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Abstract Scaling behavior of rainfall time series is characterized using monofrac-6

tal, spectral and multifractal frameworks. The study analyzed temporal scale-7

invariance of rainfall in the tropical island of Singapore using a large dataset com-8

prising 31 years of hourly and 3 years of 1-minute rainfall measurements. First,9

the rainfall time series is transformed into an occurrence–non-occurrence binary10

series, and its scaling behavior is analyzed using box-counting analysis. The results11

indicated that the rainfall support displays fractal structure, but within a limited12

range of scales. The rainfall support has a fractal dimension (Df ) of 0.56 for scales13

ranging from 1 minute to 1.5 h and a Df of 0.37 from 1.5 h to 1.5 days. The re-14

sults further showed that the fractal dimension decreases with the increase in the15

threshold used to define binary series. Spectral analysis carried out on the rain-16

fall time series and the corresponding binary series showed three distinct scaling17
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regimes of 4 minute - 2h, 2 h - 24 h, and 24 h - 1 month. In all the scaling regimes,18

the spectral exponents for the rainfall series were smaller than those for the binary19

series. The study then investigated the presence of multiscaling behavior in rainfall20

time series using moment scaling analysis. The results confirmed that the rainfall21

fluctuations display a multiscaling structure, which was modelled in the framework22

of universal multifractals. The results from this study would not only improve our23

understanding of the temporal rainfall structure in Singapore and the surrounding24

Maritime Continent, but also help us build and parameterize parsimonious models25

and statistical downscaling techniques for rainfall in this region.26

Keywords Fractal Dimension · Power spectrum · Multifractals · Universal27

Model · Maritime continent28

1 Introduction29

Characterization of intermittency and high degree of variability that rainfall dis-30

plays in space and time is important for various applications in earth sciences.31

Scale-invariance (or scaling) provides an elegant framework to analyze and model32

rainfall characteristics across a range of temporal and spatial scales. A physical33

process is said to be scale-invariant, if large scale and small scale structures are34

related by a power-law that involves only the scale ratio and an exponent (e.g.,35

Schertzer and Lovejoy, 1987). Many studies in the last three decades have shown36

empirical evidence of scaling in rainfall (e.g., Lovejoy, 1982; Fraedrich and Larn-37

der, 1993; Georgakakos et al, 1994; Venugopal et al, 1999; Deidda et al, 2004;38

Lovejoy et al, 2008; Mandapaka et al, 2009; Rysman et al, 2013), and proposed39

models that can be used for generating synthetic rainfall fields or for obtaining40
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high resolution fields through downscaling (e.g., Lovejoy and Mandelbrot, 1985;41

Schertzer and Lovejoy, 1987; Over and Gupta, 1996; Deidda et al, 2004; Mas-42

caro et al, 2014). Early studies were based on monofractal framework, where the43

variability is characterized by a single exponent (e.g., Lovejoy and Mandelbrot,44

1985). The monofractal approach was soon generalized to a more unified multi-45

fractal framework to adequately describe intensity fluctuations across scales (e.g.,46

Schertzer and Lovejoy, 1987).47

Several studies employed multifractal analysis techniques to characterize vari-48

ability of rainfall for temporal scales ranging from seconds to years (e.g., Olsson,49

1995; Svensson et al, 1996; Pathirana et al, 2003; Mandapaka et al, 2009; Verrier50

et al, 2011; Yonghe et al, 2013), and spatial scales varying from meters to con-51

tinental scales (e.g., Tessier et al, 1993; Gebremichael et al, 2008; Lovejoy et al,52

2008; Mandapaka et al, 2009, 2010). However, very few studies investigated scale-53

invariance of rainfall in the Maritime continent, which consists of many densely54

populated and highly urbanized regions (e.g., Sivakumar, 2000a,b). These regions55

require high resolution (e.g., sub-hourly) rainfall time series for better modeling56

of urban hydrologic response. However, rainfall databases from many countries in57

the Maritime Continent are of coarse resolution. This study is motivated by our58

long-term goal to build parsimonious statistical downscaling models of rainfall and59

generate an ensemble of sub-hourly rainfall time series at multiple locations within60

the Maritime Continent.61

An important step towards aforementioned goal is to investigate the presence62

of scale-invariance in temporal rainfall in the Maritime Continent, and characterize63

corresponding scaling regimes. Previous studies on rainfall scale-invariance in this64

region were based on limited sample size, where data resolution was too coarse65
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to analyse urban hydrologic scales (e.g., Sivakumar, 2000a,b). In this study, we66

take advantage of the availability of large dataset from a dense gauge network in67

Singapore to investigate the presence of scale-invariance in rainfall. The dataset68

consists of 31 years of hourly and 3 years of high-resolution 1-minute rainfall obser-69

vations. We employ box-counting analysis (e.g., Lovejoy et al, 1987) to study the70

distribution of rainfall occurrence in time, and proceed to spectral (e.g., Fraedrich71

and Larnder, 1993) and multifractal analyses (e.g., Schertzer and Lovejoy, 1987)72

to study rainfall intensity fluctuations. To the best of our knowledge, this study is73

the first comprehensive investigation on the presence of scale-invariance in rainfall74

in a maritime continental region using multiple analysis techniques. The current75

study therefore complements the earlier work by Sivakumar (2000a,b), who an-76

alyzed 6-hourly rainfall data for the same region, although for a different time77

period.78

A brief description of the study area and the rainfall data is provided in section79

2. Section 3 describes the analysis tools and the metrics used to investigate scale-80

invariance in rainfall. The results are discussed in section 4 followed by concluding81

remarks in section 5.82

2 Study Area and Data Description83

Singapore is a tropical island nation extending from 1.16◦N - 1.48◦N and 103.6◦E84

- 104.09◦E, with an area ∼ 710 km2 (Figure 1). There is no pronounced variability85

in topography, with most of the island at about 15 m above sea level. The highest86

point is the Bukit Timah hill at 164 m above sea level near the center of the87

island. The island is characterized by equatorial climate with high humidity, heavy88
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rainfall, and uniformly warm temperatures throughout the year (e.g., Fong, 2012).89

The average daily relative humidity varies from about 84% in March to 88% in90

December, and the average daily temperature ranges from 25.5◦C in December–91

January to 27.3◦C in May (e.g., Chia and Foong, 1991). The average annual rainfall92

is about 2400 mm with approximately 51% of rainy days (e.g., Mandapaka and93

Qin, 2013). Singapore experiences two monsoons: the southwest monsoon from94

June to september, and northeast monsoon from late November to March. The95

prevailing winds are from south-southeast direction during the southwest monsoon,96

and north-northeast direction during the northeast monsoon (e.g., Fong, 2012).97

The first half of the Northeast monsoon (December and January) is the wettest98

period of the year, and the second half (February in particular) is relatively dry.99

In addition, the period characterized by the southwest monsoon is drier compared100

to the northeast monsoon (e.g., Fong, 2012; Mandapaka and Qin, 2013).101

In general, rainstorms in Singapore are convective in nature and rarely last102

longer than 1 to 1.5 h (Watts, 1955; Chatterjea, 1998, 2011). However these rain-103

storms are frequent and intense thus maintaining high monthly totals throughout104

the year. During the first half of the northeast monsoon, the convective storms105

are further intensified by the surges in low-level northeasterlies resulting in long106

duration wet spells and high monthly accumulations. A key feature of southwest107

monsoon is the Sumatra Squall, which is a line of thunderstorms that develops108

over the Strait of Malacca and reaches western coast of Peninsular Malaysia and109

Singapore around predawn hours or morning. Typical characteristics of a Sumatra110

Squall are intense rainfall for about 1 to 2 h, strong wind gusts and a sudden fall111

of temperature (e.g., Chia and Foong, 1991; Fong, 2012).112
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We analyse 31 years (January 1980 - December 2010) of hourly data from 49113

stations and 3 years (July 2010 - June 2013) of 1-minute data from 5 stations in114

Singapore (Figure 1). The availability of such high-resolution data for such a long115

time period is unique for this region and allows us to investigate the presence of116

scaling relationships, which can be used to build statistical downscaling tools (e.g.,117

Gaume et al, 2007; Licznar et al, 2011; Mascaro et al, 2014). It should be noted118

that in the hourly dataset, the type of the gauge used at some stations changed119

between the years 1980 and 2010. For example, all the stations in the year 1980120

were equipped with recording type gauges with rain gauge charts attached. The121

precision of these gauges is 0.1 mm. By the year 2010, 20 out of 49 stations were122

equipped with tipping bucket gauges recording the number of 0.2 mm tips every123

minute. The hourly dataset has been used recently by Mandapaka and Qin (2013)124

and Lu and Qin (2014) for rainfall spatial correlation structure and statistical125

downscaling studies. Table 1 summarises key aspects of the data used in this126

study.127

3 Methodology and Analysis Tools128

As mentioned in the Introduction section, the aim of this study is to investigate129

the presence of scale-invariance in rainfall time series, and identify the correspond-130

ing scaling regimes. We approached this goal by first focusing on the properties of131

rainfall support in a monofractal framework, and then on rainfall intensity fluctu-132

ations in spectral and multifractal frameworks. In the following, we describe the133

analysis tools employed in this study.134
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3.1 Binary Series: Box-Counting Analysis135

To understand rainfall support, we transformed the data into binary series (BS)136

by setting all values above a certain threshold to 1 and 0 otherwise (See Figure137

2 for an illustration), and used box-counting analysis. The box-counting analysis138

involves dividing the BS into non-overlapping contiguous boxes of length τ and139

counting the number of boxes N(τ) registering rain (e.g., Mandelbrot, 1983; Fal-140

coner, 2004). The rainfall support is said to be scale-invariant if N(τ) displays141

power-law behavior of the form142

N(τ) ∼ τ−Df (1)

The fractal dimension Df is a measure of irregularity by which the rainfall support143

is distributed in the space it is embedded in. For rainfall binary time series, Df144

lies between 0 and 1. Df is part of a collection of dimensions called Renyi dimen-145

sions Dq. When q = 0, Dq is equal to aforementioned fractal dimension (or box146

counting dimension). When q = 1,2 the corresponding D1 and D2 are known as147

information and correlation dimensions respectively (e.g., Renyi, 1970; Gan et al,148

2002). The correlation dimension D2 has been employed by many studies to study149

dimensionality of chaotic systems (e.g., Islam et al, 1993; Gan et al, 2002, 2007).150

In this study we limit our focus to Df and use it to characterize rain–no-rain in-151

termittency in the rainfall BS. The fractal dimension is an effective tool to study152

the scaling properties of rainfall support but the amplitude variations in the rain-153

fall signal are ignored. Therefore, we also estimated Df of rainfall BS for different154

intensity thresholds.155

It should be noted that in some studies box-counting analysis was used on the156

original rainfall series instead of binary series (e.g., Rubalcaba, 1997; Breslin and157
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Belward, 1999). The approach is similar to that described above except that it158

involves counting the number of boxes of varying size that would cover the time159

series plot (time on x-axis and rainfall intensity on y-axis). Since we analyze rainfall160

intensity fluctuations later in detail using spectral and multifractal analyses, we161

limit box-counting to the rainfall binary series. We would first focus on the rainfall162

support, characterize the fractal behavior, and gradually proceed to higher order163

analysis (power spectrum and multifractals).164

3.2 Power Spectrum165

The power spectrum is one of the basic tools to investigate the presence of scale-166

invariance in rainfall (e.g., Fraedrich and Larnder, 1993; Georgakakos et al, 1994;167

Verrier et al, 2011; Rysman et al, 2013; Mascaro et al, 2014). We obtained the168

power spectrum by applying discrete Fourier transform (DFT) on time series. The169

rainfall fluctuations are scale-invariant if the spectrum E(f) displays power-law170

behavior of the form171

E(f) ∼ f−β (2)

where β is the slope of the spectrum in the double logarithmic domain (e.g.,172

Fraedrich and Larnder, 1993), which is estimated using linear regression in loga-173

rithmic space. However, to reduce the effect of noise in the DFT spectra and to174

avoid excess weighting on higher frequencies, we pooled the DFT spectrum into175

logarithmic bins and estimated β for the log-binned spectrum. The log-log linear-176

ity was checked based on the R2 value in regression. In this study, we estimated177

power spectrum for the rainfall full series (FS) and the corresponding BS thus178

obtaining spectral slopes βFS and βBS respectively.179
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The spectral slope β quantifies relative contribution of different frequency com-180

ponents to the overall variability of the time series. For example, the spectral slope181

of zero means equal contribution of all frequencies to the overall variability, as in182

the case of white noise. On the contrary, steeper power spectrum (or narrow spec-183

tral distribution) indicates that the contribution of low frequencies to the overall184

variability is higher compared to high frequencies. Therefore, steeper power spec-185

trum is a characteristic of slowly varying time series (i.e. slower decay of auto-186

correlation with time) with a higher level of organization (e.g., Purdy et al, 2001;187

Rysman et al, 2013). Purdy et al (2001) further associated steeper spectrum to the188

existence of organized convective structures and flatter spectrum to the less orga-189

nized stratiform rainfall. Since then, many studies have related spectral slopes to190

the presence of convective and stratiform structures in respective scaling regimes191

(e.g., Nykanen and Harris, 2003; Nykanen, 2008; Mascaro et al, 2013, 2014).192

3.3 Multifractal Analysis193

The analysis tools discussed to this point are based on zeroth- to second-order194

statistics, and provide only partial description of the process. Moreover, it has195

been shown that the fractal dimension of rainfall varies with the threshold used196

to define the support (e.g., Lovejoy et al, 1987). To better characterize such com-197

plex structure of rainfall, studies proposed analysis tools and models based on a198

more unified multifractal formalism (e.g., Schertzer and Lovejoy, 1987; Over and199

Gupta, 1996; Deidda et al, 1999; Venugopal et al, 2006). In this study, we used co-200

dimension based formalism and the corresponding moment scaling analysis (e.g.,201
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Schertzer and Lovejoy, 1987; Tessier et al, 1993) to characterize the multifractality202

in rainfall series.203

3.3.1 Co-dimension Formalism and Moment Scaling Analysis204

In co-dimension based multifractal formalism, the rain–no-rain threshold is defined205

as λγ , where λ = T/τ is the scale ratio for a given scale τ and outer scale T , and γ206

is referred to as the order of singularity. For a multifractal field Φ, the exceedance207

probabilities for different scales and singularities scale as208

Pr(Φλ > λγ) ∼ λ−c(γ) (3)

where c(γ) is the convex shaped fractal co-dimension function of γ (for details,209

see Lovejoy and Schertzer, 2007). It has been shown that fields with multifractal210

characteristics can be generated using multiplicative cascades, where large scale211

structures feed small scale structures (e.g., Schertzer and Lovejoy, 1987). There-212

fore, one way to characterize multifractality of a process is to reconstruct the213

multiplicative cascade and carry out moment scaling analysis. In moment scaling214

analysis, the rainfall fluctuations φ(t) = |R(t)−R(t−1)| are averaged over a range215

of scales τ (scale ratios λ) to obtain φλ. The statistical moments of various moment216

orders q are then estimated as 〈φqλ〉, where 〈·〉 represents ensemble average. The217

rainfall fluctuations are multifractal if the statistical moments display power-law218

behavior with λ as follows219

〈φqλ〉 ∼ λ
K(q) (4)

where K(q) is a convex function of q (e.g., Lovejoy and Schertzer, 2007). To be220

consistent with box-counting analysis described in section 3.1, we write equation221
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4 in terms of τ instead of scale ratio λ as follows.222

〈φqτ 〉 ∼ τ−K(q) (5)

3.3.2 ’Universal’ Multifractal Model223

Theoretically, infinite number of parameters are required to characterize the K(q)224

function. However, Schertzer and Lovejoy (1987) proposed a ’universal’ multi-225

fractal model based on continuous-in-scale multiplicative cascades and Log-Levy226

stochastic generators, where the K(q) function can be modeled as227

K(q) =


C1

α−1 (qα − q), if 0 ≤ α < 1 or 1 < α ≤ 2

C1qlog(q), if α = 1

(6)

The parameter C1 ∈ [0, D] (D is the dimension of the embedding space) is the228

co-dimension of the mean of the process such that c(C1) = C1 = K′(1). In other229

words, C1 characterizes the degree of intermittency associated with the mean of230

the process. Higher the C1 more intermittent and singular is the process. The231

parameter α ∈ [0, 2] is the Levy (or multifractality) index that describes the prob-232

ability distribution of the underlying cascade generator. While α = 0 corresponds233

to monofractal model, 0 < α < 2 (α 6= 1) indicates log-Levy multifractals. The234

multifractal process is log-Cauchy when α = 1 and lognormal when α = 2 (e.g.,235

Schertzer and Lovejoy, 1987, 1997). The parameters C1 and α can be estimated236

using the double trace moments (DTM) technique (e.g., Tessier et al, 1993), in237

which the fluctuation field φ is (i) η−powered at the highest resolution, (ii) aver-238

aged to various temporal scales τ , and (iii) statistical moments of various orders239

q are estimated. The statistical moments of η−powered fields are referred to as240
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double trace moments, which scale with τ as241

〈(φη)qτ 〉 ∼ τ−K(q,η), where K(q, η) = ηα ·K(q) (7)

Hence, α is the slope of K(q, η) versus η in a double logarithmic plot for a fixed242

q. The value of C1 can be then obtained from equation 6.243

4 Results and Discussion244

As described in section 2, we have 31 years of hourly data from 49 gauges and 3245

years of 1-minute data from five gauges. We analyzed both hourly and 1-minute246

data using the tools described in the previous section, and investigated the presence247

of scale-invariance. The following sections describe the scaling regimes in rainfall248

support and intensity fluctuations, and the corresponding scaling exponents.249

4.1 Fractal Dimension250

4.1.1 Hourly Rainfall Series251

The hourly rain gauge series was converted into binary series by setting all non-252

zero values to 1 and 0 otherwise. Note that the minimum non-zero value in the253

hourly data is 0.1 mm h−1. The box-counting technique described in section 3.1254

was then applied on the binary series. First, we counted the number of 1-h boxes255

containing rain. We then increased the box size τ logarithmically (base 1.5 and256

rounded off to the nearest integer value; τ therefore varied as 1,2,3,5,8,...,37877 h)257

and counted the number of rain-boxes N(τ) for each τ . We repeated the analysis258

for each of the 49 hourly rain gauge series and obtained 49 sequences of N(τ).259

Figure 3 shows the minimum, median and maximum values of N(τ) as a function260
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of τ . Two clearly defined regimes of scale-invariance (linear variation in double-261

logarithmic plot) in N(τ) can be noticed in Figure 3: a regime spanning from 1 h262

to 38 h (∼ 1.5 days) and a second regime from 195 h (∼ 8 days) to 4 years. The263

two regimes are separated by a transition zone spanning from 1.5 - 8 days. Note264

that the scale breaks were identified using an iterative procedure.265

The median values of N(τ) in the above two scaling regimes were fitted with a266

power law (equation 1) using linear regression in a double-logarithmic space. The267

corresponding slopes for the two scaling regimes are -0.38 and -1.0 respectively.268

Therefore, the rainfall support for the hourly data exhibits fractal structure with a269

fractal dimension Df = 0.38 for τ ranging from 1 h to about 1.5 days. The Df value270

of 1.0 for τ exceeding 8 days indicates that in this regime hourly rainfall occurrences271

are homogeneously distributed in time. In other words, every box of size τ > 8272

days always records a rain occurrence at some point. This so-called saturation of273

the rainfall process towards larger τ values has been reported in several studies274

(e.g., Olsson et al, 1992, 1993; Schmitt et al, 1998; Sivakumar, 2000b; Ghanmi275

et al, 2013). In addition to the median values of N(τ), we also fitted power laws to276

N(τ) sequence from each rain gauge and obtained corresponding Df . We did not277

find considerable intergauge variability in Df values (e.g. first row in Table 2).278

To further understand the structure of rainfall support, we repeated above279

analysis for different thresholds of 0.1, 0.25, 0.5, 1, 2, 4, 8, and 10 mm h−1. The280

inset in Figure 3 shows the variation of Df with threshold. In Table 2, we list281

the Df values and corresponding scaling regimes for all the thresholds considered282

in this study. Consistent with previous studies, the Df value decreases with the283

increase in threshold. As the threshold increases from 0 mm h−1 to 10 mm h−1, the284

corresponding rainfall occurrences are more sparsely distributed in time, which is285
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reflected in the rapid decrease in the value of Df from 0.38 to 0.08. While the first286

scaling regime of 1 - 38 h is the same for all thresholds, the length of the saturation287

regime changes with threshold. For the threshold of 0 mm h−1, the saturation288

regime starts at 195 h (∼ 8 days). As the rainfall occurrences get sparser with the289

increase of threshold, it requires a larger box size to reach saturation. Therefore,290

the saturation regime starts at 292 h (∼ 12 days) for thresholds between 0.1 and291

2 mm h−1, and at 438 h (∼ 18 days) for thresholds of 4 mm h−1 and 10 mm292

h−1 (Table 2). The rapid variation of Df with threshold clearly indicates that a293

multifractal framework is more suitable than a simple monofractal approach to294

characterize the variability in rainfall time series.295

4.1.2 1-minute Rainfall Series296

The box-counting analysis was then applied on 1-minute rainfall series for a thresh-297

old of 0 mm min−1 and for τ varying logarithmically from 1 to 287627 min (∼298

200 days). Note that unlike hourly data, the box-counting analysis of 1-minute299

rainfall series was limited to only a single threshold of 0 mm min−1. Figure 4300

shows minimum, median and maximum values of N(τ) as a function of τ . Three301

well-defined scaling regimes were observed (Figure 4): i) regime 1 extending from302

1 to 86 minutes with a Df = 0.56, ii) regime 2 from 86 to 1478 minutes (∼ 1303

day) with a Df = 0.37, and iii) a saturation regime starting from 11223 minute304

(∼ 7.8 days). Regimes 2 and 3 are separated by a transition regime. In general,305

the results from the 1-minute rainfall analysis agree well with the hourly rainfall306

analysis presented in the previous section. The 86 min - 1 day regime (Df of 0.37)307

in 1-minute analysis is similar to 1 h - 1.5 days regime (Df of 0.38) of hourly data308

analysis. Similarly, the saturation regime starts at 7.8 days in the 1-minute data309
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analysis, while it starts at 8 days in hourly results. The slight differences in regime310

breaks in hourly and 1-minute analyses are mainly due to different τ increments311

used for these two datasets.312

We attempt to relate the observed scaling behavior to the duration of rain313

events and dry periods extracted using 1-minute resolution data (3 years of data314

at five stations). Note that in this analysis, a gap of more than 10 minutes is315

considered as a dry period. In other words, if two non-zero sequences are separated316

by a gap ≤ 10 minute then they are considered as a single event.317

On average, 2276 rain events were recorded in three years starting from July318

2010 to June 2013 (Table 3). The average duration of a rain event is ∼ 18 minutes319

and the maximum duration varies from 371 – 822 minutes among five stations.320

However, only 4 % of rain events are of duration longer than 90 minutes. Therefore,321

the scaling regime of 1 – 86 minutes observed in Figure 4 mainly reflects variability322

within the events, and the scaling regime of 86 minutes to 1 day is more likely323

to contain more than one event and mainly reflects inter-event variability. The324

relatively high Df in 1 – 86 min regime compared to 86 min - 1 day regime325

(Figure 4) suggests denser structure in the former regime with rainy minutes closely326

clustered together. In other words, 1 – 86 minutes regime contains several smaller327

scale densely arranged rainy boxes that decrease rapidly with the increase in box328

size, whereas 86 minutes – 1 day regime is mainly characterized by rainy boxes329

that are sparsely distributed in time. The average duration of dry period is ∼ 11.3330

h and the maximum duration varies from 290 – 419 h among five stations (Table331

3). However, only 0.3 % of dry periods are of duration longer than 8 days (192 h).332

Therefore it can be said that the average dry period duration lies closer to the end333
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of fractal regime and the maximum duration dry period is closer to the beginning334

of saturation regime.335

4.1.3 Comparison with Previous Studies336

Olsson et al (1992) and Olsson et al (1993) also reported average dry period337

duration lying closer to the end of the fractal regime. Similarly, Ghanmi et al (2013)338

noted that the beginning of the saturation period at 113 days in their study is due339

to the 4-month dry period typical of their study region. The two-regime pattern340

observed in hourly data analysis is similar to that shown by Sivakumar (2000b) for341

six-hourly data. However, they did not report Df values and the regime breaks,342

which limits the comparison. Gebremichael et al (2007) also reported a two-regime343

pattern in their fractal analysis of hourly rainfall data collected during one North344

American monsoon season in Mexico. Their results show a fractal regime ranging345

from 2 to 16 h and the saturation regime starting at 2.7 days.346

The three-regime pattern observed in 1-minute data analysis is similar to that347

showed by Olsson et al (1992, 1993) for 1-minute rainfall data in Lund, Sweden.348

They reported that the first regime extends from 1 - 45 minutes with a Df value of349

0.82. The smaller Df of 0.56 in the current study for a similar sub-hourly scaling350

regime of 1 - 86 minutes suggests that rainy minutes at event scales are sparser351

in Singapore than Lund, Sweden. The Df value of 0.37 observed for scales of 86352

minutes - 1 day is same as the one reported by Olsson et al (1992, 1993), although353

the scale range extended up to 1 week in the latter.354

Schmitt et al (1998) observed a two-regime pattern in box-counting analysis355

of 28 years of 10-minute rainfall data from Uccle, Belgium. The study reported a356

scaling regime from 10 min to 3.5 days with a Df of 0.55 followed by a satura-357
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tion regime. Ghanmi et al (2013) analyzed 5-minute rainfall data from a semi-arid358

mediterranean region in Tunisia and reported scaling regime extending from 5359

minute to 2 days with a Df of 0.44 followed by a transition regime and a sat-360

uration regime starting at 113 days. The overall scaling behavior of N(τ) vs τ361

(i.e. scale breaks and the Df s) in these studies are different from the three-regime362

pattern observed in our study. The disagreement could be attributed to different363

climates the data were recorded, and different data characteristics (resolutions,364

record lengths, quantization etc.). A rigorous comparison of Df values and cor-365

responding scaling regimes from the current study with those reported in the366

literature, taking into account the differences in data resolutions, record lengths,367

thresholds, and geographical locations is beyond the scope of this study.368

4.2 Power Spectrum369

We estimated power spectrum of rainfall full series (FS) and the corresponding370

binary series (BS) using discrete Fourier transforms. The threshold applied to371

obtain the binary series is 0 mm h−1 for hourly data and 0 mm min−1 for 1-372

minute data.373

4.2.1 Hourly Rainfall Series374

The spectrum from each gauge series was averaged into logarithmic bins to reduce375

noise and to avoid excess weighting on higher frequencies during linear regression.376

Figure 5 shows the minimum, median, and the maximum values (i.e. the intergauge377

variability) of log-binned spectrum. Two distinct scaling regimes can be seen in378
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the FS power spectrum: regime 1 from 2 h to 28 h with a βFS of 0.46 and regime379

2 from 28 h to 1.5 months with a βFS of 0.15 (Figure 5).380

As discussed in section 3.2, the spectral slope β characterizes the degree of381

smoothness or organization in the time series. Higher βFS in regime 1 indicates382

that the variability in this regime is predominantly due to low frequency compo-383

nents. As the time period increases beyond 28 h (i.e. regime 2), the spectrum is flat-384

ter suggesting greater interaction among all frequency components in this regime.385

In other words, the autocorrelation function decays slowly in regime 1 compared386

to regime 2. Therefore, regime 1 is characterized by smoother and organized struc-387

tures compared to regime 2. The noisy spectrum beyond 1.5 months with a slope388

close to zero is a combined effect of limited sample size and large-scale (seasonal389

to climatic) fluctuations. The BS spectrum displayed the same two-regime pattern390

as the FS spectrum, although with higher spectral slopes (Figure 5). Higher βBS391

values suggest more organization in BS than the actual rainfall series.392

4.2.2 1-minute Rainfall Series393

To better understand the high-frequency component of rainfall variability, we re-394

peated spectral analysis for 1-minute rainfall data available at five stations. Figure395

6 shows the minimum, median and the maximum values of the log-binned spec-396

trum. The spectra of 1-minute rainfall FS and BS displayed three scaling regimes:397

regime 1 from 4 minutes to 2 h, regime 2 from 2 h to 1 day, and regime 3 from 1398

day to 1 month (Figure 6). The high frequency end of the spectrum (regime 1) has399

the highest βFS value of 1.5 followed by a βFS of 0.49 and 0.12 in regimes 2 and400

3 respectively. In the high frequency regime (regime 1), the spectrum of binary401

series is very sensitive to energy leaks, as also observed by Molini et al (2009). This402
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could be the reason behind the curved pattern in the binary spectrum at very high403

frequencies, and also partially explains why the BS spectrum is not steeper than404

the FS spectrum in this regime. The scaling regimes 2 and 3 are similar to regimes405

1 and 2 observed in hourly spectral analysis (Figures 5 and 6).406

By taking a unified look at hourly and 1-minute spectra, it can be said that407

the regime 1 (4 minutes to 2 h), which has the highest βFS of 1.5 is characterized408

by the presence of smooth and organized structures typical of convective systems.409

This regime represents variability within the storms as discussed in section 4.1.2.410

As the time period increases beyond 2 h (i.e. regime 2), the spectrum is flatter411

compared to regime 1 indicating that the variability in this regime decreases slowly412

with time scale, which is typical of mesoscale systems. As discussed in section413

4.1.2, this regime represents inter-event variability. Beyond the time scale of 1 day414

(i.e. regime 3), the spectral slope is very low indicating that a large number of415

frequency components contribute to the overall variability resulting in a broad416

spectral distribution.417

4.2.3 Comparison with Previous Studies418

The general pattern of the spectral scaling regimes observed in this study is consis-419

tent with previous studies (e.g., Fraedrich and Larnder, 1993; Georgakakos et al,420

1994; Kiely and Ivanova, 1999; Verrier et al, 2011; Mascaro et al, 2013). The scal-421

ing regime of 2 h - 1 day with βFS of 0.49 is comparable to the scaling regime of422

2.4 h - 3 days with a β of 0.5 reported by Fraedrich and Larnder (1993), 2 h - 1423

day with a β of 0.52 reported by Kiely and Ivanova (1999), 3 h - 3 days with a β of424

0.41 reported by Verrier et al (2011), and 2.4 h - 3 days with a β of 0.55 reported425

by Mascaro et al (2013). At higher frequencies, the scaling regime of 4 minutes426
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- 2 h is comparable to that observed in recent studies employing high-resolution427

rainfall data (Verrier et al, 2011; Mascaro et al, 2013, 2014). In general it can be428

said that the spectral slopes vary from 1.1 to 1.6 at higher frequencies (seconds to429

2-3 hours), 0.4 to 0.7 for medium frequencies (2-3 hours to 2-3 days), and 0.1 to430

0.3 for time scales longer than three days. The spectral slopes for BS are higher431

compared to FS in all regimes, which is consistent with previous studies (e.g.,432

Molini et al, 2009; Mascaro et al, 2013).433

4.3 Multifractal Analysis434

4.3.1 Hourly Rainfall Series435

Following the approach described in section 3.3.1, the first-order hourly rainfall436

fluctuations at the highest resolution are gradually averaged to coarser resolutions437

(τ) and various moments of order q are estimated. It should be noted that we438

considered complete series including zeros in moment scaling analysis. Unlike box-439

counting analysis where τ is varied logarithmically in steps of 1.5 (please refer440

to section 4.1.1), τ in this section is varied according to steps of factor 2. In441

Figure 7, we plot the trace moments (〈φqλ〉) against τ . As in previous sections, the442

vertical bars in Figure 7 indicate intergauge variability, and the scaling regimes443

were identified based on an iterative procedure. The trace moments were found444

to be scale-invariant for the τ ranging from 1 h to 5 days. The median values of445

trace moments were then fitted with power-laws and the corresponding scaling446

exponents (k(q)med) were obtained. The nonlinear variation of the slopes k(q)med447

(filled circles in Figure 8) with moment order q indicates multiscaling behavior in448

rainfall fluctuations.449



Temporal scaling regimes in Singapore rainfall 21

We modeled the behavior of k(q)med using the universal multifractal (UM)450

model (section 3.3.2) and estimated parameters C1 and α using the DTM technique451

described in section 3.3.2. The thick line in Figure 8 shows the UM model fitted452

to k(q)med values. The values of C1 and α for the median scenario are 0.61 and453

0.36 respectively. Figure 8 also shows UM models fitted to the k(q) obtained from454

each gauge series, and the corresponding values of C1 and α ranged from 0.58455

to 0.62, and 0.34 to 0.39 respectively. There is a systematic deviation between456

empirical k(q) and the fitted UM model at lower moment orders. As mentioned in457

section 3.3.2, k(0) is related to the codimension of the support, and characterizes458

the on-off intermittency (e.g., Lovejoy et al, 2008). According to the universal459

multifractal model shown in equation 6, k(0) = 0 or the signal is nonzero for all460

the scales. In reality, the rainfall data consists of zeros, which are partly due to461

the minimum detectable threshold of the measuring device and partly due to the462

natural duality of the rainfall process. The influence of zero-rainfall values on the463

estimated universal multifractal parameters has been a subject of recent research464

(De Montera et al, 2009; Verrier et al, 2011), which showed that the presence of465

zeros in the data would result in biased estimates of C1 and α. Therefore, we note466

that the values of the C1 and α obtained in this study must be taken with caution.467

Nevertheless, the behavior of k(q) function suggests that the rainfall fluctuations468

for this region display multiscaling behavior.469

4.3.2 1-minute Rainfall Series470

To understand multiscaling behavior at high resolutions, we extended the moment471

scaling analysis to 1-minute resolution rainfall observations. Since the percentage472

of zeros in 1-minute rainfall observations is very high (See Table 1), and because the473
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zero values severely affect the moment scaling analysis (as discussed in previous474

section), we limited this section to individual events. From the high-resolution475

data, we extracted events that are at least 64 min long. A total of 111 events476

were extracted from the data at five stations, and moment scaling analysis was477

carried out. Figure 9 shows the trace moments as a function of averaging scale478

τ . A scaling regime spanning from 1 minute to 64 minutes can be seen from479

Figure 9. The median values of trace moments were then fitted with power-laws480

and the corresponding scaling exponents (k(q)med) were obtained. The variation481

of k(q)med was then parameterized using the UM model. Figure 10 shows the482

variation of empirical k(q)med, and the fitted UM model. The values of C1 and α483

for the median scenario are 0.11 and 1.10 respectively. We also fitted UM model484

to the k(q) values of each event. Large variability can be seen in the UM models485

fitted to rainfall events (Figure 10). The values of C1 and α ranged from 0.06 to486

0.18, and 0.59 to 1.74 respectively. However, 90% of events have C1 and α in the487

range of 0.07 to 0.16, and 0.79 to 1.38 respectively.488

5 Concluding Remarks489

Temporal structure of rainfall in the Maritime Continent, particularly towards490

higher resolutions is poorly understood. To fill this gap, we analyzed a long record491

of hourly and 1-minute resolution rainfall data from a dense gauge network in492

Singapore and characterized temporal scale-invariance in rainfall. Specifically, we493

used box-counting analysis to study zero-rainfall intermittency, and spectral and494

moment scaling analyses to study intensity fluctuations.495
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The study showed that the rainfall support displays fractal behavior but within496

a limited range of scales starting from 1 minute to 1.5 h, and 1.5 h to 1 day. The497

corresponding fractal dimensions are 0.56 and 0.37 respectively. It was also found498

that the fractal dimension varies as a decreasing function of the threshold used499

to define the binary series. The study then made an attempt to relate the scaling500

regimes to event and dry period durations. The fractal regimes mentioned above501

roughly characterize intra- and inter-event variability. The higher fractal dimension502

for smaller scales suggests densely arranged and evenly distributed rainy intervals503

compared to inter-event scales. In addition, results showed that the saturation504

regime begins at approximately 8 days. In other words, every time window of size505

> 8 days always records a rain occurrence at some point. It was also observed that506

the end of fractal regime and the beginning of saturation regime are related to the507

dry period characteristics.508

The spectral analysis of rainfall series showed three distinct scaling regimes of509

4 minutes to 2h, 2 h to 24 h, and 24 h to 1 month with spectral exponents of 1.5,510

0.49, and 0.12 respectively. The steeper spectrum in the 4 minute - 2 h regime511

indicates the presence of smooth and organized convective structures, whereas the512

flatter spectrum in the 2 h - 24 h regime suggests the presence of larger scale513

systems. The power spectrum of binary series also showed similar three regime514

pattern but the spectral exponents were found to be 1.5, 0.77, and 0.27 respectively.515

The moment scaling analysis confirmed the presence of multiscaling behavior in516

rainfall fluctuations for scales ranging from 1 h – 5 days. The corresponding k(q)517

vs q pattern was parameterized using the Universal Multifractal model, and the518

multifractality index α and the intermittency parameter C1 were found to be 0.36519

and 0.61 respectively. The study also extended moment scaling analysis to high-520
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resolution data of 111 individual rainfall events, which are at least 64 minutes long.521

The trace moments displayed scaling behavior in the range of 1 – 64 minutes, and522

the corresponding α and C1 values for event scale were found to be 1.10 and 0.11523

respectively524

A challenging task is to relate observed scaling behavior to the physical mech-525

anisms behind Singapore rainfall. A step forward in that direction would be to526

categorize rainfall series according to southwest, northeast and intermonsoon sea-527

sons, and estimate scaling exponents. This would provide insights into the effect of528

various rainfall mechanisms such as intense convective storms, monsoon surges and529

squall lines on the scale-invariance behavior of rainfall. However, such an exercise530

should be carried out using high-resolution time series. The three-year record of531

1-minute resolution rainfall available for this study is not long enough for such an532

analysis.533

In general, the scaling regimes observed in this study were found to be con-534

sistent with those reported in previous studies although the numerical values of535

scaling exponents were slightly different. The results from this study would not536

only improve our understanding of the rainfall structure in Singapore and the537

surrounding equatorial region, but they also help us in building and parameter-538

izing parsimonious models and statistical downscaling techniques for the tropical539

rainfall.540
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tiotemporal variability of north american monsoon rainfall over complex terrain.578

J Climate 20(9):1751–1773579

Gebremichael M, Krajewski WF, Over T, Takayabu Y, Arkin P, Katayama M580

(2008) Scaling of tropical rainfall as observed by TRMM precipitation radar.581

Atmos Res 88(3-4):337–354582

Georgakakos KP, Carsteanu A, Sturdevant-Rees P, Cramer J (1994) Observation583

and analysis of midwestern rain rates. J Appl Meteorol 33(12):1433–1444584

Ghanmi H, Bargaoui Z, Mallet C (2013) Investigation of the fractal dimension of585

rainfall occurrence in a semi-arid mediterranean climate. Hydrol Sci J 58(3):483–586

497587

Islam S, Bras R, Rodriguez-Iturbe I (1993) A possible explanation for low corre-588

lation dimension estimates for the atmosphere. J Appl Meteor 32(2):203–208589

Kiely G, Ivanova K (1999) Multifractal analysis of hourly precipitation. Physics590

and Chemistry of the Earth 24(7):781–786591



Temporal scaling regimes in Singapore rainfall 27

Licznar P,  Lomotowski J, Rupp DE (2011) Random cascade driven rainfall disag-592

gregation for urban hydrology: An evaluation of six models and a new generator.593

Atmos Res 99(3-4):563–578594

Lovejoy S (1982) Area-perimeter relation for rain and cloud areas. Science595

216(4542):185–187596

Lovejoy S, Mandelbrot B (1985) Fractal properties of rain, and a fractal model.597

Tellus 37(3):209–232598

Lovejoy S, Schertzer D (2007) Scale, scaling and multifractals in geophysics:599

Twenty years on. In: Tsonis A, Elsner J (eds) Nonlinear Dynamics in Geo-600

sciences, Springer, New York, pp 311–337601

Lovejoy S, Schertzer D, Tsonis A (1987) Functional box-counting and multiple602

elliptical dimensions in rain. Science 235(4792):1036–1038603

Lovejoy S, Schertzer D, Allaire V (2008) The remarkable wide range spatial scaling604

of TRMM precipitation. Atmos Res 90(1):10–32605

Lu Y, Qin XS (2014) Multisite rainfall downscaling and disaggregation in a tropical606

urban area. J Hydrol 509:55–65607

Mandapaka PV, Qin X (2013) Analysis and characterization of probability distri-608

bution and small-scale spatial variability of rainfall in singapore using a dense609

gauge network. J Appl Meteor Climatol 52(12):2781–2796610

Mandapaka PV, Lewandowski PA, Eichinger WE, Krajewski WF (2009) Multi-611

scaling analysis of high resolution space-time lidar-rainfall. Nonlinear Processes612

in Geophysics 16(5):579–598613

Mandapaka PV, Villarini G, Seo BC, Krajewski WF (2010) Effect of radar-rainfall614

uncertainties on the spatial characterization of rainfall events. J Geophys Res615

115(D17):D17,110, DOI 10.1029/2009JD013366616



28 Pradeep V. Mandapaka, Xiaosheng Qin

Mandelbrot BB (1983) The fractal geometry of nature. Times Books617

Mascaro G, Deidda R, Hellies M (2013) On the nature of rainfall intermittency as618

revealed by different metrics and sampling approaches. Hydrol Earth Syst Sci619

17(1):355–369, DOI 10.5194/hess-17-355-2013620

Mascaro G, Vivoni ER, Gochis DJ, Watts CJ, Rodriguez JC (2014) Temporal621

downscaling and statistical analysis of rainfall across a topographic transect622

in northwest mexico. J Appl Meteor 53(4):910–927, DOI 10.1175/JAMC-D-13-623

0330.1624

Molini A, Katul GG, Porporato A (2009) Revisiting rainfall clustering and inter-625

mittency across different climatic regimes. Water Resour Res 45:W11,403626

Nykanen D (2008) Linkages between orographic forcing and the scaling properties627

of convective rainfall in mountainous regions. J Hydrometeorol 9(3):327–347628

Nykanen D, Harris D (2003) Orographic influences on the multiscale statistical629

properties of precipitation. J Geophys Res 108(D8):8381630

Olsson J (1995) Limits and characteristics of the multifractal behavior of a high-631

resolution rainfall time series. NPG 2(1):23–29632

Olsson J, Niemczynowicz J, Berndtsson R, Larson M (1992) An analysis of the633

rainfall time structure by box counting—some practical implications. J Hydrol634

137(1):261–277635

Olsson J, Niemczynowicz J, Berndtsson R (1993) Fractal analysis of high-636

resolution rainfall time series. J Geophys Res 98(D12):23,265–23,274637

Over T, Gupta V (1996) A space-time theory of mesoscale rainfall using random638

cascades. J Geophys Res 101:26,319–26,331639

Pathirana A, Herath S, Yamada T (2003) Estimating rainfall distributions at high640

temporal resolutions using a multifractal model. Hydrol Earth Syst Sci 7:668–641



Temporal scaling regimes in Singapore rainfall 29

679642

Purdy J, Harris D, Austin G, Seed A, Gray W (2001) A case study of orographic643

rainfall processes incorporating multiscaling characterization techniques. J Geo-644

phys Res 106(D8):7837–7845645

Renyi A (1970) Probability Theory. North-Holland, Amsterdam646

Rubalcaba J (1997) Fractal analysis of climatic data: annual precipitation records647

in spain. Theor Appl Climatol 56(1-2):83–87648
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Table 1 Summary of hourly and 1-minute data available for this study.

Hourly Data 1-minute Data

Time Period 01/01/1980 - 31/12/2010 01/07/2010 - 30/06/2013

Number of gauges 49 5

% of zeros 92.54 98.66

Average rainfall 0.28 mm h−1 0.005 mm min−1

Maximum rainfall 130.7 mm h−1 4.4 mm min−1



32 Pradeep V. Mandapaka, Xiaosheng Qin

Table 2 List of minimum, median and maximum (of 49 values) fractal dimensions and the

corresponding scaling regimes observed in hourly data for different rain–no-rain thresholds.

Threshold Regime 1 Saturation Regime

mm h−1 Min Median Max Scale Range Min Median Max Scale Range

0.0 0.36 0.38 0.40 1 - 38 h 0.97 1.00 1.00 195 h onwards

0.1 0.34 0.35 0.38 1 - 38 h 0.97 1.00 1.00 292 h onwards

0.25 0.32 0.33 0.34 1 - 38 h 0.97 1.00 1.00 292 h onwards

0.5 0.28 0.29 0.30 1 - 38 h 0.97 1.00 1.00 292 h onwards

1.0 0.24 0.25 0.26 1 - 38 h 0.97 1.00 1.00 292 h onwards

2.0 0.19 0.20 0.21 1 - 38 h 0.97 1.00 1.00 292 h onwards

4.0 0.15 0.16 0.17 1 - 38 h 0.97 1.00 1.00 438 h onwards

10.0 0.08 0.08 0.09 1 - 38 h 0.96 0.99 1.00 438 h onwards
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Table 3 Rainfall event and dry period statistics estimated using 1-minute data.

s7 s8 s44 s89 s105

Number of events 2356 2441 2172 2051 2362

Average duration of events (min) 17.6 17.7 18.0 18.4 18.1

Maximum duration of events (min) 403 822 413 371 528

Average duration of dry period (h) 10.9 10.5 11.8 12.5 10.8

Maximum duration of dry period (h) 308.4 365.8 393.8 418.7 289.5
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Fig. 1 Map of Singapore showing the location of rain gauges used in this study. There are 49

gauges with hourly and 5 gauges with 1-minute resolution rainfall data.
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Fig. 2 An illustration of hourly rainfall time series and the corresponding binary series ob-

tained with a threshold of 0.5 mm h−1
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Fig. 3 Number of rainy boxes N(τ) as a function of time interval τ for the hourly binary series

with a threshold of 0 mm h−1. The circles represent median value (out of 49 values) of N(τ),

and the vertical bars indicate intergauge variability. The Figure also shows the power laws

(solid lines) fitted to the median values of N(τ) in the two scaling regimes (filled circles) and

the corresponding fractal dimensions (Df ). The inset shows the variation of Df with different

zero-nonzero rainfall thresholds.
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Fig. 4 Number of rainy boxes N(τ) as a function of time interval τ for the 1-minute binary

series with a threshold of 0 mm min−1. The circles represent median value (out of 5 values)

of N(τ), and the vertical bars indicate intergauge variability. The Figure also shows the power

laws (solid lines) fitted to the median values of N(τ) in the three scaling regimes (filled circles)

and the corresponding fractal dimensions (Df ).
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Fig. 5 Power spectrum of hourly rainfall full series (FS) and the corresponding binary series

(BS). The circles represent median value (out of 49 values) of spectrum, and the vertical bars

indicate intergauge variability. The solid lines represent power laws fitted in the respective

scaling regimes.
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Fig. 6 Power spectrum of 1-minute rainfall full series (FS) and the corresponding binary series

(BS). The circles represent median value (out of 5 values) of spectrum, and the vertical bars

indicate intergauge variability. The solid lines represent power laws fitted in the respective

scaling regimes.
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Fig. 7 Temporal scale-invariance in trace moments obtained from hourly data for different

moment orders. The circles represent median value (out of 49 values) of spectrum, and the

vertical bars indicate intergauge variability. The solid lines represent power laws fitted to the

filled circles in the scaling regime of 1 h - 5 days.
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Fig. 8 Variation of the scaling exponent k(q) with the moment order q. The filled circles

represent k(q)s obtained from the linear regression of median trace moments of Figure 7,

whereas the thick solid line represents corresponding fitted universal multifractal (UM) model.

The thin lines represent UM models fitted to trace moments of each gauge series.
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Fig. 9 Temporal scale-invariance in trace moments obtained from 1-minute data for different

moment orders. The circles represent median value (out of 111 values) of trace moments, and

the vertical bars indicate inter-event variability. The solid lines represent power laws fitted to

the filled circles.
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Fig. 10 Variation of the scaling exponent k(q) with the moment order q. The filled circles

represent k(q)s obtained from the linear regression of median trace moments of Figure 9,

whereas the thick solid line represents corresponding fitted universal multifractal (UM) model.

The thin lines represent UM models fitted to trace moments of each event.


