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1 Introduction

Despite the performance advantages of full multivariate
controller, decentralized control is almost the exclusive
choice for control of large-scale systems. For power sys-
tems, decentralized control is necessitated due to physical
distances between different stations and the large cost of
establishing a communication network. In process indus-
tries, the use of decentralized controllers is motivated by
the ease of tuning and design. Decentralized control is also
the preferred choice by nature, e.g. the secretion of differ-
ent enzymes and hormones in the human body is controlled
by different sections of the brain.

Over the years, three different approaches have evolved
for decentralized controller design:

a) Simultaneous design using parametric search methods:
The decentralized controller is chosen to have a fixed
structure (e.g. PID controller) with unknown param-
eters. The optimal value of these parameters is found
by minimizing the appropriate norm of the closed loop
system. Though useful, this approach results in opti-
mization problems that are not usually convex and can
be highly complicated even for simple systems (Bao
et al., 1999).

b) Sequential design: The controllers are designed se-
quentially using a lexicographical ordering of the in-
dividual controllers. The lowest level controller is de-
signed first and the loop is closed. The next controller
is designed based on the partially closed loop system.
The resulting performance strongly depends on the or-
dering of the loops and often a trial and error approach
is required to obtain acceptable performance (Mayne,
1973; Hovd and Skogestad, 1994).

c) Independent design: The individual controllers are de-
signed independently of each other based on a block
diagonal approximation that is usually taken as the
block diagonal elements of the system. Then, the de-
centralized controller design problem reduces to de-
sign of a number of small dimensional full multivari-
able controllers. When the interactions are small,
such a controller also stabilizes the closed loop sys-
tem with minimal loss of performance in comparison
to the design basis (Skogestad and Morari, 1989; Hovd
and Skogestad, 1993). This approach always results in
suboptimal performance because the tuning of other
controllers is neglected.

In this paper, we focus on the independent design ap-
proach. Although sub-optimal, the controller design is
much simpler as compared to other techniques.

Grosdidier and Morari (1986) proposed the use of µ in-
teraction measure (µ-IM) to assess the feasibility of sys-
tem stabilization through independent designs of individ-
ual loops. This approach yields sufficient conditions to
ensure that the decentralized controller that stabilizes the

Copyright c© 200x Inderscience Enterprises Ltd.

block diagonal part of the system also stabilizes the sys-
tem itself. The problem of decentralized controller synthe-
sis through independent designs has also been studied by
Limbeer (1982) and Ohta et al. (1986), who used the con-
cepts of generalized block diagonal dominance and quasi-
block diagonal dominance respectively. The use of µ−IM
is less conservative than these approaches because the con-
troller structure is taken into account. A connection be-
tween these methods based on dominance and µ−IM is
established by Kariwala et al. (2003).

The conventional µ-IM requires that the system and its
block diagonal part have the same right half plane (RHP)
poles. Grosdidier and Morari (1986) pointed out that this
condition is not satisfied by most of the systems encoun-
tered in practice, limiting the applicability of µ-IM to open
loop stable systems. Samyudia et al. (1995) have criticized
the µ-IM for this limitation and have instead proposed a
method based on ν-gap metric (Vinnicombe, 1999). In this
paper, we present a modified µ-IM that easily handles un-
stable systems. The decentralized controller is designed
based on a block diagonal approximation that is different
from the block diagonal elements, but has the same num-
ber of unstable poles as the system.

Clearly, the number of block diagonal systems with the
required number of unstable poles is infinite and the suc-
cess of the modified µ-IM approach strongly depends on
the choice of an appropriate approximation. We express
the µ-IM in terms of the closed loop transfer matrix be-
tween disturbances and system input (or controller out-
put). This alternate representation shows that the block
diagonal approximation can be reasonably selected by min-
imizing the scaled L∞ distance between the system and the
approximation. The problem of finding a structured ap-
proximation of a full multivariate system has earlier been
considered by Li and Zhou (2002), but no numerical meth-
ods for solving the approximation problem are provided.
In this paper, we present a numerical approach, where the
approximation problem is first solved at a set of chosen fre-
quencies followed by a parametric identification method.

Similar to the conventional µ-IM method, the stabiliz-
ing decentralized controller can be synthesized using a loop
shaping approach based on the block diagonal approxima-
tion. An advantage of alternate representation of µ-IM
used here is that controller design can be much simplified
using the results on input performance limitations (Glover,
1986; Kariwala et al., 2005). Although the focus of this
paper is on finding stabilizing decentralized controllers, we
also show that the stabilizing controller inherently mini-
mizes an upper bound on the input requirement for stabi-
lization.

The organization of the remaining discussion in this pa-
per is as follows: the available results of µ-IM are reviewed
and its limitation is pointed out in § 2; the alternate repre-
sentation of µ-IM is presented and upper bounds on closed
loop input performance are derived in § 3; in § 4 we con-
sider the problem of selecting the optimal block diagonal
approximation; the simplified controller design method is
presented in § 5; in § 6, a numerical example is presented
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to demonstrate the utility of proposed approach followed
by conclusions in § 7.

Notation. Before proceeding with the main discussion,
we standardize the notation. We represent matrices by
boldface uppercase letters and vectors by boldface lower-
case letters. Given a matrix A ∈ Cm×n, A∗ is its conjugate
transpose. The maximum singular value is represented as
σ̄(A) and the Euclidian condition number as κ(A). The
symbol � denotes partial ordering, i.e. A � B implies that
A−B is positive semi-definite. Let the set ∆ ∈ Cn×m be
defined as

∆ = {diag(∆i) : ∆i ∈ C
ni×mi , σ̄(∆) ≤ 1}

The structured singular value of A ∈ C
m×n is given

as (Doyle et al., 1982),

µ∆(A) =
1

min{σ̄(∆̃) : ∆̃ ∈ ∆, det(I − A∆̃) = 0}

unless no ∆̃ ∈ ∆ makes (I − A∆̃) singular, in which case
µ∆(A) = 0. Let DL,DR be set of matrices that com-
mute with all elements of ∆ or DL∆̃ = ∆̃DR for all
∆̃ ∈ ∆,DL ∈ DL,DR ∈ DR. Then,

µ∆(A) ≤ inf
DL∈DL,DR∈DR

σ̄(DLAD−1
R ) (1)

In this paper, we denote the upper bound given by (1) as
µ̄∆(.).

The set of all rational stable systems is denoted as RH∞.
Let G(s) = G1(s) + G2(s) such that G1(s) ∈ RH⊥

∞ and
G2(s) ∈ RH∞. Then G1(s) is the unstable projection
of G(s) represented as U(G(s)), where U(G(s)) ∈ RH⊥

∞.
The H∞ or L∞ norm of the transfer matrix G(s) is defined
as (Zhou and Doyle, 1998)

‖G(s)‖∞ = sup
Re(s)>0

σ̄(G(s)) = sup
ω∈R

σ̄(G(jω))

We represent the mininum Hankel singular value of
G(s) ∈ RH∞ as σH(G(s)) (Glover, 1984; Zhou and Doyle,
1998).

2 µ-interaction measure

In this section, we briefly review the available results on
µ-IM (Grosdidier and Morari, 1986), point to its limita-
tion and suggest a modification to overcome the same.
Throughout this paper, we assume that the system does
not contain any decentralized fixed modes (Wang and
Davison, 1973). The absence of decentralized fixed modes
is both necessary and sufficient for existence of a decen-
tralized stabilizing controller but only necessary, when in-
dividual loops of the decentralized controller are designed
independently of each other.

With reference to Figure 1, let the system G(s) be par-
titioned as G(s) = Gbd(s) + GI(s) such that

c
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Figure 1: Partitioning of G(s) for µ-IM

• Gbd(s) contains the block-diagonal elements of G(s)
and

• Gbd(s) and G(s) have the same number of RHP poles.

Define the transfer matrices E(s) and Tbd(s) as,

Tbd(s) = GbdKbd(s) (I + GbdKbd(s))
−1

(2)

E(s) = (G(s) − Gbd(s))Gbd(s)
−1 (3)

where Kbd(s) is the block diagonal controller. Tbd(s) can
be interpreted as the complementary sensitivity function,
if GI(s) were zero, and E(s) as the multiplicative uncer-
tainty in Gbd(s). Let Kbd(s) be designed such that Tbd(s)
is stable. The central question remains: Does Kbd(s) also
stabilize G(s)? This issue has been addressed by Grosdi-
dier and Morari (1986), who proposed the use of µ-IM for
this purpose.

Lemma 2.1 Assume that G(s) and Gbd(s) have same
number of RHP poles and Tbd(s) is stable. Then T(s) =

GKbd(s) (I + GKbd(s))
−1

is stable if and only if (iff) the
following conditions hold (Grosdidier and Morari, 1986)

det(I + ETbd(s)) 6= 0 (4)

N(0, det(I + ETbd(s))) = 0 (5)

where N(α, .) denotes the winding number (Vinnicombe,
1999) or the number of clockwise encirclements of the point
(α, 0) by the image of Nyquist D contour under (.).

Lemma 2.1 was originally proven by Grosdidier and
Morari (1986), except the requirement that (4) must hold.
This is a minor technical requirement to ensure that the
image of det(I + TbdE(s)) does not pass through the ori-
gin of the complex plane. Lemma 2.1 forms the basis for
a more important result, as presented next.

Theorem 2.2 Let G(s) and Gbd(s) have same number of
unstable poles. If Kbd(s) stabilizes Gbd(s), then Kbd(s)
also stabilizes G(s), if

σ̄ (Tbd(jω)) < µ−1
∆

(E(jω)) ∀ω ∈ R (6)

where ∆ has the same block structure as Gbd(s) and,
Tbd(s) and E(s) are defined by (2) and (3), respectively.

Proof : The sufficiency of (6) for closed loop stability is
proven by contradiction. Assume that (6) is satisfied, but
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N(0, det(I + ETbd(s))) > 0. Thus the image of det(I +
ETbd(s)) intersects the negative real axis of complex plane
at a certain frequency, which we denote as ωo. Now, let
us consider the variation of det(I + βETbd(jωo)) with the
scalar β. When β = 0, det(I + βETbd(jωo)) = det(I) > 0.
On the other hand, when β = 1, det(I + βETbd(jωo)) < 0
due to intersection with negative real axis. Then due to
continuity of the determinant function, there exists a β,
|β| < 1 such that

det(I + βETbd(jωo)) = 0

Similarly, let there exists a frequency ω1 such that

det(I + ETbd(jω1)) = 0

Combining these two conditions, we notice that T(s)
is unstable iff there exists a β, |β| ≤ 1 such that
det(I + βETbd(jω)) = 0 for some ω ∈ R. It follows
from the definition of the structured singular value that
the smallest βTbd(jω) that destabilizes E(jω) is given as
σ̄−1(βTbd(jω)). When (6) holds, a β with |β| < 1 such
that det(I + βETbd(jω)) = 0 for some ω ∈ R does not
exist and the closed loop system is stable.

Theorem 2.2 was proven by Grosdidier and Morari
(1986) under the requirement that the unstable poles of
G(s) and Gbd(s) be identical. It is clear from Lemma 2.1
and the proof of Theorem 2.2 that the number of unstable
poles of G(s) and Gbd(s) being equal suffices. In either
case, design of Kbd(s) solely based on Gbd(s) is equivalent
to designing individual loops or control susbsystems inde-
pendently. The equation (6) is known as the µ-IM. This
powerful result allows the designer to impose restrictions
on individual controllers, but still design the decentralized
controller solely based on Gbd(s) such that closed loop sta-
bility is ensured.

As pointed by Grosdidier and Morari (1986) that in
practice, G(s) and Gbd(s) as defined above has same num-
ber of RHP poles only for open loop stable systems limiting
the applicability of µ-IM. It is noted that this limitation
only arises as Gbd(s) is chosen as the block diagonal el-
ements of G(s) and is easily overcome by relaxing this
requirement. The decentralized controller can be designed
based on Gbd(s) that is different from the block diagonal
elements but has the same number of RHP poles as G(s).
This point is further illustrated using the following exam-
ple.

Example 2.3 Consider the following system

G(s) =
1

(s − 1)(s − 2)

[

(s + 0.5) 0.5
(9s − 3) (s + 1)

]

(7)

Since all the minors of order 1 have (s− 1)(s− 2) as the
denominator and

det(G(s)) =
(s + 0.5)(s + 1) − 0.5(9s − 3)

(s − 1)2(s − 2)2

=
s2 − 3s + 2

(s − 1)2(s − 2)2
=

1

(s − 1)(s − 2)

the system (7) has two unstable poles at 1 and 2 (MacFar-
lane and Karcanias, 1976; Skogestad and Postlethwaite,
2005). Let Gbd(s) be chosen as the diagonal elements of
G(s). In this case,

det(Gbd(s)) =
(s + 0.5)(s + 1)

(s − 1)2(s − 2)2

Due to absence of pole-zero cancellation, Gbd(s) has
poles at the same locations as G(s), but repeated twice
and the assumption of µ−IM that G(s) and Gbd(s) have
same number of unstable poles, is violated. Consider that
Gbd(s) is chosen as,

Gbd(s) =

[

1
(s−α1)f1(s) 0

0 1
(s−α2)f2(s)

]

where α1, α2 > 0 and f1(s), f2(s) are arbitrary stable
transfer matrices. With this choice, the assumption that
Gbd(s) and G(s) have the same number of unstable poles
is easily satisfied. Note that for an arbitrary choice of
α1, α2 > 0, the diagonal blocks of GI(s) are not necessar-
ily zero. A similar approach can be used for partitioning
any arbitrary system.

Remark 2.4 The approach for choosing Gbd, as illus-
trated above, still holds when some of the RHP poles of
the system do not appear in any of its block diagonal el-
ements. It is pointed out, however, that in this case, it
may be very difficult to design a block diagonal controller
Kbd to satisfy the µ−IM condition, as the corresponding
diagonal blocks will have large element-wise uncertainties
associated with them (up to 100%, if the diagonal block is
0).

Though the generalization used in choosing Gbd(s) ex-
tends the practical applicability of µ−IM to unstable sys-
tems, the generalization introduces an additional degree of
freedom. Clearly, whether the µ−IM condition (6) is sat-
isfied depends on the choice of Gbd(s), which is dealt with
in subsequent sections.

3 Alternate representation of µ-IM

For a given Gbd(s), a loop shaping approach can be used to
find Kbd(s) for closed loop stability. In the present case,
Gbd(s) can also be treated as a free parameter with the
requirement of having the same number of unstable poles
as G(s).

The task of jointly finding the pair (Gbd(s),Kbd(s)) such
that the closed loop system is stable, is very difficult. We
note in (6), both σ̄(Tbd(jω)) and µ∆(E(jω)) depend on
Gbd(jω), but E(jω) is independent of the controller. Then,
a convenient (and not optimal) approach is to find Gbd(s)
such that µ∆(E(jω)) is minimized and then design the de-
centralized controlled based on it to satisfy the µ-IM condi-
tion; however, E(s) is not an affine function of Gbd(s). We
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next show that this difficulty can be overcome by represent-
ing µ-IM alternately in terms of transfer matrix between
the disturbances and the inputs.

Proposition 3.1 Let G(s) be partitioned as G(s) =
Gbd(s) + GI(s) such that Gbd(s) and G(s) have the same
number of RHP poles. Define Sbd(s) = (I+GbdKbd(s))

−1.
Then Kbd(s) stabilizing Gbd(s) also stabilizes G(s) if

σ̄(KbdSbd(jω)) < µ−1
∆

(GI(jω)) ∀ω ∈ R (8)

where ∆ has the same structure as Gbd(s).

Proof : Note that

det(I + ETbd(s)) = det(I + GI(s)KbdSbd(s))

Now the sufficiency of (8) is shown by using Lemma 2.1
and following the proof of Theorem 2.2.

Since the RHS of (8) is affine in Gbd(s), the block di-
agonal approximation can be sub-optimally selected by
minimizing µ∆(GI(jω). This approach is suboptimal as
the LHS of (8) also depends on Gbd(s). For a particular
choice of Gbd(s) that optimally minimizes µ∆(GI(jω)),
there may not exist any controller satisfying (8) and vice-
versa. This issue is further discussed later in this paper.

Remark 3.2 Compared to the necessary and sufficient
conditions provided by Lemma 2.1, the conditions provided
by Theorem 2.2 and Proposition 3.1 are sufficient only. It is
possible that there exists a controller Kbd(s) that violates
(6) or (8), but renders a stable closed loop system, which
shows the conservatism of µ-IM. In this case, however,
there exists some other controller K̄bd(s) that also violates
(8) with σ̄(K̄bd(jω)(I+GbdK̄bd(jω))−1) = σ̄(KbdSbd(jω))
for some ω ∈ R and K̄bd(s)(I + GbdK̄bd(s))

−1 is unstable.
Thus, the strength of µ-IM is that when (6) or (8) hold,
any decentralized controller that stabilizes Gbd(s) also sta-
bilizes G(s).

Remark 3.3 We note that in practice, only the upper and
lower bounds on µ are computable. Hence, to assess the
feasibility of independent designs, one needs to verify

σ̄(KbdSbd(jω)) < µ̄−1
∆

(GI(jω)) ∀ω (9)

where µ̄ represents an upper bound on µ calculated by the
D-scaling method with the left and right hand sides scaling
matrices being DL(ω) ∈ DL,DR(ω) ∈ DR, respectively.
Here, the sets DL and DR are given as

DL = {diag(di · Imi
), di ∈ R}

DR = {diag(dj · Imj
), dj ∈ R} (10)

where the dimensions of individual blocks of Gbd(s) is mi×
mj .

Proposition 3.1 provides a sufficient condition to as-
sess whether Kbd(s) designed for Gbd(s), can stabilize the
closed loop system; however, it provides no information
regarding the closed loop performance. Grosdidier and

Morari (1986) pointed out, satisfying µ-IM condition guar-
antees closed loop stability, but the performance can be
arbitrarily poor. We gain some insight into this issue by
deriving an upper bound on the closed loop input perfor-
mance, when the µ-IM condition (8) is satisfied.

Proposition 3.4 Assume that G(s) and Gbd(s) have the
same number of RHP poles and (9) holds. Then,

σ̄(KbdS(jω)) ≤
κ(DL(ω))

σ̄−1 (KbdSbd(jω)) − µ̄∆(GI(jω))

∀ω ∈ R (11)

where ∆ has the same structure as Gbd(s) and
DL(ω) ∈ DL, DR(ω) ∈ DR are chosen to minimize
σ̄
(

DL(ω)GI(jω)D−1
R (ω)

)

.

Proof : Using G(s) = Gbd(s) + GI(s),

S−1K−1
bd (s) = (I + GKbd(s))K

−1
bd (s)

= K−1
bd (s) + Gbd(s) + GI(s)

= (I + GbdKbd(s))K
−1
bd (s) + GI(s)

= S−1
bd K−1

bd (s) + GI(s) (12)

Let DL(ω) ∈ DL and DR(ω) ∈ DR, where DL and
DR are defined by (10). Then, using (12) and singular
value inequalities (Horn and Johnson, 1991; Skogestad and
Postlethwaite, 2005),

σ
(

DL(ω)S−1K−1
bd (jω)D−1

R (ω)
)

≥ σ
(

DL(ω)S−1
bd K−1

bd (jω)D−1
R (ω)

)

−σ̄
(

DL(ω)GI(jω)D−1
R (ω)

)

Noting that the above expression holds for all DL(ω) ∈
DL, DR(ω) ∈ DR, we select these matrices to mini-
mize σ̄

(

DL(ω)GI(jω)D−1
R (ω)

)

. Since S−1
bd K−1

bd (jω) =

DL(ω)S−1
bd K−1

bd (jω)D−1
R (ω),

σ
(

DL(ω)S−1K−1
bd (jω)D−1

R (ω)
)

≥ σ
(

S−1
bd K−1

bd (jω)
)

− µ̄∆(GI(jω)) (13)

For any ω ∈ R, using (13),

σ̄(DL(ω))σ̄(D−1
R (ω))σ

(

S−1K−1
bd (jω)

)

≥ σ
(

S−1
bd K−1

bd (jω)
)

− µ̄∆(GI(jω)) (14)

Since σ̄(D−1
R (ω)) = σ̄(D−1

L (ω)) by construction,
σ̄(DL(ω))σ̄(D−1

R (ω)) = κ(DL(ω)). With this choice,

κ(DL(ω))σ
(

S−1K−1
bd (jω)

)

≥

σ
(

S−1
bd K−1

bd (jω)
)

− µ̄∆(GI(jω))

Recognizing that σ
(

S−1K−1
bd (jω)

)

= σ̄−1 (KbdSbd(jω)),
the above expression can be rearranged to yield (11).

For stabilization purposes, it is useful to minimize in-
put usage as, the likelihood of input saturation is reduced
and the disturbing effect of the stabilizing control layer
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on the stabilized system is minimized (Havre and Skoges-
tad, 2003). Based on (11), we note that when the decen-
tralized controller stabilizes the closed loop system, the
input usage always remains finite. Further, we can ex-
press the sufficient condition for stabilization in Proposi-
tion 3.1 as σ̄−1 (KbdSbd(jω)) > µ̄∆(GI(jω))∀ω. Defin-
ing γ(ω) = σ̄−1 (KbdSbd(jω))− µ̄∆(GI(jω)), we note that
Proposition 3.1 is satisfied, if γ(ω) > 0 ∀ω. Here, large
γ(ω) can also be interpreted as the relative ease in stabiliz-
ing the system using independent designs. The expression
in (11) shows that large γ(ω) also ensures that input usage
for stabilization is small.

4 Block diagonal approximation

In this section, we consider the problem of finding an op-
timal block diagonal approximation Gbd(s) for the given
system G(s) such that µ∆(G(jω)−Gbd(jω)) is minimized.
Since only µ̄∆(.) is computable in practice, the block diag-
onal Gbd(s) can be chosen by solving,

min σ̄(DL(ω)
(

G(jω) − Gbd(jω)
)

D−1
R (ω)) (15)

s.t. DL(ω) ∈ DL,DR(ω) ∈ DR

where DL and DR are given by (10) and the number of
unstable poles of Gbd(s) and G(s) is same.

As mentioned earlier, the block diagonal elements of the
system usually have more unstable poles than the system
itself. Intuitively, a suboptimal solution to the optimiza-
tion problem (15) can be obtained by simply reducing the
order of the block diagonal elements of G(s). We next
show that the diagonal blocks optimally approximate a
complex matrix partitioned into 2 blocks. This result in-
dicates that order reduction of diagonal elements is likely
to yield a nearly optimal solution for systems decomposed
into 2 blocks.

Lemma 4.1 For complex matrices A1 and A2

µ∆

([

0 A1

A2 0

])

=
√

σ̄(A1)σ̄(A2)

where ∆ = diag(∆1,∆2) and the full complex matrices
∆1,∆2 have the same dimensions as A1 and A2, respec-
tively (Skogestad and Morari, 1988).

Proposition 4.2 Consider a complex matrix A ∈ C
p×q,

which is partitioned as,

A =

[

A11 A12

A21 A22

]

Then, Abd = diag(A11,A22) minimizes µ∆(A −
Abd), where Abd and ∆ have the same structure as
diag(A11,A22) and

min
Abd

µ∆(A − Abd) =
√

σ̄(A12)σ̄(A21) (16)

Proof : Using Lemma 4.1, it follows that µ∆(A −
diag(A11,A22)) =

√

σ̄(A12)σ̄(A21). Then, it suffices to
show that for all Abd having the required structure, the
minimum achievable value of µ∆(A − Abd) is given by
(16).

Let Abd = diag(A11 + B1,A22 + B2). Since ∆ has two
complex blocks (Zhou and Doyle, 1998),

µ∆(A − Abd) = inf
DL∈DL,DR∈DR

σ̄(DL(A − Abd)D
−1
R )

= inf
d1,d2∈R

σ̄

([

B1
d1

d2
A12

d2

d1
A21 B2

])

Let U be a unitary matrix that permutes the off-diagonal
blocks of DL(A − Abd)D

−1
R to diagonal blocks and vice

versa. Without loss of generality, we can choose d1 =
1 (Zhou and Doyle, 1998). Since the largest singular value
of a matrix is larger than or equal to largest singular
value of the sub-matrices of the matrix (Horn and Johnson,
1991),

σ̄(DL(A − Abd)D
−1
R )

= σ̄(DL(A − Abd)D
−1
R U)

≥ max(σ̄(d−1
2 A12), σ̄(d2A21)) ∀d2 ∈ R

≥ max
(∣

∣d−1
2

∣

∣ σ̄(A12), |d2| σ̄(A21)
)

∀d2 ∈ R

≥
√

σ̄(A12)σ̄(A21)

The result follows by noting that the above expression
is independent of the scaling matrices.

Note that Proposition 4.2 says nothing about the
uniqueness of the optimal solution. For (A − Abd) par-
titioned and permuted as done in the proof of Proposi-
tion 4.2 (Zhou and Doyle, 1998, p. 218),

µ∆(A − Abd) ≤ max(σ̄(A12), σ̄(A21)) +
√

σ̄(B1)σ̄(B2)

If B1 = 0 and σ̄(A12) = σ̄(A21), the upper bound on
µ∆(A−Abd) is the same as the lower bound. This shows
that there exists an infinite number of B2 and thus block
diagonal matrices which achieve the lower bound.

Unfortunately, Proposition 4.2 does not hold for matri-
ces partitioned into more than 2 blocks; see (Kariwala,
2004) for numerical experiments. We next present an al-
gorithm that provides a locally optimal solution for the
optimization problem (15).

Algorithm 4.3 For a given system G(s) with n unsta-
ble poles, a locally optimal solution to the block diagonal
approximation problem is obtained by the following steps:

1. Solve the optimization problem (15) at a set of chosen
frequencies to yield Gbd,jω.

2. Solve a parametric optimization problem to find
G̃bd(s) that has at least n unstable poles and min-
imizes the worst case error between G̃bd(jω) and
Gbd,jω.
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3. If G̃bd(s) has more than n unstable poles, the order of
G̃bd(s) is reduced to n through optimal Hankel norm
approximation to get Gbd(s).

The role of these steps becomes clear by noting,

µ∆(G(jω) − Gbd(jω)) ≤ µ∆(G(jω) − Gbd,jω)

+ σ̄(Gbd,jω − G̃bd(jω)) + σ̄(G̃bd(jω) − Gbd(jω)) (17)

It follows from (17) that every step in the proposed
method minimizes the contribution of one of terms on
RHS of (17) to the total approximation error. Thus, Al-
gorithm 4.3 inherently minimizes an upper bound on the
objective function of the optimization problem in (15). In
the following sections, the individual steps of the proposed
method are discussed. For the sake of brevity, the discus-
sion is brief at places and additional details can be found
in (Kariwala, 2004).

4.1 Frequency wise approximation

The first step of the proposed method for finding the op-
timal block diagonal approximation consists of minimizing
(15) at a set of chosen frequencies. The (possibly non-
uniformly spaced) set of frequencies can be selected based
on σ̄(G(jω)), i.e. a larger number of frequencies can be
chosen around the peaks of σ̄(G(jω)). In the remaining
discussion, the frequency argument of the scaling matrices
is dropped for notational convenience. Using similar argu-
ments as used in calculating µ̄(.) by solving a linear matrix
inequality (LMI) (Boyd et al., 1994),

σ̄(DL(G(jω) − Gbd,jω)D−1
R ) ≤ γ (18)

⇔ D−∗
R (G(jω) − Gbd,jω)∗D∗

LDL(G(jω) − Gbd,jω)D−1
R

� γ2I (19)

⇔ (G(jω) − Gbd,jω)∗PL(G(jω) − Gbd,jω) � γ2PR (20)

where PL = D∗
LDL ∈ DL, PR = D∗

RDR ∈ DR and
PL,PR ≻ 0. Note that unlike the calculation of µ̄(.) (Boyd
et al., 1994), (20) is a bilinear matrix inequality (BMI) and
thus not affine in the decision variables Gbd,jω ,PL and PR;
however, a locally optimal solution can be found using an
iterative approach.

Using the Schur complement lemma (Boyd et al., 1994),
(19) can be equivalently expressed as,
[

−γI D
−∗

R
(G(jω)−Gbd,jω)∗D∗

L

DL(G(jω)−Gbd,jω)D−1
R

−γI

]

� 0 (21)

Note that for fixed DL,DR, (21) is an LMI in Gbd,jω .
Now, a locally optimal solution for the frequency wise ap-
proximation problem can be found by using an iterative
approach, where (21) is solved for Gbd,jω by fixing DL

and DR, and (20) is solved for PL,PR using a bisection
search method by fixing Gbd,jω. This iterative method
can be initialized by setting DL = DR = I. Note that
unlike a general BMI problem, the sequence of solutions
obtained using this iterative approach is guaranteed to con-
verge (Kariwala, 2004).

Remark 4.4 Since the approximation problem has mul-
tiple local minima and the converged solution depends on
the initial value, the iterative procedure can converge to
a minima that is worse than using the diagonal blocks.
This difficulty is overcome by using diag(Gii(jω)) as an
initial guess, which is equivalent to replacing G(jω) by
G(jω) − diag(Gii(jω)). Then, the locally optimal solu-
tion is given as Gsub

bd,jω + diag(Gii(jω)), where Gsub
bd,jω is

the solution obtained by using diag(Gii(jω)) as an initial
guess. This minor modification ensures that the obtained
solution is at least as good as using the diagonal blocks.

4.2 Parametric L∞ optimal identification

It would be ideal to directly find Gbd(s) which has the
same number of unstable poles as G(s) and best approxi-
mates Gbd,jω, but the optimization problem becomes very
difficult when the number of unstable poles is fixed. Thus,
we aim at finding G̃bd(s) that has at least as many unstable
poles as G(s) followed by model order reduction discussed
in § 4.3. We minimize the worst case error or the L∞ norm
of Gbd,jωi

− G̃bd(jωi) (cf. (17)). Over the past few years,
a number of different approaches for worst-case identifica-
tion have appeared in the literature and an overview of
available results can be found in (Chen and Gu, 2000).

In this paper, we parameterize the class of models us-
ing transfer functions as compared to the finite impulse
response (FIR) models typically used in worst-case iden-
tification; see e.g. (Helmicki et al., 1992). An advantage
of using the transfer function parametrization is that low
order models can be identified directly in the continu-
ous time domain, the disadvantage being that unlike the
FIR parametrization, no worst case error bounds are avail-
able. Nevertheless, practical experience (particularly in H2

norm minimization case) suggests that transfer function
parametrization works very well. For simplicity, G̃bd(s) is
identified element by element, where [G̃bd(s)]ij is parame-
terized as:

[G̃bd(s)]ij =
a(s)

b(s)
=

amsm + am−1s
m−1 + · · · a1s + a0

bnsn + bn−1sn−1 + · · · b1s + b0

with m ≤ n.

In the remaining discussion, we drop the requirement
that G̃bd(s) has at least as many poles as Gbd(s), as it
is easily satisfied by choosing the order of the denomina-
tor polynomials sufficiently large. Then, the parameters
a0 · · ·am, b0 · · · bn, are obtained by solving,

min
a0···am,b0···bn

∣

∣

∣

∣

a(jωk)

b(jωk)
− [Gbd,jωk

]ij

∣

∣

∣

∣

k = 1 · · ·nω (22)

Note that the objective function in (22) is nonlinear, but
can be equivalently represented as

|b(jωk)|−1 |a(jωk) − b(jωk)[Gbd,jωk
]ij | (23)

Now, the following LMI problem can be solved itera-
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tively to minimize (23):

min
a
(i)
0 ···a

(i)
m ,b

(i)
0 ···b

(i)
n ∈R

γ2
1 + γ2

2

s.t. −γ2
1 |b

(i−1)(jωk)| ≤ Re(e(jωk)) ≤ γ2
1 |b

(i−1)(jωk)|

−γ2
1 |b

(i−1)(jωk)| ≤ Im(e(jωk)) ≤ γ2
2 |b

(i−1)(jωk)|

bn = 1 (24)

e(jωk) =
(

a(i)(jωk) − b(i)(jωk)[Gbd,jωk
]ij

)

where b(i−1)(jωk) denotes the identified b polynomial from
the previous iteration. In (24), the additional constraint
bn = 1 is imposed for numerical stability and in gen-
eral, fixing any one of the unknown parameters suffices.
In the H2 optimal identification literature, a method
similar to (24) is known as Sanathanan and Koerner’s
method (Pintleton et al., 1994). The sequence of solutions
obtained by solving optimization problem (24) is not guar-
anteed to converge, but numerical evidence suggests that a
reasonable solution can be obtained using a few iterations.

4.3 Optimal Hankel norm approximation

To satisfy the assumption of Proposition 3.1, we need to
find Gbd(s) which has exactly n unstable poles. We recall
that for a stable transfer matrix H(s) having order k, the

optimal kth order model Ĥk(s) is found by solving (Glover,
1984),

min
Ĥk(s)∈RH∞

‖H(s) − Ĥk(s)‖H

= min
Ĥk(s),F∗(−s)∈RH∞

‖H(s) − Ĥk(s) − F(s)‖∞ (25)

where ‖.‖H denotes the Hankel norm given by the largest
Hankel singular value of the transfer matrix. Next, we
show how (25) can be adapted to handle the given problem,
i.e. model reduction of the unstable system G̃bd(s).

Let G̃bd(s) = G1(s)+G2(s) such that G∗
1(−s),G2(s) ∈

RH∞. Without loss of generality, we can parameterize
Gbd(s) as Gbd(s) = Gn

bd(s) + G2(s) + J(s) with J(s) ∈
RH∞, which provides

‖G̃bd(s) − Gbd(s)‖∞

= ‖G1(s) − Gn
bd(s) − J(s)‖∞

= ‖G∗
1(−s) − (Gn

bd(s))
∗ − J∗(−s)‖∞

The optimal value for (Gbd(s))
∗ ∈ RH∞ is found by

solving (cf. (25)),

min
(Gn

bd
(s))∗,J(s)∈RH∞

‖G∗
1(−s) − (Gn

bd(s))
∗ − J∗(−s)‖∞

= ‖G∗
1(−s) − (Gn

bd(s))
∗‖H (26)

Since J(s) and G2(s) are stable, Gbd(s) found by mini-
mizing Hankel norm between G∗

1(−s) and (Gn
bd(s))∗ is the

L∞ optimal reduced order approximation of G̃bd(s) with
n unstable poles.

5 Controller design

With the availability of Gbd(s) using Algorithm 4.3, con-
troller design for the modified µ-IM is similar to the con-
ventional µ-IM method. A loop shaping approach can be
used to find the stabilizing decentralized controller; how-
ever, finding a controller using this method to satisfy (8)
can be difficult. In this section, we show that with the
alternate representation of the µ-IM conditions in terms of
KbdSbd(s), finding Kbd(s) to satisfy (8) reduces to solving
a weighted H∞ controller design problem for Gbd(s).

Lemma 5.1 Let G(s) be rational system. Then (Glover,
1986; Kariwala et al., 2005),

inf
K(s)

‖K(s)(I + GK(s))−1‖∞ = σ−1
H (U(G(s))∗)

where U(.) denotes the unstable part.

Proposition 5.2 Consider that G(s) and Gbd(s) have
the same number of unstable poles. Let the minimum
phase and stable transfer matrix w(s) be chosen such that
|w(jω)| = µ−1

∆
(GI(jω)) for all ω. There exists a block

diagonal controller Kbd(s) such that σ̄(KbdSbd(jω)) <

µ−1
∆

(GI(jω)) for all ω ∈ R iff

σ−1
H (U(w−1Gbd(s))

∗) < 1 (27)

Proof : (Sufficiency) Let us define, K̃bd(s) = w(s)Kbd(s)
and G̃bd(s) = w−1(s)Kbd(s). Then, using Lemma 5.1,
there exists a Kbd(s) such that,

inf
Kbd(s)

‖wKbdSbd(s)‖∞

= inf
K̃bd(s)

‖K̃bd(s)(I + G̃bdK̃bd(s))
−1‖∞

= σ−1
H (U(w−1Gbd(s))

∗)

If (27) holds, there exists a Kbd(s) such that

‖wKbdSbd(s)‖∞ < 1 (28)

⇔ σ̄(wKbdSbd(jω)) < 1 ∀ω

⇔ σ̄(KbdSbd(jω)) < |w(jω)|−1 ∀ω

⇔ σ̄(KbdSbd(jω)) < µ−1
∆

(GI(jω)) ∀ω

where the last inequality holds as |w(jω)| = µ∆(GI(jω))
for all ω.

(Necessity) We show the necessity of (27) by contradic-
tion. Consider that (27) does not hold, but there exists
a Kbd(s) such that σ̄(KbdSbd(jω)) < µ−1

∆
(GI(jω)) ∀ω.

By reversing the series of inequalities used for sufficiency,
Kbd(s) must satisfy (28). The σ−1

H (U(w−1Gbd(s))
∗) de-

notes the least achievable value for ‖w(s)KbdSbd(s)‖∞ for
all LTI controllers. Then, ‖wKbdSbd(s)‖∞ < 1 , despite
σ−1

H (U(w−1Gbd(s))
∗) being equal to or greater than 1 is a

contradiction and the necessity of (27) follows.
In Proposition 5.2, we assumed that w(s) is stable and

minimum phase. In general, w(s) can have RHP zeros and
RHP poles at same the location as Gbd(s). Note that

‖w(s)KbdSbd(s)‖∞ = ‖wms(s)KbdSbd(s)‖∞
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where wms(s) denotes the minimum phase stable part of
w(s). Thus, allowing w(s) to be unstable or non-minimum
phase provides no advantage and we can simply replace
w(s) by its minimum and stable part in (27). On relaxing
the assumption of minimum phase stable w(s), however, a
w(s) that achieves |w(jω)| = µ−1

∆
(GI(jω)) becomes non-

unique, where the different instances of w(s) are related
by a unitary transformation.

Proposition 5.2 effectively reduces the task of finding a
block decentralized controller to satisfy µ-IM condition (8)
to finding the minimum phase and stable w(s) such that
|w(jω)| = µ−1

∆
(GI(jω)) and (27) holds. When (27) is sat-

isfied, the standard H∞ optimal control design techniques
can be used to find the stabilizing decentralized controller.

Remark 5.3 In practice, it can be difficult to find w(s)
that satisfies |w(jω)| = µ−1

∆
(GI(jω)) for all ω ∈ R. This

difficulty can be overcome by recognizing that for any w(s)
that lower bounds µ∆(GI(jω)) at all frequencies, if (27)
holds,

σ̄(KbdSbd(jω)) < |w(jω)|−1

⇒ σ̄(KbdSbd(jω)) < µ−1
∆

(GI(jω))

Thus, for a given Gbd(s) the existence of a decentralized
stabilized controller can be established by verifying (27)
with w(s) that lower bounds µ∆(GI(jω)).

6 Numerical Example

In this section, we demonstrate the efficiency of Algo-
rithm 4.3 for obtaining optimal block diagonal approxi-
mation and the controller design method discussed in the
previous sections using a simple example.

0 2 4 6 8 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Locally optimal solution

Using diagonal elements

Frequency wise minimization

ω

µ
∆

(G
(j

ω
)
−

G
b
d
,j

ω
)

Figure 2: Efficiency of the proposed method for finding
optimal block diagonal approximation

Consider the following system:

G(s) =





















1 0 0 0 1 β1 β1

0 2 0 0 β1 1 β1

0 0 3 0 β1 β1 1
0 0 0 −4 1 0.4 0.4
1 β2 β2 1 0 0 0
β2 1 β2 0.6 0 0 0
β2 β2 1 0.6 0 0 0





















where β1 = 0.5, β2 = 0.1.
A set of equally spaced frequencies in the range 0 − 10

is chosen and the locally optimal diagonal approximation
is obtained using the following steps:

• We use frequency-wise minimization to achieve 3 dec-
imal digits of accuracy from the locally optimal solu-
tion in 2 iterations.

• We fit 4th or lower order models for the frequency data
using the formulation (24) with 2 iterations.

• The identified model has 4 unstable poles, which is re-
duced to a model with 3 unstable poles using the Han-
kel norm approximation method discussed in § 4.3.

The Gsub
bd (s), as obtained following these steps, is given

as:

diag
(−0.002s2 + 2.22s + 3.42

s2 + 2.92s− 3.96
,
−0.015s2 + 2.04s + 6.02

s2 + 2.57s− 9.76
,

−0.0153s2 + 1.85s + 4.97

s2 + 1.75s− 8.97

)

For comparison purposes, we also calculate the sub-
optimal solution G

diag
bd (s) by reducing the order of diag-

onal elements of G. In this case, five Hankel singular val-
ues of the stable part of G

diag
bd (s) are negligible, which are

removed to get a reduced order model given as:

diag
( 2.08s + 3.27

s2 + 2.96s− 4.16
,

1.33s + 3.90

s2 + 2.06s− 7.76
,

−0.006s2 + 1.26s + 3.53

s2 + 1.42s− 10.31

)

To show the advantage of Algorithm 4.3 over using
diagonal elements, γsub = µ∆(G(jω) − Gsub

bd (jω)) and

γdiag = µ∆(G(jω)−G
diag
bd (jω)) are compared in Figure 2.

The relative difference between γdiag and γsub is 0.23 at
the zero frequency, which monotonically reduces to 0.21
for ω = 10. This significant reduction in the approxima-
tion error is useful for finding the stabilizing controller eas-
ily. Figure 2 also shows that the γsub closely matches the
approximation error obtained using frequency wise mini-
mization. Thus, (at least for this example), the conserva-
tiveness in using the two-step approach for identifying a
model, with same number of unstable poles as the system,
is minimal.

Next, we consider the controller design. For the lo-
cally optimal diagonal approximation, the following weight
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Figure 3: Validation of modified µ-IM for stabilizing de-
centralized controller designed using independent designs

lower bounds µ∆(GI(jω) closely,

w1(s) =
0.0123s2 + 1.71s + 1.88

s2 + 5.495s + 4.52

Using this w1(s), σH(U(w−1
1 Gsub

bd (s))∗) = 1.22 > 1 and
standard H∞ optimal controller design technique is used
to find a decentralized stabilizing controller. The plots of
µ−1
∆

(GI(jω)) and σ̄([KbdSbd(jω)]ii), i = 1, 2, 3 are shown
in Figure 3, where µ−1

∆
(GI(jω)) > σ̄([KbdSbd(jω)]ii), as

expected. On the other hand, for the suboptimal solution
obtained using the diagonal elements, the weight that lower
bounds µ∆(GI(jω)) closely is

w2(s) =
0.05s2 + 2.165s + 2.38

s2 + 5.404s + 4.44

and σH(U(w−1
2 (s)Gdiag

bd (s))∗) = 0.59 < 1. Then, the con-
servativeness of using the diagonal elements to find a sub-
optimal solution is emphasized.

7 Conclusions

In this paper, we extended the practical applicability of
µ-IM to unstable systems. The decentralized controller is
designed based on a block diagonal approximation that is
different from the block diagonal elements, but has same
number of unstable poles as the system. By expressing
the µ-IM in terms of transfer matrix from disturbances to
inputs, it is shown that:

• The block diagonal approximation can be (sub-
optimally) chosen by minimizing the scaled L∞ dis-
tance between the system and the approximation.

• The task of designing the controller based on the block
diagonal approximation can be reduced to solving a
weighted H∞ optimal controller design problem.

We have shown that when the system is partitioned into
2 blocks, the optimal block diagonal approximation can
be obtained by order reduction of diagonal blocks. For
the general case, a step-wise numerical approach is pre-
sented for finding the locally optimal solution to the block
diagonal approximation problem. The proposed approach
involves solving the approximation problem at a set of fre-
quencies followed by L∞ optimal identification.

The primary limitation of choosing the block diagonal
approximation by minimizing the scaled L∞ distance is
that the properties of the approximation are not taken
into account. As shown in this paper, whether the stabi-
lizing controller can be easily found depends on the mini-
mum Hankel singular value of the approximation. A better
approach is to use a multi-objective optimization frame-
work, where the L∞ distance between the system and the
approximation is minimized and simultaneously the mini-
mum Hankel singular of the approximation is maximized.
This non-trivial problem is a topic for future work.
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