a2); 
      if a2_location < a1_location; return; end; 
    end 
    y = y - app.one_pass_cost; 
  
    % handle XOR relationships 
    xor_activities = app.activities(a1).xor_sub_activities; 
    selected_xor_activity = 0; 
    for i = 1:size(xor_activities, 2) 
      a2 = xor_activities(i); 
      a2_location = element_location(sequence, a2); 
      if a2_location <= 0; continue; end; 
  
      if a2_location < a1_location; return; end; 
      if selected_xor_activity > 0; return; end; 
  
      selected_xor_activity = a2; 
    end     
    if size(xor_activities, 2) > 0 && selected_xor_activity == 0; return; 
end; 
    y = y - app.one_pass_cost; 
  end 
   
  y = 0; % pass all the tests, return compatible 
  return; 
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function y = element_location(x, a) 
  y = 0; 
   
  for k = 1:size(x, 2) 
    if x(k) == a 
      y = k; 
      return; 
    end 
  end 
   
  return; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Description: objective function of time arrangement 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function [cost, data] = time_arrangement_cost(t) 
  global app 
   
  cost = app.cost_infinite; % default a large value 
  data = []; 
  
  % dimensions must match 
  if size(t, 2) ~= size(app.activity_sequence, 2); return; end; 
   
  % get the current activity sequence 
  s = []; 
  for i = 1:size(app.activity_sequence, 2) 
    s = [s app.activities(app.activity_sequence(i))]; 
  end 
  
  % in asc order && no overlaps 
  abs(t(1))>= app.patient_pref_start_time; 
  for i = 2:size(t, 2) 
    if t(i - 1) + s(i - 1).duration > t(i); return; end; 
    cost = cost - app.one_pass_cost; % pass one test, decrease the cost  
  end 
  
  % check resource availability 
  for i = 1:size(s, 2) 
    a = s(i); 
    activity_from_time = t(i); 
    activity_to_time   = t(i) + a.duration; 
  
    for j = 1:size(a.resources, 2) 
      r = app.resources(a.resources(j)); 
      for k = 1:size(r.schedules, 1) 
        schedule           = r.schedules(k,:); 
        resource_from_time = schedule(1); 
        resource_to_time   = schedule(2); 
        available          = schedule(3); 
         
        if activity_from_time >= resource_from_time && activity_from_time 
<= resource_to_time && available == 0; return; end; 
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        if activity_to_time >= resource_from_time && activity_to_time <= 
resource_to_time && available == 0; return; end; 
  
        if activity_from_time >= resource_from_time && activity_to_time 
<= resource_to_time && available == 1; break; end; 
      end 
  
      % activity a can take resource r 
      cost = cost - app.one_pass_cost; 
    end 
  end 
  
  % passed all the tests, calculate the real cost 
  % cost one: makespan from the start of activity one to when 
  % the last activity ends 
  cost = t(size(t, 2)) + s(size(s, 2)).duration - t(1); 
  
  % cost two: if the start time is not the patient's preference time, then 
  % add the distince as a cost 
  cost = cost + (abs(t(1) - app.patient_pref_start_time) *    
app.patient_pref_importance_coef); 
   
  return; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix H –24 Factorial Experiment  

A 24 factorial experiment on the key parameters in the algorithm is conducted. 

We decide to implement 24 experiment because 2k experiment can substantially 

reduce the total number of runs and it is especially useful to the screening experiments 

in the early stage when we are not certain which factor may have significant effect on 

the response. The choice of factors and levels are listed in Table H.1. 

Table H.1: Factors and levels 

Factor No. Factor Type Levels 
Values 

- + 
A Population Size_1st Layer fixed 2 100 500 
B Population Size_2nd Layer fixed 2 100 500 
C Mutation Rate fixed 2 0.05 0.1 
D Crossover Rate fixed 2 0.5 0.9 

The response variable in the experiment is the RC  which is the outcome the 

bi-level scheduling algorithm. The RC  calculates the sum of a patient’s makespan 

and the difference between the starting time slot with the preferred time slot. The 

outcome of each experiment is given in the Appendix E. The ANOVA table is given in 

Table H.2. 

The ANOVA gives a summary of the main effects and interactions. The p-values 

for main factors A, B, C and interactions A*B, A*C, B*C, A*B*C are significant at 

alpha = 0.05 significance level. Therefore, the values of factors A, B and C are set at 

“+” while the factor D is set at “-” in order to minimize the frequency to apply 

crossover operator. In summary, the values of the GA parameters are decided by 

applying the DOE technique. In particular, the Population Size_1st Layer = 500, 

Population Size_2nd Layer = 500, Mutation Rate = 0.1 and Crossover Rate = 0.5. 
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Table H.2: ANOVA table of 24 DOE 

Source of Variation Degree of 
Freedom Sum of Squares Mean Square F0 P-Value 

Main Effects      
A 1 390657152 390657152 8729768.76 0.000 
B 1 391678066 391678066 8752582.48 0.000 
C 1 391342276 391342276 8745078.8 0.000 
D 1 1275 1275 28.49 0.001 
2-Way Interactions      
A*B 1 391090528 391090528 8739453.14 0.000 
A*C 1 390866820 390866820 8734454.08 0.000 
A*D 1 153 153 3.42 0.083 
B*C 1 390713058 390713058 8731018.06 0.000 
B*D 1 32 32 0.72 0.410 
C*D 1 5 5 0.1 0.755 
3-Way Interactions      
A*B*C 1 390936722 390936722 8736016.13 0.000 
A*B*D 1 12 12 0.28 0.604 
A*C*D 1 200 200 4.47 0.051 
B*C*D 1 36 36 0.81 0.382 
4-Way Interactions      
A*B*C*D 1 10 10 0.23 0.641 
Error 16 716 45   
Total 31 2737287062    

 


