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Abstract  

Conventional stability assessment of underground tunnels and caverns involves the 

determination of a factor of safety in which failure is assumed to occur when the load (stress) of 

the system exceeds the resistance.  It is widely recognized that a deterministic analysis of the 

factor of safety gives only a partial representation of the true margin of safety, since the 

uncertainties in the design parameters affect the probability of failure. In this paper, a simplified 

procedure is proposed for evaluating the probability of stress-induced instability for deep 

underground rock caverns for preliminary design applications. Extensive parametric studies were 

carried out using the finite difference program FLAC
3D

 to determine the factor of safety for 

caverns of various dimensions and rock mass strength. Subsequently, the limit state surface was 

determined through an artificial neural network approach following which a simplified reliability 

method of evaluating the probability of failure was developed. 

Keywords:  neural networks; probability of failure; reliability index; rock cavern; safety factor; 

stability. 
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1. Introduction 

One of the major considerations in the design of an underground rock cavern is the evaluation 

of its stability since the excavation of the rock causes a redistribution of the stresses in the 

proximity of the underground opening. Various methods have been proposed to assess the cavern 

stability, and to assess the necessary support system to maintain the stability of the excavation. 

Common empirical methods include the use of rock classification systems such as the rock mass 

rating RMR [1] and Q methods [2]. Common numerical methods used to evaluate cavern stability 

can be categorized as continuum methods such as the Finite Element Method (FEM) [3] and 

Finite Difference Method (FDM) [4], and discontinuum methods such as the Distinct Element 

Method (DEM) [5] and the Discontinuous Deformation Analysis (DDA) [6]. The selection of a 

continuum or discontinuum approach depends on the size or scale of the discontinuities with 

respect to the size or scale of the problem that needs to be solved. There are no universal 

quantitative guidelines to determine when one method should be used instead of the other [7].  

Conventional deterministic evaluation of stability of geotechnical structures and underground 

openings involves the use of a factor of safety FS which considers the relationship between the 

resistance R and the load (stress) S. The boundary separating the safe and failure domain is the 

limit state surface (boundary) defined as: 

                      ( ) 0xG R S                               (1) 

where x denotes the vector of the random variables. Mathematically, R > S or G(x) > 0 would 

denote a ‘safe’ domain, and R < S or G(x) < 0 would denote a ‘failure’ domain. For underground 

caverns, the limit state surface G(x) is not known explicitly. Instead, it may be known only 

implicitly through a numerical procedure such as the finite element method. Therefore, the 

failure domain only can be found through repeated point-by-point numerical analyses with 

different input values. A closed-form limit state surface then is constructed artificially using 

polynomial regression methods. 

However, polynomial regression models become computationally impractical for problems 

involving a large number of random variables and nonlinear limit state functions, particularly 

when mixed or statistically dependent random variables are involved. An alternative modeling 
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technique is the use of neural networks. A neural network is a computer model whose 

architecture essentially mimics the knowledge acquisition and organizational skills of the human 

brain. A neural network consists of a number of interconnected neurons, which are logically 

arranged into two or more layers and interact with each other via weighted connections. These 

weights determine the nature and strength of the influence between the interconnected neurons. 

There is an input layer where data are presented to the neural network, and an output layer that 

holds the response of the network to the input. It is the intermediate layers, also known as hidden 

layers that enable these networks to represent and compute complicated associations between 

patterns. The back-propagation neural network (BPNN) learning algorithm is widely used 

because of the simplicity. The general objective of ‘training’ the neural network is to modify the 

connection weights to reduce the errors between the actual target outputs to a satisfactory level. 

This process is carried out through the minimization of the defined error function using the 

gradient descent approach. After convergence occurs (i.e. the errors are minimal), the associated 

trained weights of the model are tested with a separate set of testing data. This testing is used to 

assess the generalization capability of the trained model to produce the correct input-output 

mapping.  

Even after obtaining the limit state surface, due to the uncertainties in the design parameters 

(random variables) in the limit state surface, it is impossible to predict the state of the system 

with accuracy. The alternative is to assess the probability of failure Pf. The calculation of Pf 

involves the determination of the joint probability distribution of R and S and the integration of 

the Probability Density Function (PDF) over the failure domain. For a problem with multiple n 

random variables, the calculation of Pf involves the determination of a multi-dimensional joint 

PDF of the random variables and the integration of the PDF over the failure domain. 

A well-developed approximate alternative is to use the First-Order Reliability Method 

(FORM) [8]. Its popularity results from the mathematical simplicity, since only second moment 

information (mean and standard deviation) on the random variables is required to calculate the 

reliability index . Some examples of the use of FORM in rock mechanics have been presented 

[9, 10]. Mathematically,  can be computed [11] as  
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in which xi is the set of n random variables, i is the set of mean values, R is the correlation 

matrix and F is the failure region. The minimization in Eq. (2) is performed over F 

corresponding to the region G(x) = 0. Low and Tang [11] had shown that an EXCEL (Microsoft) 

spreadsheet environment can be used to perform the minimization and determine . If the 

random variables have probability distributions close to normal, then Pf can be obtained from the 

expression: 

  Pf   (-)        (3) 

in which (-) is the value of the cumulative probability. This value can be obtained from tables 

of the standard cumulative normal distribution function found in many textbooks or from built-in 

functions in most spreadsheets. 

This paper utilizes the rock mass classification correlations and the numerical procedure 

known as the shear strength reduction technique to calculate the global factor of safety FS with 

regard to stress-induced instability. The BPNN is used to determine an empirical equation 

relating FS to the cavern dimensions B and H, as well as the rock mass quality Q. Charts based 

on this equation are presented for preliminary design purposes. A FORM spreadsheet is 

implemented with the neural network algorithm to calculate the reliability index (probability of 

failure) for cavern stability. 

2. Numerical model of rock cavern 

The FLAC
3D

 code (Itasca) was used to carry out the stability analyses of the underground 

rock caverns using the shear strength reduction technique. The shear strength reduction 

technique is available in many commercial finite element and finite difference programs. The 

technique has been applied to a number of geotechnical problems including rock caverns [12,13] 

and circular tunnels [14]. 
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The procedure essentially involves repeated analyses by progressively reducing the shear 

strength properties until collapse occurs. For a Mohr-Coulomb material, by reducing the shear 

strength by a factor F the shear strength equation becomes: 

tan
n

c

F F F

 
                                         (4) 

* *tann

F
c



 



                                 (5) 

where  is the shear strength, n is the normal stress, and 
'

* c
c

F
 and * tan

arctan( )
F


   are the 

new Mohr-Coulomb shear strength parameters. Systematic increments of F are performed until 

the finite element or finite difference model does not converge to a solution (i.e. failure occurs). 

The critical strength reduction value which corresponds to non-convergence is taken to be the 

factor of safety FS. 

Only stress-induced failure was considered in this paper. In the FDM analyses, the three 

parameters that were varied were: the Tunneling Quality Index Q value, the cavern width B and 

cavern wall height H. Q cannot be directly used in the FLAC
3D

 calculations, though it is a 

commonly used quality index representing rock mass competence. In the analyses, the 

discontinuous nature of the rock is incorporated implicitly in the Mohr-Coulomb constitutive 

relationship used to represent the mass as an equivalent continuum. The rock mass properties are 

indirectly (through RMR) determined from the Q value by means of empirical equations as 

shown in Table 1. The Q value of each category and its corresponding Mohr-Coulomb rock 

properties to be used in the numerical calculation are shown in Table 2, in which the c,  and E 

values are related to Q through the equations in Table 1. It should be noted that these 

relationships are intended to provide the initial estimates of the rock mass properties and should 

be used with caution in engineering design. It should also be pointed out that numerical analyses 

with the in-situ stress ratio K0 in the range of 1 to 3 were also carried out. While the K0 was 

found to significantly influence the state of stress and magnitude of displacements in proximity 

to the cavern, it had minimal influence on the FS and was therefore omitted as one of the design 

variables. 

Table 1 Empirical equations relating Q with rock mass properties 
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Table 2 Rock mass properties with different Q values 

The cross-section of the cavern and boundary conditions are shown in Fig. 1. The cavern roof 

arc is semi-circular and the overburden height D from the ground surface to the top of the side 

wall is 100 m. The cavern length in the longitudinal direction is assumed as 1 m to simulate 

plane strain conditions. Outer boundaries are located far from the cavern to minimize the 

boundary effects. Full-face excavation is assumed in all analyses. Table 3 lists the design 

parameters and the values that were considered. Input file for each FLAC
3D 

execution includes a 

geometry model (B and H) and a mechanical model of Q-related rock mass properties.  

Fig. 1. Underground cavern configuration. 

Table 3 Input parameters for safety factor calculations 

For each numerical analysis, the safety factor FS was determined based on the strength 

reduction technique. Different combinations of Q, the cavern width B and the side cavern height 

H were considered for three sets of ratios of B and H (B/H = 1, 2 and = 4). A total of 216 cases 

were considered and some results are shown in Table 4. A typical plot of Q versus FS for B = 20 

m in Fig. 2 indicates the FS decreases as H increases.   

Table 4 Some calculations for safety factor FS 

Fig. 2. Plot of FS versus Q for B = 20 m. 

3. Determination of limit state surface using neural networks 

In this study, the three input neurons are Q, cavern width B and wall height H. The output 

neuron is the corresponding FS values determined from the FDM analyses. Of the 216 data sets, 

162 patterns were randomly selected as the training data and the remaining 54 data were used for 

testing. From a trial-and-error process, eight hidden neurons and the ‘tansig’ transfer function 

were found to be the optimal architecture. A comparison of the calculated and predicted FS 

values presented in Fig. 3 shows very good agreement with R
2
 greater than 0.99.  

Fig. 3. Neural network results.  
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For comparison, the predictions using logarithmic regression method are also presented. The 

best fit logarithmic regression equation with a coefficient of correlation R
2 
= 0.96 was as follows:

 
 

0.1759 0.2763 0.09732.469regressionFS Q B H             (6) 

The results of the actual FS determined from FDM versus the predicted FS using Eq. (6) as 

shown in Fig. 4 show that the BPNN model predictions were more accurate. 

Fig. 4. Logarithmic regression.    

Using the optimal trained connection weights, it is possible to develop a mathematical 

expression relating the input variables and the output variable (predicted FS) [18]. The 

mathematical expression for FS(Q, B, H) obtained by the neural network analysis is shown in the 

Appendix. Based on this mathematical expression for FS(Q, B, H) obtained, a series of charts 

relating FS to Tunneling Quality Index Q and the cavern geometries B and H have been 

developed as shown in Fig. 5. Also shown in Fig. 5 are the curves determined using Eq. (6) 

which generally exhibit similar trends as the curves developed using the neural network 

algorithm. The proposed charts in Fig. 5 are potentially useful for preliminary design and 

checking. Similar charts have been proposed for the design of mining stope panels [19]. 

Fig. 5. Design curves for cavern FS for different B/H ratios: (a) B/H = 1; (b) B/H = 2 and (c) B/H = 4. 

4. Reliability Analysis 

Using the optimal trained connection weights and the mathematical relationship to determine 

FSNN shown in the Appendix, it is possible to perform reliability analysis as outlined below. 

Assuming the limiting factor of safety FSlim = 1, the limit state surface is defined as G(x) = FSNN 

– 1 and incorporated into an EXCEL spreadsheet environment based on the approach by Low 

and Tang [11] from which the reliability index can be determined. Fig. 6 shows a sample 

spreadsheet for computing the reliability index where Q, B and H are assumed to be lognormally 

distributed. The spreadsheet cells A2:A4 allows the selection of various distribution types for the 

input variables, including normal, lognormal, triangular etc as explained in Low and Tang [11]. 

For nonnormals, the nonnormal distributions are replaced by an equivalent normal ellipsoid, 
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centered at the equivalent normal mean. Cells C2:F4 are parameters which are set corresponding 

to the variable distribution types. For lognormals, cells C2:C4 correspond to the mean values 

while cells D2:D4 correspond to the standard deviations. The correlation matrix [R] cells K2:M4 

are used to define the correlations between Q, B and H.  The ni vector in cells N2:N4 contains 

equations for ( ) /N N

i i ix   as defined in Eq. (2). Cells H2:J9 contain the weights and algorithms 

obtained from the trained neural network. The design point (x* values) was obtained by using the 

spreadsheet’s built-in optimization routine SOLVER to minimize the cell, by changing the x* 

values, under the constraint that the performance function G(x*) = 0. Prior to invoking the 

SOLVER search algorithm, the x* values were set equal to the mean values (4, 20, 20) of the 

original random variables. Iterative numerical derivatives and directional search for the design 

point x* were automatically carried out in the spreadsheet environment. 

Fig. 6.  Sample spreadsheet using FORM.  

The spreadsheet algorithm was also verified through the use of Monte Carlo simulation. For 

brevity this has been omitted. In all the results presented in this paper, the standard deviation for 

both B and H were 0.5 m. Generally the sensitivity analyses indicated that variations of the 

standard deviations of up to 0.5 m for both B and H, did not significantly influence the Pf. For 

brevity these results have been omitted. Instead, this paper focuses on the influence of Q on Pf.  

To better illustrate the influence of the Q value on  and Pf, the effects of the coefficient of 

variation of Q (CovQ) and the mean value of Q (mQ) are integrated into a single figure. The 

effects of changing the mean value of Q while keeping all other parameters constant are 

illustrated in Fig. 7. Also shown in Fig. 7 are the corresponding safety factors computed by the 

FDM. Both approaches show that an increase in the Q mean value (higher strength) will result in 

a higher FS and a reduction in Pf. 

In general the safety factor may vary linearly or nonlinearly as the mean values change, 

depending on whether the safety factor is a linear or nonlinear function of the particular 

parameter. Pf, however, always varies nonlinearly. Above a certain FS value, Pf approaches 

asymptotically to zero. Any further increase of FS will have negligible effect on the failure 

probability of the underground rock cavern. In the case of cavern stability analysis, both FS and 
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Pf vary monotonously for the variables, i.e. either monotonously increasing or monotonously 

decreasing. It should be highlighted that even for the case where the safety factor equals 1.5, for 

the case with CovQ 
= 0.6, Pf is approximately 12%. This demonstrates that a single FS value 

obtained from deterministic method may not always provide an adequate quantification of safety. 

Fig. 7.  Effects of changing the characteristic values of Q (B = 20 m, H = 10 m): (a)  vs. Q under different CovQ 

and (b) Pf vs. Q under different CovQ. 

The effects of CovQ while keeping other parameters constant are also illustrated in Fig. 7. 

With increase in CovQ, even with FS > 1.0, Pf could increase to close to 25% (CovQ = 0.6).  

The plots in Fig. 7 show Pf as a function of CovQ at different FS levels. The plots show that in 

order to achieve the same target Pf would require different safety factors, depending on the 

magnitude of the standard deviations. For example, for a target failure probability of 10% will 

require a FS of 1.31 if CovQ = 0.4 and a FS of 1.50 if CovQ = 0.6. The results highlight that there 

is a degree of uncertainty involved in the stability of the underground rock cavern and the 

variations of the design parameters play an important role, which the conventional safety factor 

analysis cannot reflect. However, it is not advocated here that factor of safety analyses be 

abandoned in favor of reliability analyses. Instead, it is suggested that the factor of safety and 

reliability approaches be used together, as complementary measures of acceptable design [20]. 

Pf values for the three sets of B and H are integrated in Fig. 8 for comparison. The results 

show that for the same Q mean value, a larger cavern (B = 20 m, H = 20 m) results in a smaller 

FS. Also for the same Q mean value and the same CovQ, a larger cavern (B = 20 m, H = 20 m) 

results in a higher Pf (for CovQ
 
= 0.4 and mQ = 4, Pf  41% for B = 20 m and H = 20 m while Pf  

11% for B = 20 m and H = 10 m).  

Fig. 8. The probability of failure values for the three sets of B and H. 

5. Summary and conclusions 

Numerical analyses have been carried out using the finite difference method to assess the 

global stability of underground rock caverns. Analyses using neural networks were used to 

model the relationship between Q, B and H, and the cavern safety factor FS. A comparison of the 
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calculated and predicted FS values showed very good agreement with a coefficient of correlation 

R
2
 greater than 0.99. Using the optimal trained connection weights of the neural network model, 

charts relating FS to Q and the cavern geometries have also been developed. The proposed charts 

in Fig. 5 are potentially useful for preliminary stability design and checking. 

The first order reliability algorithm and built-in spreadsheet optimization routine were 

incorporated with the neural network algorithm to calculate the reliability index for cavern 

stability. The reliability analyses indicated that the probability of failure is significantly 

influenced by the coefficient of variation of Q. This highlights the point that a single safety 

factor cannot provide the complete information regarding the cavern stability as the same safety 

factor may indicate completely different probabilities of failure for different coefficient of 

variations of Q. It is suggested that the factor of safety and probability of failure (reliability index) 

approaches be used together, as complementary measures of acceptable design.  

This study will be extended to consider underground caverns that account for other relevant 

excavation factors such as 3D effects, excavation rate and rock bolt system. Furthermore, a full-

scale ground model and the spatial variation of RMR or Q described through Geo-statistical 

analysis as outlined in [21] will be considered for subsequent detailed stability design. In 

addition, for simplicity, in this study the shape of the cavern roof has been assumed as semi-

circular. Various other shapes such as an elliptical or horse-shoe shape will also be considered. 
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Appendix 

The transfer functions used for BPNN neural network output for stability are ‘tansig’ transfer 

function for hidden layer to output layer and ‘purelin’ transfer function for output layer to target. 

The calculation process of BPNN output for stability is elaborated in detail as follows: 

From the connection weights for a trained neuron network, it is possible to develop a 

mathematical equation relating the input parameters and the single output parameter Y using  
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[A1] 0

1 1

h m
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in which 0b is the bias at the output layer, kw is the weight connection between neuron k  of the 

hidden layer and the single output neuron, hkb is the bias at neuron k of the hidden layer ( k  = 1, 

h ), ikw  is the weight connection between input variable i  ( i =1, m ) and neuron k  of the hidden 

layer, iX is the input parameter i , and sigf  is the sigmoid (tansig & purelin) transfer function. 

Using the connection weights of the trained neural network, the following steps can be 

followed to calculate FS(Q,B,H): 

        Step1: Normalize the input values for Q, B and H linearly using  

xnorm = 2(xactual- xmin)/( xmax- xmin)-1 

        Let the actual Q = X1a and the normalized Q = X1 

          X1 = -1+2*(X1a –0.1)/399.9 

        Let the actual B = X2a and the normalized B = X2 

         X2 = -1+2*(X2a –2)/48 

        Let the actual H = X3a and the normalized H = X3 

         X3 = -1+2*(X3a –0.5)/49.5 

        Step2: Calculate the normalized deflection (Y1) using the following expressions: 

        A1 = -9.9763+0.1056X1-4.2526X2-3.5310X3 

        A2 = -2.4331-0.0274X1-0.3828X2-0.1653X3 

            A3 = -3.3351-1.2762X1-0.2816X2-0.0850X3 

            A4 = 0.7064-2.8993X1+1.0173X2+0.0204X3 

            A5 = -100.0669-98.7342X1-0.0819X2-0.0331X3 

            A6 = -35.4801-27.2544X1-3.4444X2-2.8153X3 

            A7 = 0.7589-3.1429X1+1.1580X2+0.0220X3 
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            A8 = -108.7918-108.0597X1-0.0909X2-0.0356X3 

            B1 = 21.8108×tanh(A1) 

         B2 = 26.6348×tanh(A2) 

         B3 = -12.1562×tanh(A3) 

            B4 = 8.1846×tanh(A4) 

         B5 = -60.5545×tanh(A5) 

         B6 = -8.5957×tanh(A6) 

         B7 = -8.1304×tanh(A7) 

         B8 = 20.2019×tanh(A8) 

            C1 = -13.4345+ B1+ B2+ B3+B4+B5+B6+B7+B8 

         Y1 = C1 

        Step3: De-normalize the output to obtain the safety factor FSNN 

           FSNN = 0.28+5.09×(Y1+1)/2 
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Table 1 Empirical equations relating Q with rock mass properties. 

Properties Equations References 

RMR from Q value 7ln 36RMR Q 
 

[15] 

Cohesion c (MPa) ( ) 0.005( 1)c MPa RMR   [1] 

Friction angle  (°) 0.5 4.5RMR    [1] 

Deformation modulus E (GPa) 
( ) 2 100mE E GPa RMR   ( 50)RMR 

 
 10 40

( ) 10
RMR

mE E GPa


  ( 50)RMR   

[16-17] 
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Table 2 Rock mass properties with different Q values. 

Q 
c       

(MPa) 
  

(°) 

E                

(GPa) 

Poisson’s 

ratio 

Q = 0.1 0.07 12.23 1.37 0.35 

Q = 0.4 0.14 19.29 3.09 0.35 

Q = 1 0.18 22.50 4.47 0.35 

Q = 4 0.22 27.35 7.81 0.20 

Q = 10 0.26 30.56 11.30 0.20 

Q = 40 0.30 35.41 19.75 0.16 

Q = 100 0.34 38.62 28.57 0.16 

Q = 400 0.38 43.47 49.95 0.16 
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Table 3 Input parameters for safety factor calculations 

Input Parameters Values 

Q value 0.1, 0.4, 1, 4, 10, 40, 100, 400 

Cavern width B (m) 2, 5, 10, 15, 20, 25, 30, 40, 50 

Side wall height H (m) 0.5, 1, 1.25, 2, 2.5, 3.75, 5, 6.25, 7.5, 10, 12.5, 15, 20, 25, 30, 40, 50 
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Table 4 Some calculations for safety factor FS 

 Q  B (m) B/H  FS  Q  B (m) B/H  FS 

0.1 10 1 0.57 0.1 20 1 0.43 

0.4 10 1 1 0.4 20 1 0.76 

1 10 1 1.21 1 20 1 0.92 

4 10 1 1.51 4 20 1 1.14 

10 10 1 1.77 10 20 1 1.34 

40 10 1 2.08 40 20 1 1.58 

100 10 1 2.37 100 20 1 1.8 

400 10 1 2.72 400 20 1 2.07 

0.1 10 2 0.62 0.1 20 2 0.47 

0.4 10 2 1.08 0.4 20 2 0.82 

1 10 2 1.32 1 20 2 1.01 

4 10 2 1.65 4 20 2 1.26 

10 10 2 1.93 10 20 2 1.47 

40 10 2 2.27 40 20 2 1.73 

100 10 2 2.58 100 20 2 1.97 

400 10 2 2.96 400 20 2 2.27 

0.1 10 4 0.65 0.1 20 4 0.49 

0.4 10 4 1.14 0.4 20 4 0.87 

1 10 4 1.41 1 20 4 1.07 

4 10 4 1.75 4 20 4 1.33 

10 10 4 2.03 10 20 4 1.54 

40 10 4 2.39 40 20 4 1.82 

100 10 4 2.72 100 20 4 2.07 

400 10 4 3.12 400 20 4 2.38 
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Fig.1. Underground cavern configuration. 

 

Figure1



 

Fig.2. Plot of FS versus Q for B = 20 m 

 

Figure2



 

Fig.3. Neural network results.  

 

Figure3



 

Fig.4. Logarithmic regression.   
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Figure5



 

Fig. 5. Design curves for cavern FS for different B/H ratios: (a) B/H = 1; (b) B/H = 2 and (c) B/H = 4. 

 



 

Fig.6. Sample spreadsheet using FORM.  
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Fig.7. Effects of changing the characteristic values of Q (B = 20 m, H = 10 m): (a)  vs. Q under different CovQ and 

(b) Pf vs. Q under different CovQ 
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Fig.8. The probability of failure values for the three sets of B and H. 
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