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Abstract: This note concerns variations of the friction factor in the two transitional 

regimes, one between laminar and turbulent flows and the other between fully-smooth 

and fully-rough turbulent flows. An interpolation approach is developed to derive a single 

explicit formula for computing the friction factor in all flow regimes. The results obtained 

for pipe flows give a better representation of Nikuradse’s experimental data, in 

comparison with other implicit formulas available in the literature. Certain modifications 

are also made for applying the obtained friction formula to open channel flows. 
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Introduction 

 

Nikuradse (1933) conducted his notable series of flow measurements with smooth and 

rough pipes over a wide range of Reynolds numbers. As a benchmark in hydraulic 

engineering, these measurements have served as a crucial database for verifying 

formulations developed for velocity profiles and flow resistance. In particular, 

Nikuradse’s work also offers valuable information for investigating sediment transport 

phenomena because similar sand-roughened boundaries are often employed for the 

laboratory study of various open channel flows over sediment beds. 

The friction factor derived from Nikuradse’s experimental data appears to be 

different from the widely-used Moody diagram in that Nikuradse’s data show a ‘dip’ in 

the friction factor for turbulent pipe flows in the intermediate Reynolds number between 

fully-rough and fully-rough regimes. The dip phenomenon has been attributed to the pipe 

wall roughened by well-sorted sand particles, and it may become insignificant in 

commercial pipes with non-uniform distribution of roughness elements (Colebrook 1939). 

Similar transitional effects were also observed for other regular roughness configurations 

(Jimenez 2004). However, many fluid mechanics textbooks choose to start with 

Nikuradse’s experimental results for discussing different flow conditions and then 

recommend the Moody diagram for practical uses, but with almost no efforts devoted to 

explain and quantify the dip phenomenon (Bradshaw 2000).  

Several formulas have been proposed in the literature for computing the friction 

factor separately for laminar flows, and fully-smooth and fully-rough turbulent flows, but 

they are not applicable directly for the transitional regimes (Hinze 1975). Some others, 
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although applicable for the transitional regimes, need a trial procedure for estimating the 

friction factor (e.g. Brownlie 1981; Cheng and Chiew 1998; Ligrani and Moffat 1986; 

Yalin and Da Silva 2001). However, for practical purposes such as computer applications, 

a single friction equation that applies for all flow regimes is often required. Yen (2002) 

considered that this could be established with certain probability-based considerations. In 

this note, an interpolation method, which could be considered probability-related, is 

developed to derive a single explicit formula for computing the friction factor for various 

flow conditions including the transitional regimes. 

 

Interpolation method 

 

First, we consider the transition between laminar and turbulent flows, in which the 

variation of the friction factor is composed of laminar and turbulent components. It is 

assumed that the friction factor, f, is given by  

   1

TL fff  (1) 

where fL is the friction factor for laminar flows, fT is that for turbulent flows, and  is the 

weighting factor. The friction factor here is given by 8(u*/V)
0.5

, where u* is the friction 

velocity and V is the cross-sectional mean velocity. In the sense of Yen’s (2002) 

probability conjecture,  can be considered the probability of the effect of the laminar 

component on the friction, and (1-) the probability of the contribution of the turbulent 

component. Extremely, the flow remains in the laminar regime at  = 1 and switches to 

the turbulent regime at  = 0. As a result,  is somehow related to the mechanism of 
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intermittency and thus depends on the Reynolds number, Re (= VD/) where D is the pipe 

diameter and  is the kinematic viscosity of fluid.  

For turbulent flows, the friction factor varies with the Reynolds number and also 

can be altered by boundary roughness. At intermediate Reynolds numbers, a transitional 

regime exists between fully-smooth and fully-rough turbulent flows. To follow the 

approach in dealing with the laminar to turbulent flow transition, it is further assumed 

that 

   1

TRTST fff  (2) 

where fTS is the friction factor for fully-smooth turbulent flows, fTR is that for fully-rough 

turbulent flows and  is the weighting factor. In terms of probability,  is used here to 

quantify the possible effect of the fully-smooth component on the turbulent friction while 

(1-) is used to describe the possible effect of the fully-rough component. Therefore,  

depends generally on the Reynolds number and boundary roughness height. 

Substituting Eq. (2) into Eq. (1), we arrive at 

  )1)(1()1(  TRTSL ffff  (3) 

To individually compute the three friction factors, fL, fTS and fTR, we may use the 

following established results (Hinze 1975),  
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where ks is the roughness size that is taken as the sand grain diameter for Nikuradse’s 

experiments. Eq. (5) is the Prandtl’s friction law for smooth pipes and Eq. (6) is the von 

Karman’s formula for the fully rough regime. Since it involves a trial procedure in 

computing the friction factor, Eq. (5) is replaced here with 
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fTS      (7) 

Eq. (7), except for the constant 6.8 included, is the same as that previously given by 

Colebrook (1939). Other approximations similar to Eq. (7) were also reported by Barr 

(1977), Swamee and Jain (1976) and Haaland (1983). However, a best-fit analysis 

conducted in this study shows that Eq. (7) differs from Eq. (5) within 1.2% for Re = 

4000-10
8
, performing the best when compared with the other studies. 

Substituting Eqs. (4), (6) and (7) into Eq. (3), the friction factor for pipes 

roughened by well-sorted sand grains is given by 
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Evaluation of  and  

First, we define an intermediate Reynolds number, ReLT, at which the flow transition 

occurs between laminar and turbulent regimes. If Re is much smaller than ReLT, the flow 

is largely characterised as laminar and thus   1 based on Eq. (1). Otherwise, the flow 
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is dominantly turbulent and   0 if Re is much greater than ReLT. With this 

consideration, the value of  would reduce with an increase in the ratio of Re/ReLT. 

Mathematically, the relationship could be described by   

  
m

LTReRe )/(1

1


  (9) 

where m is an exponent. Eq. (9) predicts  in the range of 0 to 1. At Re = ReLT,  = 0.5 

and thus TL fff   following Eq. (1), which implies that the contributions by the 

laminar and turbulent components are equivalent. This further suggests that ReLT could be 

slightly greater than the critical Reynolds number at which the laminar flow just loses its 

stability. In this study, both ReLT and m are evaluated by fitting Eq. (8) to Nikuradse’s 

data, with  given by Eq. (9) and  = 1. This yields that ReLT  2720 and m  9. The 

comparison is shown in Fig. 1. Also superimposed on the figure are Eq. (4) for laminar 

flows and Eq. (5) together with its approximation, Eq.(7), for fully-smooth turbulent 

flows.  

Similarly, to estimate , we engage another intermediate Reynolds number, 

denoted by ReSR, which is associated with the transition between fully-smooth and fully-

rough turbulent flows. Different from ReLT that appears as a constant, ReSR varies with the 

relative roughness, r/ks. From Eq. (2), it follows that  decreases from 1 to 0 if the 

turbulent flow changes from the fully-smooth to fully-rough regime. Therefore, it is 

reasonable to believe that  would reduce with an increase in the ratio of Re/ReSR, 

approximately, in the form 
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n

SRReRe )/(1

1


       (10) 

where n is an exponent. Next, it is necessary to know how ReSR varies with r/ks.  By 

taking ReSR to be a Reynolds number halfway in the transition for a given r/ks and using 

Tables 2-7 of Nikuradse (1933), one can get that ReSR increases with increasing r/ks. The 

result so estimated is plotted in Fig. 2, which shows that the relation of ReSR to r/ks is 

almost linear. Consequently, by assuming that ReSR = r/ks with  being a constant, Eq. 

(10) can be rewritten as 

   
n

skrRe )]//([1

1


       (11) 

With  given by Eq. (11) and also taking  = 0 for turbulent pipe flows, comparing Eq. 

(8) with Nikuradse’s data yields that   320 and n  2, as presented in Fig. 3.   

  Finally, with  and  given by Eqs. (9) and (11) respectively, Eq. (8) is compared 

with the entire database by Nikuradse (1933) for smooth pipes and rough pipes with r/ks 

ranging from 15 to 507. As shown in Fig. 4, Eq. (8) represents well the experimental 

data.  

 

Comparison with previous studies 

 

In the literature, there are no single formulas that are available to explicitly calculate the 

friction factor in various flow regimes to the writer’s knowledge. However, several 

empirical equations  have been proposed for computing the function, B, which is related 
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to f in the following form (e.g. Brownlie 1981; Cheng and Chiew 1998; Ligrani and 

Moffat 1986; Yalin and Da Silva 2001),  
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Eq. (12) is derived by integrating the log law, u/u* = 2.5ln(y/ks) + B, over the cross 

section of pipe.  It should be mentioned that a trial procedure is required when using Eq. 

(12) for the evaluation of the friction factor because B is usually presented as a function 

of the roughness Reynolds number, ks
+
, which is defined as /* sku  and equal to   

ReDkf s )/(8/ . 

The following four formulas are used to compare with the present study:  

(1) Brownlie’s (1981) formula  
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where the coefficients, ai (i = 0-6), are 1.3376, -4.3218, 19.454, -26.48, 16.590, -4.9407 

and 0.57864, respectively, and b is taken as 3.58 by ensuring that B  8.5 for ks
+
 > 100.  

(2) Ligrani and Moffat’s (1986) formula s 
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 (3) Cheng and Chiew’s(1998) formula  
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  5.2
ln11.0exp)3ln5.2(5.8   ss kkB  (15) 

(4) Yalin and Da Silva’s (2001) formula 
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Eqs. (13) to (16) are plotted in Fig. 5 together with Nikuradse’s data. All formulas predict 

smooth variations of B with ks
+
, while the experimental data fluctuate particularly in the 

transitional regime, say, for 5 < ks
+
 < 70. The scattering of the data points, perhaps 

partially due to experimental uncertainties, is clearly associated with the variation in r/ks, 

as highlighted in the inset of Fig. 5. However, this r/ks-dependence cannot be described 

by the previous formulas, which all relate B to ks
+ 

only. In addition, it should be 

mentioned here that the data series with r/ks = 507, which clearly deviates from the main 

data trend, was not presented in the graph provided originally by Nikuradse (1933) and 

cited subsequently by others (e.g. Hinze 1975; Schlichting 1979) . 

 In the following, the friction factor is first computed using Eq. (8) for Re > 5000, 

and then substituted into Eq. (12) for evaluating B.  The result obtained is plotted in Fig. 

6. It shows that the effect of r/ks is not significant for very small and very large ks
+
, but 

becomes considerable in the transitional regime. This observation is consistent with 

Nikuradse’s measurements, as shown in Fig. 5.  

Fig. 7 further details the difference between the B-values calculated with the 

current approach and those by the previous formulas for 5 < ks
+
 < 70. In this figure, the 

vertical coordinate is defined as the relative error, E = Bcalculated – Bmeasured/Bmeasured, 

where Bmeasured is obtained through Eq. (12) from the friction factor measurements by 

Nikuradse (1933). The results indicate that the prediction errors are generally not more 
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than 6%, but the present approach provides the best accuracy because of taking into 

account the effect of r/ks. The average errors associated with Eqs. (13) to (16) are 1.4%, 

1.5%, 1.7% and 1.5%, respectively, while that by the present study is 1.2%. The 

maximum errors associated with Eqs. (13) to (16) are 4.7%, 5.2%, 5.8% and 5.0%, 

respectively, while that by the present study is 4.3%. 

 

Extension to open channel flows 

 

To extend experimental or theoretical results that are obtained for pipe flows to open 

channel flows, one may use the concept of equivalent hydraulic radius, which is equal to 

D/4 for circular pipe flows and h, the flow depth, for wide open channel flows. However, 

practical applications of this concept indicate that further modifications are needed for 

computing the friction factor.  For example, a shape factor, , could be used to effectively 

account for the influence of the cross section when applying the pipe resistance equations 

to open channels of any shape (Montes 1998). This shape factor is used as a multiplier for 

the hydraulic radius. For two-dimensional (2D) open channel flows,  is equal to 

approximately 0.8, and thus the hydraulic radius, i.e. D/4, included in the pipe friction 

equations should be replaced with 0.8h. Another similar idea for estimating turbulent 

friction in noncircular ducts is to use the pipe-friction law based on an effective diameter 

(White 1991).  

In this study, the concept of the shape factor is adopted. Therefore, D included in 

Eqs. (6) and (7) should be replaced with 4  (0.8h) = 3.2h for 2D open channel flows. 
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However, this change is only limited to turbulent flows and does not apply for the 

laminar friction. For 2D open channel flows, the laminar friction factor is given by fL = 

24/Reh, which can be derived from the parabolic velocity distribution. Here, the depth-

averaged velocity U is used for defining the Reynolds number Reh (=Uh/), h is the flow 

depth, and the friction factor f is redefined as 8(u*/U)
2
. With these considerations, Eq. (8) 

is rewritten as  
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In Eq. (17), the two constants, 2.1 and 11.8, are obtained here based on the concept of the 

shape factor, but they are almost the same as those suggested by Yen (2002). This implies 

that the approach based on the shape factor, although empirical, provides a reasonable 

connection between the friction factor in pipe flows and that in 2D open channel flows. 

Therefore, it is reasonable to apply the same approach for the evaluation of the α and β 

values, which are proposed for the transitional regimes. This yields that Eqs. (9) and (11), 

are rewritten as  

  
9)850/(1

1

hRe
  (18) 

   
2)]/160/([1

1

sh khRe
       

(19) 

Eq. (17) is applicable for 2D open channel flows over immobile boundaries comprised of 

unisized sediment. The variations of f computed using Eq. (17) is plotted in Fig. 8. To 

compare Eq. (17) with measurements, a database with wide ranges of Reh and h/ks for 

open channel flows, which is similar to that by Nikuradse, is needed but not available at 

the current stage. In addition, for open channel flows subject to significant sidewall 
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effects, friction equations similar to Eq. (17) could be also developed with the shape 

factor being properly adjusted (Montes 1998). Such studies are worth further efforts.  

 

Conclusions 

 

A useful interpolation function is proposed for computing the friction factor for the two 

transitional regimes, one between laminar and turbulent flows and the other between 

fully-smooth and fully-rough turbulent flows. The resulted explicit formula represents 

well the experimental data by Nikuradse for pipes roughened by well-sorted sand grains, 

in comparison with other implicit formulas available in the literature. With the similar 

approach, a single explicit equation is also suggested for computing the friction factor in 

two-dimensional open channel flows for all flow regimes. It should be mentioned that the 

results presented are largely based on Nikuradse’s study, and thus their applications could 

be limited.  

 

Notation 

The following symbols are used in this note: 

b  = constant 

B = friction factor-related parameter as given by Eq. (12) 

D = pipe diameter 

E = relative error 
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f  = friction factor [f = 8(u*/V)
2
 for pipe flows; f = 8(u*/U)

2
 for open channel flows] 

fL  = friction factor for laminar flows 

fT  = friction factor for turbulent flows 

fTR  = friction factor for fully-rough turbulent flows 

fTS  = friction factor for fully-smooth turbulent flows 

h  = flow depth 

ks  = roughness size that is taken as the sand grain diameter for Nikuradse’s 

experiments 

ks
+ 

= u*ks/ 

m = exponent 

n  = exponent 

Re  = Reynolds number for pipe flows (=VD/) 

ReLT = intermediate Reynolds number in the laminar-turbulent flow transition  

ReSR = intermediate Reynolds number in the fully smooth to fully rough turbulent flow 

transition 

Reh  = Reynolds number for open channel flows (=Uh/) 

r  = pipe radius 

U = depth-averaged velocity in open channel flows 

u = longitudinal flow velocity 

u*  = friction velocity 
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V  = cross-sectional average velocity 

y = wall-normal distance 

  = weighting factor  

  = weighting factor  

 = fluid viscosity 

 = constant 
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Fig. 1    Transition between laminar and fully-smooth turbulent flows. The data are 

extracted from Tables 2-7 (for ks
+
 < 5) and Fig. 9 of Nikuradse (1933). 
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Fig. 2     Relation of ReSR to r/ks 
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Fig. 3  Comparison of Eq. (8) with measurements for turbulent pipe flows. The data are 

extracted from Tables 2-7 of Nikuradse (1933). 
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Fig. 4    Comparison of Eq. (8) with experimental measurements for laminar and 

turbulent pipe flows. The data points are plotted based on Tables 2-7 and Figure 9 of 

Nikuradse (1933). 
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Fig. 5   Variation of B with ks
+
. The inset highlights that B is also subject to r/ks in the 

transition between fully-smooth and fully-rough regimes. The data plotted are those 

calculated using Tables 2-7 of Nikuradse (1933) for turbulent pipe flows. 
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Fig. 6   Effect of r/ks on the relation of B-ks
+
. The curves are computed using Eqs. (8) and 

(12) for Re > 5000. 
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Fig. 7   Relative errors in B-values computed from the previous formulas (denoted by 

circles) and present formula (denoted by solid lines). E = |Bcalculated - Bmeasured|/Bmeasured. 

E 

ks
+ 

Lagrani & Moffat (1986) 

Cheng & Chiew (1998) 

Yalin & Da Silva (2001) 

Brownlie (1981) 



 23 

100 1 10
3

1 10
4

1 10
5

1 10
6

0.01

0.1

 

 

 

Fig. 8   Variations of friction factor in 2D open channel flows computed using Eq. (17). 
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