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ABSTRACT 

Developing an efficient and accurate hydrologic forecasting model is crucial to managing water 

resources and flooding issues. In this study, the response surface (RS) models including multiple 

linear regression (MLR), quadratic response surface (QRS) and nonlinear response surface (NRS) 

were applied to daily runoff (e.g. discharge and water level) prediction. Two catchments, one in 

southeast of China and the other in western Canada were used to demonstrate the applicability of 

the proposed models. Their performances were compared with artificial neural network (ANN) 

models, trained with the learning algorithms of the gradient descent with adaptive learning rate 

(ANN-GDA) and Levenberg-Marquardt (ANN-LM).The performances of both RS and ANN in 

relation to the lags used in the input data, the length of the training samples, long term (monthly and 

yearly) predictions, and peak value predictions were also analyzed. The results indicate that the 

QRS and NRS were able to obtain equally good performance in runoff prediction, as compared with 
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ANN-GDA and ANN-LM, but require lower computational efforts. The RS models bring practical 

benefits in their application to hydrologic forecasting, particularly in the cases of short-term flood 

forecasting (e.g. hourly) due to fast training capability, and could be considered as an alternative to 

ANN. 

 

Keywords: hydrologic forecasting, regression, response surface model, artificial neural networks 
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INTRODUCTION 

Hydrologic forecasting is substantial for effective operation of a water resources 

planning or a flood mitigation system. Data-driven models (e.g. regression models and 

artificial intelligent methods) have shown the characteristic of easy-to-develop compared 

with physical rainfall-runoff models, due to the fact that such models can extract the 

input-output relations directly based on the observed hydrological and meteorological 

data without precise knowledge of the hydrological process and sufficient data for 

contributing physical variables. 

During the past decades, linear regression models, including autoregressive (AR) 

(Carlson et al., 1970), autoregressive moving average (ARMA) (Salas et al., 1985), and 

autoregressive moving average with exogenous inputs (ARMAX) (Haltiner and Salas, 

1988), have been developed and offered reasonable results in a number of streamflow 

forecasting cases. Corley II (1980) and Haktanir and Sezen (1990) applied the probability 

density functions of the two-parameter gamma and the three-parameter beta distributions 

to fit the hydrograph, and suggested that they could also be used for the synthetic unit 

hydrograph. However, such models relied heavily on the presumption about the form of 

data distribution or the functional relations among the parameters concerned. They may 

suffer from insufficient accuracy in hydrologic modeling applications, where the exact 

mathematical representation of the data distribution for the rainfall-runoff process does 

not exist.  

Recent studies have demonstrated the applicability of nonlinear techniques such as 

chaos-based approaches (Jayawardena and Lai, 1994; Jayawardena and Gurung, 2000; 

Elshorbagy et al., 2002), nonlinear prediction (NLP) (Porporato and Ridolfi, 1997, 2001; 
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Islam and Sivakumar, 2002), nonparametric techniques (Iorgulescu and Beven, 2004) and 

artificial intelligent methods (e.g. adaptive neural-based fuzzy inference system, genetic 

programming and support vector machine) (Wang et al. 2009) in hydrologic modeling. 

Particularly, artificial neural networks (ANN) have gained much interest due to their 

capabilities in characterizing complex nonlinear relationships with high prediction 

accuracy (Govindaraju, 2000a, b). Many studies have compared ANN with linear 

regression approaches (e.g. AR and ARMA) and proved that ANN can outperform 

statistical techniques (Raman and Sunilkumar, 1995; Abrahart and See, 2002; Kişi, 2004; 

Castellano-Méndeza et al., 2004; Adeloye, 2009). Jain and Indurthy (2003) aimed at a 

comparative analysis of deterministic unit hydrograph theory, statistical regression and 

ANN for the purpose of modeling an event-based rainfall-runoff process and proved that 

ANN consistently outperformed conventional models, particularly in prediction of peak 

discharge. He and Valeo (2009) demonstrated that ANN yielded higher accuracy in 

quantile estimation than the parametric methods in rainfall/flood frequency analysis. 

Londhe and Charhate (2010) compared ANN with genetic programming (GP) and model 

trees (MT) in forecasting river flow one-day ahead at Narmada catchment of India. They 

found that the ANN and MT performed almost equally well, but GP did better than both 

in terms of normal and extreme events. 

However, ANN possesses a number of disadvantages, such as the tedious trial and 

error process to determine its structure, possibility of getting stuck in local minima, and 

long training period required. Efficient and robust methods are still being attempted to 

make the prediction closer to reality with minimized errors. The response surface (RS) 

model, as an alternative method to nonlinear prediction, has received success in 
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application to chemical and biochemical processes (Andersson and Adlercreutz, 1999; 

Ranade et al., 2010). However, only limited studies have discussed the applicability of 

the RS models in streamflow forecasting or compared RS models with ANN (Singh and 

Deo, 2007). 

Thus, the objective of this study is to investigate the applicability of RS models in 

hydrologic forecasting, and compare their performances with ANN. Based on first-order 

and second-order polynomial format, RS models involved in this study include multiple 

linear regression (MLR), quadratic response surface (QRS) and nonlinear response 

surface (NRS). ANN models, trained with the learning algorithms of the gradient descent 

with adaptive learning rate (GDA) and Levenberg-Marquardt (LM), will be setup for 

comparison. Two real-world study cases were selected for demonstration. The first is a 

watershed in the southeast China where the rainfall dominates the streamflow and the 

other is in western Canada where the rainfall-runoff relations are complex due to the 

snowmelt. The performances of the models under various modeling scenarios, such as 

different lags used in the input data, the length of the training samples, long term 

(monthly and yearly) predictions and peak value prediction, were also analyzed.  

METHODOLOGY 

Response Surface Models 

RS models are multivariate polynomial models, which employ a group of 

mathematical equations that describe the relationship between the response and the 

independent variables (Myers et al, 2004). Considering the situation in which the 

response y depends on n variables: 1 2,  ,  ...  ...,  i nx x x x , the general equation for the RS 
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model is given as follows: 

1 2( ,  ,  ...  ...,  )i ny f x x x x                                               (1) 

where f is the unknown response function; ε is the statistical error represents the sources 

of variability not accounted for in f, such as measurement errors, variations inherent in 

the rainfall-runoff process, and other effects. The first-order polynomial based RS model 

or MLR, is used to describe the linear relationship between response and predictors. It is 

represented by the following equation:  

0
1

n

l i i
i

y x


                                                          (2)    

However, a plausible MLR requires that the input variables should have a high linear 

correlation with the output variables; this may lead to the lack of fitting for hydrologic 

forecasting. The second-order polynomial, written as: 

2
0

1 1, 1

n n n

q i i ij i j ii i
i i i j i

y x x x x
   

                                             (3) 

is usually employed in the QRS to approximate the nonlinearity, where β0 is the intercept, 

βixi are the linear terms,
 
βijxixj are the quadratic interaction terms, and 2

ii ix are the square 

terms. High-order polynomials are seldom used since so many parameters need to be 

estimated which may lead to inefficiency and over fitting.  

The NRS is an alternative approach to model the nonlinearity and complexities of 

rainfall-runoff processes. In this study, an NRS model based on the form of quadratic 

polynomials, with additional exponential coefficients for the linear, interaction and 

quadratic terms, will be tested. The general equation of NRS could be written as: 

 0
1 1,

ij
i

n n

n i i ij i j
i i i j

y x x x


  

                                              (4) 
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where θi is the exponential coefficient for linear terms; γij is the exponential coefficient 

for interactive and quadratic terms. They will be estimated together with β during the 

fitting process. After tried various simplified forms of Eq. (4) through reducing the 

number of exponential coefficients, we found that the following equation gave better 

results: 

 0
1 1,

n n

n i i ij i j
i i i j

y x x x


  

                                               (5) 

Compared with Eq. (4), the equation with reduced number of exponential coefficients by 

using the same exponential coefficient for all linear terms and for all interactive and 

quadratic terms (as shown in Eq. (5)) brings the advantage of getting a quick response for 

computations carried out on a desktop computer. Different from MLR and QRS, whose 

coefficients are estimated through the method of least squares, NRS employs the LM 

algorithm (Seber and Wild, 1989). The following vectors and matrices are originated 

from the estimated coefficients ̂ :  
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The predicted value of the NRS may be obtained from the resulting fitted response 

surfaces, represented as matrix form: 

0

1ˆ
2ny    T

l 1 q 2 qx B x B x                                               (6) 

where 1 2,  ,  ...  ...,  i nx x x x  are the predictors; ˆ ˆ ˆ
1 2[     ]nx x x  qx  and 
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ˆ ˆ ˆ

1 2[     ]nx x x  lx   are the vectors of predictor x and estimated exponential 

coefficients ̂  and ̂ . 

Artificial Neural Networks 

ANN has been developed to describe the complex, nonlinear relationships in 

hydrologic modeling with the characteristic of self-learning ability from data. It is a 

network consisting of nodes, analogous to biological neurons, in multiple layers which 

are interconnected by weighted links. Each neuron employs a transfer function (e.g. the 

step, liner or sigmoid function) to transmit the single scalar input or a weighted sum of 

inputs through a connection that multiplies its strength by the scalar weight to generate 

the output (Zealand et al., 1999). One or more neurons can be combined in a single layer, 

and three or more layers are typically used to form the ANN. The outputs generated by 

neurons in one layer form the inputs of the next layer, and there is no restriction that the 

number of neurons in a particular layer must equal the number of inputs to that layer. The 

feed forward neural network (FFNN), which is characterized as not having 

interconnection between nodes in the same layer and with connections oriented from the 

input towards the output nodes only, is by far the most widely used network in water 

resources applications (Hornik et al., 1989; Kůrková, 1992). After determining the 

architecture of the network (e.g. nodes, layers, transfer functions and interconnection 

between nodes and layers), it can be trained with various learning algorithms (e.g. 

back-propagation, conjugate gradient, and LM) in order to simulate the prediction. 

Detailed discussions about the application, metrics and shortcomings of ANN are 

provided by Maier and Dandy (2000). 



 

 9

The training, similar as the parameter estimation in regression models, is a process to 

adjust and optimize the weights and biases in order to minimize the global error and find 

the global solution in response to the inputs (Kişi, 2007). In this study, FFNN trained 

with GDA and LM algorithms are adopted. The GDA algorithm adjusts the weights and 

biases in the direction where the performance function decreases most rapidly (as 

back-propagation (BP) algorithm does) using the first-order local optimization method, 

written as (Rumelhart et al., 1986): 

1k k k k  x x a g                                                  (7) 

where xk is a vector of current weights and biases, gk is the current gradient, and ak is the 

adaptive learning rate to keep the learning step size as large as possible while to the 

extent that the network can learn without large error increases. Thus, it is considered to 

be the improved BP algorithm. The LM algorithm is designed to approach the 

second-order training speed and overcome the problem to compute Hessian matrix in 

Newton’s method, which is complex and expensive (Moré, 1978). It employs the 

Jacobian matrix to approximate Hessian matrix in the following Newton-like updating 

function (Moré, 1978): 

1

1
T T

k k



     x x J J I J e                                         (8) 

where J is the Jacobian matrix that contains the first derivatives of the network errors 

with respect to the weights and biases; e is a vector of network errors; I is the identity 

matrix and μ is a scalar value, which will decrease after each successful step and increase 

only when a tentative step would increase the value of the performance function. It thus 

can shift toward Newton’s method as quickly as possible. During the training process, the 

weights and biases are updated iteratively until the global performance (e.g. mean square 
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error in this study) reaches a pre-defined objective (e.g. less than 0.0001 in this study). 

Otherwise it will stop when the iteration exceeds the specified maximum times (e.g. 

15000 for GDA and 6000 for LM in this study). 

Performance Metrics 

The performance of the prediction models can be evaluated by the following four 

evaluation criteria: coefficient of determination (R2) (O’Connell et al., 1970), 

Nash-Sutcliffe efficiency coefficient (E) (Nash and Sutcliffe, 1970), root mean squared 

error (RMSE) (Karunanithi et al., 1994) and mean absolute percentage error (MAPE) (Hu 

et al., 2001). These metrics are calculated as: 

  
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and 

1

1
100

o mn
i i

o
i i

Q Q
MAPE

n Q


                                         (12)                     

where o
iQ  is the ith observed runoff level (e.g. stage or discharge), m

iQ  is ith the 

predicted runoff level, 
o

Q  is the mean of the observed runoff level and 
m

Q  is the mean 
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of the predicted runoff level. The R2 indicates how well the correlation between the 

predicted and observed values is, and E is often used to assess the predictive capability of 

hydrological models. The closer the value of R2 or E is to 1, the more accurate the model. 

The RMSE evaluates the residual between the predicted and observed values, and the 

MAPE is a weighted average of the absolute errors. The smaller the value of RMSE or 

MAPE is, the more accurate the model will be. 

APPLICATION TO HYDROLOGIC FORECASTING 

In order to compare the applicability of RS models (MLR, QRS and NRS) with ANN, 

two study cases with different rainfall-runoff characteristics are selected. The first case is 

water level prediction in Heshui catchment, China, where the effect of rainfall on runoff 

is predominant. The second case is river flow forecasting in Coquitlam catchment, 

Canada, where the hydrologic response to rainfall is highly nonlinear. The RS models 

(MLR, QRS and NRS) and ANN models trained with GDA (ANN-GDA) and LM 

algorithms (ANN-LM) were applied to the two catchments.  

Water Level Prediction in Heshui Catchment  

The Heshui catchment is located in Yongxin County, Jiangxi Province, China (Fig. 1a). It 

has an area of 2,228 km2 and characterized by the subtropical climate, with higher 

temperatures and rainfall in the summer season. Within the catchment, the average 

rainfall per year is about 1,509 mm, and most of the rain falls between the months of 

April and June, with an average at 850.5 mm. The average evaporation per year is 1,066 

mm (Huang et al., 2010). 
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------------------------------------------ 

Place Figure 1 here 

------------------------------------------ 

The meteorological and hydrological data are measured and collected in Beimen 

station (26°50'N and 114°15'E). The dataset contains the information of daily rainfall and 

water level for a period of 13 years (1988-2000), of which 11 years (from 1988 to 1998, 

4018 data points) were used for calibration and 2 years (from 1999 to 2000, 731 data 

points) were used for validation. Statistical information of Beimen station is provided in 

Table 1. 

------------------------------------------ 

Place Table 1 here 

------------------------------------------ 

One-day ahead forecasting based on the previous three days’(e.g. through trial and 

error) water levels and rainfall was carried out using the MLR, QRS, NRS, ANN-GDA 

and ANN-LM models. The ANN models can be illustrated by the following expression: 

6,5,1 1 2 3 1 2 3( ,  ,  ,  ,  , )t t t t t t tQ ANN Q Q Q R R R                     (13) 

where Qt is the mean daily water level [m] for current day under prediction; t is the time 

point representing the day of concern (i.e. current day); ANN6,5,1 represents the ANN 

model with 6 inputs, 5 nodes in one hidden layer and 1 output node; Qt-i and Rt-i (i = 1, 2, 

3) are the mean daily water level and daily rainfall [mm/day], respectively, in the 

previous three days. 

Table 2 shows the performances of the models, as well as the computational time for 

training. All the five models provide acceptable results in terms of R2 (ranging from 0.90 
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to 0.93), E (ranging from 0.89 to 0.93), RMSE (ranging from 0.094 to 0.115 m) and 

MAPE (ranging from 6.2 to 7.4), out of which NRS and QRS outperform ANN and MLR. 

From Table 2, parameters of MLR and QRS were determined in 5 seconds; NRS took a 

slightly longer time (e.g. 20 seconds) than MLR and QRS; the ANN-GDA required 18.5 

minutes and the ANN-LM required 7.5 minutes. Generally, the QRS and NRS model 

proposed in this study not only performed as good as ANN, but also were able to provide 

a faster training.       

------------------------------------------ 

Place Table 2 here 

------------------------------------------ 

River Flow Forecasting in Coquitlam Catchment 

The Coquitlam catchment is located in the south of the Georgia Basin, Canada which 

is a tributary of the Lower Fraser River (Fig. 1b). The catchment has an area of 191 km2 

and average elevation of 1,154 m, and is characterized by a west-coast maritime climate 

with cool wet winters and warm dry summers. Runoff from the Coquitlam catchment is 

generated by both rainfall and snowmelt. Melt of the mild and upper elevation 

snow-packs continues over several months and usually generates the largest inflows in 

May or June. The second largest inflows occur in November and December, primarily as 

a result of heavy rain and associated melt of moderate-elevation snow-packs. 

Daily discharge is available from Water Survey of Environment Canada and 

meteorological data is initially provided by Greater Vancouver Regional District (GVRD) 

and Environment Canada, including daily precipitation, snow water equivalent, and 

maximum and minimum daily temperature over the study catchment (Huang et al., 2007). 



 

 14

As showed in Fig. 1(b), the daily discharge is collected at the hydrometric station 

08MH141 during year 1982 to 2002. The daily rainfall and mean temperature are 

collected at the climate station 1101890.The statistical characteristics of the data used in 

this study are summarized in Table 3. The dataset from year 1990 to 1999 (3652 data 

points) was used for calibration and the dataset from 2000 to 2001 (731 data points) was 

used for verification. 

------------------------------------------ 

Place Table 3 here 

------------------------------------------ 

Models applied here to predict the daily discharge were developed in the same 

manner as for the Heshui catchment. Considering the complexity caused by snow melt, a 

new predictor (i.e. daily mean temperature) was added since temperature is supposed to 

be one of the main factors influencing snow melt. Thus, 9 predictor parameters were used 

including 3-day previous rainfall, daily discharge and mean temperature. The equations 

for the RS models were obtained by substituting these parameters into Eqs. (2), (3) and 

(5). ANN models could be represented by the following expression:  

9,8,3,1 1 2 3 1 2 3 1 2 3( ,  ,  ,  ,  ,  ,  ,  ,  )t t t t t t t t t tQ ANN Q Q Q R R R T T T        
               

 (14) 

where Qt is the daily discharge [m3/s] for current day under prediction; ANN9,8,3,1 

represents the ANN model with 9 inputs, 8 and 3 nodes in two hidden layers and 1 output 

node; Qt-i , Rt-i and Tt-i (i = 1, 2, 3) are the previous 3-day daily discharge [m3/s], rainfall 

[mm/day] and daily mean temperature [ºC], respectively. 

Table 4 lists the performance and computation time of the models applied to daily 

discharge forecasting. The results show that all of the models could only obtain R2 and E 
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values from 0.65 to 0.73, RMSE values from 3.6 to 4.1 m3/s and MAPE value from 186 to 

239. One of the reasons for the relatively poorer performance by the models is the 

complex rainfall-runoff process characterized by continuous snow melt and periodic 

precipitation. There is also a suspicion that the data collected at the climate station may 

not be truly representative of meteorological conditions in the catchment as the station is 

not located within the catchment (Fig. 1b). In addition, some of the missing temperature 

data had to be augmented using historical temperature data for the same period; this 

invariably introduces uncertainties with regards to the input data. Nevertheless, from the 

perspective of model comparison, the results appear to have the same characteristics as 

observed for the Heshui catchment. MLR is the worst performing model and the other 

four models show higher levels of accuracy (average 10.77% improvement in R2 or E 

compared to MLR). The parameter estimation process of NRS has increased by 4 minutes 

due to the increase in the number of predictors. In total, 12 and 24 minutes were required 

for training the ANN-GDA and ANN-LM, respectively. It is still obvious that the QRS 

and NRS could be more cost-effective options to ANN. 

------------------------------------------ 

Place Table 4 here 

------------------------------------------ 

DISCUSSIONS 

Performance Analysis for Different Modeling Scenarios  

The performance of the RS and ANN are compared under the following four 

scenarios: (1) using inputs (e.g. discharge, rainfall) with different lags; (2) long term 
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(monthly, yearly) predictions; (3) peak runoff values; (4) using training samples from 

different time periods. 

Fig. 2 shows the results of the predictions conducted using the input variables lagged 

from 1 to 8 days. The results demonstrate that the models are not sensitive to the lag in 

the input data for the Heshui catchment which exhibits moderately nonlinear behaviour. 

The NRS obtained the best performance for each scenario. For Case 2 where the system 

is highly nonlinear, the model results are sensitive to the prediction using the observed 

data for the 3 or 4 previous days as inputs. With the exception of MLR, all models, 

deteriorated in performance when the inputs were lagged by more than 4 days; in 

particular, the performances of QRS and NRS decreased drastically. Generally, the 

prediction models using hydrological and meteorological data observed in the previous 3 

or 4 days are suitable considering both the amount of data and prediction reliability. 

------------------------------------------ 

Place Figure 2 here 

------------------------------------------ 

The computation time for training ANN models (ANN-GDA and ANN-LM) and 

NRS is also compared in Fig. 2. MLR and QRS are not included since their coefficients 

estimation process is not significantly affected by the inputs varying with different lags. 

The same architecture and training dataset are utilized in ANN models to estimate the 

computation time required. The number of inputs is the only variable, associated with the 

different lags used. The results show that the computation time for the ANN models is 

not sensitive to the different lags used in the inputs. The architecture, learning algorithm 

employed and the size of the training dataset may be the main factors. However, it was 
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evident that the computational time of the NRS model will increase with the increase of 

the number of parameters. A large number of coefficients in the NRS model may lead to 

intensive computational burden and cause trouble in practical applications, particularly in 

short term forecasting (e.g. hourly or minutely flood forecasting). 

The monthly and yearly averages of the predictions were then calculated based on 

the average of the predicted daily values for appropriate time periods. Fig. 3 illustrates 

the comparison of the daily, monthly and yearly predictions by different models. As 

mentioned previously, QRS and NRS outperform ANN and MLR models in daily 

prediction. The differences between the models in monthly and yearly predictions can be 

ignored since all models performed well; however, the QRS and NRS models are 

marginally better.    

------------------------------------------ 

Place Figure 3 here 

------------------------------------------ 

Attention is often paid to the forecasts of the peak discharge or water level due to its 

importance in water resources and flood management applications. The performance of 

the peak values prediction was thus considered as another metric in model evaluation. 

The following formula defines that the runoff level (e.g. discharge or water level) is 

considered to be the peak value if and only if the runoff level of current day is no less 

than the value of previous day and the next day as well: 

    1 1| t t t tQ Q Q Q Q Q                                   (15) 

where Qt, Qt-1 and Qt+1 denote the runoff of the current day, previous day, and next day 

respectively. 



 

 18

In total, 151 and 123 peak values were extracted from the verification set for Case 1 

and Case 2 (731 data points for each case), and the performance of the peak value was 

re-calculated using Eqs. (9) and (10). Figure 4 shows a comparison of the results of the 

peak value and whole dataset of the models for the two catchments. The comparison 

shows that MLR, QRS, NRS and ANN-GDA appear to perform better for the peak value 

for the Heshui catchment which has moderate nonlinearity while the improvement in 

performance is not as obvious for the Coquitlam catchment, which is highly nonlinear. 

This can also be seen from the low Nash-Sutcliffe coefficients for the peak values 

obtained by the RS models; although the results for the whole dataset appear reasonable. 

This drawback of the RS models in forecasting the peak values should be noted in 

practical applications. 

------------------------------------------ 

Place Figure 4 here 

------------------------------------------ 

Finally, the performances of the models trained using the data from different years 

are illustrated in Fig. 5. The results illustrate that MLR is insensitive to the size of the 

training samples, but at least 3 years’ training data is necessary for ensuring the other 

models obtain acceptable prediction accuracies. The QRS and NRS show the same 

characteristics, where the performance would improve as the length of data used for 

training increases up to 3 years for both cases. After 3 years, R2 and E would reach a 

plateau for Heshui catchment simulations, but those for the Coquitlam catchment would 

exhibit a slightly decreasing trend. The ANN models, on the other hand, exhibit a higher 

degree of fluctuations in the results, particularly in Case 2. The results of the RS models 
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exhibit a more distinct trend when the length of calibration dataset increases, making it 

more straightforward to identify a suitable sample size for training. However, the ANN 

models are more sensitive to the length of the calibration dataset.  

------------------------------------------ 

Place Figure 5 here 

------------------------------------------ 

Model Comparison 

In this study, RS models (MLR, QRS and NRS) are compared with ANN trained 

with GDA (ANN-GDA) and LM algorithms (ANN-LM) in two hydrologic forecasting 

applications with different rainfall-runoff characteristics. The results show that MLR may 

be only suitable for rainfall dominated hydrologic forecasting. The ANN can obtain 

results with high accuracy, which is consistent with the conclusions reported by most 

literatures, but the long training time may be an issue in some practical applications (e.g. 

hourly or minutely flood forecasting), where the dataset may be large and the time for 

training is limited. The QRS and NRS are able to achieve comparable performance as 

ANN, in spite of the shorter time required for calibration. This conclusion is different to 

the discovery of Singh and Deo (2007) who reported that the QRS model was highly 

unsatisfactory compared to ANN in their study. This suggests that the comparative 

performance of the QRS and ANN may be highly problem specific. 

Having an explicit expression is one of the advantages of RS models. This brings a 

reduced amount of effort required for model manipulations (e.g. programming, parameter 

estimation, computation etc.). Particularly, MLR and QRS can obtain quick response for 

parameter estimation since the linear equations of the first-order and second-order 
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polynomials are solved directly. NRS requires relative longer calibration time since the 

coefficients had to be estimated via a nonlinear fitting process (e.g. LM algorithm), 

although the existence of the exponential coefficients improves its capability for 

nonlinear modeling. Moreover, the correlation implied in RS models can be easily 

revealed and the explicit expression can facilitate post-optimization analysis (e.g. 

uncertainty and sensitivity analysis). 

The ANN provides a flexible framework for establishing the network architecture 

and adjusting the learning algorithm and transfer function. It facilitates the modeler to 

develop the ANN model easily for specific application through trial and error until the 

calibration and validation are acceptable. For RS models, it is relatively cumbersome to 

explore the guidelines of how to adjust the equation expressions to obtain better 

performance. A relative longer time for training is expected for ANN due to the fact that 

the transfer function is applied in each neural and the weighted sum is calculated through 

the entire network to generate the output. As a result, the long training time (in the order 

of minutes to hours) may render the ANN models to be inadmissible to certain 

applications (e.g. hourly flood forecasting), where real time gauge data assimilation is 

important. RS models such as QRS and NRS, on the other hand, may fulfill the real time 

data assimilation tasks expeditiously.  

CONCLUSIONS 

The response surface (RS) models including multiple linear regression (MLR), 

quadratic response surface (QRS) and nonlinear response surface (NRS) were introduced 

and applied to predictions of daily runoff. Two catchments, one in southeast of China and 
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the other in western Canada were used to demonstrate the applicability of the RS models. 

A comparison study was conducted on the RS models (MLR, QRS and NRS) and 

artificial neural network (ANN), trained with gradient descent with adaptive learning rate 

(ANN-GDA) and Levenberg-Marquardt learning algorithm (ANN-LM), respectively. 

The results indicate that QRS and NRS are able to obtain comparable performance within 

shorter training times, thus rendering these models as viable alternatives to the ANN 

models. 

Other issues such as the performance of the models using inputs with different time 

lags, the ability of the models to make long term and peak value predictions, and the 

sensitivity to the length of training samples were also analyzed. It was concluded that the 

performance of the ANN was sensitive to the inputs with different numbers of the 

previous days and the length of the training data. The RS models’ results showed distinct 

variation with the time lags in the input data. The computational time of NRS was highly 

sensitive to the number of inputs. QRS and NRS performed better in daily prediction 

comparing to ANN, whereas the advantage in monthly and yearly predictions was not 

obvious. The performance of the ANN-GDA model in predicting the peak value was 

better than the ANN-LM and RS models. 

This paper was an attempt to apply RS models in hydrologic forecasting and to 

compare RS with ANN under various predictive scenarios. RS models can provide an 

alternative for researchers and engineers engaged in hydrologic forecasting. Future 

studies are still needed to investigate the performance of the RS models applied in 

various scales of watersheds and multistep ahead forecasting. 
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Table Caption List: 

Table 1. Statistical information of rainfall and water level in Heshui catchment 

Table 2. Performance in predicting water level for Heshui catchment 

Table 3. Statistical information of hydrological and meteorological data in Coquitlam 

watershed 

Table 4. Performance in predicting daily discharge for Coquitlam catchment 

 

Figure Caption Lists: 

Figure 1. Maps of the study area 

Figure 2. Performance and computation time using inputs with different lags  

Figure 3. Comparison between daily, monthly and yearly predictions by different models. 

Figure 4. Performance of peak value vs. whole dataset 

Figure 5. Performance using different lengths of training data 
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Table 1. Statistical information of rainfall and water level in Heshui catchment 

Statistical 
Parameters 

Rainfall (mm/day) Water level (m) 
1988-1998 1999-2000 1988-1998 1999-2000 

Minimum  0.0 0.0 109.01 109.07
Maximum  104.3 100.7 112.97 112.19 
Average 4.206 4.274 109.57 109.56 
Standard deviation 10.113 10.201 0.369 0.363 
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Table 2. Performance in predicting water level for Heshui catchment 

Models 
Calibration Verification Computation 

time (s) R2 E RMSE MAPE R2 E RMSE MAPE 

MLR 0.898 0.898 0.1178 6.7185 0.900 0.890 0.1148 7.3727 5 
QRS 0.923 0.923 0.1023 5.8478 0.926 0.926 0.0988 6.4761 5 
NRS 0.925 0.925 0.1012 5.7429 0.932 0.932 0.0945 6.2977 20 

ANN-GDA 0.914 0.914 0.1082 6.0689 0.920 0.920 0.1028 6.5330 1110 
ANN-LM 0.920 0.920 0.1037 5.8393 0.922 0.921 0.1016 6.4467 450 
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Table 3. Statistical information of hydrological and meteorological data in Coquitlam 

catchment 

Statistical 
Parameters 

Rainfall (mm/day) Mean Temperature (ºC)  Discharge (m3/s) 
1990-1999 2000-2001 1990-1999 2000-2001 1990-1999 2000-2001 

Minimum  0.000 0.000 -11.30 -3.00 0.297 0.54 

Maximum  282.60 137.6 24.80 22.30 107.0 58.80 
Average 10.550 9.122 9.331 8.901 6.841 5.943 

Standard deviation 21.493 17.316 6.340 5.705 9.640 6.814 
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Table 4. Performance in predicting daily discharge for Coquitlam catchment 

Models 
Calibration Verification Computation 

time (s) R2 E RMSE MAPE R2 E RMSE MAPE 

MLR 0.594 0.594 6.1419 298.231 0.650 0.650 4.0368 238.458 5 
QRS 0.691 0.691 5.5382 236.668 0.722 0.720 3.6089 190.278 5 
NRS 0.704 0.704 5.2450 233.841 0.721 0.719 3.6189 186.444 240 

ANN-GDA 0.654 0.654 5.6795 267.500 0.721 0.720 3.6120 203.748 720 
ANN-LM 0.642 0.640 5.7875 268.129 0.725 0.711 3.6685 216.597 1470 

 


