
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Consensusability of discrete‑time multi‑agent
systems via relative output feedback

You, Keyou; Xie, Lihua

2010

You, K., & Xie, L. (2010). Consensusability of discrete‑time multi‑agent systems via relative
output feedback. Paper presented at the 2010 11th International Conference on Control,
Automation, Robotics & Vision (ICARCV), pp.1239‑1244.

https://hdl.handle.net/10356/84865

https://doi.org/10.1109/ICARCV.2010.5707272

© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at: [DOI:
http://dx.doi.org/10.1109/ICARCV.2010.5707272].

Downloaded on 20 Mar 2024 17:31:15 SGT



Consensusability of Discrete-time Multi-agent Systems via 

Relative Output Feedback 

 

Keyou You and Lihua Xie 

 

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 

E-mail: {youk0001,elhxie}@ntu.edu.sg. 

 

 

Abstract 

This paper investigates the joint effects of agent dynamic and network topology on the 

consensusability of linear discrete-time multi-agent systems via relative output feedback. An 

observer-based distributed control protocol is proposed. A necessary and sufficient condition for 

consensusability under this control protocol is given, which explicitly reveals how the intrinsic 

entropy rate of the agent dynamic and the eigenratio of the undirected communication graph 

affect consensusability. As a special case, the discrete-time double integrator system is discussed 

where a simple control protocol directly using the two-step relative position feedback is provided 

to reach a consensus. The theoretic results are illustrated by a simulation example. 

Index Terms—Multi-agent systems, communication graphs, consensusability and eigenratio. 

 

I. INTRODUCTION 

In recent years there has been an increasing interest in the study of the interplay between 

communications and control. It has been realized that information flow and communication 

constraints may significantly affect the performance of a control system. The research in this 

field has ushered new control paradigms such as quantized feedback control, networked control 

and cooperative control, see the special issue [1] and the references therein. 

Distributed coordination of multiple agents has attracted a considerable interest in various 

scientific communities due to broad applications in many areas including formation control 

[6], distributed sensor networks [4], flocking [17], distributed computation [13], and 

synchronization of coupled chaotic oscillators [3], [5]. The common property of those 

applications is that each individual agent lacks global knowledge of the whole system and can 

only interact with its neighbors to achieve certain global behaviors. Within this framework, 

communication graph (topology), which determines what information is available for each agent 

at a given time instant, is an important aspect of information flow in distributed coordination. For 

example, to achieve an average consensus which requires the states of all agents to 

asymptotically converge to the average of their initial values, the communication graph must be 

connected for a fixed topology [18] while for a switching topology, the union of the 



communication graphs should contain a spanning tree frequently enough as the system evolves 

[10], [12], [19]. Also, it has been known that the convergence rate to consensus directly relies on 

the second smallest eigenvalue of the graph Laplacian matrix [16], [18]. 

A fundamental problem dealing with the existence of consensus protocols has been studied in 

the recent works [14], [26], which respectively give a necessary and sufficient condition for the 

consensusability of continuous-time and discrete-time multi-agent systems with respect to a 

common consensus protocol. By merging ideas from algebraic graph theory and control theory, 

they are able to characterize the interplay between communication topology and agent dynamic. 

In particular, it is shown that the minimum requirement for consensusability is that the dynamic 

of each identical agent has to be stabilizable and the eigenratio of the undirected communication 

graph must be greater than a threshold, which is determined by the intrinsic entropy rate [15] of 

the agent dynamic. However, the results were established under a critical assumption that each 

agent can precisely measure the state feedback relative to its neighboring agents. Extending our 

previous work of [26], we restrict ourselves to the case that each agent can only access the output 

relative to that of its neighbors. The problem arises in the situation that the agent does not know 

its position in a global coordinate system but can measure its position relative to that of its 

neighbors. 

In this paper, an observer-based distributed control protocol is proposed to study the 

consensusability problem. The idea of designing a dynamic control protocol for synchronization 

of networked multi-agent systems was recently adopted in [20], [21]. The main shortcoming of 

those works lies in the assumption that the agent dynamic is neutrally stable [2]. This assumption 

significantly simplifies the problem under investigation and conceals the fact that the strictly 

unstable modes of the agent dynamic pose a fundamental limitation on the eigenratio of the 

undirected communication graph. Here the eigenratio is referred to the ratio of the second 

smallest eigenvalue and the largest one of the undirected graph Laplacian matrix. We shall 

explore their relationship in the current work. As a special case, the consensusability of the 

discrete-time double integrator multi-agent systems is discussed. By exploiting the property of 

double integrator systems, a simple control protocol directly using the two-step relative position 

is provided to reach a consensus of the multi-agent system. 

The rest of the paper is organized as follows. Section II introduces the concepts of 

communication graphs and the consensusability on graphs. Two admissible control protocols are 

proposed as well. The consensusability analysis is proceeded in Section III, where some 

necessary and sufficient conditions are given for the consensusability under the corresponding 

control protocols. In Section IV, the consensusability of the discrete-time double integrator 

systems is discussed, whose results are demonstrated by a simulation example in Section V. The 

conclusion remarks are drawn in Section VI. 

Notations:      denotes the spectral radius of matrix A. We use conventions that  
 

 
  , 

     and 
 

 
  . For any positive integer  , let   = {1,…, N}.    is the identity matrix with 

dimension    . ‖   ‖ represents the standards    norm on vectors or their induced norms on 

matrices. The transpose of matrix   is denoted by   . diag (       ) is a block diagonal matrix 

with main diagonal blocks matrices   ,          and zero off-diagonal block matrices. The 



Kronecker product [9], denoted by ⊗, facilitates the manipulation of matrices by the 
following properties: (1)   ⊗      ⊗      ⊗   ; (2)    ⊗       ⊗   . 

II. PROBLEM FORMULATION 

A. Communication graph 

Let           be an index set of   agents with    representing the  -th agent. An 

undirected graph      will be utilized to model the interactions among these agents, 

where        is the edge set of paired agents and  with nonnegative 

elements is the weighted adjacency matrix of the graph . Self-edges       are not allowed, i.e., 

              .         if and only if         Note that for an undirected graph ,  is a 

symmetric matrix. The neighborhood of the  -th agent is denoted by              . The 

degree of the agent   is represented by      ∑    
 
   . Denote the diagonal matrix   

 diag              . The Laplacian matrix of  is defined as        which is a 

symmetric positive semi-definite matrix and its eigenvalues in an ascending order are wriiten as 

     (  )     (  )           .a sequence of edges                             with 

(       )               is called a path from agent    to agent   . A communication graph  

is said to be connected if for any two agents      , there is a path from agent   to agent  . A 

graph is called complete if each pair of agents can directly communicate with each other, i.e., 

              

B. Consensusability on graphs 

 

The dynamic of agent   takes the following form: 

 

 
 

where                  and          respectively represent  the state, control input and 

output of agent  .       ,        and        are respectively the state, input and 

observation matrices. 

 

Consider the situation where each agent does not know its exact output but can measure the 

output relative to those of its neighboring agents. For instance, in vehicle coordination, the 

vision-based sensor on a vehicle can not directly locate the position of the vehicle in a global 

coordinate system but can measure the relative position to its neighbors. While in networked 

clock synchronization, we are more concerned with the time difference between each pair of 

clocks. In addition, the communication link of   is assumed to be perfect in the sense that we 

ignore effects due to quantization, packet dropout, transmission errors and delays. 

 

By adapting to the available information for each agent, we say a control protocol admissible 

if each agent generates its control input signal by relying on relative outputs. Generally, 

admissible control protocols can be categorized depending on whether they are static or dynamic. 

A dynamic protocol uses memory and can be potentially more powerful. In the sequel, two 

admissible control protocols will be proposed. Precisely, we first adopt a static control protocol: 



 
 

Definition 2.1: Given an undirected communication graph , the discrete-time multi-agent 

systems of (1) are said to be consensusable under the static protocol (2) if for any finite 

            , the control protocol can asymptotically drive all agents close to each other, i.e., 

 

 
 

The second admissible control protocol is an observer-based dynamic protocol that depends 

on an internal controller state. In our previous work [26], the following consensus protocol using 

the relative state feedback is exploited: 

 

 

Since  is no longer available in the current framework, a very natural thing is to design an 

observer to estimate  for the control design. In consideration of the agent dynamic, the 

following observer-based control protocol for agent   will be studied. 

 

At time  , agent   computes the aggregate relative measurements to those of its neighbors, . 

Together with control inputs from its neighbors,          , which will be received before 

time    , the agent updates its internal controller state to obtain  and produces the 

control input        . It is clear that the dynamic control protocol in (5) is admissible. 

Compared to the static protocol in (2), this dynamic protocol requires each agent to broadcast its 

control input to its neighboring agents. 

Observe the special case that the initial estimate is perfect, i.e., , it can be 

easily shown that   ,     . When the consensus is reached, the internal controller 

state  of this case becomes zero. By taking this into consideration, it is reasonable to impose 

an additional condition on the definition of consensus that all controller internal states , 

    should asymptotically converge to zero. 

Definition 2.2: Given an undirected communication graph , the discrete-time multi-agent 

systems of (1) are said to be consensusable under the dynamic protocol (5) if for any finite      , 

     , the control protocol can asymptotically drive the states of all agents close to each other 

and all the controller internal states to zero, i.e. 



 

One of the main objectives of this paper is to derive a necessary and sufficient condition to 

ensure the consensusability of the multi-agent systems under the corresponding admissible 

control protocols. 

III. CONSENSUSABILITY ANALYSIS 

Since our focus is on undirected graphs, all the eigenvalues of    are nonnegative and real. 

For notational simplicity, we rewrite        as   ,    in the rest of the paper. 

Theorem 3.1: Given an undirected communication graph , the discrete-time multi-agent 

systems in (1) are consensusable under the static control protocol in (2) if and only if  there exists 

a common gain        such that             ,           . 

Proof: Denote the average state of all agents by  ̅    
 

 
∑       

    
 

 
   ⨂       , 

where         
         

    ] , and the deviation of each state from the average state by 

             ̅   , where 1 is a compatible dimension vector with each element of one and 

similar for 0 in the sequel. By Definition 2.1, it yields that 

 

Conversely,       ‖     ‖        immediately implies the consensusability of the 

multi-agent systems in (1). Thus, it is equivalent to find a necessary and sufficient condition such 

that       ‖     ‖       . Inserting the control protocol in (2) into each agent dynamic, 

the dynamical equation of      can be written as 

 

Considering that        , we obtain 

 

Let         
         

    ] , subtracting (7) from (8) leads to that  

 

Select       such that   
        

  and form the unitary matrix   [
 

√ 
        ]  to 

transform   into a diagonal form: diag (0,               . Further, using the property of 

Kronecker product gives that 



 

Denote  ̃       ⨂          and partition  ̃       into two parts, i.e.,  ̃    
  ̃ 

      ̃ 
    ]  where  ̃         is a vector consisting of the first   elements of  ̃   . Then, 

 ̃     
 

√ 
∑         

   . In view of (9) and (10), it yields that 

 

The rest of the proof is straightforward. 

Theorem 3.2: Given an undirected communication graph , the discrete-time multi-agent 

systems in (1) are consensusable under the dynamic control protocol in (5) if and only if the 

following conditions hold. 

(a)         is stabilizable and detectable; 

(b) Each agent cannot change too fast. Precisely, the product of the unstable eigenvalues of A 

is upper bounded by the following strict inequality: 

 

where   
     represent an unstable eigenvalue of  .    and    are respectively the 

second smallest and largest eigenvalues of an undirected graph. 

Moreover, if the above conditions hold, a control gain   that solves the consensus problem can 

be selected as   
 

     

    

    
, where   is a positive definite solution to the following discrete-

time algebraic Riccati inequality: 

 

The observed gain   is chose to make          . 

In the sequel,     ⁄  is termed as the eigenratio of an undirected graph. By Lemmas A.1-A.2 

[11], an upper bound of the eigenratio is given by 
  

  
 

        

        
  

Remark 3.1: 

1) For the average consensus problem in [18], the state of each agent is scalar and     
   . The condition in item (a) is automatically satisfied while the inequality of (12) 

implies that     . That is, the communication graph has to be connected which is 

consistent with the result in [18]. 

2) If the adjacent matrix  of the graph  is selected as a symmetric (0,1)-matrix, the 

eigenratio     ⁄    means that the communication graph is almost complete [7]. In 



this case, the controller can be designed almost in a centralized fashion. Then, it is clear 

that if         are stabilizable and detectable, consensusability can be achieved.  

3) It is well known that the convergence rate of the average consensus over an undirected 

graph is determined by    [16],[18]. By the Courant-Wely interlacing inequalities [9], 

adding an edge to the graph  will never decrease   , suggesting that the consensus 

performance will not deteriorate. Note that adding an edge to a graph may lead to a 

smaller eigenratio. Theorem 3.2 implies that it is possible to lose the consensusability of 

the multi-agent systems in (1) under the protocol (5) by adding an edge. It appears to be 

counter-intuitive since the communication graph with a ―better‖ connectivity may 

correspond to a worse consensusability. Whether the eigenratio will increase or decrease 

by adding an edge is not conclusive, see [5] for a more detailed discussion. 

4) The importance of the intrinsic entropy rate of a system, quantified by ∑        
      , 

has been widely recognized in networked control systems, e.g., [8], [23]–[25] as it 

determines the minimum data rate for stabilization of an unstable system. From this 

perspective, our result provides a bridge between information flow and communication 

data rate constraint. 

The proof depends on the following lemmas. 

Lemma 3.1: [25] Suppose that the sequence        is recursively computed by the formula 

                ,      and          ∑      
   ,       . Then if       

  

  
 

exists, we have                
  

  
. 

Lemma 3.2: [22] For any        and    , it holds that 

 

where   √    
 

 
             ‖ ‖. 

Proof of Theorem 3.2: Define  as the estimation error of , i.e., . 

Inserting the control protocol in (5) into each agent dynamic, the dynamical equation of      

can be written as 

 

Similarly, it is easy to show that 

 

Let        ⨂       ⊗     ̃    and partition into two parts         
       

    ]  

where          is a vector consisting of the first   elements of     . Then, following a 

similar line in the proof of Theorem 3.1 leads to that 

 

Necessity: By (1), we obtain that  



 

Together with (5), the error dynamic of   is written by             . Assume 

that the multi-agent systems in (1) reaches a consensus under the dynamic protocol on (5), it 

follows that 

 

Thus, it follows that          . This implies that       is detectable.  

Now, we consider a special case that the initial estimate of          is perfect. By the 

error dynamic of , it is easy to see that        , which further implies that 

            . In light of (17), it immediately follows that  (      )       

       . The rest of the necessity follows from Lemma 3.2 of [26]. 

Sufficiency: Since       is stabilizable, there exists a positive definite solution   to the 

algebraic Riccati inequality (13). In view of [26], the proposed control gain K can simultaneously 

stabilize the stabilizable pairs                       , i.e., 

 

In addition, the observer gain   will make the estimation error asymptotically converge to 

zero, i.e.,        ̃      , which further infers that       ‖     ‖   . Denote       

diag                  , it follows from (17) that  ̃               ̃     

∑             
 
   . Select a positive    such that   

   

‖    ‖
 and      ‖    ‖   . By 

Lemma 3.2, it follows that  ‖     ‖     . Thus, we obtain that ‖ ̃      ‖         

∑      
   ‖     ‖ . Consider an auxiliary system as follows          ‖     ‖     . In 

view of Lemma 3.1, we have that          
      ‖     ‖

   
  . By induction, it is clear that 

        ∑      
   ‖     ‖. Hence, we have proved that 

 

Together with the fact that  ̃           , it follows that       ‖    ‖   . Thus, we get 

that       ‖           ‖         , which further implies that       ‖     ‖  

     . Moreover, the following statements are straightforward: 



 

The proof is completed. 

IV. SPECIAL CASE: DOUBLE-INTEGRATOR SYSTEMS 

Consider discrete-time double-integrator systems for each agent as follows: 

 

where          and         respectively correspond to the position and velocity of agent   
at time   .           is the control input. 

A. One-step relative position feedback 

Consider the situation that each agent does not know its position in a global coordinate 

system but can measure its position relative to neighboring agents. One may attempt to reach a 

consensus by adopting control protocol as follows: 

 

Intuitively, the above control protocol only uses relative position information, it may not be able 

to drive the multi-agent system to reach a consensus. 

Theorem 4.1: The second-order multi-agent systems (23) can not reach a consensus under the 

control protocol (24) for any undirected communication graph. 

Proof: In view of (17), it can be similarly established that 

 

It is straightforward that  

 

Together with (25), we can not guarantee that for any finite initial state             ‖ ̃   ‖  

 . This complete the proof.  

B. Two-step relative position feedback 

The relative velocity can be accessed by using the relative position information with one-step 

delay. For example,         
             

 
. Thus, we study the following control protocol. 

Let                  , 



 

This above protocol requires each agent to store one-step relative position feedback. Even under 

such a simple protocol, a connected graph is also sufficient to guarantee to reach a consensus. 

Theorem 4.2: Given an undirected communication graph , the second-order multi-agent 

systems (23) are consensusable under the control protocol (27) if and only if the communication 

graph is connected. Moreover, if this condition holds,       in the protocol of (27) can be 

chosen from the set 

 

Proof: Similarly, we obtain that           , 

 

Let         ̃ 
        ̃ 

    ] , where  ̃             . In view of (29), the dynamical 

equation of       is expressed by 

 

Thus, the necessary and sufficient condition for the multi-agent system (23) to reach a consensus 

is that                              . 

Necessity: If the communication graph is not connected, it immediately follows that       , 

which implies that                         . In view of (30), we can’t guarantee that 

      ‖     ‖                  . This contradicts the definition of consensusability of the 

multi-agent systems. 

Sufficiency: We show that for any connected graph and any           , it holds that 

                             . It is easy to compute that 

 



Let the polynomial                     . By using the Jury’s test stability criterion, 

it can be shown that all roots of      are inside the unit circle if and only if         , where   

is the stability region and defined as follows: 

 

Finally, it can be verified that for any         , (           )                 . 

Together with (31), the proof is completed. 

V. AN ILLUSTRATIVE EXAMPLE 

In this section, a simulation example is included to validate the theoretic results in Section IV. 

We consider a team of four vehicles with an undirected graph  shown in Fig 2. The adjacency 

matrix is selected as (0, 1)-weighted symmetric matrix. The configuration variables are 

initialized as                       ]  and                   ] . Let the sampling interval 

  = 0.25 s and the control gain     ]           ]      . It shows in Fig 3 and 4 that a 

consensus is reached for all vehicles. 

VI. CONCLUSION 

Motivated by the constraint that the agent can only get the relative output feedback for 

distributed control design, we have studied the joint effects of the agent dynamic and the 

communication graph on the consensusability with respect to an admissible control protocol. The 

distinct feature of our results lies in the precise quantification of their effects on consensusability. 

A simple control protocol has been proposed to reach a consensus for the discrete-time double 

integrator multi-agent systems. A simulation example was studied to verify our theoretic results. 
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