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ABSTRACT 
A ray method is proposed for predicting the insertion loss of parallel wide barriers, where 
some neighboring ones have same height. The method is based on the geometrical theory 
of diffraction and extended from an exact boundary solution for a rigid wedge. The model 
is available for arbitrary receiver locations, even on the shadow or reflection boundaries 
from the barrier top edges or being very close to the edges. The results from the 
simulations and the boundary element method are compared to validate the ray model, 
which shows that the model is considerably accurate for engineering applications. 

 

1 INTRODUCTION 
To assess the impacts of noise on multiple residential buildings along highways, a 

quantitative description of sound diffraction around these buildings is required. Sometimes 
these buildings are similar with same height and the receiving points are close to the top 
edges of these buildings compared to wavelength, such as top floor windows.  

There are many previous studies on predicting sound diffraction around similar obstacles. 
Keller [1-3] presented the geometrical theory of diffraction (GTD) to efficiently describe the 
diffraction in terms of rays, which is accurate enough for most practical cases. Pierce [4, 5] 
presented solutions for single diffraction around a wedge and for double diffraction over a 
single wide barrier. Chu et al. [6] further extended Pierce’s formulas [4] for a wide barrier 
with finite thickness. Kwai [7] developed a method for diffraction around a multi-sided 
barrier, which was later modified by Kim et al. [8] for many extended cases such as 
polygonal-like shapes. Salomons [9] presented a model for sound propagation over several 
wedges with receiver far from the edge. Using statistical energy analysis, Reboul et al. [10] 
recently proposed an equation able to predict the multiple diffraction around several 
diffracting edges.  

However all these reviewed previous models either are hard to be used for sound 
diffraction over obstacles with more than four edges or lead to singularities for wide barriers 
of equal height. In this paper, a method convenient for engineering application is derived to 
predict the insertion loss of separate parallel wide barriers with some neighboring ones of 
equal height for arbitrary receiver locations. 

 

                                                 
a Email address: hqmin@nju.edu.cn 



2 THEORETICAL FORMULAS 
Two wide barriers of different heights shown in Figure 1 are taken for illustrating the 

geometry and overall sound diffraction of the current problem, where source is a point source 
or coherent line one and the ground is infinite and rigid. Only the incident sound normal to 
the lengthwise axis of barriers is considered, thereby the geometry is simplified to a plane 
perpendicular to lengthwise axis including the receiver and source shown in Figure 1.  

Sound diffraction over these wide barriers is simplified and illustrated by arrowed lines in 
Figure 1. There are 12 main diffraction rays in energy by geometric 
rules: )'(4321)'( RRSS →→→→→ , )'(4321)'( RRMSS →→→→→→  and 

)'(431)'( RRSS →→→→ . The brackets mean optional. When the heights of two barriers 
become identical, every edge is assumed to be able to observe all the others from its location 
when searching diffraction rays similarly in Figure 1. 

 
Figure 1: Overall sound diffraction over wide barriers 

2.1 Diffraction Coefficient 
Diffraction coefficient is introduced to solve the field of an individual diffraction ray. In 

Figure 1, the single sound diffraction field dφ  at R can be written as [1] 
 

Eincd D⋅= φφ , (1)
 

where incφ  is the incident sound to edge E and ED  is a complex coefficient named after 
diffraction coefficient at edge E. 
 

 
 

Figure 2: Single diffraction by a wedge. 
 



ED  is deduced from Eq. (1) and the boundary solution of a rigid wedge with a point 
source [5] and can be expressed as 
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where ω  is the angular frequency of sound, )|( ESG f  denotes the direct sound in free field 
at edge E, parameters iς  and β  are the angles illustrated in Figure 2. ),,( βω ivF ℜ  is an 
integral 
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where parameters iℜ  are illustrated in Figure 2. Integrand function )(qI  is 
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where k is the wave number and 1−=j . 

The detailed function form dependent on the integrant q in Eq. (3) of parameter iℜ  is 
given by [5] 
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)( iA ς  is an angular function and can be expressed as 
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In Eq. (5), the parameters Sr and Rr  are the distances shown in Figure 2, and the quantity 

L is defined as the total distance along the path of diffraction ray from S to edge E and then to 
R, which equals RS rr +  in Figure 2. 



When R is on the shadow or reflection boundary in Figure 2, iℜ should be calculated by  
 

iℜ 2/122 )cos2( iRSRS rrrr ς⋅⋅−+= . (9)
 

And accordingly, 
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2.2 Double and Multiple Diffractions 
For double diffraction shown in Figure 3, the ray can be viewed as the single diffraction 

by edge 2E  from incident ray 21 EES →→ . The latter can be treated as a single diffraction 
of S incidence to 1E  with location 2E  being a virtual receiver 1VR , whose field is denoted by 

)|,( 111, EVRSdφ . By using Eq. (1), field of the double diffraction ray, ),|,( 212, EERSdφ , can 
be determined by 
 

),|,( 212, EERSdφ 2111, )|,( Ed DEVRS ⋅= φ , (11)
 
where 2ED  is coefficient of the single diffraction by edge 2E , from a virtual source 2VS  and 
then to receiver R. 2VS  is defined on the reverse extension line of 21 EE →  and is apart from 

2E  for a distance equaling the total length of the ray 21 EES →→ .   
 

 
Figure 3: Double and multiple sound diffraction rays over wide barriers. 

 
The field )|,( 111, EVRSdφ  can also be expressed similarly as 
 

)|,( 111, EVRSdφ 11)|( Ef DESG ⋅= , (12)
 

where 1ED  is the diffraction coefficient at edge 1E , with receiver 1VR  and source S. 



The double sound diffraction ),|,( 212, EERSdφ  can be determined by Eq. (11) and (12), 
),|,( 212, EERSdφ ),()|( 21211 EEDDESG EEf α⋅⋅⋅= , (13)

 
where ),( 21 EEα  is a weighting factor and equals to 1/2 for 1E  and 2E  being connected and 
equals to unit if 1E  and 2E  are not connected. 

Similarly, ),,...,,,|,( 1321, nnnd EEEEERS −φ , field of the multiple sound diffraction ray 
propagating along n edges shown in Figure 3, can be expressed as 
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Particularly for ElD  in Eq. (14), 1VS  represents the location of source S, nVR  represents 

the location of receiver R as shown in Figure 3 and 1),( 10 ≡EEα  in Eq. (15). 

3 NUMERICAL VALIDATIONS 
The proposed method is validated with the boundary element method (BEM). Insertion 

loss of two hard wide barriers of equal height is investigated in Figure 4, where the source is 
a coherent line one parallel to barriers and the receiver is located in the shadow zone apart 
from the nearest barrier top edge for 3.5 metres. Here the frequency whose wavelength equals 
the minimum edge-edge distance 0.6 m is 573 Hz. From Figure 4, over the frequency range 
down from eight times larger than 573 Hz to some few times smaller than 573 Hz, the 
predictions from the proposed method agree well with those from the BEM.  

 
Figure 4: Insertion loss (IL) at R (5.14m, 0.5m) of two rigid barriers with same height of 2.4 m. 



Another example is investigated in Figure 5, where receiver changes to location apart 
from the nearest edge for only 0.2 m, the source and the minimum edge-edge distance remain 
the same with the first case. Good agreement between the results with the proposed method 
and the BEM is observed again, over the frequency range down from 5000 Hz to about one 
half of 573 Hz. 

 

 
Figure 5: Insertion loss at R (3.97m, 2.9m)of three rigid barriers with 2.4 m or 3 m height. 

 
From the above results, with wavelength less than edge-edge distances, small 

discrepancies between the predictions from the proposed method and the BEM are observed 
on some tone frequencies, and the reason for this is that the diffraction rays searched in the 
proposed method for the cases are actually not complete in theory but main ones in energy, 
which means that some weak rays such as ones diffracted by barrier edges and the barrier 
foot corners on the ground are not included to simplify the evaluation of the total field. These 
neglected rays may cause interference exactly at these frequencies and then take noticeable 
influence on the total field. Generally for less than six diffracting edges, accuracy of the 
proposed method can be ensured with wavelength less than twice of edge-edge distances. 
Additionally, the proposed method depends little on the receiver-edge distance, even if the 
latter is quite small compared to wavelength. 

4 CONCLUSION 
A ray-based method is proposed to predict the insertion loss of parallel wide barriers with 

some neighboring ones of equal height for arbitrary receiver locations. Numerical simulations 
show that the method can predict the insertion loss with a certain accuracy. The proposed 
method is useful for engineering applications in predicting sound diffraction around variously 
configured shapes with many diffracting edges, such as buildings, convex or concave 
obstacles. 
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