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Model of the Hardness Prediction for the Diffusion 
Nitriding 

Vladimír Horák1, Vladimir V. Kulish2, Vojt�ch Hrubý1, and Tereza Mrázková1
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Kounicova 65, 662 10 Brno, Czech Republic 

2School of Mechanical and Aerospace Engineering, Nanyang Technological University,  
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Abstract.  The plasma nitriding process produces a hard near-surface thin layer of the nitrided material. The thickness of 
the diffused layer, produced in the course of this process, is between 0.001 and 0.6 mm. The paper presents a diffusion 
model of plasma nitriding that allows one to predict the material hardness distribution within the near-surface layer as a 
function of time for a modified nitrogen diffusion coefficient. The temperature dependence of the diffusion coefficient 
are considered in the paper. Hence, the model involves the reaction rates of nitrides formation. The one-dimensional 
transient diffusion model is then applied to a thin nitride layer. The solution thus obtained is compared with 
experimental data for a decrease of hardness as a function of depth and time, until the core hardness is reached.  

Keywords: Diffusion, Nitriding, Hardness, Logistic Function.
PACS: 81.65.Lp

INTRODUCTION 

The plasma nitriding of steel, as the process of 
chemical action of gaseous nitrogen, causes a creation 
of nitrides in the surface layer of material. Nitriding 
technology is widely used to increase the surface 
hardness, the fatigue resistance, as well as the surface 
treatment and corrosion protection. The thickness and 
composition of a surface layer are given by the course 
of nitrogen diffusion into a microstructure of a nitrided 
material and by the system of proceeding chemical 
reactions during the nitriding process.  

The nitriding process is strongly affected by the 
furnace atmosphere temperature and vacuum pressure. 
The thickness of the nitrided layer is determined by the 
holding time of nitriding. All these parameters need to 
be included in a mathematical model of the nitriding 
process. 

THEORETICAL BACKGROUND OF 
THE PROBLEM 

Molecular diffusion is referred to as the penetration 
of molecules or atoms in a material due to a molar 
concentration gradient c.  

The rate of diffusion dn/d� of a substance is 
proportional to the isoconcentration surface area A and 
is expressed by Fick's first law of diffusion as the 
molar diffusion flux in the direction x normal to the 
isoconcentration surface  

dx
dcAD

d
dn −=
τ

, (1) 

where D is the diffusion coefficient expressing the 
ability of particles to diffuse into the material. This 
coefficient is a function of pressure and temperature.  

The unsteady-state diffusion describes Fick's 
second law of diffusion determining the concentration 
distribution during the transient diffusion in the form  

2

2

x
cDc

∂
∂=

∂
∂
τ

. (2) 

The partial differential equation (2) is of the 
parabolic type. The integration of this equation with 
respect to the initial and boundary conditions is used to 
determine the concentration distribution within a 
material. There are a number of analytic solutions of 
equation (2) for the time-depended, one-dimensional
diffusion. Such solutions are given in books by Crank 
[1] and Carslaw and Jaeger [2].  

The practically important solution is for the 
diffusion through a semi infinite solid with constant 
surface concentration. Boundary conditions: for � = 0, 
c = c0 and for � > 0, c = cs at x = 0 and c = c0 at x = �
(see Figure 1). Application of these boundary 
conditions to equation (2) yields the solution 
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where c is the concentration at distance x after time �. 
The expression erf is the Gaussian error function [3]. 

The resulting concentration profiles at three 
different time moments are shown in Figure 1.  

FIGURE 1. Concentration Profiles for Unsteady-state 
Diffusion at Three Different Times 

The nitrided material hardness distribution should 
be corresponding to the concentration profile of the 
diffusing nitrogen.    

Because the nitriding process proceeds in a thin 
layer for a relatively long exposure time and for the 
above mentioned invariable boundary conditions, the 
problem can be simplified as the one-dimensional 
quasi-stationary solution that can be easily applied for 
bodies of simple shapes: plane, cylindrical, and 
spherical.  

In the case of the steady state diffusion through a 
plane wall (see Figure 2), the isoconcentration surfaces 
are planes parallel to the wall surface and 
perpendicular to the x axis.  

FIGURE 2. Schematic of Diffusion through the Plane Wall 

The differential equation of Fick's law of diffusion 
(1) can be easily solved by the separation of variables. 
By integrating we obtain 

x
cc

AD
d
dn s−

−=
τ

 (4) 

This molar diffusion flux causes the change in the 
molar concentration within the volume of layer of 
thickness x due to diffusion. Thus is  

ττ d
dcAx

d
dn =  (5) 

By comparing the right sides of equations (4) and 
(5) and separating the variables we can integrate 

�� −=
−

τd
x
Ddc

cc s
2

1
 (6) 

By integrating equation (6) for the initial 
conditions, as shown in Figure 2, we obtain 

( ) τ20 x
Dccc s −=Δ−− lnln  (7) 

and by rearranging the equation for the concentration 
distribution within the plane wall in the final form   

�
�
�

�
�
�−=

−
−

2
0 x

D
cc
cc

s

s τexp  (8) 

Concentration profiles obtained from solving 
equation (8) for three different time moments are 
shown in Figure 3. 

FIGURE 3. Concentration Profiles for Quasi-stationary 
Solution of Diffusion at Three Different Times 

Applying of the same procedure to the cylindrical 
wall of surface radius rs, we obtain the equation for the 
concentration distribution at distance x from the 
surface after time � in the form valid for the concave 
side of the surface 
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and for the convex surface of the cylinder 
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The one-dimensional quasi-stationary solution of 
the concentration distribution for the spherical wall of 
surface radius rs at distance x from the surface after 
time � for the concave surface of the sphere is given by 
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and for the convex spherical surface 
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The comparison of concentration profiles obtained 
from solving equations (8), (9), (10), (11), and (12), 
i.e. for flat, cylindrical (concave and convex), and 
spherical (concave and convex) surfaces, is shown in 
Figure 4a.  

FIGURE 4a. Concentration Profiles for Flat, 
Cylindrical, and Spherical Surfaces, rs = 7 mm 

In general, concentration profiles for the above 
cases are almost identical as seen from Figure 4a for 
the surface radius rs = 7 mm. If we want to have some 
partial differences, it is necessary to apply these 
equations for a smaller surface radius, e.g. rs = 3.5 mm 
as shown in Figure 4b. 

  

FIGURE 4b. Concentration Profiles for Flat, 
Cylindrical, and Spherical Surfaces, rs = 3.5 mm 

Anyway, if we want to apply the principle of one-
dimensional quasi-stationary diffusion for describing 
the nitriding process, where the diffused layer 
produced in the course of this process is between 
0.001 and 0.6 mm, it is evident that we can apply the 
flat surface solution for any nitriding shape. 

This conclusion agrees well with the one drawn in 
[4], where the generalized equation of energy transport 
has been analyzed.  In that work the Laplace operator 
was written in its most general form, to account for the 
geometry effect. 

Now we are looking for a universal representation 
(approximation) of solution (3) in terms of elementary 
functions. It is evident that the logistic function in the 
form  

( )[ ]τkxbacc
cc

s −+
=

−
−

exp1
1

0

0  (13) 

is the best candidate for such an approximation.  
We are now looking for the parameters a, b, and k, 

to provide the best fit.  
Firstly, because for x = 0 and � = 0  c = cs, it 

immediately follows that a = 1.  
Then, π4=b provides the best fit, to account 

for the coefficient π2  in the definition of the error 
function.  

Yet, to account for the physical properties of the 
material the diffusion coefficient must be included (it 
dictates the slope of the solution). In view of this, the 
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final expression for the parameter b
becomes Db π4= .  

Finally, the parameter k describes the propagation 
of the diffusion front inside the material. In other 
words, it determines how fast the position of 
isoconcentration surfaces changes. Obviously, k
depends not only on the physical state of the material 
in question but also on temperature.   

MODEL OF THE HARDNESS FOR 
DIFFUSION NITRIDING 

It is possible to assume, that the material hardness 
distribution within the near-surface layer corresponds 
to the concentration profiles by diffusion. 

Effect of Holding Time of Nitriding 

The nitrided steel hardness HV distribution for four 
different holding times of nitriding is shown in Figures 
5. The hardness achieved on the surface HVs decreases 
with the depth x until core hardness HV0 is reached. 
The nitriding creates a high surface hardness and a 
sharp transition zone between nitrided surface and the 
core material.  

Results of the hardness distribution testing for 4, 9, 
15, and 40 hours of nitriding processed at the 
temperature 500 °C are given for the steel of the 
material number 32CrMoV12-10. The surface 
hardness HVs = 1140 and the core hardness HV0 = 520. 

By applying the quasi-stationary solution given by 
equation (8), we obtain the hardness approximation in 
the form  

�
�
�

�
�
�−=

−
−

2
0 x

D
HVHV
HVHV

s

s τ*exp  (14) 

where D* is the modified coefficient of diffusion as 
the coefficient of nitriding. 

Results of the quasi-stationary approximation (14) 
for D* = 0.0004 (mm2/h) in comparison with 
experiment are shown in Figure 5a. It is seen that 
results of approximation do not correspond to the 
experiment very well.  

If we want to improve the quasi-stationary 
approximation, it is necessary to apply the empirical 
member k into equation (14) as  

�
�
�

�
�
�−=

−
−

+ τ
τ

k
s

s

x
D

HVHV
HVHV

2
0

*exp  (15) 

Results of the given approximation (15) for D* = 
0.00009 (mm2/h) and k = 0.05 (1/h) in comparison 
with the experiment are shown in Figure 5b.  

FIGURE 5a. Hardness Profiles Approximation by 
Equation (14) for Various Time of Nitriding, 

Steel 32CrMoV12-10  

FIGURE 5b. Hardness Profiles Approximation by 
Equation (15) for Various Time of Nitriding,  

Steel 32CrMoV12-10 

FIGURE 5c. Hardness Profiles Approximation by 
Equation (16) for Various Time of Nitriding, 

Steel 32CrMoV12-10  
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The best results give the approximation by the 
logistic function (13) applied for the hardness profile 
approximation in the form   

( )
	
	



�

�
�


�
−+

=
−
−

τ
π

kx
D

HVHV
HVHV

s

*
exp 41

1

0

0  (16) 

Results of this approximation are given in Figure 
5c for D* = 1.0 (mm2) and k = 0.072 (mm/h) in 
comparison with the experimental data. 

Combined Effect of Nitriding 
Temperature and Holding Time 

Results of the hardness distribution testing for 
various nitriding temperatures and nitriding holding 
time are shown in Figures 6 for the steel of the 
material number X2CrNiMo17-12-2. The surface 
hardness HVs = 1400 and the core hardness HV0 = 220.  

Results of the improved quasi-stationary 
approximation (15) are given in Figure 6a for k = 0.05 
(1/h) and for the nitriding coefficients, which are
depending on temperature as: 
D* (450 °C) = 0.0000008 (mm2/h) 
D* (460 °C) = 0.000008 (mm2/h) 
D* (490 °C) = 0.00001 (mm2/h) 
D* (510 °C) = 0.0001 (mm2/h)  

Even this improved quasi-stationary approximation 
(15) does not correspond very well with the 
experimental data, namely for longer times of nitriding 
as seen in Figure 6a.  

FIGURE 6a. Hardness Profiles Approximation by 
Equation (15) for Varied Nitriding Temperatures and 
Different Time of Nitriding, Steel X2CrNiMo17-12-2
  

The logistic function (13) provides a very good 
approximation for various nitriding temperatures and 
nitriding holding time as shown in Figure 6a. This 
approximation is given for the nitrided material 
constant D* = 2.7 (mm2) and for the propagation 
velocities of nitriding front inside the material, which 
depend on temperature as: 
k (450 °C) = 0.0009 (mm/h) 
k (460 °C) = 0.0026 (mm/h) 
k (490 °C) = 0.0033 (mm/h) 
k (510 °C) = 0.0085 (mm/h)  

FIGURE 6b. Hardness Profiles Approximation by 
Equation (16) for Varied Nitriding Temperatures and 
Different Time of Nitriding, Steel X2CrNiMo17-12-2

CONCLUSIONS 

In this work, a universal representation for an exact 
solution has been found in terms of elementary 
functions. It has been demonstrated that the logistic 
function describes the process with accuracy less than 
two per cent. Moreover, only one parameter is 
sufficient to provide the best fitting of experimental 
data. 

The simple model developed in this study can, 
therefore, become a powerful tool for analyzing the 
process of nitriding in a wide range of applications.   
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