This document is downloaded from DR-NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore.

Vibrations of a rolling piston type ROTARY compressor

Low, Hock Yam

2008

Low, H. Y. (2008, March). Vibrations of a rolling piston type ROTARY compressor. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/84875

© 2008 The Author(s).

Downloaded on 20 Mar 2024 20:20:52 SGT

URECA undergraduate Research Experience on CAmpus

Vibrations of a rolling piston type ROTARY compressor

Introduction

Reasons for studying rolling piston rotary compressor are as follows:

- Widely used in refrigerators & air-cons
- To reduce noise of vibrations
- To increase reliability/ reduce failure

2 Objective

- To analyse the torsional¹ vibrations at different state of operations.
- To be able to predict magnitude of torsional vibrations and affecting factors

Results Steady state operations 20 µm (0.3mrad) displacement on hemetic shell inertia of torsional 3 stationary vibration 🗟 part Increased separation of natural frequency from exciting frequency reduce vibration.

1: Torsional vibration refers to vibration of stationary part

Stopping operations Tweak compressor Peak caused by power- off angle, e, mrad s, mrad change vibration magnitude 28mrad Reason? Discovery! |Θ,|, mrad Large Small volume Large vibration in compression • compression • magnitude chamber at moment 0 & 2π rad Swept volume of compression chamber

Category: 5

Project ID: MAE07120

Magnitude of torsional vibration

5 Conclusion

State	When vibration occur	How to estimate magnitude
Starting	End acceleration of shaft	Max motor torque and spring constant
Stopping	Just after power off	Corresponds to power off angle
Steady	-NA-	Max gas compression moment moment of inertia

Student: Low Hock Yam Supervisor: A/P Ooi Kim Tiow