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Optimization of structural adders in fixed coefficient

transposed direct form FIR filters

Mathias Faust and Chip-Hong Chang

Centre for High Performance Embedded Systems, Nanyang Technological University, Singapore

Abstract—Over the last two decades, fixed coefficient FIR
filters were generally optimized by minimizing the number of
adders required to implement the multiplier block in the trans-
posed direct form filter structure. In this paper, an optimization
method for the structural adders in the transposed tapped delay
line is proposed. Although additional registers are required, an
optimal trade-off can be made such that the overall combinational
logic is reduced. For a majority of taps, the delay through
the structural adder is shortened except for the last tap. The
one full adder delay increase for the last optimized tap is
tolerable as it does not fall in the critical path in most cases.
The criterion for which area reduction is possible is analytically
derived and an area reduction of up to 4.5% for the structural
adder block of three benchmark filters is estimated theoretically.
The saving is more prominent as the number of taps grows.
Actual synthesis results obtained by Synopsys Design compiler
with 0.18µm TSMC CMOS libraries show a total area reduction
of up to 13.13% when combined with common subexpression
elimination. In all examples, up to 11.96% of the total area
saved were due to the reduction of structural adder costs by
our proposed method.

I. INTRODUCTION

The inherit stability makes FIR filters a preferred choice

in digital signal processing. As wireless technology advances,

FIR filters with shorter transition bands, more stringent stop-

band attenuation requirement and higher sampling rate, are in

great demand. To achieve these goals, ASIC implementation

is necessary. The Transposed Direct Form (TDF) structure is

preferred over direct form structure for higher order ASIC

filters due to its shorter critical path delay. In the direct form

structure, the input is delayed before the coefficient multipli-

cation and the register length of each tap is fixed by the input

bit width. In the TDF structure, the partial sums generated by

the outputs of the coefficient multiplier, are delayed. Thus, the

lengths of the registers increase monotonically along the taps

to hold the correct precision of the partial sums. Consequently,

the number of registers needed for the TDF structure is larger

than that for the direct form. Fig. 1 shows a generic TDF fixed

coefficient FIR filter. For long filters, the shorter critical path

of the TDF is more significant than the costs of the registers.

Fig. 1. Transposed direct form FIR Filter.

Over the last two decades, the complexity of implement-

ing TDF FIR filters has been minimized by modelling the

multiplier block [1]–[5] as a Multiple Constant Multiplication

(MCM) problem [2]. MCM optimization algorithms empha-

size on the minimization of the number of adders in the

multiplier block and assume that the cost for each addition is

the same. Recently, more accurate results have been reported

by using the Full Adder (FA) count as the cost metric [6],

[7]. The structural adder (SA), ai, (i = N−2, N−3, . . . , 0) is

defined as the adder that adds the output of the register, pi to

the output of the coefficient multiplier, qi in the tapped delay

line. The structural adders have been omitted by most MCM

algorithms, as it is not possible to share these adders. In gen-

eral, the operands to the structural adders are binary numbers

in two’s complement representation. Thus, the smaller addend

needs to be sign extended to match the bit width of the other

operand. This leads to a higher fanout for the Most Significant

Bit (MSB) of the smaller input. For positive coefficients, the

sign of the coefficient multiplier output follows the sign of the

input value. As the bit width of the coefficient multiplier, qi,

is always smaller than that of the partial sum, pi, a high load

is imposed on the sign bit of the input.

In [8], a technique called MSB-Fix is used to avoid sign

extension. It uses constant correction vectors as in the partial

product addition of two’s complement multiplication. These

constant correction vectors are grouped together and lumped

at the last tap. Due to the delay of the partial sums in the

TDF FIR filters, the first N −1 outputs are incorrect as the

cumulative error has to propagate to the last tap. In [8], the

FIR filter in the all-digital modem has only N =20 taps. This

system needs more than 20 clock cycles to start up, so the first

19 incorrect outputs are not critical. For generic FIR filters, in

particular high order filters with large N , the flushing of N−1
incorrect output samples may not be acceptable. Therefore,

an alternative approach to simplifying the structural adders is

necessary.

For fixed coefficient FIR filters, the bit widths of the input

and all coefficients are known. This enables the bit width of

the coefficient multiplier to be determined from its dynamic

range. As the partial sums are delayed before they are added

with the coefficient multiplier outputs in the structural adders,

the bit widths of the structural adders increase monotonically

from the first structural adder towards the output. Careful

analysis revealed that for most filters, the bit width of the adder

increases only from coefficient N−1 to about N/2, after which

the bit width stays relatively constant and increases by no more



than two bits. As the bit width of the coefficient multiplier

output reduces towards the last tap, longer sign extension is

required for these structural adders. This paper proposes an

addition scheme to reduce the bit widths of these structural

adders so that the total combinational logic is reduced at the

expense of some register overhead. To determine if the area

reduction is able to offset the overheads of additional adders

and registers, a lower bound for the difference between the

adder bit width and the coefficient multiplier output bit width

is established analytically.

II. PROPOSED STRUCTURAL ADDER OPTIMIZATION

As the proposed method optimizes the trade-off between

the structural adders and registers, a ratio of these two com-

ponent areas is required. A structural adder adds two two’s

complement numbers using Carry Propagate Adder (CPA).

The simplest CPA is a Ripple Carry Adder (RCA). Faster

adders like carry look-ahead or carry select adder require more

area than a RCA. For simplicity, the complexity of structural

adder is assessed based on the number of FAs required to

implement a RCA. A delay element is used to hold the output

of the structural adder for one clock cycle and is typically

implemented by delay Flip-Flop (FF). The authors of [9]

suggest a ratio of 1 : 0.6 ∼ 0.8 for FA:FF. The TSMC 0.18µm

standard cell library [10], which is used for our simulation,

contains a variety of FFs with areas measured from 53.2 to

86.5µm2 and a standard FA cell has an area of 69.9µm2. These

documented numbers and the simulation results showed an

average area of 69.2µm2 for FF and FA in typical FIR filters

synthesized with this standard cell library. Therefore a FA:FF

ratio of 1 : 1 (ρ = 1) is adopted in this paper.
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Fig. 2. Bit width analysis for tapped-delay line signals of Filter 1 of [11].

An area of several successive structural adders can be

optimized by exploring the aggregate difference in the bit

widths between the delayed signals and the outputs of the

coefficient multipliers. Fig. 2 shows the analysis of Filter

Example 1 of [11]. The bit width of the partial sum is the

minimal bit width based on the conventional range estimation.

It remains constant after c60 whereas the coefficient multiplier

output’s bit width reduces towards both ends. As the difference

between the bit widths of the coefficient multiplier output

and the partial sum increases towards the output tap, longer

sign extension is required for these structural adders. Six or

more bits are required for the sign extension for the structural

adders, a52 to a0. The other two bit widths marked as reduced

structural adder and lower bisection part in the legend are

obtained from our proposed structural adder reduction scheme,

which will be explained in what follows.

The fundamental concept of our proposed method can be

illustrated by an example in decimal. Let {610,−274, 2, 258}
be a set of coefficient multiplier outputs to be accumulated to a

large partial sum 1234567 by the structural adders in a tapped

delay line. A downright approach is to add one number at

a time from the set of smaller integers to the large integer.

Alternatively, the integers in the set are summed and then

added to the large integer. The latter accumulation scheme,

when implemented in hardware, requires the large integer and

the smaller integers to be stored at each tap. This incurs a large

register overhead, which can be reduced if the large number

is split into two smaller integers as shown in Fig. 3.

Fig. 3. Example of adder size reduction for decimal number accumulation.

By partitioning the large integer into two halves, the register

overhead is greatly reduced as only the fourth overlapping digit

has to be saved twice. The additional adder at the last step

needs only a four-digit addition as the three least significant

digits are all zeros. Besides, the reduction of the dynamic

ranges of the operands also simplifies the structural adder

implementation and reduced the length of sign extension.

Fig. 4. Binary example on the optimization of last three adders of Fig. 2.

Fig. 4 shows the binary implementation of the proposed

scheme on the last three coefficients of the filter example from

Fig. 2. The reduction of adder lengths is observed to be several

times more than the register and adder overheads it incurred.

Furthermore, the delays through the structural adders, a2 and

a1 have been reduced, while the delay through a0 is increased

by one FA delay. The slight increase in the delay through a0 is

not an issue as in most cases, there exists at least one tap (i >
0) for which delay(x·c0) < delay(x·ci). The FAs reduction

for the structural adders can be offset by the increase in FF

overhead. Therefore, information about the minimal difference

between the addends of the structural adders is of interest.



With reference to Fig. 1, pi and qi are the inputs to the ith
structural adder, ai, where qi is the ith coefficient multiplier’s

output and a0 is the last adder that produces the output y.

Let n(z) be the bit width of an arbitrary signal z and let
[

v−i , v+
i

]

be the dynamic range of qi. The selected partial sum,

pi is bisected into two halves, i.e., pi = pu
i

∣

∣pl
i at bit position,

hi such that n
(

pl
i

)

= hi and n(pu
i ) = n(pi)− hi. If pu

i is

added, after m delays, to the sign extended pl
i−m+1 where

n(pl
i−m+1) > hi, then the original structural adders, ai−j+1

will be replaced by the reduced structural adders, ai,j , for j =
1, 2, . . . , m. The minimal bit width n(ai,j) of each reduced

adder can be obtained by the following range estimation

n(ai,j)=

⌈

log2

(

max

(

2hi− 1 +

j−1
∑

k=0

(

v+
i−k

)

,−

j−1
∑

k=0

(

v−i−k

)

))⌉

+ 1

(1)

In (1), the value, 2hi − 1 is the maximum possible value of

the lower bisected partial sum, pl
i. Since the first term provides

the bit width of the magnitude from the dynamic range, the

constant ’1’ is added to account for the sign bit. As j increases,

the values of n(ai,j) grow monotonically as v−i ≤ 0 and v+
i ≥

0. The total number of FAs saved by the m successive reduced

structural adders starting from the ith tap is given as follows:

∆i,m=

m−1
∑

k=1

[(n(pi)−n(ai,k))−ρ (n(ai,k)−hi)]− (n(ai,m)−hi)

(2)

where ρ is the FA:FF ratio. In (2), the term n(pi) − n(ai,k)
denotes the adder cost reduction and the term n(ai,k) − hi

represents the register overhead. The last term, n(ai,m) − hi

refers to the overlapping bits for the addition of pu
i . As

n(ai,m) > hi, ∀ci 6= 0, it is apparent from (2) that there

is no saving if m = 1.

Hypothetically, hi can be any arbitrary value smaller than

n(pi). However, as n(ai,j) is dependent on v+
i and v−i , it can

be optimally deduced. If hi>max
(⌈

log2

(

v+
i

)⌉

,
⌈

log2

(

−v−i
)⌉)

,

the FA saving in the structural adders is reduced. If it is chosen

to be smaller, the register overhead and the FA cost of the final

addition are higher. As n(qi) is not monotonically decreasing

with i, hi needs to be selected by looking ahead into several

coefficients. It was empirically determined that a look ahead

of 5 coefficients is sufficient. This leads to

hi = max
(⌈

log2

(

v+
k

)⌉

,
⌈

log2

(

−v−k
)⌉)

, ∀ k = i, i−1, . . . , i−5
(3)

Combining (1) and (3) it can be derived that n(ai,j) ≥
hi + 2, ∀j > 0. Defining δi = n(pi) − hi, from (2) we have

∆i,j ≤ (m − 1)·(δi − 2 − 2ρ) − 2 (4)

In order to not increase the area, the following lower bound

can be derived from (4).

δi ≥ 2
m (1 + ρ) − ρ

m − 1
(5)

If m → ∞, δi ≥ 2 (1 + ρ). Usually, m is small and for

TSMC 0.18µm standard cell library, ρ ≈ 1, δi ≥ 2(2m−1)
m−1 .

For m = 2, δi ≥ 6 and for m = 3, δi ≥ 5.

The above formulae hold only if no zero valued coefficient

is involved. Since no structural adder is required to add a zero

coefficient, no saving can be gained from the structural adder

but the overhead due to the overlapping bits remains. Exper-

iment results showed that in many cases it is not beneficial

to span the bisected partial sum addition process over zero

coefficients. It was also observed that n(ai,j) = hi + 2 is

valid only for j ≤ 3. This observation suggests the use of

n(pi) − n(qi) ≥ 6 to select the partial sum for bisection. In

Fig. 2, it can be seen that the first bisection is made at the

partial sum of the tap where the partial sums of the tap and

all successive taps have n(pi) − n(qi) ≥ 6. hi is always one

bit below n(qi), as the sign bit is not included in the range
[

v−i , v+
i

]

calculated in (3).

From (1), n(ai,j) grows monotonically with increasing j.

This implies that the FF overhead is increasing as the FA

reduction in the structural is declining. The gain diminishes

with increasing m and can become negative. Furthermore, as

n(qi) decreases towards c0, a smaller hi can be chosen for

better gain. This suggests that it is beneficial to make repeated

bisections. The bisection can be repeated in two ways. If only

area reduction is of interest, it is more optimal to merge pu
i

at a tap and then bisect the partial sum again on the next tap.

This will increase the path delay at each merging structural

adder. To avoid the delay penalty, the merging and bisecting

can be performed simultaneously at the same tap. For this

concurrent merge/bisect structural adder ai, the operand, pl
i

from the previous bisection is bisected again at hi such that

pl
i = plu

i

∣

∣pll
i . plu

i is sign extended and added to pu
i while

pll
i is added to qi. The register overhead will be increased by

two FFs, but since the additions are independent, the delay

through the structural adder is also reduced as the operands

are shortened due to the simultaneous merging and bisection.

Experiment results showed that the delay reduction is more

prominent than the cost of two FFs. Therefore, simultaneous

merging and bisection is adopted. For the last tap, one FA

delay increment due to the final merging is inevitable as shown

in Fig. 4. In most cases, this is not a problem as c0 does not

fall in the critical path. In case the minimal delay is affected,

the final merging could be moved to an earlier tap.

For the most optimal trade-off, it is suggested that (2) is

calculated for every i>2 for which n(pi)−n(qi)≥6 is valid.

Every {i, j} pair will be checked to determine if a repeated

bisection would lead to a better result than the best result

obtained from the previous runs. This exhaustive search finds

the most optimal cost reduction. The complexity of this search

is O(n2). On an Intel P4, 3.0 GHz PC with 2 GB RAM, the

runtime is below 10 seconds for filters with N >1000.

TABLE I
TEST FILTER DATA

Filter
ωP ωS Ap As Tap Word Length

[π] [π] [dB] [dB] # cn In Out

A 0.042 0.14 0.2 -60 60 13 8 25

B 0.8 0.74 0.1 -80 121 14 8 25

C 0.2 0.2125 0.05 -50 441 14 8 26



TABLE II
EXPERIMENTAL RESULTS

Filter
Estimated Delay Total Filter Area [µm

2] Area Reduction Compilation Time [s]

SA Reduction [ns] CSD [3] Prop. & [3] [3]/CSD Opt./CSD Prop./ [3] CSD [3] Prop.

A
2.03%
(51 FA)

∞ 188 078 186 608 182 510 0.78% 2.96% 2.19% 65 66 60

3 212 760 216 798 201 014 -1.90% 5.52% 7.28% 137 131 105

B
2.63%
(138 FA)

∞ 397 778 396 351 381 684 0.36% 4.05% 3.70% 159 158 141

3 468 028 463 397 432 645 0.99% 7.56% 6.63% 389 373 285

C
4.58%
(900 FA)

∞ 1 389 870 1 385 835 1 317 281 0.29% 5.22% 4.94% 535 495 380

3 1 666 463 1 644 279 1 447 606 1.33% 13.13% 11.96% 1780 1566 975

III. IMPLEMENTATION RESULTS

The proposed method was evaluated using Example 2

from [12] (Filter A), Example 1 from [11] (Filter B) and

Filter 3 from [5] (Filter C). The details are given in Table I.

All examples used signed digit to optimize the coefficients.

The estimated FA reduction of each filter is shown in the

second column of Table II. A CSD implementation and a

non- pipelined NRSCSE [3] optimized implementation of the

MCM block are used to demonstrate the effectiveness of our

structural adder optimization. The proposed structural adder

optimization scheme was combined with the optimized MCM

block and all designs were coded in VHDL and synthesized

by Synopsys Design Compiler (Ver. 2007.12) using TSMC

0.18µm standard cell library. The designs were optimized

under two different delay constraints, unconstrained (∞) and

fixed constraint (3ns). The synthesized area and the percentage

area reduction over the baseline CSD implementation were

shown in Table II. The compilation time was reported by

Design Compiler on Red Hat Linux (Ver. 4.1.2-13) running

on a Core2 2.66GHz workstation with 3.3GB RAM.

The area reduction over CSD implementation by [3] is small

due to the Boolean optimization made by Synopsys Design

Compiler. The combination of the proposed scheme and [3]

reduced the area by 2.96% to 13.13% and after discounting the

saving due to the MCM block optimization of [3], the actual

synthesis results still exceed the expected saving of 2.03%,

2.63% and 4.58% from theoretical estimation for these filters.

The discrepancy between the estimated and simulation results

can be explained as follows. The proposed optimization trades

combinational area against registers and reduces the path de-

lays in several taps. The reduced combinational logic requires

less area and the area reduction is more prominent under

tighter delay constraints. Moreover, the reduced path delays

create more slacks, which enable slower but smaller cells to

be used. As filter length increases, the area for the structural

adders dominates, up to 96% for Filter C. The time taken by

the synthesis tool to optimize the architecture generated by our

proposed method has also reduced significantly. The time for

unconstrained case was reduced by 7.6%, 11.5% and 29.1%

for Filters A, B and C, respectively and 23.2%, 26.6% and

45.2% for the case of fixed delay constrained optimization.

IV. CONCLUSION

This paper presents a new method to reduce the total area

of fixed coefficient transposed direct form FIR with a large

number of taps by minimizing the bit widths of the structural

adders. Sign extensions have been shortened and the delays

through the structural adders have been reduced at the expense

of some register overhead and a reduced size merged adder

for each bisection of a long partial sum. The condition for

which area reduction is possible and the optimal bisection

were analytically formulated. Theoretical estimate shows an

area reduction of up to 4.5% for the structural adder block

of the benchmark filters. The proposed method was combined

with a MCM optimization algorithm. An area reduction of

up to 13.13% (up to 1.33% by MCM optimization and up

to 11.8% by the proposed method) was obtained from the

synthesis result of long filter.
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