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Abstract

The minimum singular value (MSV) rule is a useful tool for selecting controlled variables (CVs)

from the available measurements. However, the application of the MSV rule to large-scale problems is

difficult, as all feasible measurement subsets need to be evaluated to find the optimal solution. In this

paper, a new and efficient branch and bound (BAB) method for selection of CVs using the MSV rule is

proposed by posing the problem as a subset selection problem. In traditional BAB algorithms for subset

selection problems, pruning is performed downwards (gradually decreasing subset size). In this work, the

branch pruning is considered in both upward (gradually increasing subset size) and downward directions

simultaneously so that the total number of subsets evaluated is reduced dramatically. Furthermore, a

novel bidirectional branching strategy to dynamically branch solution trees for subset selection problems

is also proposed, which maximizes the number of nodes associated with the branches to be pruned.

Finally, by replacing time-consuming MSV calculations with novel determinant based conditions, the

efficiency of the bidirectional BAB algorithm is increased further. Numerical examples show that with

these new approaches, the CV selection problem can be solved incredibly fast.

Keywords: Branch and bound, Control structure design, Controlled variables, Combinatorial opti-

mization, Minimum singular value, Self-optimizing control.
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Nomenclature

a column vector (lower case bold face letter)

A matrix (upper case bold face letter)

B best available lower bound on J

C candidate set of a node

Cn
m binomial coefficient of m choose n

F fixed set of a node

G full m× n matrix for row selection

GX sub-matrix of G consisting of rows with indices in set X

J selection criterion (to be maximized)

Jn(X) upper bound on J for all n-element subsets of X

m total number of candidate variables

n target size of the subset to be selected

Q defined as Q = GGT

QX,Y sub-matrix of Q consisting of rows and columns with indices in sets

X and Y , respectively

S union of the sets F and C, i.e. S = F ∪ C

S a two-tuple, S = (F,C) represents a node in the search tree

Xt subscript t represents the size of the set X

Xi superscript i represents the index of the sub or super set obtained

from X

αS
i ith downwards pruning index based on set S

βF
i ith upwards pruning index based on fixed set F

λi ith largest eigenvalue of a square matrix

λ minimum eigenvalue of a square matrix

σi ith largest singular value of a matrix

σ minimum singular value of a matrix
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1 Introduction

Control structure design (CSD) deals with the selection of controlled, manipulated and measured variables,

and the interconnections linking them. During the past few decades, a number of tools have been developed

for various problems arising in CSD; see e.g. [22]. Though extremely useful, a common feature of most of

these tools is that they require evaluation of all the possible alternatives. As the number of alternatives

grows rapidly with the problem size, in many practical situations it is impossible to do an exhaustive

search to find the optimal control structure. Thus, effective algorithms are required to find the globally

optimal solution without enumerating all the possible alternatives.

In this paper, we consider the selection of controlled variables (CVs) from the available set of measurements.

For this problem, a survey of most of the available methods is given by Van de Wal and de Jager [24].

Recently, Skogestad [21] introduced the concept of self-optimizing control, which is useful for selecting CVs.

The central idea is to select CVs such that in presence of disturbances, the loss incurred in implementing

the operational policy by holding these CVs at constant setpoints is minimal, as compared to the use of

an online optimizer. The choice of CVs based on the general non-linear formulation of self-optimizing

control can be time-consuming. To quickly pre-screen the alternatives, Skogestad and Postlethwaite [22]

presented the approximate minimum singular value (MSV) rule, where the CVs are selected such that the

MSV of the scaled gain matrix is maximum among different alternatives. The MSV rule has recently been

revisited in [11]. Though efficient for evaluation of a single alternative in comparison with the nonlinear

formulation, the MSV rule still suffers from computational intractability as the MSV need to be evaluated

for every feasible subset of measurements in order to find the optimal solution. For example, the selection

of 5 CVs from 50 measurements requires C5
50 ≈ 2.2 × 106 MSV evaluations. This drawback of the MSV

rule motivates the present work.

Kariwala and Skogestad [14] have demonstrated that the scaling of the gain matrix, required for application

of the MSV rule, can be performed prior to CV selection. In this sense, CV selection based on MSV rule

can be seen as selection of the rows of a matrix such that the MSV of the resulting square matrix is

maximum among all the alternatives. For this problem, an early sub-optimal solution was proposed by

Businger and Golub [3] based on QR factorization. Other possibilities for obtaining sub-optimal solutions

include the use of non-square relative gain array [5] and a sequential approach, where one row is selected

at a time such that the least non-zero singular value is maximum, until the resulting matrix is square [14].

The problem of MSV maximization by row selection can also be seen as a subset selection problem, for

which many different algorithms are available in literature [8]. Among these available methods, however,
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only the exhaustive search and branch and bound (BAB) method guarantee global optimality [8]. In

comparison to exhaustive search, a BAB approach gains its efficiency by pruning certain branches without

evaluating nodes (subsets) associated with those branches. To solve subset selection problems, a BAB

algorithm was first described by Narendra and Fukunaga [18] in the context of pattern recognition. This

algorithm has been subsequently improved by several researchers; see e.g. [8, 23, 25]. This algorithm is

powerful because any subset selection problem with a monotonic relationship between the subset size and

selection criterion can be solved using this method.

The usefulness of BAB method for solving mixed integer linear and nonlinear programming (MILP and

MINLP) problems is well-known [9, 20]. Luyben and Floudas [16] and, Kookos and Perkins [15] have

applied the BAB algorithm to problems arising in CSD using the general MINLP and MILP frameworks,

respectively. In these approaches, the lower and upper bounds on the objective functions are computed by

relaxing the integer variables as continuous variables. The optimization problems resulting upon integer

relaxation can be non-convex and thus global optimality cannot be guaranteed. In comparison, the use of

the BAB algorithm of Narendra and Fukunaga [18] for subset selection problems is advantageous, as the

need for solving the relaxed optimization problems is avoided. Furthermore, the BAB algorithm can also

be easily tailored to suit the specific problems in CSD as demonstrated in [6, 7, 14], where the globally

optimal solution is obtained without exhaustive search.

That MSV satisfies monotonicity requirement and renders the application of BAB method has been shown

by Cao et al. [7]. Similar to most of the problems dealing with subset selection, Cao et al. [7] use

downwards pruning (gradually decreasing subset size). Logically, pruning can also be conducted upwards

(gradually increasing subset size). Recently, Kariwala and Skogestad [14] showed that MSV satisfies

upward monotonicity and proposed a new BAB method. For maximization of MSV, we introduce the

following novel concepts in this paper:

(a) Bidirectional pruning: Intuitively, the upwards pruning based BAB method is more efficient than the

downwards pruning based BAB method, when only a few variables are to be selected from a large

number of measurements and vice versa. We show that the solution tree for upward (downward)

search contains a hidden downward (upward) structure. This observation enables us to combine the

two pruning strategies such that nodes that cannot lead to an optimal solution are discarded more

quickly and fewer nodes need to be evaluated.

(b) Bidirectional branching: The efficiency of a BAB method also depends strongly on the branching

strategy. By analyzing advantages and disadvantages of the upwards and downwards branching
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principles, a novel bidirectional branching strategy is developed. The proposed branching approach

dynamically decides upon the best search direction (upwards or downwards) and ordering of sub- or

super-nodes such that the number of nodes associated with a branch to be pruned is maximized.

(c) Determinant condition: BAB method spends most of its time in evaluation of non-optimal nodes.

The number of floating point operations required for MSV calculation increases polynomially (circa

O(n3) for n × n matrix [10]). We present a computationally inexpensive condition based on deter-

minants, which can be used to quickly decide upon whether expansion of a node can lead to the

optimal solution.

These three novel features greatly improve the efficiency of the BAB method in finding the optimal set

of CVs using the MSV rule. The improvement in computational efficiency is so substantial that for the

benchmark Hydrodealkylation of Toluene (HDA) process [2], which requires selection of 8 CVs among 129

measurements, the proposed method requires less than 0.1 seconds on a Windows XP SP2 notebook with

an Intel rCoreTM Duo Processor T2500 (2.0 GHz, 2MB L2 Cache, 667 MHz FSB) using MATLABr

R2006b. In comparison, the available methods [7, 14] require more than an hour for solving the same

problem. Hence, the concepts of bidirectional pruning, branching and determinant condition reduce the

solution time by 4 orders of magnitude for the HDA process. We also show that the proposed BAB

algorithm scales well with problem dimensions using several randomly generated matrices. In this sense,

the BAB algorithm proposed in this paper enables the practicing engineer to efficiently select CVs for

large-scale processes using the MSV rule.

Though in this paper, the problem of MSV maximization is considered for selection of individual mea-

surements as CVs, this problem has many other engineering applications. For example, in the local

self-optimizing control framework, the designer needs to select a specified number of measurements, whose

linear combinations found using null space method can be used as CVs. Alstad [1] has shown that these

measurements can be reasonably selected by squaring a matrix such that the MSV is maximized. Sim-

ilarly, based on controllability arguments, MSV maximization through selection of columns of the gain

matrix (or rows of its transpose) is useful for identifying appropriate manipulated variables for CSD [22].

Mavroidis et al. [17] have shown that the sensor locations for long reach manipulator systems can be

optimally selected by MSV maximization. Hoog and Mattheij [12] discuss the use of MSV maximization

for least squares problems for ill-conditioned matrices. In summary, the computationally efficient method

for MSV maximization presented in this paper is applicable to a wide variety of engineering problems.

The rest of the paper is organized as follows. The general principles of unidirectional BAB methods for
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subset selection are illustrated through upward and downward solution trees in Section 2. Then, the novel

bidirectional pruning and branching concepts are proposed in Section 3. These concepts are applied to

the MSV rule and efficient BAB algorithms are developed in Section 4. Developed algorithms are tested

with several numerical examples in Section 5 and the work is concluded in Section 6.

2 Unidirectional branch and bound

In this section, we formally define the problem of subset selection and briefly introduce the principles of

unidirectional BAB methods for solving the same.

2.1 Subset selection

Let Xm = {xi | i = 1, 2, · · · ,m} be an m-element set and Xn be an n-element subset selected from Xm.

A subset selection problem with criterion J is to find the globally optimal n-element subset, X∗n such that

J(X∗n) = max
Xn⊂Xm

J(Xn). (1)

Since there are Cn
m = m!

(m−n)!n! candidate n-element subsets available for selection, the total number of

candidates grows very rapidly as m and n increase and thus exhaustive search becomes unviable for large

m and n. BAB is one of the efficient approaches, which are able to find the globally optimal subset without

exhaustive search. BAB search can be conducted either downwards or upwards, where the elements are

gradually removed from or added to the subsets, respectively, until the desired subset size is reached.

2.2 Downward branch and bound

To present the downward BAB approach, let Jn(Xs), s > n, be a downwards upper bound on J over all

n-element subsets of Xs,

Jn(Xs) ≥ max
Xn⊆Xs

J(Xn) (2)

Further, let B be a lower bound of J(X∗n),

B ≤ J(X∗n) (3)

Then, it follows that

J(Xn) < J(X∗n), ∀Xn ⊆ Xs, if Jn(Xs) < B (4)
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Condition (4) indicates that none of subsets of Xs can be the optimal subset. Therefore, Xs and its subsets

can be discarded without further evaluation.

Remark 1 (Downward monotonicity) The above BAB principle requires an estimation of a down-

wards upper bound on the selection criterion J over all n-element subsets of a given set, i.e. (2). However,

if J satisfies downward monotonicity, i.e.,

J(Xs) ≤ J(Xt), if Xs ⊆ Xt (5)

then a simple downwards upper bound estimation can be adopted as,

Jn(Xs) = J(Xs) (6)
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(a) downward search
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665654654365432
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Figure 1: Solution trees for m = 6 and n = 2 selection

The first downward BAB subset selection algorithm based on an asymmetrical solution tree was proposed

by Narendra and Fukunaga [18] and further improved by several researchers [8, 23, 25]. To remove subset

redundancy, the tree is constructed asymmetrically, i.e. nodes at the same level have different number of

branches. An example of a downwards solution tree for selecting a 2-element subset from a 6-element set is

shown in Figure 1(a). In this tree, the top node is the root of the tree, which represents the set containing

all the available elements. From the top to the bottom, at each level, a node represents a subset obtained

by eliminating one element from its parent set. Labels at nodes denote the elements discarded there. The

bottom nodes of the tree are terminal nodes which represent all possible n-element subsets. For selecting

an n-element subset from an m-element set, (m− n) elements are to be discarded. Hence, the downward

search tree has (m− n+ 1) levels. All nodes at the same level have the same subset size.

For simple representation of the asymmetrical tree and recursive implementation of downwards BAB

algorithm, Cao et al. [6, 7] introduced the concepts of fixed and candidate sets of a node. In this paper,

these concepts are instrumental in derivation of bidirectional pruning and branching strategies discussed

in Section 3.
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Definition 1 (Downwards fixed set F ) The downwards fixed set, F ⊆ X is the largest subset of X,

whose elements are always included in all the sub-nodes of X.

Definition 2 (Downwards candidate set C) The downwards candidate set, C ⊆ X is the set of ele-

ments which can be freely removed from X, i.e. C = X \ F , where the symbol \ denotes exclude.

Fixed set and candidate set are complementary, i.e. s = f + c if Xs = Ff ∪ Cc. The downward solution

tree is branched according to the following branching rule.

Definition 3 (Downwards branching rule) The node Xs = Ff ∪ Cc has (n − f + 1) branches (sub-

nodes), which are denoted as Xi
s−1 = F i

fi
∪ Ci

ci
= Xs \ xi, i = 1, 2, · · · , (n− f + 1), arranged from the left

to the right. Fixed sets and candidate sets of sub-nodes are defined as:

F i
fi

= Ff ∪ {x1, · · · , xi−1} (7)

Ci
ci

= Cc \ {x1, · · · , xi} (8)

Cao and Saha [6] have shown that the branching rule of Definition 3 is complete without any redundancies,

i.e. each n-element subset belongs to one and only one branch.

Remark 2 (Hidden upward structure) According to (7), for the sub-nodes originating from the same

parent node, elements removed from the candidate sets of the left sub-nodes are passed as fixed elements

to the right sub-nodes [6, 7]. Therefore, the fixed set of the ith sub-node has (f + i − 1) elements, i.e.

fi = f + i − 1 and F i
fi

= F i
f+i−1. More importantly, the fixed sets of all the sub-nodes derived from the

same parent satisfy the following relationship:

F 1
f ⊂ F 2

f+1 ⊂ · · · ⊂ Fn−f+1
n (9)

where F 1
f is the fixed set of the leftmost sub-node and Fn−f+1

n is the fixed set of the rightmost sub-node. This

relationship indicates that there is a hidden upwards (fixed sets expand from left to right) structure in the

downwards search tree. This property is exploited to derive a bidirectional pruning strategy in Section 3.1.

2.3 Upward branch and bound

Logically, subset selection can also be performed upwards although this has not been discussed in the

literature up to best of our knowledge. An upward search starts from an empty set, gradually expands

the superset element-by-element, until it reaches the required subset size.
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To present the principle of upward BAB, let B be a lower bound of J(X∗n) as defined in (3) and Jn(Xs),

s < n, be an upwards upper bound of J over all n-element supersets of Xs,

Jn(Xs) ≥ max
Xn⊇Xs

J(Xn) (10)

Then,

J(Xn) < J(X∗n), ∀Xn ⊇ Xs, if Jn(Xs) < B (11)

Condition (11) ensures that none of supersets of Xs can be globally optimal. Thus, Xs and its supersets

can be pruned without further consideration.

Remark 3 (Upward monotonicity) If the selection criterion satisfies the upward monotonicity

J(Xs) ≤ J(Xt), if Xs ⊇ Xt (12)

then a simple upwards upper bound estimation can be adopted as

Jn(Xs) = J(Xs) (13)

The upward BAB method can also be represented using an asymmetric tree. An example of such a tree

for selecting 2 elements from a 6-element set is shown in Figure 1(b). In an upward tree, the bottom node

is the root of the tree, which represents an empty set. A node represents a superset obtained by adding

one element to its parent set. Labels at nodes denote the elements added there. At each level, the sizes

of the supersets increase by one until the top level is reached, where the terminal nodes have n elements.

Thus, from bottom to top, the tree has (n+ 1) levels. The fixed and candidate sets for upward BAB are

defined as follows.

Definition 4 (Upwards fixed set F ) The upwards fixed set, F has the same elements as the node itself,

i.e. F = X.

Definition 5 (Upwards candidate set C) The upwards candidate set, C is the set of elements which

are not in X, but can be freely selected to append X.

The upward solution tree is branched according to the following branching rule.
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Definition 6 (Upwards branching rule) A node Xf with candidate set Cc has (f+c−n+1) branches

(super-nodes), which are denoted as Xi
f+1 = Xf ∪ xi, i = 1, 2, · · · , (f + c− n+ 1) and are arranged from

the left to the right. Here, F i
f+1 = Xi

f+1 and the candidate set of the ith super-node, Ci
ci

is defined by the

following branching rule:

Ci
ci

= Cc \ {x1, · · · , xi} (14)

In words, Ci
ci

is constructed by eliminating those elements of Cc, which have been fixed in its left super-

nodes.

Similar to the downward BAB method, the branching rule for upward BAB method is also complete

without redundancies, as shown next.

Proposition 1 (Upward branch completeness) The branching rule in Definition 6 is complete with-

out any redundancies, i.e. each n-element subset belongs to one and only one branch.

Proof : Let F(Xf ) denote all the supersets generated by the node Xf . Consider, 1 ≤ i < j ≤ (f+c−n+1).

Then, according to the branching rule in Definition 6, xi ∈ Xs, for all Xs ∈ F(Xi
f+1). However, xi 6∈ Xt,

for all Xt ∈ F(Xj
f+1). Thus, F(Xi

f+1) ∩ F(Xj
f+1) = ∅, i.e. no superset belongs to more than one branch.

This proves that each n-element subset belongs to only one branch.

Now, as the solution tree is properly branched so that there is no redundancy in the terminal nodes,

it suffices to prove that the numbers of n-element subsets that can be reached from any node and its

super-nodes are the same. We note that Xf has Cn−f
c valid n-element supersets, whilst Cn−f−1

c−i valid

n-element supersets belong to its ith super-node Xi
f+1. According to the identity Cn

m + Cn−1
m = Cn

m+1, the

total number of n-element supersets that belong to the two rightmost super-nodes of Xf is

Cn−f−1
n−f−1 + Cn−f−1

n−f = Cn−f
n−f + Cn−f−1

n−f = Cn−f
n−f+1 (15)

Similarly, the the three rightmost super-nodes of Xf contain

Cn−f
n−f+1 + Cn−f−1

n−f+1 = Cn−f
n−f+2 (16)

n-element supersets. By recursively applying these arguments, the number of n-element supersets that

belong to at least one of super-nodes Xi
f+1, i = 1, 2, · · · , (f + c− n+ 1) is given as

f+c−n+1∑
k=1

Cn−f−1
c−k = Cn−f

c (17)

which is same as the number of n-element supersets of Xf and thus shows the upward branch completeness.
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Remark 4 (Hidden downward structure) According to (14), ci = c − i and for the super-nodes de-

rived from the same parent set, the candidate set of a left super-node is a superset of the candidate sets of

all the super-nodes on its right,

C1
c−1 ⊃ C2

c−2 ⊃ · · · ⊃ C
f+c−n+1
n−f−1 (18)

Similarly, the unions of the fixed and candidate sets satisfy the following relationship

(
F 1

f+1 ∪ C1
c−1

)
⊃
(
F 2

f+1 ∪ C2
c−2

)
⊃ · · · ⊃

(
F c+f−n+1

f+1 ∪ Cf+c−n+1
n−f−1

)
(19)

The above relationship shows that there is a hidden downward structure (from left to right) in an upwards

search tree, where the candidate sets and, the unions of fixed and candidate sets shrink from left to right.

Similar to Remark 2, this property is used to derive a bidirectional pruning strategy in Section 3.1.

3 Bidirectional branch and bound

The this section, the attractive features of the upward and downward approaches are combined to improve

the overall efficiency of a BAB method.

3.1 Bidirectional pruning

The efficiency of a BAB approach depends on its pruning strategy. Downward and upward search ap-

proaches provide two independent pruning strategies, as given in (4) and (11), respectively. According to

the Remark 2, there is a hidden upward structure in the downward tree, where the size of the fixed sets

of the sub-nodes of the same branch expand upwards from left to right. Similarly, following Remark 4,

there is a hidden downward structure in the upward tree, where the size of the union of super-nodes and

its candidate sets in the same branch shrink downwards from left to right. Therefore, it is possible to

adopt the upwards pruning strategy in a downward solution tree and the downwards pruning strategy in

an upward solution tree so that non-optimal nodes can be discarded more quickly and fewer nodes need

to be evaluated. In this way, the efficiency of BAB search can be significantly improved.

More specifically, consider a node X = F ∪ C in a downward tree. If Jn(X) < B, then, according to (4)

downwards pruning is performed, i.e. all the sub-nodes of X are pruned, as shown in the dashed box of

Figure 2(a). On the other hand, if Jn(F ) < B, then according to (11) and the hidden upward structure,

an upwards pruning can be conducted, i.e. the sub-nodes and all the nodes to the right of X are removed,

as shown in the gray box of Figure 2(a).
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Figure 2: Bidirectional pruning in solution trees

The bidirectional pruning strategy is also applicable to an upward tree. For the node X = F with the

candidate set C, if Jn(F ) < B, normal upwards pruning is conducted, as shown in the gray box of

Figure 2(b). In addition, if the downwards pruning condition Jn(F ∪ C) < B is satisfied, according to

(4) and the hidden downward structure, the super-nodes and all the nodes to the right of X are pruned,

as shown in the dashed box of Figure 2(b). The findings of this section are summarized by the following

proposition, where a node in a solution tree is represented by a two-tuple, S = (F,C).

Proposition 2 (Bidirectional pruning) A node S = (F,C) may contain the globally optimal subset,

i.e. X∗n ⊂ (F ∪ C) only if both of the requirements Jn(F ) > B and Jn(F ∪ C) > B are satisfied.

In comparison to unidirectional BAB methods, Proposition 2 is more efficient for pruning non-optimal

nodes at an early stage of the search. The key requirement for using Proposition 2 is the availability of

both upwards and downwards upper bounds on J . As shown in Section 4.1, these two upper bounds for

MSV can be obtained based on monotonicity. Finding the upwards and downwards upper bounds for

other commonly used selection criteria is currently under research.

For a node S = (F,C), downwards pruning is an operation to reduce the size of C, whilst upwards pruning

is the manipulation to increase the fixed set size by moving an element from C to F . The downwards and

upwards pruning strategies are uniformly stated in the following lemmas, which are applicable to both

the solution trees simultaneously. Instead of pruning a node, as is done traditionally, the proposed results

discuss pruning on the sub- and super-nodes. This is not only more efficient in pruning but also facilitates

the development of efficient upper bound estimation algorithms as discussed in Section 4.

Lemma 1 (Downwards subset pruning) Let B be the best available lower bound of J . Consider a
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node, S = (Ff , Cc) with Jn(Ff ∪ Cc) > B. For xi ∈ Cc, if

Jn(Ff ∪ Cc \ xi) < B (20)

then downwards pruning is performed by replacing S with Si defined as

Si = (Ff ∪ xi, Cc \ xi) (21)

Proof : Based on the branching rule in Definition 3, the terminal nodes of (Ff , Cc) are the same as the

union of the terminal nodes of (Ff , Cc \ xi) and (Ff ∪ xi, Cc \ xi). When (20) holds, any terminal node of

(Ff , Cc \xi) cannot be the optimal solution and thus it suffices to evaluate only the node (Ff ∪xi, Cc \xi)

further.

Lemma 2 (Upwards superset pruning) Let B be the best available lower bound of J . Consider a

node, S = (Ff , Cc) with Jn(Ff ) > B. For xi ∈ Cc, if

Jn(Ff ∪ xi) < B (22)

then upwards pruning is performed by replacing S with Si defined as

Si = (Ff , Cc \ xi) (23)

The proof of Lemma 2 is similar to the proof of Lemma 1 and is omitted.

The pruning approaches described in Lemmas 1 and 2 are equivalent to placing the sub- and super-

node, respectively, at the leftmost position of the solution tree before pruning it. Therefore, in general,

they are more efficient than the traditional strategy of pruning directly from a structured tree. For

example, downwards pruning element 2 in the downward tree removes sub-nodes shown in the dashed box

of Figure 2(a), which eliminates only 4 terminal nodes. On the other hand, with the approach given in

Lemma 1, C2
6 − C1

5 = 10 terminal nodes are removed.

At a specific node, S = (F,C) with given B, the downwards pruning only depends on F ∪C. Therefore, all

elements in C can be simultaneously checked against (20). Similarly, the upwards pruning only depends

on F . Hence, the upwards pruning condition (22) can also be simultaneously determined on all elements

in C. These insights lead to Proposition 3.

Proposition 3 (Multiple pruning) If there are k elements, x1, · · · , xk, which satisfy (20), then these

k elements can be simultaneously pruned downwards by replacing S with

S ′ = (Ff ∪ {x1, · · · , xk}, Cc \ {x1, · · · , xk}) (24)
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Similarly, if k elements, x1, · · · , xk satisfy (22), then all elements can be simultaneously pruned upwards

by replacing S with

S ′ = (Ff , Cc \ {x1, · · · , xk}) (25)

When successful upwards pruning in (25) is conducted, the set F ∪C shrinks. Thus the downwards pruning

check can be performed again on the new set F ∪C. Similarly, after successful downwards pruning in (24),

the set F expands and the upwards pruning check can be conducted again on the new set F . By applying

these two pruning strategies alternately, the minimal candidate set can be obtained. An algorithm that

shows implementation of this idea is given in Section 4.2.

3.2 Bidirectional branching

The efficiency of a BAB approach is also strongly related to its branching strategy. This happens as the

search tree is asymmetric, i.e. nodes on the left of the search tree have more sub-nodes (super-nodes) than

those on the right. There is no compulsory rule for a given node S = (F,C) to be on the left or on the right

of a search tree. However, it is desired that a node to be pruned has as many sub-nodes or super-nodes as

possible so that the total number of nodes to be evaluated is minimized. In bidirectional BAB, this issue is

addressed by dynamically selecting the search direction (upwards or downwards) and using a simplest-first

plus best-first search strategy so that the efficiency of bidirectional BAB is maximized.

A node that satisfies the conditions in Proposition 2 needs to be evaluated further either by expanding it

in the upward direction or by shrinking it in the downward direction. To decide upon the search direction,

we organize the solution tree bidirectionally using the concepts of fixed and candidate sets. As shown in

Figure 3(a), subsets of the root node, which has C2
6 2-element subsets, can be divided into two groups.

The left group with C2
5 candidates is obtained by removing element 1 from the root, whilst the right group

with C1
5 terminal nodes is derived by fixing element 1. Similarly, in the upward tree, the left group is the

one with element 1 fixed whilst the right group is the one with element 1 removed.

In general, the operation of discarding an element from the candidate set or fixing this element by moving

this element from the candidate set to the fixed set, represents a binary branching, which can be applied

to any node of a solution tree. Such a solution tree for a C2
6 -selection problem is shown in Figure 4. In the

binary tree, the decision element for each node is denoted underneath the node. The left sub-node is the

one with the decision element removed whilst the right sub-mode is constructed with the decision element

fixed. The total number of terminal nodes of a sub-node is marked in the circle. All terminal nodes are

14
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Figure 3: Bidirectional branching in solution trees
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Figure 4: A bidirectional branching example

marked with gray circles. Both upward and downward solution trees can be uniformly represented in the

binary tree. Evaluation of the right sub-node increases the fixed set size, hence represents an upward

search, whilst evaluation of the left sub-node reduces the candidate set resulting in a downward search.

Comparing Figure 4 with Figures 3(a) and 3(b), it can been seen that the right-first search strategy on the

downward tree is equivalent to the right-first search strategy on the binary tree. Similarly the right-first

search strategy on the upward tree is the same as left-first search strategy on the binary tree. To take

advantage of this fact, search on the binary tree can be freely chosen to be either right-first or left-first at

each node based on a certain criterion to achieve maximum efficiency.

The maximum efficiency is achieved by pruning as many terminal nodes as possible with as little evaluations

as possible. Therefore, an intuitive rule is to perform the simplest-first search. In Figure 4, a node with

Cn
m terminal elements results in two sub-nodes with Cn

m−1 (downward) and Cn−1
m−1 (upward) terminal nodes,

respectively. If Cn
m−1 > Cn−1

m−1, then the upward sub-node can be evaluated first and vice versa. For

example, in the binary tree shown in Figure 4, most of the times search should be performed right-first

except at the node with C2
3 terminal elements, where the left sub-node should be evaluated first. Based
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on this discussion, the bidirectional search rule is represented as follows.

upward search, if 2(n− f) ≤ c (26)

downward search, if 2(n− f) > c (27)

Efficiency can be improved further by selecting an appropriate element as the decision element at each

sub-node. For upward or downward search, the decision element should be selected as the one with largest

upwards upper bound given by (10) or the largest downwards upper bound given by (2) (best-first search),

respectively. In traditional downwards BAB algorithms, sub-nodes are usually sorted according to their

criterion values so that from left to right, criterion values of sub-nodes are in an ascending order. This

way, nodes which are more likely to be pruned have more sub-nodes and overall efficiency is improved [19].

However, sorting may incur significant computational overheads especially when the candidate set is

relatively large. The decision element selection strategy proposed here requires comparison of only the

maximum or minimum values, which is more efficient than sorting.

4 Bidirectional controlled variable selection

In this section, the combinatorial problem of selecting CVs using the MSV rule is addressed using the

BAB method. Using the MSV rule, selecting CVs is equivalent to selecting n rows of an m× n matrix G

such that the selected n× n sub-matrix GX∗n has the largest MSV among all possible n× n sub-matrices,

i.e.

σ(GX∗n) ≥ σ(GXn) ∀Xn ⊂ {1, 2, . . . ,m} (28)

In this case, the subset selection problem is equivalent to the selection of n natural numbers from the first

m natural numbers, where each selected number represents a row index. Based on this observation, the

elements of different sets, e.g. F and C, represent row indices in the following discussion.

4.1 Monotonicity

The BAB method used in this paper requires that the objective function or its upper bound has mono-

tonicity (see Section 2). To show that an upper bound on MSV satisfies the monotonicity requirement,

we need the following lemma.
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Lemma 3 Let the matrix Â be defined as

Â =

 A b

bT a


where A ∈ Rp×p is a Hermitian matrix, b ∈ Rp×1 and a ∈ R. Let the eigenvalues of A and Â be arranged

in descending order. Then [13, Th. 4.3.8]

λp+1(Â) ≤ λp(A) ≤ λp(Â) ≤ λp−1(A) ≤ · · · ≤ λ1(A) ≤ λ1(Â) (29)

Proposition 4 (Bidirectional monotonicity of MSV) For A ∈ Rp×n and b ∈ Rn×1, let the singular

values of A and
[

AT b
]T

be arranged in descending order. Then

σp+1

 A

bT

 ≤ σp(A) if p < n (30)

σn

 A

bT

 ≥ σn(A) if p ≥ n (31)

Proof : To prove (30), we note that when p < n

σp+1

 A

bT

 = λ
1/2
p+1

 AAT Ab

bT AT bT b


Then, using (29), it follows that (30) holds. The inequality in (31) can be proven by noting that when

p ≥ n

σn

 A

bT

 = λ1/2
n (AT A + bbT ) = λ1/2

n

 AAT Ab

bT AT bT b


and applying (29).

Remark 5 Proposition 4 shows that for a full rank matrix of size m × n with m > n, to select p rows

from m, if p ≤ n the MSV satisfies upward monotonicity, whilst if p ≥ n, the MSV satisfies downward

monotonicity. Therefore, for p = n, the MSV satisfies both upward and downward monotonicity and

bidirectional BAB can be efficiently conducted.

To understand the significance of (30) and (31) in the context of MSV maximization problem using BAB

method, consider two index sets I and J with p and q elements, respectively, where p < n < q. If
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σp(GI) < B , (30) implies that all square sub-matrices of G that can be generated by adding rows to

GI cannot contain the optimal solution and hence need not be evaluated. Similarly, if σn(GJ) < B ,

(31) implies that all square sub-matrices of G that can be generated by eliminating rows from GJ cannot

contain the optimal solution and hence need not be evaluated. Thus, using (30) and (31), the optimal

solution can be found without complete enumeration.

4.2 Fast pruning algorithms

Bidirectional pruning requires the test of two different pruning conditions: Jn(GF∪C) < B for downwards

pruning and Jn(GF ) < B for upwards pruning, where B is the best available lower bound on J . The

inequalities in (30) and (31) imply monotonicity and hence simplify upper bound calculations. The use

of these inequalities, however, involves calculation of singular values, which still requires O(n3) floating

point operations (flops) for an n × n matrix [10]. We recognize that the calculation of MSV is only

necessary for terminal nodes to update B. For non-terminal nodes, it suffices to verify whether they may

contain a terminal node that gives a better lower bound than B. In this section, we derive determinant

based conditions and fast algorithms based on these conditions. For the node under consideration, these

algorithms are used to efficiently find the sub-nodes or super-nodes that can be pruned or need to be

considered further.

Proposition 5 (Upwards pruning) Let the fat matrix GF∪i defined as GF∪i =
[
GT

F GT
i

]T
, where

GF ∈ R(p−1)×n and Gi ∈ R1×n with p ≤ n. For a positive scalar B, if σp−1(GF ) = σ(GF ) > B,

βF
i := GiGT

i −GiGT
F (GF GT

F −B2Ip−1)−1GF GT
i < B2 ⇔ σp(GF∪i) = σ(GF∪i) < B (32)

where βF
i denotes the ith upwards pruning index based on the set F .

Proof : Using the Schur determinant formula [13]

det(GF∪iGT
F∪i −B2Ip) = det

GF GT
F −B2Ip−1 GF GT

i

GiGT
F GiGT

i −B2

 (33)

= det(GF GT
F −B2Ip−1)(βF

i −B2) (34)

Now, denoting the eigenvalue decomposition of GF GT
F as VΛVT , we have

det(GF GT
F −B2Ip−1) = det(Λ−B2Ip−1) =

p−1∏
k=1

(λk(GF GT
F )−B2) =

p−1∏
k=1

(σ2
k(GF )−B2) (35)
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If σ(GF ) > B, (σ2
k(GF )−B2) > 0 for all k = 1, 2, · · · , (p−1) and thus det(GF GT

F −B2Ip−1) > 0. Similar

to (35), det(GF∪iGT
F∪i−B2Ip) =

∏p
k=1(σ2

k(GF∪i)−B2) = (σ2(GF∪i)−B2)
∏p−1

k=1(σ2
k(GF∪i)−B2). Since

σ(GF ) > B, due to the interlacing property in (29), σk(GF∪i) > B for k = 1, 2, · · · , (p − 1) and thus∏p−1
k=1(σ2

k(GF∪i)−B2) > 0. Based on (34), the signs of (σ2(GF∪i)−B2) and (βF
i −B2) are the same and

(32) follows.

In condition (32), the matrix inverse needs to be calculated only once to evaluate all the candidates

generated by appending a row to G. Therefore, it is more efficient than direct calculation of MSV. An

implementation of the upwards pruning algorithm using the Cholesky factorization is described as follows.

Algorithm 1 (Upwards pruning) Pre-calculate and store Q = GGT before search, where G is the

original matrix for row selection.

1. At a node S = (F,C), perform the Cholesky factorization, RT R = QF,F − B2If , where QF,F

represents the sub-matrix of Q constructed by selecting rows and columns with indices in F ;

2. If the factorization fails, (QF,F −B2If ) is not positive definite or σ(GF ) < B. Therefore, the whole

node should be pruned, i.e. return without any further calculation;

3. For i ∈ C, calculate x = R−T QF,i using forward substitution through the lower-triangular matrix

RT ;

4. Calculate βF
i = Qi,i − xT x;

5. If βF
i ≤ B2, perform pruning, i.e. remove index i from candidate set C;

6. Go to step 3 through all i ∈ C.

For a node with f fixed elements and c candidate elements, the above algorithm requires about (f+f3/3+

cf2 +2cf+c) = f3/3+c(f+1)2 +f flops, where f and f3/3 are related to the computation of QF,F −B2If

and Cholesky factorization [10, p.145], respectively, cf2 is associated with the forward substitution (Step

3) and c(2f + 1) for Step 4. A direct MSV approach require evaluation of the eigenvalues of c square

matrices of size (f + 1) × (f + 1), hence requires about 4c(f + 1)3/3 flops [10, Ch. 8] and hence is very

inefficient in comparison with Algorithm 1.

Proposition 6 (Downwards pruning) Let the tall matrix GS be defined as GS =
[
GT

S\i GT
i

]T
, where

GS\i ∈ Rp×n and Gi ∈ R1×n with p ≥ n. For a positive scalar B, if σn(GS) = σ(GS) > B,

αS
i := 1−Gi(GT

SGS −B2In)−1GT
i < 0 ⇔ σn(GS\i) = σ(GS\i) < B (36)
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where αS
i denotes the ith downwards pruning index based on the set S.

Proof : We first note that GT
SGS = GT

S\iGS\i + GT
i Gi and thus

det(GT
S\iGS\i −B2In) = det(GT

SGS −B2In −GT
i Gi)

= det(GT
SGS −B2In) det(In − (GT

SGS −B2In)−1GT
i Gi)

= det(GT
SGS −B2In)(1−Gi(GT

SGS −B2In)−1GT
i )

= det(GT
SGS −B2In)αS

i (37)

Similar to the proof of Proposition 5, σ(GS) > B ⇒ det(GT
SGS−B2In) > 0 and det(GT

S\iGS\i−B2In) =

(σ2(GS\i)−B2)
∏n−1

k=1(σ2
k(GS\i)−B2). We note that

σi(GS) = λ
1/2
i

 GS\iGT
S\i GS\iGT

i

GiGT
S\i GiGT

i

 ; i = 1, 2, · · · , n

Since σ(G) = σn(G) > B, due to the interlacing property in (29), σk(GS\i) > B for k = 1, 2, · · · , (n− 1)

and thus
∏n−1

k=1(σ2
k(GS\i)−B2) > 0. Based on (37), the signs of (σ2(GSi)−B2) and αS

i are the same and

(36) follows.

Similar to upwards pruning, the matrix inverse needs to be calculated only once to evaluate all the

candidates generated by removing a row from GS in condition (36). Hence, it is also a very efficient

pruning test. An implementation of the downwards pruning algorithm using the Cholesky factorization is

described as follows.

Algorithm 2 (Downwards pruning) At a node S = (F,C), let S = F ∪ C, GS be the corresponding

matrix with all s rows indexed by S and n be the number of variables to be selected (the number of rows of

GS).

1. Calculate the Cholesky factorization, RT R = GT
SGS −B2In;

2. If the factorization fails, σ(GS) < B; Therefore, the whole node should be pruned, i.e. return without

any further calculation;

3. For i ∈ C, calculate x = R−T GT
i using forward substitution through the lower-triangular matrix RT ;

4. Calculate αS
i = 1− xT x;
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5. If αS
i ≤ 0, perform pruning by fixing i, i.e. move index i from C to F ;

6. Go to step 3 through all i ∈ C.

For a node with f fixed elements and c candidate elements, s = f + c, and the above algorithm requires

about (n3/3 + 2sn2 +n+ cn2 + 2cn+ c) = n3/3 + 2sn2 + c(n+ 1)2 +n flops. Here, (n3/3 + 2sn2 +n), cn2

and (2cn+ c) flops are related to Steps 1, 3 and 4, respectively. Since GS is a s× n matrix, it results in

c sub-matrices of size (s − 1) × n upon elimination of one row from C. Hence, directly calculating MSV

requires 2cn2(s− 1 + n) flops [10, p. 254], which is much more expensive than Algorithm 2.

It is worth noting that both the conditions (32) and (36) require that the MSV of the current node is

larger than the best available bound B. In both of Algorithms 1 and 2, such a requirement is guaranteed

to be satisfied if the Cholesky factorization exists. Therefore, any evaluation of MSV on the non-terminal

nodes becomes unnecessary.

Remark 6 (Multiple pruning) The value of βF
i depends on both F and B whilst that of αS

i depends

on S = F ∪C and B. For the same B, multiple upwards pruning can be conducted simultaneously because

F is unchanged in any upwards pruning. Similarly, for a given B, multiple downwards pruning is carried

out independently since S remains the same during any downwards pruning. These features are useful in

parallel computing.

Remark 7 (Updating pruning indices) If either F is expanded (due to downwards pruning or upwards

branching) or B is updated after an upwards pruning test has been conducted, then a new upwards pruning

test has to be performed to update αS
i . Similarly, if either S shrinks (due to upwards pruning or downwards

branching) or B is updated after a downwards pruning test has been performed, then a new downwards

pruning check should be carried out to update βF
i .

The upwards and downwards pruning algorithms can be combined to form a bidirectional pruning algo-

rithm, where the three flags are introduced to check whether a pruning test is necessary; see Remark 7.

Algorithm 3 (Bidirectional pruning) Initially set down-flag, up-flag and bound-flag to true. Assume

the target is to select n elements. At a node S = (F,C) with f fixed indices and c candidate indices, let

r = n− f .

1. while (down-flag or up-flag or bound-flag are true) and r > 0 and c− r > 0, do
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2. if down-flag or bound-flag are true, execute Algorithm 2;

3. if Algorithm 2 fails, break the loop else set down-flag to false;

4. if any element has been moved from C to F , set up-flag to true;

5. if (up-flag or bound-flag are true) and r > 0, execute Algorithm 1;

6. if Algorithm 1 fails, break the loop else set up-flag to false;

7. if any element has been removed from C, set down-flag to true;

8. set bound-flag to false;

9. end of while loop

Algorithm 3 results in the largest candidate set C whose elements may be removed or fixed to produce

sub-nodes or super-nodes with upper bounds larger than the best available bound B. Therefore, the

bidirectional algorithm ensures that only the necessary nodes are expanded. This feature is particularly

important for the cases where r = 1 or c−r = 1, i.e. where only one element needs to be fixed or removed.

In such cases, selecting any element from C produced by Algorithm 3 always leads to an improved bound.

Particularly, selecting the element corresponding to the largest αS
i for c−r = 1 cases and fixing the element

corresponding to the largest βF
i for r = 1 cases often leads to the best subset due to Corollary 1 discussed

in Section 4.3.

4.3 Fast branching algorithms

For a given node S = (F,C) and lower bound B, Algorithms 1 and 2 can be used to efficiently find

the subsets and supersets, which can be discarded without computation of singular values. To branch

efficiently, however, it is still required that the MSV values for these subsets and supersets be computed

and compared; see Section 3.2. The selection of the decision element only requires the relative rankings

of the sub- and super-nodes. It is possible to obtain approximate rankings using bounds on the MSV

values of the sub- and super-nodes. Note that the use of approximate rankings reduces the computational

load significantly, and only affects efficiency but not optimality. With this motivation, we next establish

relationships between MSV of supersets and subsets of a node and the upward and downwards pruning

indices obtained from Algorithms 1 and 2, respectively.
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Corollary 1 (Upwards upper bound and downwards lower bound) For βF
i and αS

i defined in (32)

and (36), respectively,

βF
i ≥ σ2(GF∪i) = σ2

f+1(GF∪i) (38)

αS
i ≤

σ2(GS\i)−B2

σ2(GS)−B2
=
σ2

n(GS\i)−B2

σ2
n(GS)−B2

(39)

Proof : Based on the proof of Proposition 5, we note that

n∏
k=1

(λk(GF∪iGT
F∪i)−B2) = (βF

i −B2)
n−1∏
k=1

(λk(GF GT
F )−B2)

According to the interlacing property of eigenvalues in (29),

βF
i −B2 = (λ(GF∪iGT

F∪i)−B2)
n−1∏
k=1

λk(GF∪iGT
F∪i)−B2

λk(GF GT
F )−B2

≥ λ(GF∪iGT
F∪i)−B2

⇒βF
i ≥ λ(GF∪iGT

F∪i) = σ2(GF∪i)

Similarly, based on the proof of Proposition 6 and the interlacing property of eigenvalues in (29)

n∏
k=1

(λk(GT
S\iGS\i)−B2) = αS

i

n∏
k=1

(λk(GT
SGS)−B2In)

⇒αS
i =

λ(GT
S\iGS\i)−B2

λ(GT
SGS)−B2

n−1∏
k=1

λk(GT
S\iGS\i)−B2

λk(GT
SGS)−B2

⇒αS
i ≤

λ(GT
S\iGS\i)−B2

λ(GT
SGS)−B2

αS
i ≤

σ2(GS\i)−B2

σ2(GS)−B2

According to Corollary 1, αS
i is related to the lower bound on the MSV values of the sub-nodes and the

decision element can be selected by finding the sub-node with the largest αS
i (best to fix) for upward-

first branching, or the smallest αS
i (best to discard) for downward-first branching based on the best-first

rule. Similarly, βF
i provides an upper bound on the MSV values of the super-nodes and thus the decision

element can be selected by finding the super-node with the smallest βF
i (best to discard) for downward-first

branching, or the largest βF
i (best to fix) for upward-first branching. Hence, the evaluation of the MSV

can be completely eliminated for non-terminal nodes. Moreover, according to Remark 7 these indices need

to be updated (recalculated) only when either the lower bound B is updated or for βF
i , i ∈ C when some

rows are moved from C to F , or for αS
i , i ∈ C when some elements are eliminated from C.
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Combining all the aforesaid techniques, we next present a recursive implementation of bidirectional BAB

algorithm, B3. Let G be a m×n matrix with m > n. The problem is to select n rows such that the MSV

of the resulting square matrix is largest among all the square matrices that can be obtained from G. In

preparation stage, one needs to calculate Q = GGT , initialize F = ∅, C = {1, · · · ,m}, B2 = 0, and set

down-flag, up-flag and bound-flag to true.

Algorithm 4 (Bidirectional branch and bound (B3)[4]) Assume the given node S = (F,C).

1. evaluate f and c as the number of elements of F and C, respectively. Set r = n− f and S = F ∪C.

2. while r > 0 and c > r do

3. Algorithm 3;

4. if fails or r < 0 or c < r return;

5. if r = 0 or c = r break the while loop;

6. if r > 1 goto step 9, else select i = arg maxβF
i , i ∈ C;

7. update bound B2 = max(B2, λ(QF∪i,F∪i)) and set bound-flag to true if the bound is updated;

8. remove i from C, set down-flag to true, continue the while loop;

9. if r − c > 1 goto step 12, else select i = arg maxαS
i , i ∈ C;

10. update bound B2 = max(B2, λ(QS\i,S\i)) and set bound-flag to true if the bound is updated;

11. move i from C to F , set up-flag to true, continue the while loop;

12. if 2r > c goto step 15, else select i = arg minαS
i , i ∈ C;

13. call Algorithm 4 with the fixed set F ∪ i, the candidate set C \ i and up-flag being true;

14. remove i from C, set down-flag to true, continue the while loop;

15. select i = arg minβF
i , i ∈ C;

16. call Algorithm 4 with the fixed set F , the candidate set C \ i and down-flag being true.

17. move i from C to F , set up-flag to true;

18. end of the while loop;
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19. if r = c update bound B2 = max(B2, λ(QF∪C,F∪C)) and set bound-flag to true if the bound is updated;

20. if r = 0 update bound B2 = max(B2, λ(QF,F )) and set bound-flag to true if the bound is updated;

21. return

Remark 8 As indicated in [7], by changing B to a vector with p criterion values arranged in ascending

order and using the first element as the lower bound for comparison, B3 algorithm can be used to find the

best p subsets. This extension is particularly useful for CV selection, where local analysis is used to identify

promising candidates and the final set of CVs is selected by evaluating the loss for these candidates based

on the non-linear model.

5 Numerical examples

To examine the efficiency of the bidirectional BAB algorithm, numerical tests are conducted using random

data and a real self-optimizing control case study. Programs used for loss minimization or MSV maxi-

mization are listed in Table 2. As all programs provide the same optimal solution, we only compare the

computational efficiency of different algorithms in the following discussion. All tests were conducted on a

Windows XP SP2 notebook with an IntelrCoreTM Duo Processor T2500 (2.0 GHz, 2MB L2 Cache, 667

MHz FSB) using MATLABr R2006b.

Table 2: Branch and bound programs for MSV maximization

Algorithm Description

BB1 original program developed in [7]

BB2 original program developed in [14]

UP upwards pruning using determinant condition (32)

DOWN downwards pruning using determinant condition (36)

B3 the bidirectional branch and bound algorithm (Algorithm 4)

5.1 Random tests

Four sets of random tests are conducted to evaluate the efficiency of the proposed B3 algorithm. The first

test consists of selecting n out of 2n variables, where n varies from 5 to 20. For each n, 100 2n×n random

matrices are generated. For this test, the average computation time and the average number of nodes
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evaluated are plotted against n in Figures 5 (a) and (b), respectively. The second test is to select n out

of 40 variables with n ranging from 1 to 39. The average computation time and average number of node

evaluations calculated over 100 random cases are plotted against n in Figures 5 (c) and (d), respectively.

In order to compare the efficiency of proposed BAB algorithms, the number of node evaluations required

by the brute force search (marked as BRUTE) is also shown in Figures 5 (b) and (d). For clarity, the

average computation time required by brute force search is not shown in Figures 5 (c) and (d), but note

that the computation time of brute force search is (approximately) directly proportional to the number

of node evaluations, i.e. number of node evaluations multiplied by the computation time required for a

single MSV evaluation.
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Figure 5: Random test 1: selection of n out of 2n variables, (a) computation time against n and (b)

number of nodes evaluated against n; Random test 2: selection of n out of 40 variables, (c) computation

time against n and (b) number of nodes evaluated against n.

From Figure 5, it can been seen that the evaluation count of DOWN algorithm is similar to BB1 al-

gorithm [7], another downward algorithm, where power iteration method [10] is used to avoid direct
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MSV calculations. However, the determinant based UP algorithm is much more efficient than BB2 algo-

rithm [14], another upward algorithm based on direct MSV calculations. In terms of computation time,

both DOWN and UP algorithms demonstrate the efficiency of the determinant algorithms. Furthermore,

by combining upward and downwards pruning, the bidirectional B3 algorithm exhibits superior efficiency,

extending the manageable selection size beyond C20
40 .

The third and fourth random tests are designed to select 5 out of n and (n− 5) out of n variables, respec-

tively. Each selection problem is tested for 100 randomly generated matrices. The average computation

time and average evaluation count are summarized in Figure 6 (a)-(d), respectively. All figures clearly

show that upward and downward pruning based algorithms are more suitable to select a few variables

and discard a few variables from a large candidate set, respectively. However, for both kinds of selection

problems, the bidirectional algorithm improves performance dramatically and its efficiency is relatively

insensitive to the nature of the selection problem.

5.2 HDA case study

The developed algorithms are also applied to select CVs for the HDA process, which was used as a case

study in [14]. Details of self-optimizing control of this process can be found in [2]. The process has 8

degrees of freedom, i.e. 8 CVs are to be selected from 129 available measurements. It is interesting to

note that the problem has C8
129 ≈ 1.52× 1012 alternatives, whereas MATLABr requires about 0.05 ms to

calculate the MSV of an 8 × 8 matrix. Therefore, if the problem were to be solved using the brute force

approach, it would require more than 2 years to find the globally optimal solution.

The computation times required to solve this selection problem using various BAB algorithms are compared

in Table 3. It is clear that for this case study, upward approaches have an advantage over downward ones

in terms of the number of nodes evaluated. This is reasonable, as very few variables are to be selected

from a large number of alternatives. The novel determinant pruning algorithms also demonstrate their

efficiency by reducing evaluation count significantly. The most astonishing improvement of performance

is achieved by bidirectional algorithm, B3, which reduces both computation time and evaluation count by

4 orders of magnitude.
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Figure 6: Random test 3: selection of 5 out of n variables, (a) computation time against n and (b) number

of nodes evaluated against n; Random test 4: selection of (n− 5) out of n variables, (c) computation time

against n and (d) number of nodes evaluated against n.

Table 3: computation time and number of evaluations for the HDA case study

program cpu time (s) evaluation

BB1 2337.6 5035735

BB2 3809.0 809673

UP 41.98 177811

DOWN 294.51 1254891

B3 0.046 263
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6 Conclusions

In this paper, theoretical frameworks for unidirectional and bidirectional branch and bound (BAB) prin-

ciples have been developed based on the concepts of fixed and candidate sets. By introducing the upward

BAB concept, a hidden upward structure in the traditional downward BAB solution tree and a hidden

downward structure in the proposed upward BAB solution tree have been identified. These developments

lead to the concepts of bidirectional pruning and branching, and a novel bidirectional BAB scheme. The

proposed concepts are independent of the selection criterion, i.e. they can be applied to any subset

selection problem.

For self-optimizing control problems, the minimum singular value (MSV) criterion has been adopted to

select controlled variables (CVs) from the available measurements. The criterion satisfies bidirectional

monotonicity and thus upper bound estimation can be simplified. A set of novel determinant based

conditions have been developed to accelerate pruning, either in the upwards or downwards directions.

By combining these conditions with the bidirectional BAB principles, an efficient bidirectional BAB (B3)

algorithm has been developed. Numerical examples clearly show the superior performance of B3 algorithm.

Particularly for the HDA case study, B3 algorithm successfully reduces both the computation time and

the evaluation count by 4 orders of magnitude, as compared to the previously available methods.

Although MSV maximization is a simple criterion for CV selection, it may fail to identify the CVs providing

minimal local loss in some cases. This fact was pointed out by Halvorsen et al. [11], who also derived

expressions for exact local loss. A bidirectional BAB algorithm based on the exact local loss minimization

has been developed, which will be presented in the second part of this work.
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