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BOUNDARY DETECTION IN ECHOCARDIOGRAPHIC IMAGES BY
DIRECTIONAL GRADIENT VECTOR FLOW

Jierong Cheng, Say Wei Foo and Shankar M. Krishnan

School of EEE, Nanyang Technological University, Singapore

ABSTRACT

Snakes, or active contour models, have been widely used
in image segmentation. In this paper, a new type of dy-
namic external force for snakes named directional gra-
dient vector flow (DGVF) is proposed for the detection
of left ventricular boundary from echocardiographic im-
ages. The new method is able to discern between posi-
tive and negative step edges by incorporating directional
gradient information. It makes use of the gradients in
both x and y directions and deals with the external force
field for the two directions separately. The DGVF field is
utilized dynamically in snake deformation, according to
the orientation of snake in each iteration. Experimental
results demonstrate that the DGVF snake performs bet-
ter boundary detection than gradient vector flow (GVF)
snake in noisy echocardiographic images.

1. INTRODUCTION

Snakes was first proposed by Kass et al. [1]. Since its
publication, deformable models have become one of
the most active and successful research areas in image
segmentation [2]. Snakes have been widely applied
in boundary detection, shape modeling, and motion
tracking etc. Various improvements of snakes have
been proposed for applications in medical images, such
as multiple active contour model [3], early vision-based
snake model [4], cell-based dual snake model [5], and
fast GVF (FGVF) [6]. However, very few publications
are available on the problem of the direction of gradi-
ent.

Most digitalized medical images are gray-level im-
ages. The gradient is a valuable information for image
processing and analysis. In this paper, a new method
named directional gradient vector flow (DGVF) incor-
porating directional gradient information is proposed.
Experimental results show that the method is able to
improve the effectiveness of snakes for boundary de-
tection in echocardiographic images. In the next sec-
tion, a revision of the traditional snake and the gra-
dient vector flow (GVF) snake is given. In Section 3,
the DGVF algorithm is presented in detail. The experi-
mental results are given in Section 4 and the conclusion
in Section 5.

2. SNAKE AND GVF

A snake is a curve x(s) = [x(s), y(s)], s ∈ [0,1], which
moves through the spatial domain of an image to min-
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imize the following energy function:

E(x) =
∫ 1

0

[
1
2
(α|∂x

∂s
|2 +β|∂

2x
∂s2

|2)+Eext(x)]ds (1)

In Eqn. (1), the first two terms comprise the internal
energy of the snake. The first-order derivative con-
trols stretching and the second-order derivative con-
trols bending. α and β are the weighing parameters
controlling the snake’s tension and rigidity respectively.
The external energy Eext is derived from the image
and set to small values at the features of interest. As
object boundaries are usually of high gradient in the
image I , a typical example of external energy for step
edges is −|∇(Gσ(x, y) ∗ I(x, y))|2 [1].

The external force Fext is derived from external en-
ergy and defined so as to attract the snake to strong
edges:

Fext(x) = −∇Eext(x). (2)

There are two key drawbacks associated with tra-
ditional snakes. Firstly, the initial position of the snake
must be close enough to the desired contour in the im-
age. Otherwise the snake may be trapped in local min-
ima instead of evolving correctly toward the desired
contour. Secondly, poor convergence may result as the
snake has difficulty evolving to concavities or sharp
corners.

To solve the problem of limited capture range and
poor convergence, Xu and Prince proposed GVF as a
new external force for snakes [7]. The external force
in Eqn. (2) is replaced with a GVF field v(x, y) =
[u(x, y), v(x, y)] defined as the equilibrium solution of
the following system of partial differential equation:

vt = µ∇2v − (v −∇f) |∇f |2, v0 = ∇f (3)

where vt denotes the partial derivative of v with respect
to time t, and ∇2 = ∂2/∂x2+∂2/∂y2 is the Laplacian
operator. f is an edge map derived from the image and
defined to have large values at the features of interest.
A typical choice of f is

f(x, y) = −Eext(x, y) = |∇(Gσ(x, y) ∗ I(x, y))|2
(4)

for step edges.
As the GVF field is calculated as a diffusion of the

gradient vectors of an edge map derived from the im-
age, it greatly increases the capture range of the snake
and the ability to move into boundary concavities.

In snakes, the role of external force is to attract the
deformable contour to the features of interest in an im-
age. However, both traditional snakes and GVF snakes
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define their external energy to be a function of |∇I|,
the gradient magnitude of the image, which is a con-
ventional step edge detector. As the magnitude oper-
ator discards the signs of gradients, the snake is un-
able to distinguish between positive and negative step
edges.

3. DIRECTIONAL GVF

In this section, a new approach using directional gradi-
ent vector flow (DGVF) is described for snakes to dis-
tinguish between positive boundary and negative bound-
ary. For gray-level images, a boundary is defined to be
positive if there are positive step edges along its out-
ward normals, i.e. the intensity gradients along the
boundary are pointing inward. Contrarily, a bound-
ary is defined to be negative if there are negative step
edges along its outward normals. In echocardiographic
images, the interior of the left ventricle appears darker
than the myocardium around, thus the endocardial bound-
ary is roughly a positive boundary.

3.1. Directional edge map

As aforementioned, the solution of GVF field is based
on the edge map f in Eqn. (4). In the proposed method,
a new edge map is used to preserve the gradient direc-
tional information:

g(x, y) = ∇(Gσ(x, y)∗I(x, y)) = (gx(x, y), gy(x, y))
(5)

where gx and gy are the horizontal and vertical gra-
dients of the image I after it is smoothed by a two-
dimensional Gaussian function Gσ . Subsequently the
DGVF field is solved in the horizontal and vertical di-
rections separately.

Considering a one-dimensional signal, there are two
opposite directions to look through it: x and -x. Sup-
pose in the x direction, d1 is a positive step edge and
d2 is negative. Then in the -x direction the situation is
reversed: d2 is a positive step edge and d1 is negative.
Thus, if only positive (or negative) edges are to be de-
tected, the result obtained will depend on the direction
of approach.

Similarly in two-dimensional case, detection of a
positive (or negative) boundary is dependent on the
direction approached, which associates with the de-
formable contour’s normal direction at each snaxel (snake
element). As the location of snake is unknown before
initialization, image gradients from all directions are
considered. For positive boundary:

f+
x (x, y) = max{gx(x, y), 0} (6a)

f−
x (x, y) = −min{gx(x, y), 0} (6b)

f+
y (x, y) = max{gy(x, y), 0} (6c)

f−
y (x, y) = −min{gy(x, y), 0} (6d)

and for negative boundary:

f+
x (x, y) = −min{gx(x, y), 0} (7a)

f−
x (x, y) = max{gx(x, y), 0} (7b)

f+
y (x, y) = −min{gy(x, y), 0} (7c)

f−
y (x, y) = max{gy(x, y), 0} (7d)

where f+
x , f−

x , f+
y and f−

y are the gradients of positive
step edges in x, -x, y and -y directions, and the direc-
tional edge map f(x, y) = [f+

x (x, y), f−
x (x, y), f+

y (x, y),
f−

y (x, y)] is obtained.

3.2. Directional GVF field

The DGVF field consists of four components: v(x, y) =
[u+(x, y), u−(x, y), v+(x, y), v−(x, y)]. These com-
ponents corresponding to the four directions are found
by solving the following partial differential equations:

vt = µ∇2v − (v − df) df 2, v0 = df (8)

where df = [df+
x , df−

x , df+
y , df−

y ], and

df+
x =

∂

∂x
f+

x (9a)

df−
x =

∂

∂x
f−

x (9b)

df+
y =

∂

∂y
f+

y (9c)

df−
y =

∂

∂y
f−

y (9d)

or write Eqn. (8) separately

u+
t = µ∇2u+ − (u+ − df+

x )(df+
x )2, u+

0 = df+
x

(10a)

u−
t = µ∇2u− − (u− − df−

x )(df−
x )2, u−

0 = df−
x

(10b)

v+
t = µ∇2v+ − (v+ − df+

y )(df+
y )2, v+

0 = df+
y

(10c)

v−
t = µ∇2v− − (v− − df−

y )(df−
y )2, v−

0 = df−
y

(10d)

The four equations in Eqn. (10) are decoupled, and
therefore can be solved as separate scalar partial dif-
ferential equations in u+, u−, v+ and v−. Compared
with Eqn. (3), Eqn. (8) uses df 2 instead of |∇f |2, en-
suring that u+, u−, v+ and v− are decoupled from one
another. The four directions have to be assessed as the
snake’s orientation cannot be determined at this stage.

3.3. Snake deformation

The external force of snakes can be classified as static
or dynamic forces [7]. Static forces are computed from
the image data and do not change as the snake de-
forms. Dynamic forces are associated with the snake
and therefore change as the snake deforms. For the tra-
ditional snake, external forces and GVF are both static
external forces. The DGVF field v is derived from the
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image as well as GVF field, but it cannot be directly
applied to the snake as a static external force. For each
snaxel in deformation, the external force which it is
subject to depends on its location in the snake and the
shape of the snake. Hence the DGVF field is essen-
tially a dynamic external force.

Let θ be the contour’s normal direction at a certain
snaxel, then cos(θ) is the normal vector’s component in
the x direction, and sin(θ) is the normal vector’s com-
ponent in the y direction. If cos(θ) is more/less than
zero, u+/u− should be the horizonal external force Fx

at that snaxel. Similarly, If sin(θ) is more/less than
zero, v+/v− should the vertical external force Fy at
that snaxel. Hence the snake is deformed under the
external force Fext = [Fx, Fy]:

Fx = u+ ∗ max{cos(θ), 0} − u− ∗ min{cos(θ), 0}
(11a)

Fy = v+ ∗ max{sin(θ), 0} − v− ∗ min{sin(θ), 0}
(11b)

4. EXPERIMENTAL RESULTS

In this section, the performance of the GVF snake and
the DGVF snake are compared. All the edge maps
used in snake are normalized to the range [0, 1]. The
snakes are dynamically reparameterized during defor-
mation and the distances between neighboring snaxels
are maintained within 0.5-1.5 pixels.

The synthetic image is a binary image of an irreg-
ular gray loop in a black background (Fig. 1). Snakes,
initialized as circles of different radii, deform with the
GVF and DGVF fields to detect the boundaries in the
original image. When the initial contour is not far away
from the positive and negative boundaries, it is found
that the GVF snake is confused at those regions where
the width of the loop is narrow (Fig. 2(b)). For two
boundaries both of high gradient, the snake is attracted
to the boundary which is nearer to the initial bound-
ary. When the initial contour is far away from the
desired boundaries, the GVF snake converges to the
nearer boundary. However at the regions where the two
boundaries are very close, the snake is also affected by
the GVF field which pulls it to the farther boundary. As
a result, the snake stays in the middle of the two bound-
aries (Fig. 1(d)). On the other hand, the DGVF snake
is able to detect the positive boundary (Fig. 2(c), Fig.
1(e) ) or the negative boundary (Fig. 1(c), Fig. 1(f))
without problem and independent of the initial contour.

An illustration of GVF and DGVF snakes applied
to real images is shown in Fig. 2. The images are
echocardiographic images (short-axis view) of the left
ventricle of a human heart, and the endocardial (in-
ner) boundaries are to be detected. Ultrasound image
segmentation has been proved to be intractable to the
classic techniques, due to the inherent noisy nature. In
Fig. 2(b), 2(e) and 2(h), the GVF snake fails to de-
rive the real boundaries, at the regions where the ex-
ternal force propagated from the desired boundary is
smaller than that of local noise. In comparison, the

(a) (b) (c)

(d) (e) (f)

Fig. 1. Boundary detection performance of GVF and
DGVF snake on synthetic image. The circles of dashed
line are initial snake positions and the contours of solid
line are final results of the snakes. (a), (d) result of
the GVF snake; (b), (e) results of the DGVF positive
boundary-searching snake; (c), (f) results of the DGVF
negative boundary-searching snake.

DGVF snake is only attracted to the positive bound-
aries and thus is better able to distinguish the desired
edges from the false edges. It is reasonable to conclude
that the proposed DGVF snake model is superior to the
GVF snake model for boundary detection in echocar-
diographic images.

5. CONCLUSION

A new type of dynamic external force for snakes called
directional gradient vector flow (DGVF) is proposed.
The utilization of directional gradient information helps
to discern between positive and negative step edges,
and thus the DGVF snake can detect the boundary more
precisely despite of the noise and artifacts in ultrasound
images. This algorithm is particularly useful for snake-
based boundary detection of echocardiographic images.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Boundary detection performance of GVF and
DGVF snake on echocardiographic images. The cir-
cles of dashed line are initial snake position and the
contours of solid line are final result of the snakes. (a),
(d), (g) Original echocardiographic images with the
initial snake position indicated; (b), (e), (h) results of
the GVF snake; (c), (f), (i) results of the DGVF snake.
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