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Abstract

A commonly accepted fact is that the diagonal structure of the controller poses
fundamental limitations on the achievable performance, but few quantitative results
are available for measuring these limitations. This paper provides a lower bound on
the achievable quality of disturbance rejection using a decentralized controller for
stable discrete time linear systems with time delays, which do not contain any
finite zeros on or outside the unit circle. The proposed result is useful for assessing
when full multivariable controllers can provide significantly improved performance,
as compared to decentralized controllers. The results are also extended to the case,
where the individual sub-controllers are restricted to be PID controllers.

Key words: Decentralized control, Minimum variance control, Performance
limitations, PID control.

1 Introduction

It is well established that the system itself can pose fundamental limitations
on the achievable control performance. These limitations can arise due to the
presence of unstable poles and zeros, and also time delay. When these sources
of limitations are present, (i) performance gain in some frequency range must
be traded-off against performance loss in other frequency ranges [2,6] and,
(ii) there exist non-zero lower bounds on the norms of different closed-loop
transfer functions, that no controller can improve upon (see e.g. [4,12]). An
overview of the results on fundamental limitations is available in [16,17].
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In many practical problems of interest, e.g. process industries, the use of a
decentralized controller is preferred over a full multivariable or centralized
controller. In some special cases, the structure of the controller does not im-
pose any additional limitations, than that are encountered with the use of a
full multivariable controller. For example, similar to full multivariable con-
trollers, the sensitivity function can be reduced arbitrarily for systems that
are diagonal at high frequencies [20] and also for sequentially minimum-phase
systems [9]. In general, however, the controller structure can itself act as a
source of limitations, which is not taken into account by most of the results
available on fundamental limitations.

Cui and Jacobsen [5] have studied the change in location of unstable zeros
due to closure of some of the loops of the decentralized controller. Good-
win et al. [7] have further established the effect of unstable poles and zeros
on achievable performance using decentralized controller. These results are,
however, derived under the assumption that the individual loops of the decen-
tralized controller are designed sequentially [5] or independently [7]. Noting
that the use of independent or sequential design methods can be conservative,
it is better to allow for simultaneous design of decentralized controller to char-
acterize fundamental limitations, as is done in this paper. For decentralized
control, it is useful to ensure integrity against loop failures [10]. Unlike the
independent design method, however, integrity is difficult to obtain using the
simultaneous design method. The issue of integrity is not dealt with in this
paper and the characterization of the limitations due to integrity requirements
is still an open problem.

We consider stable discrete time linear systems with time delay, which do not
contain finite zeros on or outside the unit circle. The performance is mea-
sured in terms of the H2-norm of the closed-loop transfer function between
disturbances and outputs. For the resulting cheap or minimum variance (MV)
control problem, the achievable performances for single input single output
(SISO) systems and for multi-input multi-output (MIMO) systems under full
multivariable control are available in [1] and [8], respectively. The exact char-
acterization of the achievable decentralized performance is difficult, as the
resulting optimization problem is non-convex [18,3,15]. Clearly, any subopti-
mal tuning strategy for the decentralized controller provides an upper bound
on achievable performance. Some computationally efficient upper bounds for
decentralized MV control problem have been previously reported by utilizing
the structure of involved optimization problem [19] or explicit characterization
of suboptimal solution [11]. In comparison to these results, a lower bound is
clearly more useful to analyze the fundamental limitations due to the controller
structure.

In this paper, we show that for invertible systems, the controller structure
does not impose any additional limitations on the achievable performance
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as compared to the full multivariable controller. This result is more general
than the corresponding result in [9], as the system is only required to be
minimum-phase, but not sequentially minimum-phase. Our main contribution
is a lower bound on the achievable performance for the decentralized MV
control problem, which indicates a fundamental limitation due to controller
structure. The problem formulation inherently allows us to distinguish between
the limitations arising due to the time delay and the controller structure.

We also consider the case, where the individual subcontrollers are restricted
to be of PID controllers. This additional structural limitation can further
limit the achievable performance. Previously, computationally efficient up-
per bounds for decentralized PID controllers have been presented in [13,11].
Braatz et al. [3] have also derived an upper bound on the achievable robust
performance evaluated at steady-state for decentralized proportional-integral
controllers. The proposed lower bound, however, is more useful for character-
izing fundamental limitations, as before. The lower bounds proposed in this
paper can be conservative in some cases. The tightening of lower bound, how-
ever, requires the solution of a non-convex optimization problem. In this sense,
the results of this paper are useful for getting quick insight into the limitations
due to controller structure.

2 Preliminaries

For a matrix A ∈ Rm×n, Aij and A∗j represent the ijth element (or block) and
jth column of A, respectively. For ease of notation, we define

vec(A) = [A11 A21 · · ·Am1 · · ·Amn]T (1)

and for B ∈ Rn×p

M(A,B) =




A∗1 B11 A∗2 B21 · · · A∗n Bn1

...
...

...
...

A∗1 B1p A∗2 B2p · · · A∗n Bnp




(2)

A diagonal matrix C ∈ Rm×m is vectorized as

diag(C) = [C11 C22 · · ·Cmm]T (3)

We denote the system and disturbance models as G(q−1) and H(q−1), respec-
tively, such that
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y = G(q−1) u + H(q−1) a (4)

Here, y, u and a are controlled outputs, manipulated variables and distur-
bances, respectively. We make the following simplifying assumptions:

(1) G(q−1) and H(q−1) are stable, causal transfer matrices, contain no zeros
on or outside the unit circle except at infinity (due to time delays), and
are square having dimensions ny × ny.

(2) a(t) is a random noise sequence with unit variance.

When H(q−1) contains zeros outside the unit circle, these zeros can be factored
through an all pass factor without affecting the noise spectrum [8]. Further,
there is no loss of generality in assuming that the system is affected by noise
having unit variance. When E[a(t)aT (t)] 6= I, the disturbance model can al-
ways be scaled to satisfy this assumption. The feedback controller K(q−1) is
assumed to have a diagonal structure.

The H2 norm of the stable transfer matrix G(q−1) is given as

‖G(q−1)‖2
2 =

∞∑

i=0

tr(GT
i Gi) (5)

where Gi is the ith impulse response coefficient of G. The jkth element (or
block) of Gi is represented as [Gi]jk. We consider that G(q−1) can be factored
as

G(q−1) = D−1(q−1)G̃(q−1) (6)

such that G̃(q−1) and D−1(q−1) contain the invertible and non-invertible parts
of G(q−1), respectively. The interactor matrix generalizes the time delay for
SISO systems to the multivariable case [8] and can be written as,

D(q) = D0(q)q
d + D1(q)q

d−1 + · · ·Dd−1(q)q

where d denotes the order of the interactor matrix. We consider that D(q)
is a unitary interactor matrix, i.e. DT (q−1) D(q) = I [8]. In the remaining
discussion, we drop the arguments q−1 and t for notational simplicity.

The objective of this paper is to characterize the least achievable value of the
variance of y, i.e. E[tr(y yT )]. The achievable value of E[tr(y yT )] is limited
due to the non-invertible part of G, which cannot be overcome even by a
full multivariable controller [8], and possibly also due to the structure of the
controller K. To differentiate between these sources of limitations, we denote
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min
K

E[tr(y yT )] = Jfull + Jdecen

where Jdecen denotes the “additional” limitation due to the use of decentralized
controller. Clearly, a decentralized controller will provide same performance
as the full multivariable controller, if Jdecen = 0.

3 Invertible Systems

First we deal with the case, when G is invertible (D = I). For such sys-
tems, arbitrarily good performance can be obtained using a full multivariable
controller having high gain. We show that such a conclusion also holds for
decentralized controllers.

Proposition 1 Consider a system with stable G and H. If G is invertible,
E[tr(y yT )] can be reduced arbitrarily using a stable decentralized controller.

PROOF. For regulatory control, let u = −K y. Under closed loop conditions,

y = (I + GK)−1 H a (7)

Let K be chosen as K = (1/ε) K̂, where K̂ is a diagonal, stable and invertible
transfer matrix. Based on (7),

y = ε (G K̂)−1 (ε (G K̂)−1 + I)−1 H a

Using small gain theorem (see e.g. [17]), the closed-loop system is stable, if

max
|z|=1

ρ(ε (G K̂(z−1))−1) < 1

or |ε| < min
|z|=1

ρ−1((G K̂(z−1))−1) = min
|z|=1

|λ(G K̂(z−1))|

where ρ and λ are the spectral radius and smallest eigenvalue, respectively. As
G K̂ evaluated at any point on the unit circle is non-singular, min|z|=1 |λ(G K̂(z−1))|
is non-zero and E[tr(y yT )] remains bounded for |ε| < min|z|=1 |λ(G K̂(z−1))|,
including ε = 0. Thus limε→0 E[tr(y yT )] exists and is given as zero. Now,
using continuity arguments, it follows that by choosing ε to be sufficiently
close to zero, E[tr(y yT )] can be reduced arbitrarily with K = (1/ε) K̂ being
stable. 2
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Note that the result in Proposition 1 is stronger that the corresponding result
of Johansson and Rantzer [9], as G is only required to be minimum-phase,
but not sequentially minimum-phase. Further, Proposition 1 still holds when
norms other than H2 norm are chosen as performance measure.

Example 2 Motivated by a similar example in [17], we consider the following
system

G =




0 1
(1−0.5 z−1)4

0.5
(1−0.25 z−1)2

0




with H = 1/(1 − 0.9 z−1). When the pairings are selected on the off-diagonal
elements of G, the system is sequentially minimum phase and controller struc-
ture does not pose any limitations [9]. When diagonal pairings are used, neither
the system is sequentially minimum phase nor the independent design method
can be applied due to the zero diagonal elements of G. We show that similar
to off-diagonal pairings, arbitrarily tight control can be obtained for diagonal
pairings, as G is minimum phase.

We express the controller as K = (1/ε) I. Based on the proof of Proposition 1,
this parameterization of K implies that the closed loop system remains stable
for |ε| < min|z|=1 |λ(G(z−1))| = 0.251. For ε = 0.25, E[tr(y yT )] = 30.15.
When ε is chosen as 0.1, 0.01 and 0.001, E[tr(y yT )] reduces to 0.12, 1.09×10−3

and 1.08× 10−5, respectively, demonstrating that arbitrarily good performance
can be obtained using a high-gain decentralized controller.

4 Limitations due to Controller Structure

Unlike invertible systems, the controller structure can pose additional limita-
tions on the achievable performance of non-invertible systems (D 6= I). In this
section, we derive an explicit lower bound on the achievable decentralized per-
formance for non-invertible systems. This result is further extended to include
the case, when the individual sub-controllers are restricted to be of PID type.

4.1 Problem Formulation

Using (4) and (6),

y = D−1 G̃ u + H a (8)
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Define y1 = q−d D y and H̄ = q−d D H. By multiplying both sides of (8) by
q−d D, we have

y1 = q−d G̃ u + H̄ a (9)

For regulatory control, u = −K y1 and

y1 = (I + q−d G̃K)−1 H̄ a (10)

Using Diophantine’s identity,

H̄ = F̄ + q−d R̄

When the closed loop system is stable, we can expand (I + q−d G̃K)−1 to get,

y1 = (I − q−d G̃ K + q−2d (G̃K)2 + · · · ) (F̄ + q−d R̄) a

=
(
F̄ + q−d L − q−2d G̃K L + · · ·

)
a (11)

where

L = R̄− G̃K F̄ (12)

Since E[tr(y yT )] = E[tr(y1 yT
1 )] and F̄ is controller invariant, L can be set

to zero to obtain the full multivariable minimum variance (MV) control law,
where Jfull = ‖F̄‖2

2 [8]. When the controller has structural constraints, this may
not be possible since K has fewer degrees of freedom than the full multivari-
able controller. To characterize the achievable decentralized performance, one
can minimize the contribution of controller dependent terms on E[tr(y yT )].
In general, this problem tends to be non-linear and a lower bound on the
achievable value of E[tr(y yT )] is discussed next.

4.2 Decentralized Controller

Let the closed loop system be S = (I + q−d G̃K)−1 H̄. Based on (5)

E[tr(y yT )] =
∞∑

i=0

tr
(
ST

i Si

)

where Si denote the ith impulse response matrix of S. Thus E[tr(y yT )] ≥∑n
i=0 tr

(
ST

i Si

)
for any finite n. Then, the non-linear nature of the involved
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minimization problem can be overcome by selecting n such that Si, 0 ≤ i ≤
n, depend linearly on K and a lower bound on E[tr(y yT )] is obtained by

minimizing
∑n

i=0 tr
(
ST

i Si

)
. Here, we select n = (2d− 1), as in addition to Li,

i ≥ d, the impulse response coefficients of the non-linear term G̃ K (R̄−G̃K F̄ )
also contribute to Sj, j ≥ 2d. Then,

E[tr(y yT )] ≥ ‖F̄‖2
2 +

d−1∑

i=0

tr
(
LT

i Li

)
(13)

where L is given by (12). Since F̄ is controller independent, a lower bound on
E[tr(y yT )] can derived by minimizing the contribution of the second term in
(13).

The impulse response coefficients of L are given as




L0

L1

...

Ld−1




=




R̄0

R̄1

...

R̄d−1




−




G̃0 0 · · · 0

G̃1 G̃0 · · · 0
...

...
. . . 0

G̃d−1 · · · · · · G̃0







K0 0 · · · 0

K1 K0 · · · 0
...

...
. . . 0

Kd−1 · · · · · · K0







F̄0

F̄1

...

F̄d−1




By vectorizing Li, i = 0, · · · , (d− 1), we have

Lv = R̄v − G̃HKv

where

Lv =
[
vec(L0)

T vec(L1)
T · · · vec(Ld−1)

T

]T

R̄v =
[
vec(R̄0)

T vec(R̄1)
T · · · vec(R̄d−1)

T

]T

(14)

Kv =
[
diag(K0)

T diag(K1)
T · · · diag(Kd−1)

T

]T

G̃H =




M(G̃0, F̄0) 0 · · · 0

M(G̃0, F̄1) +M(G̃1, F̄0) M(G̃0, F̄0) · · · 0
...

...
. . . 0

∑d−1
i=0 M(G̃i, F̄(d−1)−i) · · · · · · M(G̃0, F̄0)




(15)

where vec(·),M(·, ·) and (·)v are defined by (1), (2) and (3), respectively. Now,
the contribution of the second term in (13) can be minimized by minimizing
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LT
v Lv using regression. Based on these developments, we present the main

contribution of this paper.

Proposition 3 A lower bound on achievable decentralized performance is given
as

min
K

E[tr(y yT )] ≥ ‖F̄‖2
2 +

∥∥∥
(
I − G̃H G̃†

H

)
R̄v

∥∥∥
2

2
(16)

where R̄v and G̃H are given by (14) and (15), respectively.

As ‖F̄‖2
2 is the achievable value for full multivariable controller, the second

term in (16) provides a lower bound on the “additional” limitations due to
the use of a diagonal controller, i.e. Jdecen.

Though the expression for lower bound on E[tr(y yT )] is messy, insights can
be drawn by considering special cases. We consider G with interactor matrix
of the form D = q I, i.e. unit delay in all elements of G and H = 1/(1 −
a q−1) I, |a| ≤ 1. Then, F = I and the achievable multivariable performance
is ‖F‖2

2 = ny. Through straightforward algebraic manipulations, the lower
bound in Proposition 3 can be simplified as

Jdecen ≥ a2
ny∑

j=1

∑
i6=j[G̃0]

2
ij∑

j[G̃0]2ij
= a2

ny∑

j=1

1

1 +
[G̃0]2jj∑
i6=j

[G̃0]2ij

(17)

Note that as [G̃0]jj → 0 for all i, the above expression approaches its maxi-
mum value, which is a2 ny. When a = 1 (step-type disturbances), the relative
difference between achievable multivariable and decentralized performances is
100% showing fundamental difficulty in the use of a decentralized controller.

Remark 4 Based on the above discussion, it follows that to avoid significant
performance loss, associated with the use of decentralized controller for re-
jection of disturbances passing through a first-order filter (including step-type
disturbances), it should be ensured that [G̃0]

2
jj À

∑
i6=j[G̃0]

2
ij for all j. This

condition is similar to the concept of diagonal dominance, whose implications
for achieving closed-loop stability through independent design of decentralized
controller are well-known [14,17].

4.3 Decentralized PID controller

In many practical problems, the individual subcontrollers are fixed to be of
PID type. In this section, we show how Proposition 3 can be modified to find a
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lower bound on the achievable performance for decentralized PID controllers.
We note that in Proposition 3, the bound is derived by solving the optimization
problem with respect to the impulse response coefficients of the controller K.
Then, by setting Kk = 0 for all k > p, a lower bound with only p non-zero
impulse response coefficients can be obtained.

We consider that the decentralized PID controller is expressed as,

KPID =
1

∆

2∑

i=0

Ciq
−i =

1

∆
C

where ∆ = 1 − q−1 is the integrator and C has the same diagonal structure
as the controller K. By considering 1/∆ as a part of G̃ (or F̄ ) and minimiz-

ing
∑d−1

i=0 tr
(
LT

i Li

)
with respect to C, a lower bound on the achievable PID

performance can be derived. Then Propositions 3 can be used by considering
only the first 3 block columns of G̃H in (15). To ensure that the assumption
of stability of G is satisfied, the integrator can be moved just inside the unit
circle without affecting the result significantly. Note that these results provide
information about limitations due to the PID structure of sub-controllers, as
compared to unrestricted decentralized control, only when the order of the
interactor matrix is greater than 3.

5 Examples and Discussion

The results of the previous section provide a lower bound on the achievable
decentralized performance and are useful in quantifying the fundamental lim-
itations due to the controller structure. In general, however, the proposed
results can be conservative in the sense that there may not exist a decen-
tralized controller that closely matches the lower bound. In this section, we
demonstrate the usefulness and conservatism of the proposed results using
simple examples.

Example 5 We consider the system with

G =




−0.1q−2

(1−0.1q−1) (1−0.2q−1)
−0.25q−1 (1−0.3q−1)

(1−0.1q−1) (1−0.2q−1)

0.5q−1 (1+0.9q−1)
(1−0.1q−1) (1−0.2q−1)

−0.1q−2

(1−0.1q−1) (1−0.2q−1)


 (18)

and H = 1/(1 − 0.5q−1) I. Then, D = q I, F = I and the achievable multi-
variable performance is Jfull = ‖F‖2

2 = 2.

Using Proposition 3, we find that when a decentralized controller with diagonal
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pairings is used, Jdecen ≥ 0.5. Thus E[tr(y yT )] ≥ 2.5 implying additional
limitations due to controller structure. For these pairings, additional limitation
due to controller structure primarily arises, as the diagonal elements of G̃0 are
zero; see also Remark 4. The static controller

K =



−0.066 0

0 −0.47




is designed using trial and error, which provides E[tr(y yT )] = 2.65.

When the off-diagonal pairings are used, the lower bound on Jdecen reduces
to zero indicating that the diagonal structure of the decentralized controller is
not always limiting, as one may expect. The following sub-optimal controller
designed using trial and error

K =




−1.69
1−0.47q−1 0

0 0.86
1+0.71q−1




provides E[tr(y yT )] = 2.08. For both pairings, the achieved performance is
close to the proposed lower bound showing the tightness. Though usually dif-
ficult to obtain using simultaneous design method, the sub-optimal controllers
also provide integrity against loop failures for both pairings.

In Example 5, the lower bound proposed in Proposition 3 can be matched
closely for the system considered, but this bound is loose in general. This
issue is illustrated by the following example.

Example 6 We revisit Example 5 with the disturbance model being H =
(1/∆) I i.e. step-type disturbances. As before, we have D = q I, F = I and
Jfull = 2. Based on Proposition 3, we find that with the use of diagonal pair-
ings, Jdecen ≥ 2 and thus E[tr(y yT )] ≥ 4. We, however, could not find a
diagonal controller that matches the lower bound indicated by Proposition 3
closely. With the use of the diagonal controller

K =



−1.39 (1−0.73q−1)

1−q−2 0

0 −4.15 (1−0.32q−1)
1−q−2




E[tr(y yT )] = 8.34, which could not be reduced substantially even by using a
more sophisticated controller. This indicates the conservatism of the proposed
lower bound.
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To confirm this finding, we note that the lower bound in Proposition 3 is
derived by considering only the first 2 impulse response matrices of the closed-
loop transfer matrix. The primary difficulty in improving the lower bound by
considering additional impulse response matrices is their nonlinear dependence
on the controller. We increase the number of terms sequentially and use Matlab
function fminunc with multiple randomized initial guesses to solve the result-
ing non-convex optimization problems. When 5, 10, 15 and 20 terms of S are
considered, the lower bound on E[tr(y yT )] is found to be 6.85, 8.00, 8.14 and
8.16, respectively, confirming the conservatism of Proposition 3.

Example 6 demonstrates that Proposition 3 may grossly underestimate the
extent of limitations due to controller structure. Nevertheless, the proposed
lower bound provides quick insight into the limitations and its’ improvement
without solving computationally expensive non-convex optimization problems
is an issue for further research.

6 Conclusions

We derived a lower bound on the achievable performance for the decentralized
minimum variance control problem. This result is useful for analyzing fun-
damental limitations due to controller structure, which are in addition to the
limitations encountered with a full multivariable controller. For many systems,
there exists a controller such that the lower bound is closely matched, but the
bound is loose in general. Future research will focus on tightening the bound
and also extending it to unstable, non-minimum phase systems. The main
challenge in deriving improved bounds is the non-convexity of the resulting
optimization problem, when using decentralized controllers.
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