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Abstract 

 

In the present study, we examine the longitudinal dispersion of oscillatory pipe flows in the 

turbulent range which is not well covered before. An analytical analysis was first performed 

using the homogenization approach (i.e. multiple scale perturbation analysis) to predict the 

magnitude of the longitudinal dispersion induced by a turbulent oscillatory flow forced by a 

sinusoidal pressure gradient inside a circular pipe. An axisymmetric co-axial eddy viscosity 

model was adopted to resolve the radial distribution of velocities and turbulent shear stresses. 

Based on the derived kinematic characteristics, the longitudinal dispersion coefficient for the 

turbulent oscillatory pipe flow was then quantified. The results demonstrated that a 

dimensionless parameter  , which is the ratio of the oscillatory velocity amplitude divided 

by the frequency and pipe radius, determines the flow structure as well as the magnitude of 

the induced longitudinal dispersion coefficient. Experiments were also conducted to quantify 

the longitudinal dispersion coefficient under different frequencies and oscillatory velocity 

magnitudes. The measurement approaches were based on the non-invasive laser imaging 

techniques of Particle Image Velocimetry and Planar Laser Induced Fluorescence. The 

experimental conditions covered a relatively wide range of boundary Reynolds number (
Re ) 

from 100 to 1000, and included both laminar and turbulent flow regimes. The results showed 

that when the flow enters the so-called conditional turbulence regime, i.e. 500Re 
, the 

longitudinal dispersion coefficient increases drastically. The analytical predictions based on 

the homogenization approach in the present study agree well with the measured longitudinal 

dispersion coefficients. 

 

Keywords: Longitudinal dispersion, Turbulent oscillatory flows, Homogenization technique, 

PIV and PLIF 
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1. Introduction 

 

The classical analysis of longitudinal dispersion in a steady laminar pipe flow can be traced 

back to Taylor [1], who showed that the dispersion is significantly enhanced in the 

longitudinal direction due to the non-uniform cross-sectional velocity profile inside the pipe. 

Hence, the longitudinal dispersion is also sometimes referred as Taylor dispersion. 

Dispersion in steady turbulent pipe flows was also later examined by Taylor [2], who showed 

that the dispersion coefficient is related to the pipe geometry as well as the friction velocity. 

Since then, many studies had further investigated the longitudinal dispersion of steady flows 

in different settings. A good summary can be found in Fischer et al. [3].  

 

Besides steady flows, the longitudinal dispersion in unsteady laminar oscillatory flows, 

whereby the passive solute particles undergo simultaneous diffusion and convection driven 

by a periodic pressure gradient, was also extensively investigated (e.g. [4-6]). Generally, the 

dispersion coefficient was found to be dependent on the oscillating frequency, velocity 

magnitude, cross-sectional geometry and Schmidt number. An analytical solution of the 

longitudinal dispersion coefficient due to the combined effect of steady and periodic flows 

within a conduit of uniform cross-section was also obtained by Mukherjee and Mazumder [7]. 

Joshi et al. [8] performed experiments on gas exchange in laminar oscillatory flows within a 

circular pipe. Their results showed good agreement with the theoretical predictions by 

Watson [6]. Pedley and Kamm [9] found that for the axial mass transport in an oscillatory 

pipe flow with steady secondary flow, a maximum transport rate can be achieved when the 

secondary-flow time equals the oscillation period. In recent years, the dispersion analysis has 

also been extended to more complicated situations, for example, in pipes with reactive walls 

[10-13], in curved pipes [14-16], in pipes with chemically reactive solute [17], and with 
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grooved cross-sectional geometry [18]. Most recently, Mei et al. [19] analytically 

investigated the longitudinal dispersion of laminar oscillatory flows driven by multiple 

frequencies. By examining the related configuration of a pressure exchanger for seawater 

desalination, and assuming that the flow inside the ducts is laminar, Mei et al. [19] showed 

that the long term mixing inside the exchangers is very small between the feed water and the 

brine. 

 

Comparing with laminar oscillatory flows, the longitudinal dispersion in turbulent oscillatory 

pipe flows is rarely reported in the literature both analytically or experimentally. Mondal and 

Mazumder [20] examined the stream-wise dispersion of fine suspended particles in a 

turbulent oscillatory flow from an elevated source. It was shown that the iso-concentration 

lines can be affected by the settling velocity, oscillation frequency and velocity magnitude, 

and source height.  Lee [21] performed experiments to qualitatively visualize the mixing of 

smoke inside the turbulent oscillatory pipe flow. The results suggested that the turbulence 

affects the radial mixing considerably as the Reynolds number increases. Ye and Zhang [22] 

examined the effect of turbulence on the Taylor dispersion for oscillatory pipe flows using 

laser techniques. They found that the longitudinal dispersion can be significantly enhanced by 

the turbulence by orders of magnitude. Their results will be discussed further in the later part 

of this paper. Zhou et al. [23] proposed a 2D axisymmetric CFD model with k-ε turbulence 

closure to simulate the mixing inside an isobaric pressure exchanger due to oscillatory flows 

inside the exchanger ducts. Their results showed that steady mixing can be established in the 

duct flows within a short time. Recently, Liu et al. [24] extended to a three-dimensional 

numerical model with RNG k-ε turbulence closure to analyze the effect of flow velocity and 

angular frequency on the mixing inside the pressure exchanger. Quantitative results on the 

mixing coefficient were obtained. Although both numerical studies were performed carefully, 
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the analysis was specific to the geometry involved, and it was also unclear whether the k-ε 

closure itself affected the quantitative determination of the mixing involved. 

Unlike axisymmetric pipe flows, the longitudinal dispersion effect is studied more 

extensively under surface gravity waves for both laminar and turbulent boundary layers at the 

bottom with a typical two-dimensional planar setting. Mei and Chian [25] and Ng and Wu 

[26] investigated the dispersion of suspended particles in wavy boundary layers. Trowbridge 

and Madsen [27] proposed a time-varying eddy viscosity model to study the turbulent wave-

induced near-bottom boundary layers, and applied the model to analyze the wave-induced 

mass transport [28]. Although their model is relatively simple compared to the turbulence 

closures in CFD models nowadays, it is able to yield analytical results that match the reported 

laboratory data in a satisfactory manner. This model has also been adopted by both Ng [29] 

and Mazumder and Paul [30] to investigate the longitudinal dispersion in a two-dimensional 

turbulent oscillatory channel flow and dispersion of settling particles in oscillatory turbulent 

flow with effect of deposition and re-entrainment, respectively. 

 

In the present study, the longitudinal dispersion of turbulent oscillatory pipe flows was 

investigated both analytically and experimentally. We first adopted an axisymmetric co-axial 

eddy viscosity model that is similar to the two-layer model of Trowbridge and Madsen [27], 

to examine the turbulent oscillatory flows inside the circular pipe. A perturbation analysis 

was then performed based on the homogenization technique with multiple scales. The 

approach and analysis thus bear similarity to Ng [29], however the cylindrical setting 

generates analytical solutions of very different forms. In addition, experiments using the 

advanced non-invasive image techniques of Particle Image Velocimetry (PIV) and Planar 

Laser Induced Fluorescence (PLIF) were conducted to quantify the longitudinal dispersion 

coefficient under different combinations of frequency and oscillatory velocity magnitude.  
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The experimental parameters covered a wide range of boundary Reynolds number from 100 

to 1000, and included both laminar and turbulent flow regimes. The experimental results 

were then compared with the theoretical predictions by the homogenization technique. In the 

following, we shall first present the analytical analysis before discussing the experimental 

results and comparison. 

 

2. Theory 

2.1 Turbulent oscillatory flow in a circular pipe 

 

We adopt a cylindrical coordinate for the pipe flow, as shown in Figure 1. The x -axis is the 

axial direction, and r  is the radical direction with 0r  at the centreline. The axial velocity u  

varies with time t  and radius r , i.e.  truu , , while the pressure p  is changing with t  and 

x  (i.e. only the axial pressure gradient is considered, which should be valid for small 

diameters). In this manner, the Navier-Stokes equation in the cylindrical form can be reduced 

to: 

 
r

r

rx

p

t

u













 



111

                                                                                                         

(1)

 

where   is the fluid density and   the turbulent Reynolds stress, which can be related to the 

velocity gradient by the eddy viscosity 
T  in the form [27], 

r

u
T



 

                                                                                                                                                      
(2) 

At the wall boundary, the velocity is assumed to be zero at 0rar   due to the no-slip 

condition, i.e. 

0u  at 0rar                                                                                                                     (3a)                                                                               
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where a  is the pipe radius. For a rough wall, 0r  represents the wall roughness and is 

typically taken to be 30/0 bkr  , where bk  is the equivalent Nikuradse roughness. For a 

smooth wall, however, 0r  is not the true roughness but rather denotes the embedded viscous 

sub-layer thickness, and usually is in the order of 10
-5

 m. 

 

Due to axisymmetry, the velocity gradient vanishes at the centreline, i.e. 

0




r

u

 
at 0r                                                                                                                        (3b) 

 

We consider a purely oscillatory flow with a single frequency and without any steady 

component. In this case, the pressure gradient is then independent of both x  and r , and only 

changes with time t , which can be expressed as: 

   tiePtP
x

p 


Recos
1







                                                                                              

(4)

 

where

 

  is the oscillation angular frequency, P  is the amplitude of the pressure gradient, 

 Re  denotes the real part of the complex expression, and 1i . Equation (4) implies that 

both the velocity u  and the shear stress   are purely sinusoidal with a period of T  (


2
T ). 

Hence these quantities can be expressed by the following Fourier expansions with only odd 

harmonics of the fundamental frequency,  

    ...Re 331  titi eueuu 

                                                                                                     (5) 

    ...Re 331  titi ee                                                                                                        (6) 

where     ,..., 11 u  are complex functions of r .  
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The above forms of equations also imply that
 

T
 
contains only even harmonics of the 

fundamental frequency according to (2), i.e.
 

    ...1Re 220  ti

T ea                                                                                                    (7) 

where 
 0  is a real function of r  representing the time-averaged value of the eddy viscosity, 

and  
 2a  is a complex constant representing the time variation of 

T . 

 

Earlier, Trowbridge and Madsen [27] had shown that the time-varying part of the eddy 

viscosity is small in comparison with the time-averaged part, and the third-harmonic 

components of velocity and shear stress are smaller than the first-harmonic components, i.e. 

 
 

 

 

 
 






1

3

1

3
2 ,,

u

u
a

                                                                                                               
(8) 

where   is a small parameter.  

 

Substituting (2), (4), (5) and (7) into (1), the governing equations for the Fourier components 

can then be derived as: 

   
   

 
 

























dr

du
r

dr

d

r

a

dr

du
r

dr

d

r
Piu

1

*0
21

01 1

2

1


                                                           

(9)

 

   
   

 
 




















dr

du
r

dr

d

r

a

dr

du
r

dr

d

r
iu

1
0

23
03 1

2

1
3 

                                                                

(10)

 

where the asterisk denotes the complex conjugate. The boundary conditions are modified 

accordingly as follow: 

    031  uu  at 0rar 
                                                                                                    

(11a) 
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   

0
31


dr

du

dr

du

 
at 0r                                                                                                     (11b) 

 

We now adopt an axisymmetrical co-axial model to represent the time-averaged part of the 

eddy viscosity. The approach is similar to the two-layer planar model introduced by 

Trowbridge and Madsen [27]. In this model, 
 0  (which is related to the time-averaged wall 

shear stress) is the product of a local length scale and velocity scale in the near wall region, 

while becomes a constant in the outer region, i.e. 

 

 















II

I

f

ar

arara

u







0

0

                                                                                   

(12)

 

where

 

4.0

 

is the von Karman’s constant, fu

 

the friction velocity, and 
I

 

the thickness of 

the inner boundary layer (which is typically taken as one sixth of the characteristic boundary 

layer thickness  , defined by 


 fu
). Since the maximum boundary layer thickness inside the 

circular pipe would be the pipe radius itself, thus the thickness can be expressed as, 

),min(
6

1






f

I

u
a

                                                                                                                 
(13) 

In order to simplify the analysis, it is more convenient to switch the coordinate from r  to s , 

where ras  . Substituting (12) into (9) and (10) and normalizing all the variables, the 

governing equations (9) and (10) in the non-dimensional form become (using a prime to 

denote non-dimensional variables): 

 
 

 
 

 
 




























 '

'
'1

''1

'

2
1'

'

'
'1

''1

' 1

*

2
1

1

ds

du
s

ds

d

s

ua
iu

ds

du
s

ds

d

s

u ff







                                   
(14) 
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 
 

 
 

 
 























 '

'
'1

''1

'

2
'3

'

'
'1

''1

' 12
3

3

ds

du
s

ds

d

s

ua
iu

ds

du
s

ds

d

s

u ff







                                       
(15) 

with the following boundary conditions:  

    0'' 31  uu  at '' 0rs                                                                                                            (16a) 

   

0
'

'

'

' 31


ds

du

ds

du

 
at 1's                                                                                                      (16b) 

where, 
        Uuuuuuu ff /),,()',','( 3131 

 
( U  is a characteristic velocity defined by 



P
), 

  arsrs /),(',' 00 
 
and tt '  are non-dimensional variables.   is a non-dimensional 

control parameter in the form of 
a

kU


  , and  ','min Is   , where the non-dimensional 

inner boundary layer thickness )',1min(
6

1
' fI u   is as discussed above. 

 

To solve for the governing equations (14) and (15), we need to introduce the auxiliary 

solutions  nF ,  3,1n , which satisfy the corresponding homogeneous differential equation, 

 
 

  0
'

'1
''1

'













n
n

f
inF

ds

dF
s

ds

d

s

u




                                                                                   

(17)

 

Since

 

  is not analytical at

 

'' Is  , (17) needs to be solved separately within the inner 

boundary layer and in the outer region, with the matching requirements for the velocity and 

shear stress solutions at '' Is  , i.e. 

       '' I

n

I

n FF                                                                                                               (18a) 

     
'

'

'

'

ds

dF

ds

dF I

n

I

n 




                                                                                                       (18b) 
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Together with the outer-edge boundary condition: 

  
0

'

1


ds

dF n

                                                                                                                             
(19) 

The complex auxiliary functions  nF  can then be derived analytically as shown in Appendix 

A.

 

With the wall boundary condition   0)'(' 0

1 ru , the solutions of (14) and (15) can be 

expressed by the auxiliary functions  nF  as: 

 
 

 

   

   

 

 
 2

0

1

1

0

1

*

1

*

2

0

1

1
1

)'('4
1

)'(
' O

rF

F

rF

Fia

rF

F
iu 






























                                                   

(20)

 

 
   

  

 

   2

0

3

3

0

1

12
3

)'('4
' O

rF

F

rF

Fia
u 








                                                                                 (21) 

Expressions for the Fourier components of the shear stress can then be obtained accordingly 

as: 

 
 

  

   

  

 

   


























 2

0

1

1

0

1

*

1

*

2

0

1

1
1

)'(

'/

'

'/

4'

'/
''  O

rF

dsdF

rF

dsdFa

rF

dsdF
ui f

                                                 

(22)

 

   
 

   

 

   
 2

0

3

3

0

1

1
23

'

'/

'

'/
3'

4

1
'  O

rF

dsdF

rF

dsdF
aui f 










                                                           

(23) 

To derive the velocities and shear stresses, the unknown friction velocity

 

'fu and the constant

 
 2a

 

need to be resolved. Earlier, Trowbridge and Madsen [27] had shown that 'fu  and 

 2'au f
 can be linked to the instantaneous wall shear stress in the following manner, 

 
   

   
 



















































 2

11

1

*

3
2/1

1

''

''
Re

10

3
1

4

5

4

3

1
'' 






 Ou

bb

bb

bf
                                                      (24) 
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   
 

 
 







Oau

b

b

bf 






















'

'

4

5

4

3

'
5

21
'

1

*

1
2/1

12                                                                            (25) 

where   is the Gamma function. Combining (24) and (25), we obtain the leading term as: 

 
 

 
'

'

5

2
1

*

1

2

b

ba





                                                                                                                                                  

(26) 

By applying the limit at the wall, 
 

'
'lim

0' ds

dF
s

n

s 
, to (22) and (23), we can obtain 

 
'

1

b  and 
 

'
3

b  

as a function of 'fu
 
for specific  . Substituting 

 
'

1

b  and 
 

'
3

b  into (24) and (26), 
 2a

 
can 

be computed and 'fu
 
can be solved iteratively. The Fourier components of the velocity and 

shear stress can then be obtained by substituting the value of
 

'fu  and 
 2a  into (20) to (23). 

And both the velocity profiles and distribution of shear stresses in non-dimensional form can 

be fully resolved. The procedural steps described are similar to the planar case shown in Ng 

[29]. 

 

The non-dimensional parameter '0r  related to 0r  and a , and thus can vary over a large range 

for various pipe radius. As mentioned previously, 0r  is usually in the order of 10
-5

 m. 

Meanwhile, a pipe with a relatively larger diameter of O(10
-2

) m was used in the following 

experiments for visualisation. Here, we present the numerical computations based on 

001.0'0 r
 
and 005.0  so that they can be compared with the experimental results later on. The 

results for the friction velocity 'fu , the complex constant 
 2a  and the inner boundary layer 

thickness 'I  are plotted in Figure 2 as functions of  , where the solid and dashed curves 

represent 001.0'0 r
 
and 005.0 , respectively.  Figure 2(a) clearly illustrates that 'fu
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decreases monotonically with
 
 . Also, with small  , 'fu

 
with the larger roughness of 

005.0'0 r  is higher than that of 001.0'0 r , however, the difference becomes negligible 

when   exceeds 100. In Figure 2(b), both the real and imaginary parts of 
 2a  oscillate with 

  with an amplitude less than 0.4, which generally validates the assumption made in (8), 

although the higher order terms will be relatively more significant with a larger 
 2a . Figure 

2(c) shows that the inner boundary layer thickness increases with   first ( 'I  with 

001.0'0 r  is smaller than with 005.0'0 r ) and becomes a constant of 1/6 when   reaches 

~20. The change-over point for 005.0'0 r  occurs at smaller   than that for 001.0'0 r , 

which suggests that the boundary layer thickness extends to the centreline of the pipe earlier 

at larger '0r . 

 

Based on the information from Figure 2, the profiles of eddy viscosity, velocity and shear 

stress at various phases within an oscillation period are shown in Figures 3, 4 and 5, 

respectively. In each figure, a comparison is made among  =0.5, 5, 50 and 500 to illustrate 

the effect of  . The results for 001.0'0 r  and 005.0
 
are also listed in the figures from (a)-(d) 

and (e)-(h) respectively for comparison.  Since   is inversely proportional to  , by keeping 

U  and a  constant, we expect a smaller   when the flow oscillates faster. In Figure 3, for 

the first two cases, i.e.  =0.5 and 5, when the oscillation frequency is relatively high, it can 

be observed that the boundary layer is thin; while for the last two cases, the boundary layer 

thickness extends fully to the centreline and 'I  reaches the maximum value of 1/6.  It is 

obvious from Figure 4 that with small   (i.e. Figures 4(a) and 4(e)), a strong phase lag exists 

between the flow within the boundary layer (where the velocity decreases towards the wall) 

and in the outer region (where the flow behaves as a plug flow). This is reasonable as under 

high frequency oscillations, the velocity inside the boundary layer does not react to the 



14 
 

pressure gradient immediately due to inertia. As   increases, the flow becomes more 

uniform over the cross-section. It can also be inferred that for all the cases, the velocity 

gradient under 005.0'0 r  is smaller comparing to 001.0'0 r . The same trend can be noted 

in Figure 5. The shear stress distribution becomes more linear as   increases. 

 

2.2 Longitudinal Dispersion Coefficient 

 

After the flow characteristics are determined above, we proceed to analyze the longitudinal 

dispersion in the turbulent oscillatory pipe flow in this section. We start by considering a 

finite cloud of mass dissolved homogeneously over the cross-section inside the turbulent 

oscillatory pipe flow. Driven by advection, the centre of the cloud will then move forward 

and backward periodically with a zero net displacement. During this process, however, the 

cloud expands due to the turbulent dispersion and more importantly, the dispersion induced 

by the turbulent shear flow. In the following, we shall analyze the longitudinal dispersion 

based on the homogenization method described in details by Mei and Vernescu [31].  

 

Since the flow is only in the
  

direction, the scalar transport in a circular pipe is governed 

by the convection-diffusion equation in the cylindrical coordinates:
 


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



























r

C
rD

rrx

C
D

x

C
u

t

C
tt

1
2

2

                                                                                    
(27)

 

subject to the boundary condition: 

0




r

C

 
at 0,0 rar 

                                                                                                           
(28)

 

where C  is the scalar concentration, and tD
 
is the turbulent dispersivity which is assumed to 

be isotropic in all directions. 

x
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The turbulent dispersivity is taken to be related to the eddy viscosity through the turbulent 

Schmidt number, which is the ratio of the two, i.e. tT DSc / . In the literature, it was 

found that the turbulent Schmidt number is in the order of unity based on experimental 

measurements [32, 33]. Since we are interested in the long term behaviour of the longitudinal 

dispersion, hence we examine the case with the turbulent dispersivity being proportional to 

the time-averaged eddy viscosity, 
 0 , i.e.  

 0tD
 
                                                                                                                              (29) 

where
 

 1O .  

 

We consider the situation that the pipe radius is sufficiently small such that the concentration 

becomes homogeneous over the cross-section after a few oscillations in the turbulent regime, 

i.e. 

tD

a2

~
2




                                                                                                                                 (30) 

Furthermore, we assume that the longitudinal length scale L  is much larger than the pipe 

radius, which is, 

1/  La                                                                                                                            (31)
 

where   denotes a parameter much smaller than one. Note that this is the condition whereby 

the homogenization technique can be strictly applied, although in reality the results are 

similar even for larger   in many cases. Based on the assumptions of (30) and (31), the 

governing equation (27) can be rewritten using   to indicate the order of magnitude of each 

term, 
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(32) 

 

We now introduce the homogenization approach with the multiple-scale perturbation analysis. 

Typically, three sharply distinct time scales t , 
1t  and 

2t  need to be adopted to represent the 

three different transport processes, i.e. dispersion over the cross-section, advection and 

dispersion along the longitudinal direction, respectively. However, for purely oscillatory 

flows (i.e. net advection does not exist), the intermediate time scale is not of significance, 

hence, we only apply the two time scales, t  and 
2t , in the present study (note however that 

the result is the same as that by applying the three time scales), i.e. 

ttt 2

2, 
                                                                                                                                

(33) 

In the same manner, the concentration and time derivative can be expanded as: 

...2

2

10  CCCC 
                                                                                                       

(34)

 

...
2

2 














ttt


                                                                                                               
(35)

 

At  1O , the leading order concentration 
0C  has been proven to be independent of

 
r  and t  

[31], i.e. 

 200 , txCC                                                                                                                           (36) 

At  O , the concentration 
1C
 
is governed by: 
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(37) 

Substituting (5) for u  and (29) for tD , the above equation becomes:
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(38)

 

with the boundary condition: 

01 




r

C

 
at 0,0 rar                                                                                                            

(39)
 

In view of linearity, the first order concentration 
1C
 
can be expressed as: 

  tieB
x

C
C 10

1 Re





                                                                                                                

(40) 

where  1B  is a complex function of r .

 

Substituting (40) into (38), we obtain the governing 

equation for  1B  as:
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with the boundary condition: 

 

0
1


dr

dB

 

at 
0,0 rar 
                                                                                                         

(42)
 

Solving the function  1B  is the key towards the determination of the magnitude of the 

longitudinal dispersion coefficient. 

We now proceed to consider  2O . The governing equation is: 
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Substituting (40) into (43) yield: 
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Taking the time and cross-sectional average of (44) and after some rearrangement, we obtain 

the effective scalar transport equation as: 
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(45) 

where the angular brackets 

 

represent the cross-sectional average.                                                                                               

 

The second term on the RHS of (45) gives rise to the longitudinal dispersion [29, 31]. We 

define the longitudinal dispersion coefficient in an oscillatory flow with zero time-averaged 

velocity as, 
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*
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(46) 

Recalling the governing equation (41) and normalizing all the variables and parameters with 

the change of the coordinate from 'r  to 's  as before, we have 
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subject to the boundary condition: 

 

0
'
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ds

dB

 

at ',1' 0rs 
                                                                                                              

(48)
 

where
 

    111 /'  UBB                                                                                                            (49)
 

 

Substituting the expression for 
 

'1u  into (47), the function  
'1B  can then be solved 

numerically. The detailed solution procedures are described in Appendix B. 
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Equation (46) gives the longitudinal dispersion coefficient for the turbulent oscillatory pipe 

flows. The corresponding non-dimensional longitudinal dispersion coefficient can be 

expressed as, 

 
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(50) 

where the integral can be computed numerically as well.  

 

Based on the above, the relationship between the non-dimensional longitudinal dispersion 

coefficient 'lD  and the control parameter   is illustrated in Figure 6. A comparison is made 

between 6.0  and 1, the two values being chosen to approximate the range of  . As 

before, '0r  is set to be 0.001 and 0.005. Figure 6 clearly shows that 'lD  increases with   

first and then slightly decreases with the peak at 20~ . In addition, it can be observed from 

the figure that:  

 

(i) keeping '0r  the same, 'lD  is larger with larger   when   is small, however, the situation 

reverses when   exceeds around 20, which can be attributed to the change-over of 'I . 

Moreover, a larger   tends to have a lower peak value that appears at a relatively smaller  ; 

and  

 

(ii) keeping   the same, 'lD  is larger with larger '0r  when  is small. As   further 

increases, the two reach almost the same peak value. This is reasonable because the velocity 

profile is more uniform with larger  , and the significance of the velocity variation near the 

wall to the longitudinal dispersion diminishes. 
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For comparison, the cross-sectional averaged turbulent dispersivity 'tD  is plotted in Figure 

7. From the figure, 'tD  increases with   first and then decreases, which can also be 

attributed to the change-over of 'I  at 20~ . Similarly, 'tD  is higher with larger '0r  but 

the '0r  effect reduces when   exceeds the change-over point. 'tD  also increases with   

proportionally as described in (29). 

 

Comparing Figures 6 and 7, the difference between 'lD  and 'tD  in turbulent flows varies 

considerably depending on the value of  . For most cases, 'tD  is much smaller than 'lD . 

However, for  1.0~ O , the magnitude of 'lD  is of the same order as 'tD , which implies 

that the turbulent dispersivity cannot be ignored in the analysis of the axial dispersion in 

oscillatory flows with small velocity amplitude but high frequency. 

 

3. Experiments 

3.1 Experimental apparatus and conditions 

 

The experimental setup is shown in Figure 8. The experiments were conducted in a straight 

circular acrylic pipe with inner diameter d = 10mm and length l = 1100mm. One end of the 

pipe was connected to a water tank (250mm×250mm×500mm) with a valve installed on the 

entrance of the pipe. The other end was joined to a piston chamber with the inner diameter 

twice of the pipe diameter, i.e. 20mm. Both connections were equipped with bell-shaped 

transition to minimize the entrance effect. Flow oscillations were generated by a motor-and-

crank assembly driving a low-friction stainless steel piston inside the piston chamber. A 

constant rotating speed was provided by an electric step motor, which was then converted to a 

sinusoidal movement in the horizontal direction to the piston through the Scotch-yoke 
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mechanism. The stroke volume (i.e. the flow displacement volume over a half period) V  

could be adjusted from 6.3 to 31.4 cm
3
 by changing the length of the rotation arm and the 

frequency of the motor which ranged from 30 to 240 rpm. 

 

According to the previous studies on the transition to turbulence of oscillatory pipe flows, the 

critical boundary Reynolds number for transition, Re , was unanimously found to be around 

500-550 [34-37], where Re  is defined by 


U
, 






2
  is the Stokes layer thickness and 

  the kinematic viscosity. In the present study, a total of 18 conditions were examined and 

their detailed experimental conditions are listed in Table 1 (the kinematic viscosity   was 

~10
-6

 m
2
/s under the testing temperature 25

o
C). The experimental parameters included a 

range of Re  from 100 to 1000, with the intention of covering the oscillatory flow regime 

from laminar to turbulent. 

 

3.1.1 Particle Image Velocimetry experiments 

 

The kinematic characteristics of the oscillatory pipe flows in the experiments were first 

investigated using the laser-based Particle Image Velocimetry (PIV) technique. The working 

principle of PIV is straightforward. The flow field is first seeded with tracer particles and 

illuminated by dual-pulsing laser light sheets in regular frequency. Two short-duration 

exposures of the particles are recorded with the dual pulses on CCD camera correspondingly, 

with a carefully chosen pulse interval. The recorded dual images are then analyzed to obtain 

the instantaneous velocity map using cross-correlation algorithm with validations [38]. In the 

experiment, tap water was used as the working fluid, and 5μm neutral buoyant polyamid 

particles (density = 1.03 g/cm
3
) were added as seeding particles. The light source employed 
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was a Dantec DualPower 50-100 Nd: YAG laser which could emit pulsed laser light with 

532nm wavelength. A Dantec SpeedSense 1040 charge-coupled device (CCD) digital camera 

was configured for the image capturing with a filter lens of 532nm placed to eliminate other 

light sources. The laser sheet was adjusted to coincide with the pipe centerline section 

vertically while the camera was perpendicular to the plane illuminated by the laser. In this 

manner, the centerline velocities can be determined directly without the concern of refraction 

errors, while observations of the presence of eddies can also be made. An area of 10 mm 

(length) × 10 mm (height) in the middle of the pipe was chosen to be the image window. The 

distance from the measured area to the pipe ends was adequately long so that the entrance 

effect can be ignored. The frequency of the laser dual-pulses was set to be 20 times of the 

oscillation frequency of the flow for the determination of the centerline velocity, i.e. 20 pairs 

of images were captured within one oscillation period for each experimental condition. For 

the observation of cross-section eddies, a larger image window with lower sampling 

frequencies was adopted instead. 

 

3.1.2 Planar Laser Induced Fluorescence experiments 

 

The laser imaging technique of Planar Laser Induced Fluorescence (PLIF) was applied to 

quantify the longitudinal dispersion in the oscillatory pipe flows. PLIF measured the solute 

concentration by introducing an amount of dissolvable fluorescent dye into the fluid as tracer 

and then converting the dye image intensity to concentration through proper calibration [38]. 

The light source employed was a Dantec DualPower 65-15 Nd: YAG laser and the camera 

was a Dantec FlowSense 2M CCD digital camera. The tracer used in the present study was 

Rhodamine B (molecular diffusivity = 4.5×10
-10

 m
2
/s [39]), which could emit fluorescent 

light with a peak wavelength of 575nm on excitation by the 532nm laser light. The dye 



23 
 

concentration was chosen in the linear range whereby the intensity of the fluorescent light 

was linearly proportional to the solute concentration. Hence, the concentration distribution 

along the pipe can be obtained by analyzing the fluorescent light intensity. A filter lens of 

560nm was configured on the camera so that only the fluorescent light emitted by the excited 

tracer can be detected. A length of 350mm in the middle of the pipe was chosen to be the 

measurement section.  

Due to the high sensitivity of PLIF, calibration was conducted before each test to determine 

the relationship between the light intensity and tracer concentration. Each calibration curve 

was obtained by detecting the light intensity of Rhodamine B solutions of five different 

concentrations, i.e. 20, 40, 60, 80 and 100 μg/L, and one blank sample. The precise 

concentration was obtained by a fluorometer. Single-frame mode was applied to capture the 

dispersion along time with the frequency of laser pulse being four times of the oscillation 

frequency. Each original image was then analyzed pixel by pixel based on the calibration 

curve to give the concentration distribution. 

 

Different from the syringe-injected method in the literature which may induce injection 

momentum [22], the dye tracer was introduced to the fluid inside the pipe through the tank 

located at one end of the pipe. The dye solution was first mixed homogeneously inside the 

tank, which was separated with the tap water in the pipe initially by a valve at the entrance 

(see Figure 8) which was closed before the experiment. This method was preferred as it 

avoided introducing initial momentum to the tracer, as well as enabled the dye tracer to be 

homogeneous over the cross section before entering the pipe so that the influence of initial 

radial differences can be minimized. The solution concentration in the chamber was set to be 

around 80μg/L (the concentration was determined accurately by the fluorometer for each test). 
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3.2 Experimental results and analysis  

3.2.1 Velocity measurements 

 

Through the Scotch-yoke mechanism, which is a reciprocating motion mechanism where the 

reciprocating part is directly coupled to a sliding yoke with a slot that engages a pin on the 

rotating part, the constant-speed rotation of the motor could be converted to sinusoidal 

movements of the piston in the axial direction. Figure 9 shows the variation of phase-

averaged axial velocity at the centerline of the pipe under different experimental conditions, 

where the symbols denote the measured velocities and the solid line represents the prediction 

from the present analytical analysis. The velocity applied is the non-dimensional velocity 

 0'' ru , i.e.    Uru /0 , where    represents the ensemble (phase) average over 100 

cycles and U  the amplitude of cross-sectional mean velocity. From the figure, it can be seen 

that the velocities followed well with the anticipated predictions. 

 

Figure 10 shows the instantaneous velocity maps at different phases within a period under 

various Reynolds numbers, with the length of the vector representing the velocity amplitude 

and the arrow denoting the velocity direction (each velocity map was analyzed through peak 

validation, range validation and moving average validation to eliminate the incorrect vectors). 

Note that the velocity distribution was only indicative, as the refraction effect of the 

curvilinear pipe wall was not corrected. Clearly, the flow directions in the core region and 

near boundaries were opposite at the stage of flow reversal. This illustrated the existence of 

phase lag, whereby the flow near the wall boundaries switched direction earlier than the core 

region because of its velocity magnitude is smaller. In general, for small Reynolds numbers, 

the PIV velocity maps showed that the flows were smooth and unidirectional under most 

phases. However, disturbance can sometimes be observed when the flow changed direction 

http://en.wikipedia.org/wiki/Reciprocating_motion
http://en.wikipedia.org/wiki/Yoke
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(i.e. Figure 10(a)), and these disturbance became more noticeable at larger Re  (i.e. Figure 

10(b)). As Re  continued to increase, cross-sectional vortices began to appear around the 

phase of direction-change when Re  exceeded 501 (i.e. Figure 10(c)).  The vortices were 

firstly observed in the domain between the core region and wall boundaries and gradually 

occupied the whole section as Re  further increased. The observation therefore implied that 

the oscillatory pipe flow transited from laminar to turbulent at some particular phases when 

Re  was ~500. Our observed value coincided with the reported critical boundary Reynolds 

number for transition to turbulence [34]. 

 

3.2.2 Concentration measurements 

 

A complete longitudinal dispersion process within one oscillation period is qualitatively 

illustrated in Figure 11. Within the oscillation period, the solute moves forward and backward 

to the original position while diffuses/disperses at the same time. As the volume of 

Rhodamine B solution in the tank was much larger than the volume of tap water inside the 

pipe, the concentration in the tank can be treated approximately as a constant during the 

experiments for analysis. In the present study, the period of flow oscillation was less than 2 

seconds while the time scales for dispersion along the pipe ranged from O(10
2
s) to O(10

6
s). 

The large contrast implied that the time scale for longitudinal dispersion was much longer 

compared to that of the flow oscillation. As a result, the analysis of the measurements can be 

performed similar to the transient constant-source diffusion/dispersion in an infinite pipe. 

Therefore, before the tracer reached the other end of the pipe, the concentration distribution 

would satisfy a complementary error function for a maintained source, which is: 
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with the initial condition: 

  00, xC                                                                                                                                                          (52) 

and the boundary conditions: 

    0,;,0 0  tCCtC                                                                                                                                 (53) 

where 0C
 
is the constant-source concentration and 

effD  is the effective dispersion coefficient. 

 

Figure 12 shows the concentration distribution according to the complementary error function 

qualitatively. By assuming the value of dispersion coefficient, one can obtain the quantitative 

concentration at any particular instance in time. In the present study, we analyzed the cross-

sectional averaged concentration variation as a function of time at three different x  positions, 

i.e. 0.46, 0.55 and 0.64m (note that the distortion induced by the cylindrical pipe wall was 

corrected). Through the fitting of the complementary error function to the experimental data, 

the best-fit longitudinal dispersion coefficient can be obtained for each condition. 

 

The influence of the two independent parameters, i.e. stroke volume and oscillating 

frequency, on the longitudinal dispersion coefficient is demonstrated in Figure 13. In the 

figure, 'effD  is the non-dimensional dispersion coefficient defined by 
mol

eff

D

D
, with effD  

employed for the calculation being the average value of the measured effective dispersion 

coefficient over the three x  positions and 
molD  is the molecular diffusivity of Rhodamine B 

( molD 4.5×10
-10

 m
2
/s). Under constant oscillating frequency, 'effD  increased with the non-
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dimensional stroke volume 
2

6

V

a
 as shown in Figure 13(a). A similar trend can be observed in 

Figure 13(b) for a specific stroke volume. As the Womersley number  /a  increased, 

'effD  also increased generally.  

The relationship between 'effD  and Re  is further illustrated in Figure 14. As Re  increased 

from 100 to 1000, the amplitude of 'effD  increased from 10
3
 to 10

7
, implying that the 

dimensional dispersion coefficient effD  increased drastically from 10
-6

 to 10
-2

 m
2
/s. 

Comparing the dispersion coefficient with the same Reynolds number, effD  was relatively 

larger for the conditions with larger stroke volumes but smaller angular frequencies. In other 

words, the oscillatory flow with smaller velocity amplitudes but longer periods introduced 

stronger longitudinal dispersion than that with larger velocity amplitudes but shorter periods, 

even though the two Reynolds number were identical. This is deemed reasonable as the 

primary cause for longitudinal dispersion is the velocity variation over the cross section. 

Oscillatory flows with higher velocity but shorter period have thinner boundary layers. Hence, 

the velocity profile is flatter and thus weaker longitudinal dispersion is induced. 

 

4. Comparison 

 

According to the previous literature on the transition to turbulence in oscillatory pipe flows, 

the oscillatory flow can be divided into three different regimes depending on the Reynolds 

number Re  and the Stokes parameter   (   2/a ) [34, 35]: (1) Laminar (and 

distorted laminar) regime: the velocity distribution agrees with or distorts in part from the 

laminar profile at low Reynolds numbers; (2) Transitional (or weakly turbulent) regime: 

small amplitude perturbations are superposed on the distorted laminar flow at relatively high 
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Reynolds number; and (3) Turbulent (or conditional turbulence) regime: turbulence occurs in 

the decelerating phases when Re ≥ 500-550. In the present study, the experimental 

conditions corresponded to the different regimes as follow: runs 1 and 2 (laminar), runs 3 – 

10 (transitional) and runs 11 – 18 (turbulent). In the following, the experimental results are 

compared to the theoretical predictions based on previous laminar flow analysis and with the 

present analytical model, respectively. 

 

4.1 Laminar flows 

 

A classical theoretical study on the longitudinal dispersion coefficient of laminar pipe flows 

under sinusoidal pressure gradient was performed by Watson [6]. He concluded that the 

dispersion coefficient can be related to the stroke volume and angular frequency as follow: 

  









6

2

,1
a

V
ScfDD mollam                                                                                                  (54) 

Figure 15 shows the ratio of the measured longitudinal dispersion coefficient 
effD  to the 

theoretical prediction lamD  based on equation (54) as a function of Reynolds number. In the 

laminar regime, the measured dispersion coefficients were found to deviate from the 

Watson’s theoretical predictions with the order of unity. The reason for this discrepancy 

might be the disturbances generated by the entrance. For Re  between 200 and 425, the 

measured values of the longitudinal dispersion coefficient became an order of magnitude 

higher than the laminar predictions, with the ratio 
lam

eff

D

D
 ascending to O(10). As the Reynolds 

number increased, a drastic jump occurred when Re
 
exceeded ~ 500, as observed by the 

PIV velocity maps that the cross-sectional vortices began to appear. The presence of 
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turbulence now significantly enhanced the longitudinal dispersion coefficient, and the ratio 

lam

eff

D

D
 increased to as large as O(10

3
) as a result.  

 

4.2 Turbulent flows 

 

With the analytical results in Section 2, the non-dimensional parameter   and the 

corresponding 'lD  can be computed for each condition. The values of   for the 18 

conditions were 3.2, 6.4, 9.6, 12.8 and 16, respectively. The comparison between the 

experimental results and the theoretical predictions for turbulent oscillatory flows as a 

function of Re  is illustrated in Figure 16, where UaDD ltur '  and 'lD  is the non-

dimensional turbulent dispersion coefficient under 001.0'0 r  and 1  as expressed in 

equation (50). Clearly, for Re  less than 500, the predicted turD  was much larger than 
effD , 

as the perturbation analysis is not applicable in the laminar and transitional regimes. When 

Re  reached 500 and beyond, the measured dispersion coefficient became similar to the 

predicted value, and 
tur

eff

D

D
 was of the order O(1), which demonstrated a satisfactory 

agreement in general. The agreement suggests that even though the present analytical model 

is based on the gross assumption of turbulent flow throughout the cross section, it can provide 

satisfying predictions for the longitudinal dispersion coefficient in this regime. 

 

5. Conclusions 

 

In the present study, the longitudinal dispersion of turbulent oscillatory pipe flows was 

investigated both analytically and experimentally. For the analytical analysis, an 
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axisymmetric co-axial model for the eddy viscosity is proposed based on the planar two-layer 

approach by Trowbridge and Madsen [27], and the homogenization approach is adopted for 

the multi-scale perturbation analysis. The results show that the non-dimensional longitudinal 

dispersion coefficient can be quantified by means of a control parameter   which is the ratio 

of the velocity amplitude to the angular frequency and pipe radius. Generally, the magnitude 

of the non-dimensional longitudinal dispersion coefficient is found to first increase with   

and then decrease upon reaching a peak value of 5.0~  at 3020~  . The non-

dimensional turbulent dispersivity follows a similar trend as 'lD  but in a more moderate 

manner. Overall, the dimensional longitudinal dispersion coefficient of turbulent oscillatory 

flow UaDD ltur '  can be enhanced by increasing the velocity U  while keeping the other two 

parameters, i.e.   and a , unchanged.  

An experimental study using PIV and PLIF techniques was also conducted to measure the 

longitudinal dispersion coefficient in oscillatory pipe flows under various oscillation 

frequency and stroke volume. The boundary Reynolds number covered a wide range from 

100 to 1000, and thus the measurements enabled the examination of flow regimes from 

laminar to turbulent.  The experimental results showed that when the Reynolds number 

increased, the dispersion coefficient rose drastically from 10
-6

 to 10
-2

 m
2
/s. By comparing the 

dispersion coefficient under the same Re , it was observed that the oscillatory flow with 

lower velocity amplitude but longer oscillation period generated relatively stronger 

longitudinal dispersion than that with higher velocity but shorter period. Finally, the predicted 

longitudinal dispersion coefficients based on our analytical analysis, i.e. equation (46), agreed 

satisfactorily with the experimental measurements when Re  exceeded 500, which is 

consistent with the reported critical Reynolds number for the transition to turbulence. The 

good agreement verified the applicability of the analytical approach in this study. 
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Appendix A. The auxiliary functions  nF  

 

The solutions of the auxiliary functions are presented in this appendix. Recall the governing 

equation (17). Inside the inner boundary layer,

 

'''0 Isr  , we can assume 

1''1
'1

1 2 


ss
s

. Thus, (17) can be simplified as,  
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(A 1)

 

The solution of (A 1) can be obtained as (note that one of the constants presented below is set 

to be one due to the fact that the equation (17) is homogeneous): 

          nn

s
s

Hxs
s

HxF nnnnnnn   

















 '

'

1
,2,,'

'

1
,2,, 21

                                    

(A 2)

 

where H  denotes the hypergeomatric functions and
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Outside the inner boundary layer and in the outer region, 1''  sI , equation (17) becomes, 
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The solution of 
 nF  in equation (A 5) can be obtained as, 
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(A 6)
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where 0J  and 
0K  represent the first and second kind Bessel function of order zero, 

respectively, and 

 

'' If

n

u

in







                                                                                                                    

(A 7) 

The unknown constants, 
1x , 

2x  and 
3x , can be determined by applying the matching and 

boundary conditions (18a), (18b) and (19). 
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Appendix B. Solution of function  
'1B  

 

The solution procedures of function  
'1B  are presented in this appendix. Recall that the 

governing equation is given in (47) and the boundary conditions in (48).  

When '''0 Isr  , (47) becomes,
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where  1F  is expressed by equation (A 2). 

When 1''  sI , the governing equation is modified to,
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where

 

 1F
 
is in the form of (A 6).

 

Discretizing with the second order central difference scheme, we have  
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where
 

'xy  and ''xy  represent the first and second order derivative of function y  at x , 

respectively.  
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Denoting the coefficients of 1xy , xy , and 1xy  as Z , X  and Y , respectively, and the RHS 

as f , a matrix equation can be obtained as, 
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The first and last rows represent the boundary conditions. 

For the presentation of results, m  was set to be 1000 typically. 
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FIGURE 2. Variations of (a) friction velocity 'fu  (equation (24)), (b) complex constant 
 2a  

(equation (26)), and (c) inner boundary layer thickness 'I  (equation (13)) with  . The solid 

curves are for 001.0'0 r
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FIGURE 3. Profiles of eddy viscosity 'T  at various phases within the same period (left: 

001.0'0 r : (a) 5.0 , (b) 5 , (c) 50 , (d) 500 ; right: 005.0'0 r :(e) 5.0 , (f) 

5 , (g) 50 , (h) 500 ) 
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FIGURE 4. Profiles of velocity 'u  at various phases within the same period (left: 001.0'0 r :  

(a) 5.0 ,(b) 5  , (c) 50 ,(d) 500 ; right: 005.0'0 r : (e) 5.0 , (f) 5 ,  

(g) 50 , (h) 500 ) 
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FIGURE 5. Profiles of shear stress '  at various phases within the same period (left: 

001.0'0 r : (a) 5.0 , (b) 5 , (c) 50 , (d) 500 ; right: 005.0'0 r :(e) 5.0 , (f) 

5 , (g) 50 , (h) 500  ) 
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FIGURE 6. The non-dimensional turbulent longitudinal dispersion coefficient 'lD  based on 

equation (50) as functions of  with 001.0',6.0 0  r  (solid), 005.0',6.0 0  r  (dash), 

001.0',1 0  r  (dash dot), and 005.0',1 0  r  (dash dot dot) 
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FIGURE 7. The non-dimensional turbulent dispersivity 'tD
 
as functions of  with 

001.0',6.0 0  r  (solid), 005.0',6.0 0  r  (dash), 001.0',1 0  r  (dash dot), and 

005.0',1 0  r  (dash dot dot)
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FIGURE 8. Experimental setup (unit: mm) 
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(a) 802Re 
 ( 1.25V cm

3
,  4 rad/s) 

 

(b) 850Re 
 ( 8.18V cm

3
,  8 rad/s) 

 

(c) 1002Re 
 ( 4.31V cm

3
,  4 rad/s) 

FIGURE 9. Velocity variation at the centerline under different conditions. The solid lines 

represent the predictions based on equations (20) and (21), and the symbols denote the 

measured velocities.  
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(a) 200Re 
 ( 6.12V cm

3
,   rad/s) 

 

FIGURE 10. Velocity vector maps under different conditions (unit: mm)  
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(b) 283Re 
 ( 6.12V cm

3
,  2 rad/s) 

FIGURE 10. Velocity vector maps under different conditions (unit: mm) (continued) 
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(c) 567Re 
 ( 1.25V cm

3
,  2 rad/s) 

FIGURE 10. Velocity vector maps under different conditions (unit: mm) (continued) 
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FIGURE 11. Longitudinal dispersion process within one cycle for 425Re 
  

( 8.18V cm
3
,  2 rad/s) 
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FIGURE 12. Concentration distribution as a function of distance from a maintained source 

based on complementary error function 
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(a) 

 

(b) 

FIGURE 13. Variation of measured non-dimensional longitudinal dispersion coefficient with 

(a) non-dimensional stroke volume and (b) Womersley number 
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FIGURE 14. Relationship between measured non-dimensional longitudinal dispersion 

coefficient and Reynolds number 
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FIGURE 15. Comparison between experimental results and theoretical predictions for 

laminar flows based on equation (54) 
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FIGURE 16. Comparison between experimental results and theoretical predictions for 

turbulent flows based on equation (46) 

 

 

 

  

0.01 

0.1 

1 

10 

100 1000 

D
ef

f/
D

tu
r 

Reδ 

ω=π 

ω=2π 

ω=4π 

ω=8π 

Turbulent Laminar Transitional 



61 
 

Run V  (cm
3
)   (rad/s) U  (m/s)  /2  (m)  /Re U  

1 6.3 3.14 0.126 0.000798 100 

2 6.3 6.28 0.251 0.000564 142 

3 6.3 12.56 0.502 0.000399 200 

4 12.6 3.14 0.251 0.000798 200 

5 6.3 25.12 1.005 0.000282 283 

6 12.6 6.28 0.502 0.000564 283 

7 18.8 3.14 0.377 0.000798 301 

8 12.6 12.56 1.005 0.000399 401 

9 25.1 3.14 0.502 0.000798 401 

10 18.8 6.28 0.754 0.000564 425 

11 31.4 3.14 0.628 0.000798 501 

12 12.6 25.12 2.009 0.000282 567 

13 25.1 6.28 1.005 0.000564 567 

14 18.8 12.56 1.507 0.000399 601 

15 31.4 6.28 1.256 0.000564 709 

16 25.1 12.56 2.009 0.000399 802 

17 18.8 25.12 3.014 0.000282 850 

18 31.4 12.56 2.512 0.000399 1002 

TABLE 1. Summary of the experimental conditions 

 

 


