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A local characterization of the graphs
of alternating forms and the graphs of
quadratic forms over GF(2)

A. Munemasa * D.V. Pasechnik t
S.V. Shpectorov !

Abstract
Let A be the line graph of PG(n-1,2), Alt(n,2) be the graph of the n-
dimensional alternating forms over GF(2), n > 4. Let T be a connected
locally A graph such that
- the number of common neighbours of any pair of vertices at distance two is
the same as in Alt(n,2).
the valency of the subgraph induced on the second neighbourhood of any
vertex is the same as in Alt(n,2).
It is shown that T is covered either by Alt(n,2) or by the graph of
(n—1)-dimensional GF(2)-quadratic forms Quad(n-1,2).

-

B

1. Introduction

In this paper we investigate graphs which are locally the same as the graph
Alt(n, 2) of alternating forms on an n-dimensional vector space V over GF(2).
An analogous question for GF(q), g > 2, is considered in [4]. The local graph
of Alt(n,2) is isomorphic to the Grassmann graph [%), i.e. the line graph of
PG(n~1,2). Thus, we investigate graphs which are locally [¥]. It turns out
that, besides Alt(n, 2), there is another well-known graph which is locally 5]
It is the graph Quad(n—1,2) of quadratic forms on an (n—1)-dimensional
vector space over GF(2). Both Alt(n, 2) and Quad(n—1, 2) are distance regular
and have the same parameters, though they are non-isomorphic if n > 5.
Consider a half dual polar space of type D, over GF(2). Then the
collinearity graph, induced by the complement of a geometric hyperplane,
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is always locally [%]. The number of such hyperplanes, even taken up to
the action of the automorphism group of the polar space, increases at least
exponentially with n, so that in general, classification of locally [Y] graphs
seems to be a hard problem. In this paper, we restrict ourselves to the case
4= 20, i.e., the number of common neighbours of two vertices at distance 2
is always 20. Both graphs Alt(n,2) and Quad(n—1,2) possess this property,
as well as another property a; = 152! — 105, which means that the graph
induced by the second neighbourhood of every vertex is regular of the shown
valency. This latter condition is rather technical and it is used only once in
the proof. Hopefully, in further research it may be shown superfluous.

Under the assumption g = 20, Alt(4,2) is the only graph which is
locally [4] with n = 4, while Alt(5,2) and Quad(4,2) are the only graphs
which are locally [¥] with n = 5. For large n, however, we cannot expect the
analogous result, since the quotient graphs of Alt(n,2) or Quad(n—1,2) by
many subgroups of translations have the same local structure and the same
values of u and a;. The purpose of this paper is to show that Alt(n,2) and
Quad(n—1,2) are universal in the following sense.

Main Theorem. Let ' be a connected graph which is locally the Grassmann
graph [%], where V is a vector space of dimension n over GF(2). Suppose that
#(T') =20 and a5(I") =15-2"1 — 105. Then T is covered by either Alt(n,2)
or Quad(n—1,2).

The following corollary was a motivation for this work.
Corollary. IfT is a distance-regular graph having the same intersection num-

bers and the same local structure as Alt(n,2), then I' is isomorphic to either
Alt(n,?2) or Quad(n—1,2).

As a logical conseq of these investigations, new automor-
phisms of Quad(n,g), g even, were found, mixing forms of the same rank,
but with different Witt indices [3].

The contents of the paper is as follows. In Section 2 we collect definitions
and state the notation. In Section 3 we check that the graph Quad(n,2) has
the prescribed local structure and that it is triangulable, that is, every cyclein
it can be decomposed into a product of 3-cycles. Similar results for Alt(n,2)
have been known earlier. In Section 4 we determine the possibilities for the
yu-graphs, their intersections, vertex-subgraph relationship, etc. This allows
us to determine in Section 5 the second neighbourhood of a vertex. Finally,
in Section 6 we apply the covering theorem from [4] to show that every graph
under consideration is covered either by Alt(n,2) or by Quad(n—1,2)

304



MUNEMASA ET AL: LOCAL CHARACTERIZATION OF FORMS

2. Preliminaries

Let T, T be connected graphs. We say that T' is a cover of I' if there exists
a mapping ¢ from I' to T which maps edges to edges and, for every y € T,
induces a bijection from T(y) to T(¢(7)). If the subgraph I'i(a) is regular
for any vertex a of a graph I', and its valency is independent on &, then this
valency is denoted by a; = a5(T).

Let V be an n-dimensional vector space over GF(2), [%] the Grassmann
graph. A grand clique of [¥] is a set of the form {y € [%)lz € ~} where
0# z € V. A small clique of [¥%] is a set of the form (%], where W € [%].
Any maximal clique of [4] is either grand or small. Two distinct grand cliques
have exactly one vertex in common, and two distinct small cliques have at
most one vertex in common. A grand clique and a small clique can have at
most 3 common vertices. Thus, any 4-clique in [§] is contained in a unique
maximal clique.

Let V be an n-dimensional vector space over GF(g). The rank of an
alternating form v on V is defined by ranky = dim(V/Rad 7), where Rad y =
{u € Vly(u,v) = 0 for any v € V}. Note that rank+y is always even. The
alternating forms graph Alt(n, ) has as vertices the alternating forms on V.
Two alternating forms 7, § are adjacent whenever rank (y — §) = 2.

Let V be as before. A map 7 : V —GF(q) is called a quadratic form if
for any u,u € V and a,b €GF(g), y(ou + bv) = a’y(u) + By(v) + abB,(u,v)
for some bilinear form B,. We call B, the bilinear form associated with
. In case q is even, B, is an alternating form. The rank of 7 is defined
by ranky = dim(V/Rad«), where Rady = {u € Rad B, |y(u) = 0}. If ¢
is even and ranky = dimV odd, then the l-dimensional space Rad B, is
called the nucleus of . The quadratic forms graph Quad(n, g) has as vertices
the quadratic forms on V. Two quadratic forms «,§ are adjacent whenever
rank (y — 6) = 1 or 2. The graph Quad(n, g) is distance-regular and has the
same parameters as Ali(n + 1,q) [1].

3. Some properties of Quad(n-1,2)
It is well-known that Alt(n,2) is locally the Grassmann graph [¥), where V

is an n-dimensional vector space over GF(2).

Proposition 3.1 The graph I' = Quad(n—1,2) is locally the Grassmann
graph [%], where V is a vector space of dimension n over GF(2).

Proof. Let V = W @ (e), where I' is the set of all quadratic forms on
W. Define the mapping @ : I'(0) — [,¥,] as follows. For 7 € T'(0), define
@(v) = Rady € [%,] C [Ys] if ranky = L. If ranky = 2, then write
W = Rad7 © (21, 23). Define (1) by (1) = Rad ® {eo + (1 +2(z)=: +
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(1 +7(z1))2a) € [.Y,]. It is easy to see that ¢ is well-defined and bijective.
Since ['(0) and [,¥,] have the same valency, ¢ is an isomorphism if and only
if it preserves adjacency.

Let 5,8 € T(0) be adjacent. If ranky = rank § = 1, then clearly p(7) is
adjacent to (). If ranky = 1 and rank § = 2, then we have rank (y+8) = 2
and Rad § C Rady. Thus Rad & C ¢(7)Np(8), i.e., () is adjacent to w(6). 1t
ranky = rank § = 2 and rank (y +6&) =1, then Rady = Rad § C @(v)Nw(8),
i.e., @(y) is adjacent to (§). Finally suppose that rank v = rank § = rank (y+
§) = 2. Then dim(Rad y N Rad §)=n — 4. Choose z,y,z € W in such a way
that W = (Rad~y N Radé) @ (z,y,2), Rady = (Rad~y N Rad ) @ (y), and
Rad § = (RadyNRad §)& {z). Then Rad (7 +6) = (Rad yNRad §) & (y + z).
Since 9(y) = 8(z) = (v + &)y +2) = 0, we have 7(z) = 6(y), so that the
element eo + (1 +4(2))z + (1 +8(z))y + (1 +7(z))= belongs to (1) Np(8).
Thus, dim(7) Np(6) <n—3,ie, o(7) is adjacent to @(8). o

A graph is called triangulable if every cycle in it can be decomposed
into a product of 3-cycles (cf. [4]).

Proposition 3.2 If g is a power of 2, then the graph Quad(n, q) is triangu-
lable.

To prove triangulability of a graph I' it suffices to check the following
two conditions (y a fixed vertex of r):

(T1) Tj-1(8) N T(y) is connected for every SeTi(v), 122

(T2) if 6o, &1 € T5(7), 7 = 2 are adjacent, then the subsets Tj_y(80)N(7)
and T;_,(8,) N T(7) are at distance at most 1 from each other.

For a proof of this criterion see the proof of Lemma 6.2 in [4]. From now
on we denote by V an n-dimensional vector space over GF(q), g even. Let
T = Quad(n, g),[' = Alt(n, ) and let ¢ be the mapping from T to ' defined
by  + B,. Clearly, p takes adjacent vertices to adjacent or equal. Moreover,
two quadratic forms are mapped to the same vertex of Alt(n,q) if and only
if their difference has rank 1, i.e., such forms are adjacent.

The following technical facts were taken from [1], see 9.5.5(i) for (i),
and 9.6.2 for (ii). A proof for (jii) can be found in (1], page 292.

Lemma 3.3 (i) Let 7 and & be two alternating forms on V. If rank (y+§) =
rank~ + rank §, then Rady + Rad§ = V and Rad~ N Rad & = Rad (v + §).
(ii) Let 7 and 6 be quadratic forms on V of rank 2j + 1 and 2, respec-
tively. If rank (y + §) = 2j then Rad § N Rad B, = Rad7y.
(iii) Let v be a rank 2 quadratic form and § a rank 2 alternating form
on V, such that rank (B, + §) = 2. Then there is a rank 2 quadratic form &'
with By = §, such that 4 + & also has rank 2.
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Lemma 3.4 Let 7 be a quadratic form on V of even rank 2j. Then ¢ es-
tablishes an isomorphism between the subgraphs I'(0) N T'j_1(7) and royn
T-1(B,). In particular, '(0) N T';_1(7y) is connected.

Proof. Clearly, p maps the former set to the latter. Hence, it suffices to
prove that every alternating form from ['(0) N T;_1(B,) has exactly one
preimage in T(0) N Tj_1(7), and the preimage of an edge is an edge. Let
B € F(0) N T';..(B,). By Lemma 3.3(i), Rad A D Rad B,. Hence, we may as-
sume for simplicity that Rady = 0. Let us consider V as a symplectic space
with respect to the form B,. Then U = Rad (B, + ) is orthogonal to Rad 3,
hence by Lemma 3.3(i), U = Rad 8*. Let a quadratic form § be defined by
Rad$ = Rad S and by = y|y. Then Bs = ( and Rad(y + §) = U, hence
4+ § has rank 2j — 2. On the other hand, if for a quadratic form § one has
Bs = f and 7 + & has rank 2j — 2 then Rad(y + &) = Rad(B, +8) = U,
and hence § must be defined as above. Hence, y is indeed a bijection between
[(0) N Ty_y(7) and T(0) N T;_,(B,).

Now suppose that &, 6; are two rank 2 quadratic forms, such that both
8 =746 and & =+ &; have rank 2j — 2. Let U = Rad (Bg), + = 1,2,
Suppose By, + Bs, has rank 2. By Lemma 3.3(i), it means that Z = Rad B;, N
Rad By, has codimension at most 3 in V. In particular, Uy and Uy, which are
both orthogonal to Z, generate at most a 3-dimensional subspace. It follows
that T = U, NU; is nontrivial. Now the equality v = & + § = & + &; implies
8§ + 83 = 8} + 63. Therefore, both Z and T are in the radical of §; + §3. Since
Z has codimension at most 3, and T ¢ Z, we finally have that & + & has
rank at most 2. o

Now let us consider the case ranky = 25 — 1. Let, as in [1], Ri(7)
denotes the set of quadratic forms §, such that 7+ & has rank s. Then I'(0)N
T;_1(7) consists of three parts, namely, @1(7) = Ri(0) N Raj-a(7), Qa(v) =
Ra(0) N Raj-a(7) and fs(y) = Ra(0) N Raja(y). Clearly, D(v) is 2 clique.
Furthermore, {2;(7) consists of all rank 2 forms in the preimage of royn
T';_a( B,). In particular, {2;() induces 2 connected subgraph.

Lemma 3.5 Ifranky = 2j — 1 then I(0)NT;_1(y) is a connected subgraph.

Proof. Let § € fl3(7). By Lemma 3.3(ii) Rad y = Rad B, N Rad é. Hence
there is a hyperplane U in V/, such that Rad§ C U and Rady = Rad B, NU.
Define a rank 1 quadratic form a by Rada = U and alg,q s, = 1lRad s,
Clearly, a € 04(7) and &, a are connected by an edge. Since {;(7) is 2 clique,
it means that £,(7) U f23(7) induces a connected subgraph.

Since f1,(y) is connected, it remains to find an edge between Q,(7) and
(7). Let & be as above and let U = Rad § +Rad B,. Then U is 2 hyperplane
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in V and, clearly, we can find an alternating form 8 in ['(0) N [';_5( B, ), such

that Rad 8 C U. Then by Lemma 3.3(iii) there is a rank 2 quadratic form

a with B, = B, such that § + a has rank 2. On the other hand, clearly,

a € My(y). o
Lemmas 3.4 and 3.5 give (T1). Next we check (T2).

Lemma 3.6 If v,§ € T';(0) are adjacent, then there is an edge between
[(0) N Tj-1(y) and T(0) N T4 (8).

Proof. Let B, and B; be of rank 2s and 2k, respectively. We have seen
above that o(I'(0) N T;-1(7)) contains T(0)NT,_;(B,) and u(I'(0)NT;_:(8))
contains I'(0) N T'y_1(Bs). If k = s then [4], Lemma 6.3(ii) implies that T(0)N
Puoa(By) N Tacs(Bs) # 0. If s < k then T(0) N T,_1(B,) € T(0) N Te_y(Bs),
and, in particular, we obtain the same conclusion as above. Similarly in the
case 5 > k. Hence in any case (I'(0) N T'i_1(7)) N @(T(0) N T;_4(8)) # 0.
Since the preimage of any vertex of T is a clique, we obtain the desired edge
between [(0) N T;_y(y) and [(0) N T;_(8). o
Since both conditions (T1) and (T2) have been checked, the proof of
Proposition 3.2 is complete.
4. p-graphs
We will say that T' has distinct p-graphs if I'(v,u0) = I'(v,u;) for ug,uy €
I'3(v) implies ug = uy. Assume that the graph T' is locally 4], where V is an
n-dimensional vector space over GF(2). Any p-graph of [3] is a 3 x 3 grid,
and [%] has distinct u-graphs. It follows (see [5], Lemma 1) that any u-graph
of I is locally a 3 x 3 grid and that T has distinct p-graphs.

Lemma 4.1 Suppose u = p(T') = 20. Then every p-graph of I is isomorphic
to J(6,3), and I' has distinct p-graphs.

Proof. It is well-known that there are precisely two connected locally a 3x 3
grid graphs, as a reference we can suggest [2], where these graphs appear as
a very special case. The Johnson graph J(6,3) is the only locally a 3 x 3 g'nd
graph with 20 vertices.

Now we are going to determine all embeddings of J(6, 3) into the Grass-
mann graph [}]. We denote by A(W) the set of all nondegenerate alternating
forms on W, where W is a 4-dimensional vector space over GF(2). We also
denote by Q(W,z) the set of all nondegenerate quadratic forms on W with
nucleus (z), where W is a 5-dimensional vector space over GF(2),0 #z € W.
For 7 € A(W), we define

M, = {U € [§)|U is nonisotropic with respect to v}.
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Then |M,| = 20.
For v € Q(W, z), we define

= {Ue[%]n(u)=1for all u € U,u #0}.

= {Ue[%lle ¢U, vlv #0, 7 is linear on U}
= {Ue[F)h=0enU}.

e B
(]

Then |M,| = 20, |T,| = 45, |T] = 15.

The subgraph of [%] induced by M,, where y € A(W), or Q(W,z), is
isomorphic to J(6,3). We aim to show that these two are the only subgraphs
of ['f] isomorphic to J(6,3) up to automorphisms of [% .

For a finite set {1, consider the incidence system 3.3 = ((7), (7)), where
(7) denotes the set of i-subsets of 0, and the incidence is defined by inclusion
A representation  of Q3 is an injective mapping ¢ : (%) = V — {0}, where
V' is a vector space over GF(2), satisfying the property

2,31 + ({5, k}) + o({j,i}) = 0

for any {i,j,k} € (3). Since the Johnson graph J(192],3) is the line graph of
€;,3, we obtain an embedding of the Johnson graph into the Grassmann graph
[4] whenever we have a representation of {22,3. One can construct the universal
representation of 1, 3 in the sense that any linear relation between the vectors
representing pairs from (7) follows from the above relations. The dimension
of the space generated by the image of () in the universal representation is
the dimension of the left null space of the incidence matrix for 1,5 taken over
GF(2). If |2 = 6, then one checks easily that the dimension of the universal
representation is 5.

Lemma 4.2 Let V be an n-dimensional vector space over GF(2) and M a
subgraph of |}] isomorphic to J(6,3). Then one of the following holds.

(i) There exist W € [{], v € A(W) such that M = M,.

(1) There exist W € [{], 0# = € W, v € Q(W, z) such that M = M,.

Proof. The graph J(6,3) has 30 maximal cliques. It can be shown that
there are 15 maximal cliques, each of which is contained in a grand clique of
[¥]. This establishes a representation of ;3 in V. One checks easily that the
embedding (ii) is obtained from the universal representation, while (i) is the
only quotient of it. o

In the rest of this section we list some properties of the subgraphs J(6,3)
of [4], mostly found by a computer program. In every case a check is straight-
forward. Table 1 is self-explanatory, The Petersen graph is the complement of
J(5,2). By the type of a quadratic form, we mean the rank r together with a
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doscription of 7 and & M, O\ M| # ol §

1 Ky 15

5 € Q(W,z) typeof  |2H] Ns 45

7€ Q(W,z) §#y T+6 2— [] 15
3 K, 180

4+| 3-claw 120

4 0 T2

typeof yon [2— K, 4

Bl | Rad (Bolw +9) [55] Ky [T

Rad (Bylw, 18)=0] Ka iz

typeof 6on  [2-| K, 64

fé ﬁfvg'[?] Rad (Bslw, +7) [24] K, 192

¥ € A(W) Rad (Bslw, +7)=0] K 192
T € AWS) rank(1+8)=2 | Mis 15

S#y rank(y+68) =4 |Petersen 12

§e A(Ws) Ylwinws = Elwinw, Ky 1

dimWi W2 =3 | vlww, # Slwinw, Ka 24

Table 1. Intersection of two p-graphs

sign “+” or “~”" when r is even. The sign “+” indicates that the Witt index
is r/2, “~" indicates that it is r/2 — 1.

Let Nia be the graph with 12 vertices {(i,j)li = 1,2, 7 = 1,...,6}
where two distinct vertices (i, 1), (i2,52) are adjacent if and only if |j, —
jal = 0,1, or 5. Let Ny be the induced subgraph of Ny; on the vertices
{6, )i=1,2,j=1,...,4}.

Lemma 4.3 Lety € A(W) with W € [%), ory € Q(W,z) with W € [¥)]. For
U e[y, set Nyy = {Us € M,|UNU, # 0} and regard N, as a subgraph of
M,.

(i) Ify € A(W), U € [4] — My, and Nyy # 0, then N,y is isomorphic
to either Niz or Ky. Moreover, N,y = Ny if and only if U € ["-,v] - M,.

(ii) Ky € Q(W,2), U € |%)—M,, and Ny # B, then N,y is isomorphic
to either Ny or Ky. Moreover, Nyy = Ny if and only if U € T,.

(iii) The number of U € [%] — M, with Nyy # 0 is 15 2°' — 105 if
4 € A(W) and is 15 2" — 120 if y € Q(W, ).

Lemma 4.4 Let y € A(W) or Q(W,z), My D N = N, Then N generates
W, i.e., there is no proper subspace W of W for which N C ["}] holds.
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Lemma 4.5 Let vy € Q(W,z),6 € Q(W,y). If M, N\ My = Ny, then z = y.

Lemma 4.6 (i) The graph with vertex set A(W) whose edges are (v,8),
where M, N Mg = Ny, is a connected graph of valency 15.

(ii) The graph with vertex set Q(W,z) whose edges are (v,6), where
M, N M; = Ny, is a connected graph of valency 45.

Lemma 4.7 (i) Let Uy, U; € (%), dimW =4, Uy N Uz = 0. Then
Hy € AW)|Uy € M,,, Uz € M} = 10.
(ii) Let Uy, Uy € [} ], dimW =5, U, @ U @ (z) = W. Then

H{y € QW,2)|U;y € M,, Uz € M,}| = 10.

Lemma 4.8 Suppose that v,6 € Q(W, ), the type of ¥+ & is 2—. Then

{a € A(WL)IMa N M, D Ky, Mo My 2 Ko}| = 24,
wie[ 'y | wias

5. Determination of the second neighbourhood

In this section, we assume that I' is locally [4 ] with 4 = 20, and a; = 15271 —
105, where [7] is the Grassmann graph on a vector space V of dimension n
over GF(2). The assumption on gy is, however, unnecessary before Lemma 5.5.
Let u,v be vertices of I" at distance 2. Then u is said to be of type 1 (resp.
of type 2) with respect to v if the subgraph T(u,v) in the Grassmann graph
T'(v) satisfies Lemma 4.2(i) (resp. (ii)).

Lemma 5.1 Let u,v be vertices of ' at distance 2. Then u is of type 1 with
respect to v if and only if v is of type 1 with respect to u. If u is of type 1
with respect to v, then

Hw € Ta(o) N P(w)iD(u, v,0) = N} = 15,
Ifu is of type 2 with respect to v, then

Hw € Ta(v) N T(w)[T(u, v, w) = Ng}| = 45.
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Proof. If v is of type 2 with respect to u, then by Lemma 4.3 there exists
a vertex w € [3(v) N D(x) such that I(u,v,w) = Ns. By Lemma 4.4, T(u,v)
and I'(w,v) generate the same subspace in the Grassmann graph ['(v). In
particular, u and w are of the same type with respect to v. According to
Table 1, Ny does not occur as the intersection of two p-graphs of vertices
of type 1. Thus, u and w are of type 2 with respect to v, proving the first
assertion. The rest of the statements follows from Lemma 4.3. o

For the rest of this section, fix an arbitrary vertex vo of ' and identify
T(uo) with [}]. By Lemmas 4.2 and 4.1, one can identify T's(vo) with a subset
of (Uw, A(W1))U(Uw, « @(Wa, ) in such a way that U € [%] and v € Ta(vo)
are adjacent if and only if U € M,. The goal of this section is to determine
T'3(vg) as such a subset.

Lemma 5.2 (i) If A(W) N a(wo) # 8, then A(W) C Ta(vo).
(ii) If Q(W,z) N Ta(vo) # 0, then Q(W,z) C Ta(vo)-

Proof. (i) Let ¥ € A(W)NTy(vo). Then by Lemma 5.1, we have
1{6 € Ta(uo) NT(7)|Ms N My = Nig}| = 15.

Lemma 4.4 implies that if Mz N My = Ny, then § € A(W). By Lemma 4.6(i)
we find A(W) C [z(vo).
(ii) The proof is analogous, using Lemmas 4.5, 4.6(ii) and Table 1. O

Lemma 5.3 For any W € [¥], one and only one of the following holds.
(i) A(W) C Ta(w) i 1
(i) Q(W,z) C T3(wo) for exactly one W € [¥] and exactly onez € W
with W = W @ (z).

Proof. Choose Uy, Uz € [%] such that Uy U = 0. Since |T(Uh, Ua) Nvg| =
10 < (T), we can find a vertex v in Ta(vo) N I(Us, Ua). I 7 is of type 1 with
respect to v, then y € A(W), so that (i) holds by virtue of Lemma 5.2(1). If
+ is of type 2 with respect to vg, then 1 € Q(W,z) for some Welll,zeW
with W C W. It follows easily that z ¢ W. By Lemma 5.2(ii), Q(W,z) C
T'a(vo). If (i) and (ii) hold simultaneously (resp. if the pair (W,z) is not
unique), then T(Uy, Up) contains subsets I'(Uh, Uz) N, DUy, U2) N Q(W, z),
T(Uy, U2)N A(W), (resp. P(UI,U,)HQ(W', z') for another pair (W, z')), each
having cardinality 10 by Lemma 4.7. Since the intersections are clearly trivial,
we obtain a contradiction with p = 20. s]

Lemma 5.4 Let 4,8 € Ta(vo), My N My # 0. Then ~ is adjacent to § if and
only if M, N M; contains a 4-clique.

312



MUNEMASA ET AL: LOCAL CHARACTERIZATION OF FORMS

Proof. By Lemma 4.3(i-ii), if v is adjacent to &, then M, N M; is one of
Ny, Na, or Ky, all of which contain K. The converse is a special case of [4],
Lemma 2.2. a

Lemma 5.5 If Q(W,z) C Ta(vo), Wi € [¥], dim(W N W;) =3 and z ¢ W),
then A(W)) ¢ Ty(vo).

Proof. Suppose A(W1) C Ta(w). Let v € A(W,), and choose & € Q(W,z)
in such a way that M, N["7¥:] = M; N ["3"]. Then M, N M;s = K, hence
4 and § are adjacent by Lemma 5.4. It is easy to see that there exists an
Uy € M such that Uy N W, = 0. On the other hand, Lemma 4.3(iii) together
with the assumption on a, implies

To(1)NT(wo) = {U € [}] - My|Npw # 0}
{Uelf]- MUnW, #0}.

This is a contradiction since Up € Ta(7y). o
For brevity, let us call a 4-space W of type A (resp. of type Q) if
Lemma 5.3 (i) (resp. (ii)) holds,

Lemma 5.6 Let Wo, Wi € [}], dim(Wo N W,) = 3. Suppose that Wy is of
type A, and W, is of type Q, i.e., Q(W},z) C Ty(vo) with W{ = Wy & (z).
Then

(i) z € Wo C W},

(ii) every W € ["i] with = € W is of type A.

(iii) every W € [¥) with z € W and dim(W N W}) = 3, is of type A.

Proof. (i) If Wo ¢ WY, then Wo N W] = W, N Wy, which is impossible by
Lemma 5.5. Thus, Wo C W{. If « ¢ Wy, then W{ = W, & (z), which would
imply, by Lemma 5.3, that Wy is of type Q.

(ii) Since Wy is of type A, we may assume W # Wy, If W is of type
Q, then Q(W’,y) C Ta(wvo) for some y ¢ W, W’ = W @ {y). By (i), we have
y € Wo C W'. This implies W' = W], and by Lemma 5.3, y =z € W, a
contradiction. Thus, W is of type A.

(iii) If W is of type Q, then Q(W',y) C I'3(vo) for some y ¢ W, W' =
W@ (y). Let Uy, U;,Us be the 4-spaces of W] containing W N W,. Then
Uy, Uz, Us are of type A by (i), and hence by (i), we have U, ¢ W' for
2= 1,2,3. This forces W’ = W}, which is a contradiction. o

Lel W,z) = Q(W,2) U (U, gy ¥ ] AW2)).
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Lemma 5.7 We have either

(i) La(vo) = L[JV]A(W).
(i) Ta(vg) = {H QW,z)

for some nonzero element z € V.

Proof. Suppose first that every vertex u € T'3(v) is of type 1 with respect
to vp. Then I'3(vo) is a union of A(W)’s, so the first equality holds.

Next suppose that there is a vertex u € I';(v) of type 2 with respect to
vo. This means that there exists a W; € [%) of type Q. Since |Q(W, z)| does not
divide |I2(vo)| (|T2(va)| is known since 4 is known), there exists a Wo € [}]
of type A. Since the Grassmann graph [%] is connected, we may assume
without loss of generality that dim(W, N W) = 3. By Lemma 5.6(i), we see
that Q(W],z) C Ta(vo) for some = € Wy — Wy, W = W, @ (z). Let W} € [¥],
z € W}, dim(W] N W}) = 4. We want to show that Q(WJ,z) C [s(vo). In
order to do so, it suffices to prove that Q(Wj},z) C I's(vg), by virtue of from
Lemma 5.6(ii). Let W; € 3] with = ¢ Wa N W} € [%]. By Lemma 5.5,
W; must be of type Q. Applying Lemma 5.6(i) for (W) N W3, W,), we see
that Q(W3,y) C Ta(vo) for some y € W] MW} — Wy. lf y # 2, then there
exists a W € (3] such that z € W, y ¢ W. Since W} = W @ (y), W is of
type Q, while W is of type A by Lemma 5.6(iii). This contradiction proves
z =1y, so that Q(W},z) C T3(wp). We have shown Q(W}, z) C I'3(wo) for any
W} € [¥] with z € W}, dim(W{ N W}) = 4. Now it follows from connectivity
of the Grassmann graph [Y/{*)] that Q(W},z) C I'z(vo) for every W} € [Y]
with € W}. Finally, a simple counting shows that the sets Q(W,z) cover
the whole of T'y(vg). o

It is straightforward to check that Lemma 5.7(i) holds if I' = Alt(n, 2),
and Lemma 5.7(ii) holds if I' = Quad(n—1,2). Moreover, two vertices 7,6
of Quad(n—1,2) at distance 2 are of type 1 to each other if and only if
rank (y+6) = 3. I T" satisfies Lemma 5.7(ii), then the grand clique € = {U €
[¥)IU 3 z} of the Grassmann graph [%] = I'(v,) will be called the nucleus
with respect to vo. If u € I'y(vg), then I'(wp,u) N € = K, or 0 depending on
whether u is of type 1 or 2 with respect to vy, and the nucleus is the only such
grand clique. The following lemma gives a more convenient characterization
of the nucleus.

Lemma 5.8 Let v be a type 2 vertex with respect to vo, and W € [¥] be
the subspace generated by M,. Then the nucleus C with respect to v, is
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characterized by the properties [ | N C # @ and

{UVeMUnUy #0} =K, forany Upe [¥]NC.

Proof. Note that 5 can be regarded as a nondegenerate quadratic form on
W, and its nucleus = is characterized by the property: for any Up € 1%] with
Us 3 2, Us contains a unique nonsingular 1-space distinct from (z). There are
exactly four elements in M, containing a given nonsingular 1-space. o

6. Proof of the main theorem

Let T and T' be graphs with the same local structure, let v be a vertex of
T and let & be a vertex of I'. An isomorphism o : 5+ — v% with a(8) = v
is called extendable if there exists a bijection o' ; 5+ U Ta(3) — v* U Ty(v),
mapping edges to edges and satisfying o'|;» = . In this case the mapping o’
is called the extension of 4.

Let T be locally ] with s = 20 and a; = 152" — 105, where V is a
vector space of dimension n over GF(2).

Lemma 6.1 Suppose ug is a vertex of T, such that Lemma 5.7(i) holds.
Take T' = Alt(n,2) and let © € T. Then every isomorphism o : i+ — v* is
extendable.

Proof. Clearly, every u-graph f‘(f:,ﬁ) in ©* is mapped onto a p-graph
T(v,u) in v*. By the second part of Lemma 4.1, such a vertex w is defined
uniquely and, hence, we can define the extension o' by o'(i) = u. It remains
to check that o’ maps an edge to an edge. Unless both ends of the edge in
* UT,(9) belong to T'3(3), the claim follows by definition. Let u € Ta().
Identifying P'(u) with [%], it follows from Lemma 4.3(iii) that the set

§ = {w & Fu) ~ Blu, 0)1u, 5, w) > K.}

has cardinality a; = 15-2"! — 105. By Lemma 5.4, § is contained in F(u)n
T'3(#), whose cardinality is also a,. This implies § = F(u)NTy(5). Now if (u, w)
is an edge in T3(5), then I(u,5,w) > Ki, so that [(¢"(u),u,0'(w)) D K,.
Again by Lemma 5.4, we see that (o'(),0'(w)) is an edge. o

Lemma 6.2 Suppose vy is a vertex of I', such that Lemma 5. 7(ii) holds.
Take [ = Quad(n—1,2) and let # € I'. Then an isemorphism o : 9t — vt s
extendable if and only if it maps the nucleus with respect to © to the nucleus
with respect to v. In particular, if there exist type 2 vertices u € Ty(v) and
% € [y(0), such that o(5,4)) = [(v,u), then o is extendable.
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Proof. The “only if” part is obvious, so let us consider an isomorphism
o - &t — v*, which maps the nucleus with respect to ¥ to the nucleus with
respect to v. As in Lemma 6.1, the p-graphs in 9+ are mapped onto p-graphs
in v* and this gives us the extension o'. We only need to check that o' maps
edges from f‘,{}'x} onto edges.

Let u € Ty(3). I uis of type 1 with respect to § then, as in the previous
lemma, we show that for every edge (u,w) in T'2(%) we have T(u,v,w) D K¢
and hence (o'(u), o'(w)) is an edge by Lemma 5.4. Suppose u is of type 2 with
respect to 9. Consider once again theset S = {w € f‘(u)—f‘(u,fr)lf’(u, #,w) D
K.} C T(u)nTa(@). This time, |S] = a2 —15 by Lemma 4.3 (iii). Identify now
['(5) with %] and suppose u =7 € Q(W,z) C I'y(3), where 0z € W € 4
From Table 1, there are 15 elements § € Q(W, ) such that the type of v +§
is 2—, and for such a vertex 5, M,NM;=0 holds. By Lemma 4.8, there are
24 vertices in Q(W, z) which are of type 1 with respect to and are adjacent
to both 4 and &. Since p = 20 < 24, 4 and & must be adjacent. Therefore,
{'(u) N [3(8) consists of the disjoint union of § and the set

So = {6 € Q(W,z)|type of 7 + §is2-}.

Clearly, o'(w) is adjacent to '(u) if we 5. 1f & € So, then by the first part
of the proof, the 24 type 1 common neighbours of v = u and § in Q(W, z) are
mapped to common neighbours of o’(u) and o'(8), so that o'(u) and o'(8) are
adjacent since p < 24.

The last statement of the lemma follows from Lemma 5.8. o

Proof of Main Theorem. First suppose that for any vertices u,v of I' at
distance 2, u is of type 1 with respect to v. Let T' = Alt(n,2). Then for any
vertex v of ' and for any vertex & of T and for any isomorphism o : gt =t
o is extendable by Lemma 6.1. Let o' be the extension of o. The mapping
o' maps edges to edges. Hence, if w € T(9), then 0’|, is also extendable by
Lemma 6.1. Now, by [4], Proposition 6.1, all the hypotheses of [4], Theorem 7.1
are satisfied, so T' is covered by Alt(n,2).

Next suppose that there exist vertices tg,vo of T which are of type
2 with respect to each other. Again we want to use (4], Theorem 7.1, this
t{ime with T = Quad(n—1,2). By Lemma 6.2, there exists an extendable
isomorphism @y — vg, where 3o is a vertex of I'. Suppose that ¥ is a vertex
of I and that v is a vertexof ['and o : 74 — v is an extendable isomorphism
with the extension o', Then o' maps edges to edges. Let w € T'(#). We want
to show that o', is extendable. If u € #+UT;(@), then clearly o(Dw,u)) =
TI(o*(w), o’(u)). If, moreover, u is of type 2 with respect to w, then, as well,
o’(u) is of type 2 with respect to o(w). By Lemma 6.2, it implies that the
nucleus with respect to w is mapped to the nucleus with respect to o'(w).
Again by Lemma 6.2 we obtain that o'|,. is extendable.
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It remains to find a vertex u € #* U T'3(@), which is of type 2 with
respect to w. Since ' = Quad(n—1,2), it means that we must find, for every
quadratic form « of rank < 2, a quadratic form § of rank at most 4, such that
rank (y + §) = 4. This is easy to check, so that ¢’|,. is indeed extendable.
Triangulability of Quad(n-1,2) has been shown in Proposition 3.2. Now all the
hypotheses of [4], Theorem 7.1 are satisfied, so I" is covered by Quad(n-1,2).

(m]

References

[1] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular
Graphs. Springer Verlag, Berlin, 1989,

[2] F. Buekenhout and X. Hubaut, Locally polar spaces and related rank
3 groups. J. Algebra, 45, pp. 391-434, 1977,

[3] A. Munemasa, D, V. Pasechnik, and S. V. Shpectorov. Auto-
morphism group of the graph of quadratic forms over a finite field of
characteristic 2. Preprint, 1992.

[4] A. Munemasa and S. V. Shpectorov. A local characterization of
the graphs of alternating forms. In A. Beutelspacher, F. Buekenhout,
F. De Clerck, J. Doyen, J. W, P. Hirschfeld, and J. A. Thas, editors,
Finite Geometry and Combinatorics, pages 289-302, Cambridge, 1993.
Cambridge University Press.

[5] D. V. Pasechnik. Geometric characterization of the graphs from the
Suzuki chain. To appear in European J. Combin.

A. Munemasa, Department of Mathematics, Kyushu University, 6-10-1
Hakozaki, Higashi-ku, Fukuoka 812, Japan.
e-mail: munemasa@math.sci.kyushu-u.acjp

D.V. Pasechnik, Department of Mathematics, University of Western Aus-
tralia, Nedlands 6009 WA, Australia.
e-mail: dima@madvax.maths.uwa.edu.au

S. V. Shpectorov, Institute for System Analysis, 9 Pr. 60 Let Oktyabrya,
117312 Moscow, Russia. e-mail: ssh@cs.vniisi.msk.su

317



