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Lobe dynamics applied to barotropic Rossby-wave breaking
Tieh-Yong Koh and R. Alan Plumb
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 14 July 1999; accepted 8 March 2000!

We applied the methods of lobe dynamics to the problem of transport across the edge of a barotropic
vortex patch. The model used captures the essential dynamics of filament shedding in the wintertime
stratospheric polar vortex. Two approaches were adopted for the problem:~1! the dominant periodic
component of the vortical flow was identified and conventional lobe dynamics methods for periodic
dynamical systems were applied to it;~2! the full aperiodic, dynamically consistent flow was
retained and a modified brand of lobe dynamics was used to quantify the transport. Our results show
that in the periodic case, much reversible transport occurs across the lobe dynamical boundary due
to overlapping intruding and extruding lobes. In the aperiodic case, a small amount of intrusion was
noted, contrary to the well-established fact that potential vorticity shedding in barotropic vortices is
uniquely outwards. In our discussion, we argue that while lobe dynamics provides a rigorous
framework for quantifying transport across the lobe dynamical boundary, this boundary may not be
appropriate for quantifying transport across internal transport barriers, such as the stratospheric
polar vortex edge. ©2000 American Institute of Physics.@S1070-6631~00!02706-9#
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I. INTRODUCTION

The particular atmospheric problem of interest in th
paper is the issue of tracer transport across the edge o
polar vortex in the lower winter stratosphere. This is an i
portant problem in its own right: Amongst other thing
transport across the vortex edge is thought to have a sig
cant influence on the ozone chemistry both within and o
side the vortex.1 It also serves as a paradigm for a wide ran
of geophysical fluid dynamical problems, e.g., leakiness
the stratospheric ‘‘tropical pipe,’’2 stratosphere–troposphe
exchange by tropopause folding,3 lower tropospheric wate
vapor transport,4 and cross-stream mixing in the ocean5–8. In
many Lagrangian-chaotic flows, a well-mixed zone flank
by internal transport ‘‘barriers’’ is formed through th
stretching and folding associated with the transport itse9

The transport barriers are identified by sharp tracer and
tential vorticity gradients. In the winter stratosphere, the
lar vortex edge is such a barrier, and cross-edge transpo
effected by Rossby-wave breaking.10 Filaments of polar vor-
tex material are ejected into middle latitudes, where th
eventually dissipate.11 Entrainment of midlatitude air into the
vortex has also been observed,12 but it is much less frequent

Methods have been devised to quantify such transp
using data from atmospheric observations1,11–13 or from
models.14–16A wide range of values has been obtained fro
these studies, because different definitions were adopted
the boundaries across which the transport was measured
deed, Sobelet al.15 argued that making the appropria
choice of boundary across which to measure transport is
crux of the transport calculation: The computed mass flu
may be very sensitive to that choice.

Set in the above-mentioned context, we wish to inve
gate whether lobe dynamics provides a useful framework
measuring transport across the vortex edge, using the vo
patch model of Polvani and Plumb.17 Lobe dynamics has
1511070-6631/2000/12(6)/1518/11/$17.00
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been employed to quantify transport in certain modele5,6

and observed7,18 oceanic flows. Its distinguishing feature i
such applications is the definition of a boundary, bas
solely on flow kinematics, across which transport is me
sured. In all these cited works, lobe dynamics yields rigoro
and precise quantification of transport, hence provid
much motivation for applying it to the stratospheric pol
vortex problem. Recently, Bowman~1999!19 even revealed
the presence of stable and unstable manifolds in the str
sphere, following the practical approach of Milleret al.6

With regards to theory, lobe dynamics pertaining to p
riodic dynamical systems has a long tradition in the lite
ture. We merely cite two recent works here: Ottino~1989!9

introduces the subject with an emphasis on applications
fluid mixing and transport; and Wiggins~1992!20 takes on
the subject with a rigorous mathematical approach. Re
ences to older literature can be found in both these rec
works.

The lobe dynamics for aperiodic dynamical systems
also been investigated before in the literature, but is l
firmly established than for periodic systems. Again citi
only recent examples, Malhotra and Wiggins21 extended the
infinite-time formulation of lobe dynamics to aperiodic flow
and applied the theory to a range of kinematic flows w
small parameters. Subsequently, the theory was success
applied to computational8 and observed oceanic flows.18 On
the other hand, Milleret al.6 examined lobe dynamical trans
port over a finite time interval across an aperiodic meand
ing barotropic jet on ab plane. Their work was followed by
Haller and Poje,22 where finite-time lobe dynamics theor
was formulated and used to study cross-stream mixing
fected by Gulf Stream Rings. The approach of Malhotra a
Wiggins and those of Milleret al. and Haller and Poje are
related but different, as the latter two emphasized finite-ti
behavior of aperiodic systems.
8 © 2000 American Institute of Physics
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1519Phys. Fluids, Vol. 12, No. 6, June 2000 Lobe dynamics applied to barotropic Rossby-wave breaking
In this paper, lobe dynamics is applied to the mod
stratospheric polar vortex via two approaches. In the fi
approach, we relied on the fact that the modeled flow is cl
to periodic after an initial adjustment period. This allows
to apply lobe dynamics to the dominant periodic compon
of the flow, making use of well-established theory. The o
jective here is to evaluate how well the existing techniq
performs in a kinematic flow bearing the cat’s eye feat
frequently encountered in wintertime stratospheric flow.

In the second approach, we retained the full aperio
dynamically consistent flow. But we employed an ad-h
modification of the aperiodic lobe dynamics theory, as
found that none of the existing theory that we are aw
of 21,22suits our purpose. The goal is to assess whether tr
port across the lobe dynamical boundary is an appropr
characterization of the transport across the vortex edge.

We delay our discussion until after the results of bo
approaches are presented, and we shall note the short
ings and merits of the lobe dynamical view of transp
across the stratospheric polar vortex edge.

II. MODEL DESCRIPTION

The object of investigation is a barotropic vortex-pat
model derived from the quasi-geostrophic shallow-wa
model of Polvani and Plumb.17 This model is able to captur
the essence of the dynamics associated with the stratosp
polar vortex, yet its simplicity renders its transport chara
teristics self-evident. In the model, the transport barrier
simply the jump in potential vorticity at the vortex edge, a
so transport across it can be quantified by performingsur-
gery on the contour demarcating the discontinuity, in t
manner described in Dritschel.23 Having such a natura
‘‘boundary’’ makes the model ideal as a test bed for oth
transport-measuring schemes. In the literature, barotr
models have also been used before to study the dynamic
the stratospheric polar vortex~see, e.g., Juckes an
McIntyre24!.

A brief model description follows next. For further de
tails, the reader is referred to Polvani and Plumb.17 The
model is based on inviscid quasigeostrophic shallow-wa
dynamics on anf plane, and uses the Contour Dynamics w
Surgery~CDS! algorithm of Dritschel.23 The mean depth is
D and the system is forced by time-dependent bottom top
raphyh. The system is governed by the conservation of
tential vorticity ~PV!, as follows:

S ]

]t
2

]c

]y

]

]x
1

]c

]x

]

]yDQ50, ~1!

Q5 f 01¹2c2g2c1 f 0

h

D
, ~2!

whereQ is the potential vorticity,f 0 is the constant plan
etary vorticity, c is the streamfunction of the geostroph
flow, and g is the inverse Rossby deformation radius~i.e.,
f 0 /AgD).

Since lobe dynamics is formulated for nondiverge
flows, we letg→0, so that the flow is in the barotropic limi
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The model is initialized at Day 0~where a day is defined a
4p/ f 0) as a circular PV vortex-patch embedded in a unifo
background of lower PV. That is,

Q5HQi if r ,r 0

Qo otherwise.

Since the wind speed increases without limit as radial d
tance increases, we shall restrict our attention to the dom
within 4r 0 from the origin. The air in this region is isolate
from the rest of thef plane from Day 0 to Day 20, as w
confirmed with the advection of a material contour initial
at radius 4r 0 .

The topographic forcing, in polar coordinates (r ,u)
about the origin, takes the form:

h~r ,u,t !5DH0~12e2t/t!J1~kr !cosu,

where J1(kr ) is the first-order Bessel function of the firs
kind andH0 is a dimensionless parameter that governs
strength of the forcing. The forcing is aperiodic and its tim
dependence dies away fort@t as the topography approache
a constant height. Figure 1 shows the spatial form of
forcing.

The following set of parameters is used for all work
this paper:Qi51.3f 0 , Qo50.9f 0 , k51.6/r 0 , t52.5 days,
H050.17. The above-mentioned choice of values follo
Polvani and Plumb.17 If we taker 0 as 3000 km and equate
model day to a real day, these parameter values yield w
velocities that are roughly consistent with observations in
northern hemisphere midlatitude lower stratosphere. O
comparison with the stratosphere should be taken with c
tion however, as the model is idealized. But for convenien
we shall sometimes refer to the origin as the ‘‘pole’’ and t
region outside 4r 0 as the ‘‘tropics.’’

We have chosen a slightly supercritical value forH0 so
as to get the PV vortex breaking but not too violently, sin
we do not wish to complicate the lobe dynamics in our p
liminary application. Please refer to Polvani and Plumb17 for
details on the different dynamical regimes for this mod
flow. Incidentally, the weak Rossby-wave breaking in t
polar vortex is well surveyed in the literature~see, e.g.,
Waughet al.,11 Plumbet al.12! so that we have a reasonab
basis to compare our results to.

The following CDS parameter values are employed:m
50.1, d5r 0/800, dt51/20 day, wherem is a measure of the

FIG. 1. The spatial form of the bottom topographic forcingJ1(kr )cosu.
Both axes are@24r 0,4r 0#. Full lines are positive or zero, dashed lines a
negative.
nse or copyright; see http://pof.aip.org/about/rights_and_permissions
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1520 Phys. Fluids, Vol. 12, No. 6, June 2000 T.-Y. Koh and R. A. Plumb
node density on contours,d is the smallest separation be
tween contour segments before they merge, anddt is the
time step used in the computation.23 An increase inm or a
decrease ind or dt does not significantly alter the subseque
observed evolution of PV.

From a single prognostic run, all contour node positio
are saved at every time step. The saved PV contours re
sent compressed high resolution wind data, through the
vertibility principle @Eq. ~2!#. Advection of particles and ma
terial contours in subsequent diagnostic runs uses wind
the particle and contour node positions, inverted from the
contours at every time step. Consistency between forw
and backward advection of the same particle or contou
ensured through the following features:

~1! a common set of PV contours~wind data! for both for-
ward and backward runs;

~2! a fourth-order ‘‘Runge-Kutta-like’’ node advectio
scheme that respects time symmetry~cf. Appendix C!;

~3! higher node density (m50.05) than in the prognostic
run;

~4! switching off surgery on the passive contours (d50).

Such consistency is important since the diagnostic r
essentially involve forward–backward–forward a
backward–forward–backward advection sequences.
evolution of the PV and streamfunction are depicted in F
2.

As mentioned, the transport barrier in this model is si
ply the PV jump across the vortex edge, the vortex be
defined as the largest contiguous patch of high vorticity a
filaments have been cut off from it by contour surgery. Fro

FIG. 2. Evolution of the PV contour~thick! in the barotropic vortex model
The streamfunction~thin lines! is contoured at equal intervals. The flow
clockwise along the outermost streamline. Closed vorticial flow~when
present! is anticlockwise. The dashed line on Day 0 denotes the zero-w
line. Both axes are@24r 0,4r 0#.
Downloaded 19 Jun 2012 to 155.69.4.4. Redistribution subject to AIP lice
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the discontinuous reduction of the vortex area, we measu
that the filament-shedding events after Day 12.5 and D
17.5 constitute outward transport of high-PV material
amounts of 0.136r 0

2 and 0.477r 0
2, respectively.

III. FIRST APPROACH: PERIODIC FLOW

Inspection of the streamlines in Fig. 2 shows that fro
Day 2.5 onwards, a dominant period of 7.5 days has evolv
as the forcing becomes increasingly steady. So, we extra
the dominant component of the flow that repeats every
days. In doing this, one may formally perform a discre
Fourier transform of the flow from Day 2.5 to Day 17.5 an
pick out every second spike in the frequency spectrum, st
ing from the gravest end. The resulting flow is then identi
to an equal-weighting composite constructed from the ap
odic flow during the two intervals~Day 2.5, Day 10! and
~Day 10, Day 17.5!. Figure 3 shows the composite flow
where the cycle starts with Day 2.5, for ease of compari
with Fig. 2. Because Eq.~1! is nonlinear, potential vorticity
is not conserved in this composite flow cycle. It is interesti
to note that this approach to obtaining periodic flows out
aperiodic flows differs from the approach adopted in Mill
et al.6 In that paper, the authors truncated the aperiodic fl
field after one single dominant periodic cycle and repea
the entire flow field for that time interval indefinitely into th
future.

To see the lobe dynamics of the composite flow,
followed Miller et al.6 by using the hyperbolic stagnatio
point of the time-averaged flow as an estimate of the loca
of the hyperbolic trajectory. In this, we assumed the flo
could be decomposed into a large steady component a
small periodic perturbation. Next, a small circular pass
tracer contour was constructed around that location on D
2.5. It was separately advected forwards and backward
time for one period so that it would collapse onto the u
stable and stable manifolds, respectively, thus locating th
Then, the stable manifold was phase-shifted forward in ti
by two periods to intersect the unstable manifold and iden
the hyperbolic trajectory on Day 10 and hence also on D

d

FIG. 3. The equal-weighting composite kinematic flow constructed from
dynamically consistent flow over intervals~Day 2.5, Day 10! and ~Day 10,
Day 17.5!. The streamfunction is contoured at equal intervals. Both axes
@24r 0,4r 0#.
nse or copyright; see http://pof.aip.org/about/rights_and_permissions
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1521Phys. Fluids, Vol. 12, No. 6, June 2000 Lobe dynamics applied to barotropic Rossby-wave breaking
FIG. 4. Lobe dynamics of the periodic
kinematic flow. The thick full line is
the lobe dynamical boundary. Th
PIPs are labeled by Bn (n51,2,3).
The thin full and dashed lines are, re
spectively, the segments of the un
stable~Wu! and stable~Ws! manifolds
that do not lie on the lobe dynamica
boundary.J is the hyperbolic trajec-
tory. ~WheneverJ and the Bn’s are lo-
cated very close together, they share
single line-pointer.! Intruding and ex-
truding lobes are denoted by ‘‘Li’’ and
‘‘Le,’’ respectively. The label ‘‘O’’ re-
fers to the overlapping region betwee
lobes Li and Le. For clarity, Li,O, and
Le are only shaded and labeled on Da
6.25, Day 7.5, and Day 10, respec
tively. Axes are labeled in units ofr 0 .
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2.5 and Day 17.5 as the flow is periodic. Finally, sections
the collapsed contours around the manifolds spanning ac
the hyperbolic trajectory were again advected forwards fr
Day 2.5 and backwards from Day 17.5, to locate, resp
tively, the unstable and stable manifolds and hyperbolic
jectory with higher precision.

The practice of allowing passive tracers to collapse o
manifolds, thereby revealing the location of stable and
stable manifolds and the hyperbolic trajectory is rather co
mon in the literature.6,21 What is different here is the numer
cal technique we use: Dritschel’s algorithm for conto
advection is applied to the passive tracer contours.
method is essentially the same as Contour Advection w
Surgery~CAS! discussed in Waugh and Plumb,25 except that
surgery was not performed on the contours in order to m
tain an unbroken trace of the manifolds. In brief, the tra
contours are represented by nodes that are passively adv
by the wind field, and they are renoded constantly to ens
good resolution of fine-scale features.

The lobes identified in this manner are shown in Fig.
The intersection points between the stable and unst
manifolds, which are connected to the hyperbolic traject
by segments of the manifolds that do not intersect each ot
are known as the primary intersection points~PIP!. They are
labeled as Bn’s in the figure. Note that the position of B3 o
Day 10 is identical to that of B1 on Day 2.5, as the cyc
repeats every 7.5 days. Given a reference PIP, say Bn, the
lobe dynamical boundary is defined as the union of the s
ment of the unstable manifold between Bn and the hyper-
bolic trajectory, and the segment of the stable manifold
tween Bn and the hyperbolic trajectory. It is indicated by th
thick line in Fig. 4. The reference PIP that determines
Downloaded 19 Jun 2012 to 155.69.4.4. Redistribution subject to AIP lice
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lobe dynamical boundary, Bn, is redefined to the PIP up
stream, B(n11), when the stable manifold between Bn and
B(n11) has shortened to less thanS.

The above definition for the lobe dynamical bounda
has the advantage of being stationary in Poincare´ sections. In
fact, it is the transport boundary conventionally adopted
Poincare´ sections~cf. Sec. 3.3.1 of Malhotra and Wiggins21!.
Traditional Poincare´-section analyses of periodic system
implicitly redefine the reference PIP to the second PIP
stream at the moment that each Poincare´ section is taken. But
when the system is considered in continuous time, the tim
of the redefinition of the reference PIP is an added freed
within a period. The choice ofS affects only this timing and
not the amount of transport, as the latter is dependent onl
lobe areas. Since it is not an objective of this paper to
dress the timing of intrusion and extrusion events, a reas
ably small value ofS50.3r 0 is conveniently assumed.

Table I shows the transport across the lobe dynam
boundary. It is a well-known theorem@see, e.g., Ottino9# that

TABLE I. Measured transport of the periodic flow from Day 2.5 to Day 1
in Fig. 4. ~Note: S50.3r 0 .)

Time
Lobe

involved
Direction

of transport
Amount transported

5lobe area/r 0
2

Day 6.25 Li Intrusion 0.720 4760.000 02
Day 10 Le Extrusion 0.623 9760.000 09

Estimated transport in each direction/r 0
2 0.6760.05

Area of overlapO between lobes Li and Le/r 0
2 0.3460.07
nse or copyright; see http://pof.aip.org/about/rights_and_permissions
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1522 Phys. Fluids, Vol. 12, No. 6, June 2000 T.-Y. Koh and R. A. Plumb
in a periodic flow, there exists an infinite number of lobes
any tangle between the unstable and stable manifolds,
they all have equal areas. Our numerical computation sh
that the intruding and extruding lobes, Li and Le, ha
roughly equal but not identical area. The error values for
and Le in Table I refer to the uncertainty due to the inco
plete collapse of the computed passive contours onto
manifolds. Uncertainties from other sources, e.g., the
crete representation of contours and the finite resolution
the saved PV field, are not estimated. Thus, the discrepa
in area between Li and Le is attributed to the accumulat
of these unaccounted errors during contour advection, wh
is substantial because of the exponential stretching in
Lagrangian-chaotic flow.

Therefore, we estimate that the true lobe dynami
transport to be (0.6760.05)r 0

2 in each direction. About half
of the cancellation between inward and outward transp
comes from the reversible migration of the fluid parcel d
fined by the overlapO between Li and Le~see Fig. 4!. Con-
trast this with theexclusiveoutward transport of 0.613r 0

2

measured across the vortex edge by the contour surger
gorithm.

IV. SECOND APPROACH: APERIODIC FLOW

In this section, we apply lobe dynamics to the full ap
riodic vortex flow shown in Fig. 2. This is arguably the mo
relevant approach, since we do not expect the wintert
stratospheric flow to be often dominated by a large perio
component. Additionally, the lobe dynamical transport in t
periodic component flow revealed in Sec. III is quite diffe
ent from what we might expect from performing conto
surgery on the simple model vortex. We are interested in
transport from Day 0 to Day 17.5. From Day 17.5 to Day 2
the roll-up of a filament signifies the possible existence o
secondary hyperbolic point in the flow, and hence for
sake of simplicity, that time interval is excluded. The initi
adjustment period, Day 0 to Day 2.5, is included to introdu
a large aperiodic component to the case study, as we do
expect the aperiodicity in real stratospheric flows to ha
small amplitude.

Regarding the lobe dynamics of aperiodic systems,
pointed out in Sec. I, we are currently aware of two differe
approaches in the literature. In Malhotra and Wiggins,21 the
hyperbolic trajectory is the particle trajectory to which pa
ticle trajectories on the stable and unstable manifolds c
verge as time approaches positive and negative infinity,
spectively, just as in periodic lobe dynamics theory. In t
paper, the theory was applied to steady or periodic flo
which are disturbed by an aperiodic component with
e-amplitude parameter, where hyperbolic trajectories w
proven to exist. And in more recent work, the theory h
been applied to a three-layer double-gyre quasigeostro
ocean model,8 as well as real oceanic flows in Monterey Ba
CA.18 However, the theoretical conditions for the existen
of hyperbolic trajectories in an aperiodic flow of a gene
nature, such as our model flow from Day 0 to Day 17.5, ha
not been established.
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Haller and Poje22 formulated a theory of finite-time lobe
dynamics. For a given finite time interval where a hyperbo
stagnation point exists in the streamfunction, the auth
show rigorously that a hyperbolic trajectory, and its asso
ated stable and unstable manifolds, exist if the flow satis
certain specified constraints. The manifolds and the hyp
bolic trajectory identified in this manner are not unique, b
their identity converges exponentially with the length of t
finite time interval. However, in our model, the hyperbol
stagnation point in the streamfunction is nonexistent aro
Day 12.5. To use the method, it appears that one ha
divide the associated lobe dynamics from Day 0 to Day 1
into two separate episodes, each with its own hyperbolic
jectory. But note that the separation of the filament from
vortex after Day 12.5 in Fig. 2 is not due to the stagnat
point vanishing, but is brought about by the contour surg
algorithm. When a smaller CDS parameterd is specified, the
filament continues to stretch exponentially, even though
stagnation point vanishes around Day 12.5. This seem
indicate that the breaking event ought to be associated w
single hyperbolic trajectory through Day 12.5. Additionall
from a conceptual standpoint, lobe dynamical structures,
ing inherently Lagrangian in nature, should have an unin
rupted identity, even when Eulerian structures are transit
during the period of interest. Moreover, hyperbolic stagn
tion points may vanish in one frame, while persisting in a
other. The reason is that the topology of Eulerian flow d
pends on the frame of reference. No single frame can
appropriate for all circumstances, and it is unsure if th
always exists an appropriate frame~e.g., when a given flow
has a spectrum of dispersive waves!. Therefore, our model is
not accessible to this approach, at least without a clearer
of what the appropriate frame of reference is.

Although the above two approaches to aperiodic lo
dynamics are different in theoretical details, they employ
same principles in practice — the hyperbolic trajectory is
particle trajectory about which there is strong exponen
deformation of the fluid substance, and that this deformat
lasts long enough for the stable and unstable manifolds to
located by the exponential approach of tracers lines.
while both theoretical approaches are not suitable to our c
study for their own reasons, the common gist of their imp
mentation methods is still applicable.

For lack of a more appropriate approach, we theref
made the following ad-hoc modification to the theories
aperiodic lobe dynamics: For the hyperbolic trajectory,
select the particle about which there is thegreatestexponen-
tial deformation of the fluid substance from Day 0 to D
17.5. The details of how we locate this trajectory and h
we measure the exponential deformation are relegated to
pendices A and B. Here, it suffices to note that the metho
meant for finite-time applications, and is based on Lagra
ian kinematics. The unstable manifold is located by the~in-
complete! exponential collapse of a circular tracer contour
radius D around the hyperbolic trajectory in forward tim
starting from Day 0, using Dritschel’s contour advection
gorithm without surgery.23 It may be thought of as the ma
terial line that straddles the hyperbolic trajectory and has
greatest increase in length from Day 0 to Day 17.5. But s
nse or copyright; see http://pof.aip.org/about/rights_and_permissions
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FIG. 5. Lobe dynamics of the aperi
odic dynamically consistent flow from
Day 0 to Day 17.5, at irregular time
intervals. The same graphical repre
sentation as in Fig. 4 is used. Intrudin
and extruding lobes are numbered in
dependently.
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an interpretation is not essential to the practical impleme
tion of the method. The stable manifold can be simila
located and interpreted, except in reverse time starting f
Day 17.5. In our case, we usedD50.2r 0 .

Figure 5 shows the lobe dynamics in the aperiodic v
tex flow on Day 8.5 and subsequent times when a lobe
trusion or an intrusion occurs. The definition of the lo
dynamical boundary in the aperiodic case is the same a
the periodic case, following Malhotra and Wiggins.21 The
lobe dynamical boundary~thick full line! separates an inte
rior region ~henceforth the ‘‘LD interior’’! from an exterior
region~henceforth the ‘‘LD exterior’’!. The alternating intru-
sion and extrusion of lobes, aptly called ‘‘turnstile tran
port,’’ is clearly seen in Fig. 5. Note that the exchange m
diated by lobes occurs directly between the vortex-e
region ~the ‘‘subpolar’’ region! and the region of anticy-
clonic flow ~the ‘‘subtropical’’ region!. This transport is non-
local, and so if the tracer field has a meridional gradient,
lobes will bring air parcels of disparate tracer mixing rati
together, enhancing the efficacy of subsequent mixing. C
trast this mechanism with diffusion which, by its local n
ture, mixes air parcels of only slightly different tracer mixin
ratios in a continuous tracer distribution.

From Table II, the total outward transport measured
lobe dynamics from Day 0 to Day 17.5 is (1.5260.03)r 0

2

while the total inward transport measured is (0.1
60.001)r 0

2, with the convenient choice ofS5D50.2r 0 .
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This is much larger than the PV transport 0.613r 0
2 measured

by the contour surgery method. We can understand this
follows: The area of the LD interior prior to any transport
(4.3260.04)r 0

2, larger than the areapr 0
2 of the vortex on

Day 0. This indicates that the LD interior includes no
vortex air along its periphery. Consequently, much of t
extruded air, which originates in the periphery of the L
interior, has low PV and so does not contribute to PV tra
port.

Cancellation between inward and outward transport
only a small fraction (7.260.2)% of the outward transport
because the intruding lobes are much smaller than the
truding lobes. Yet, the weak intrusions witnessed here

TABLE II. Measured transport of the aperiodic flow from Day 0 to Da
17.5 in Fig. 5.~Note: S50.2r 0 .)

Time
Lobe

involved
Direction

of transport
Amount transported

5lobe area/r 0
2

Day 12.5 Le#1 Extrusion 1.0560.03
Day 14.5 Li#1 Intrusion 0.094660.0006
Day 16.5 Le#2 Extrusion 0.47060.001
Day 16.5 Li#2 Intrusion 0.015560.0005

Total outward transport/r 0
2 1.5260.03

Total inward transport/r 0
2 0.11060.001
nse or copyright; see http://pof.aip.org/about/rights_and_permissions
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1524 Phys. Fluids, Vol. 12, No. 6, June 2000 T.-Y. Koh and R. A. Plumb
significant because their Lagrangian identities are dist
from the extrusions~i.e., the lobes do not overlap!. They
represent irreversible entrainment of LD-exterior air into t
LD interior from Day 0 to Day 17.5. Yet no low-PV entrain
ment into the vortex occurs, according to the contour surg
method.

V. DISCUSSION

A. Lobe dynamics in the periodic case

Because the theorem of equal lobe areas for perio
flows does not apply to the aperiodic flow, we may expeca
priori the lobe dynamical transport in any periodic flow com
ponent to be different from that in the full aperiodic flow
However, from theory alone, it is unclear how big these d
ferences are. Contrasting Day 5.0 in Fig. 4 and Day 12.5
Fig. 5, and Tables I and II, we see that the differences
large, despite the two streamfunctions looking rather sim
in Figs. 2 and 3. In retrospect, the results affirm the we
known sensitivity of Lagrangian transport to Eulerian flo
structures. More importantly, our results caution against t
ing the transport by the periodic flow component as the m
sure of transport in an aperiodic flow.

We also identified an interesting transport phenome
in the periodic case. The instance of overlapping intrud
and extruding lobes leading to reversible transport is dub
as ‘‘pathological’’ in Malhotra and Wiggins.21 Thus, a ratio-
nalization for its occurence appears in order. Now, in
periodic system, there must be as much fluid intruded as
extruded. But the intruded fluid cannot really remain in t
‘‘interior,’’ because the transport is strongly asymmet
across the vortex edge in the aperiodic case, and the per
flow is only slightly different from the aperiodic flow from
Day 2.5 onwards. The most direct way to reconcile the t
requirements is to have much of the intruded fluid extru
again before mixing can occur. To do this, the lobe dyna
cal boundary moves outwards from the vortex edge, ther
counting the bidirectional meridional stirring outside the vo
tex patch as symmetric cross-boundary transport.

FIG. 6. The stable and unstable manifolds, and the hyperbolic trajector
Day 14.5. Crosses denote the perimeter of the PV vortex. Circles denote
high-PV filaments. Otherwise, the same graphical representation as in F
is used.
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B. Lobe dynamics in the aperiodic case

Figure 6 shows the close proximity between the lo
dynamical boundary and the vortex edge in the aperio
flow. But note: the intruding lobe Li#1, composed entirely
low-PV air, is intruded into the LD interior, but it is als
evidently outside the vortex. The reason is that much of
PV filament previously wrapped around the vortex has b
removed by contour surgery, leaving fragments~vis-à-vis the
circles in Fig. 6! that do not envelop Li#1. Hence, what
counted as an intrusion by lobe dynamics, is no more t
peripheral stirring outside the vortex. Closer inspection
Fig. 6 further reveals that Li#2 is composed entirely
high-PV air and is in the LD exterior. Yet, Li#2 is clearl
part of the vortex at this time and was never separated f
it. The subsequent intrusion of Li#2 at Day 16.5~see Fig. 5!
is then an illusion resulting from the catergorical account
procedure of lobe dynamics. As a result, the picture of tra
port according to lobe dynamics is qualitatively very diffe
ent from that obtained by surgery of thin PV filaments. In t
former, some intrusion has taken place, while in the lat
transport is exclusively outwards.

C. Lobe dynamical transport versus vortex edge
transport

The distinction between the ‘‘turnstile’’ transport acro
the lobe dynamical boundary and that across the vortex e
is not merely one of semantics. First, continual stirri
within the critical layer creates in the winter stratosphere,
in many similar flows, a clear distinction~such as in chemi-
cal composition! between air poleward of the vortex edg
and the well-mixed air mass outside the edge.~In most cases,
there will be a second barrier at the other side of criti
layer. We eliminated that in our calculations simply by co
fining the PV gradient to a single contour.! Second, the edge
itself becomes a transport barrier, across which transpo
much weaker than elsewhere~e.g., Sobelet al.15!. Thus, to
the extent that one can usefully describe transport in s
systems by a single measure, it is usually the transport ac
the barrier~s! that is the most critical measure.

While the outward transport across the lobe dynami
boundary is kinematically related to that across the vor
edge, the two will not usually be the same whenever the l
dynamical boundary does not coincide with the edge. In
examples shown here, the two do not coincide. To so
extent, this statement is trivial in the context of our mod
calculations, since the relative locations of the vortex ed
and the hyperbolic trajectory are determined almost indep
dently by the initial conditions and the bottom topograph
In reality, it is stirring associated with the hyperbolic traje
tory that creates the sharp vortex edge from continuous
dients~e.g., Juckes and McIntyre24!, so the two are not mu-
tually independent. However, in a conservative flow, t
location of the vortex edge depends on the past history
transport, while the lobe dynamical boundary is a functi
only of the kinematics during the period of interest. Even
a simple model such as that used here, there are certain
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1525Phys. Fluids, Vol. 12, No. 6, June 2000 Lobe dynamics applied to barotropic Rossby-wave breaking
rameter ranges in which a few events occur in which mate
is stripped off the vortex, following which transport acro
the edge ceases,17 even though turnstile transport continu
indefinitely within the critical layer. At least in the strato
spheric context, the location of the vortex edge is also de
mined by nonconservative effects~in particular, radiative
cooling acting on PV!. Thus, we do not expect in general
precise relationship between the lobe dynamical bound
and the vortex edge.

D. Asymmetric PV transport across the vortex edge

There is much observational evidence that extrusion
high-PV air occur more frequently than intrusions of low-P
air in the stratospheric polar vortex.11,12 Modeling studies
come to essentially the same conclusion, although ca
where intrusions dominate over extrusions could
contrived.26 For barotropic vortices such as the one in th
paper, outward breaking of high-PV air seems to be the o
form of cross-edge transport.

Although lobe dynamics may not provide a good fram
work for measuring cross vortex-edge transport, it does p
vide some insight into the phenomenon of asymmetric tra
port. In our case study, right from Day 0, the hyperbo
trajectory is located outside the PV vortex. Figure 7~a! is a
schematic representation of the situation. Given this ge
etry, the high-PV filament extruded from the vortex must
nearer the unstable manifold than the low-PV air in lo
Li#1. Consequently the high-PV air undergoes strong ex
nential stretching and cascades to small scales before

FIG. 7. Schematic diagrams of~a! a cyclonic flow with an exterior hyper-
bolic trajectory;~b! an anticyclonic flow with an interior hyperbolic trajec
tory. Thick solid line~Ws! 5 stable manifold; thin solid line~Wu! 5 un-
stable manifold;J5hyperbolic trajectory; dashed line5 critical line; shaded
mass5 high PV in ~a! and low PV in~b!.
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low-PV air. It is reasonable, therefore, for it to be surgica
removed before the low-PV air.~In the stratosphere, the
downscale cascade of the thin high PV filament would ev
tually be dissipated by molecular diffusion.27! The result is
then a high-PV filament extruding and ‘‘mixing’’ into a
low-PV environment, and not the converse.

We note in passing that if the hyperbolic trajectory
located inside a vortex@Fig. 7~b!#, inward breaking will be
the norm, such as the case with an interior critical line
Nakamura and Plumb.26 In the stratosphere, the bias for fila
ment shedding from the tropics into the surf zone can
explained in the same manner — the hyperbolic traject
now lies polewards of the tropical easterly jet.

VI. CONCLUSIONS

Previous work in the literature9,20–22has shown that lobe
dynamics gives an engaging and mathematically pre
framework for understanding transport in Lagrangian-chao
flows. Intruding and extruding lobes have provided a syste
atic measure of transport in many oceanic flows.5–8 In the
winter stratosphere, the polar vortex edge is a throttle
tracer transport, and many methods have been devise
quantify the mass and tracer fluxes across it. However,
utility of lobe dynamics in this context was unknown. In th
paper, we investigated this problem by adopting two a
proaches.

The periodic approach yielded material transport tha
qualitatively very different from the PV transport measur
by Dritschel’s contour advection algorithm. Equal quantiti
of air (1.3460.07)r 0

2 are transported in both direction
across the lobe dynamical boundary over two periods fr
Day 2.5 to Day 17.5, with about half of the quantity bein
reversible transport due to overlapping intruding and extr
ing lobes. The transport measured by the CDS algorit
was a total of 0.613r 0

2 exclusively outwards from Day 0 to
Day 17.5. The contrast highlights the fact that transport ra
computed across the lobe dynamical boundary, which is
cated just outside the vortex edge, not only exaggerate
magnitude of transport, but also fail to capture its asymm
try.

In the aperiodic approach, there is an improvement in
representation of the asymmetry of transport — the total
ward transport across the lobe-dynamical boundary is o
(7.260.2)% of the total outward transport. However, th
total outward transport of (1.5260.03)r 0

2 from Day 0 to Day
17.5 is much larger than the transport of 0.613r 0

2 measured
by the CDS algorithm. This is because the interior defin
by the lobe dynamical boundary initially includes muc
low-PV air which is extruded later on. The intruding lobe
do not actually cross the transport barrier, vis-a`-vis the edge
of the vortex patch. The underlying reasons are:~1! the cat-
egorical accounting procedure of lobe dynamics; and~2! the
small but significant misalignment between the lobe dyna
cal boundary and the transport barrier.

Nevertheless, while not suitable as a quantitative the
of transport across the polar vortex edge, lobe dynamics d
give some qualitative insight into the problem of asymmet
PV transport across the vortex edge.
nse or copyright; see http://pof.aip.org/about/rights_and_permissions
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APPENDIX A: LOCATION OF THE HYPERBOLIC
TRAJECTORY

We first located the locus of large instantaneous stre
ing from maps of det(M ) at Day 0 and Day 17.5, whereM is
the velocity gradient tensor defined by Eq.~B1! in Appendix
B. The winds from whichM was derived had been inverte
on a regular grid of resolution 0.025r 0 by 0.025r 0 . Negative
det(M ) indicates local strain dominating over local rotatio
in which caseS5@2det(M )#1/2 is the instantaneous rate o
exponential stretching of small material elements, in cert
time-dependent eigen-directions.

Note that det(M ) is not a scalar — its value is not pre
served under coordinate transformations. But the comov
frame of the background flow is ideal for computing det(M )
in our case, because the eigen-directions ofM (t) at the lo-
cation of the hyperbolic trajectory varies the least with tim
in this frame~see, e.g., Polvaniet al.28!. In our model, the
background flow is associated with the bottom topograp
and so det(M ) is evaluated in the stationary frame.

As the mean rate of elongation of the PV contour fro
Day 0 to Day 17.5 was about 0.25/day, we cho
Sth50.25/day as the threshold beyond whichS is considered
significant. So, we advected contours demarcating
det(M ),2Sth

2 region on Day 0 forwards in time, and othe
similar contours on Day 17.5 backwards in time. The int
section of regions enclosed by the forward-advected
backward-advected contours denote the fluid substance e
riencing significantS on both Day 0 and Day 17.5. It wa
next verified that this set of fluid substance experienced
nificant S throughout Day 0 to Day 17.5.

On Day 10, this intersection set is least extended s
tially. Visual inspection at this time shows that a subset o
A, lying near the hyperbolic stagnation point in the strea
function, accumulates the most stretching both in forw
advection from Day 0 to Day 10, and in backward advect
from Day 17.5 to Day 10. Since the flow is incompressib
this implies thatA also accumulates the most stretching fro
Day 0 to Day 17.

Next, a coarse grid was set up overA on Day 10 and a
precise Lagrangian measure of exponential deformatio
vis-à-vis the deformation exponentj defined by Eq.~B3! in
Appendix B — was calculated for all particles lying on th
grid points. High values ofj were aligned in crosslike for
mations, reminiscent of the homoclinic tangles around
hyperbolic trajectory~Fig. 8!. The calculation was repeate
at finer and finer grids over the heart of the cross with
highestj. In the end, the particle X with the largestj on the
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finest grid was identified as the one closest to the hyperb
trajectory. The hyperbolic trajectory is taken here to be
particle inA that has the largestj.

X was advected backwards to Day 0 and forwards
Day 17.5 to estimate the initial and final locations of t
hyperbolic trajectory. To gauge the error in the estimates
circular contour centered on X, with radius equal to half t
finest grid resolution (;1026r 0), was advected from Day 10
to Day 0 and from Day 10 to Day 17.5. On Day 0 and D
17.5, these ‘‘error contours’’ lie within the judiciously cho
sen distance ofD50.2r 0 from X, so that tracer contours use
to locate the stable and unstable manifolds do in fact enve
the hyperbolic trajectory.

Finally, note that the earlier calculation of det (M ) in an
appropriate Eulerian frame only serves to pick out the
proximate location of the material setA that has the highes
cumulative exponential stretching. The subsequent iden
cation of the hyperbolic trajectory withinA is not crucially
dependent on this calculation~i.e., we can have a slightly
different setA and still be able to define the same hyperbo
trajectory!. Hence, the method here is fundamentally bas
on Lagrangian kinematics and is independent of the Eule
frame of reference.

APPENDIX B: SOME MATHEMATICAL DETAILS

The velocity gradient tensorM of two-dimensional flows
is given by Batchelor29 in cartesian coordinates (x,y) as

M ~ t ![F ]u

]x

]u

]y

]v
]x

]v
]y

G . ~B1!

Note that in incompressible flows, tr(M )[0 at all times.
The instantaneous rate of deformation experienced b

small fluid elementDx is related toM (t) by

D

Dt
Dx5D

Dx

Dt
5Du5M ~ t !•Dx.

Observe that the symmetric component ofM (t) provides
local strain and isotropic expansion, while the antisymme

FIG. 8. Distribution of the deformation exponentj over a subset ofA on
Day 10. The crosslike formations are reminiscent of homoclinic tang
around a hyperbolic trajectory.~See Appendices A and B for more details!
The contour interval is 0.05/day; solid lines are 0.85/day or greater; das
lines are 0.80/day or smaller. Axes are labeled in units ofr 0 .
nse or copyright; see http://pof.aip.org/about/rights_and_permissions
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1527Phys. Fluids, Vol. 12, No. 6, June 2000 Lobe dynamics applied to barotropic Rossby-wave breaking
component ofM (t) provides local rotation~the rate of which
equals half the vorticity!. Thus, real eigenvalues ofM (t)
represent physically the strain overcoming the rotation, le
ing to exponential deformation of the small fluid elementat
that instant. The instantaneous stretching rateS(t) is prop-
erly the positive eigenvalue ofM (t), which is
@2det(M )#1/2 in incompressible fluids.

To measure thecumulativestretching rate on a fluid el
ement over a finite time interval@ t i ,t f #, one may imagine
using the Lyapunov exponentl computed over a finite-time
interval.30,31 It can be related to the instantaneous veloc
gradient tensorM (t) by

l~u;t i ,t f !5
1

t f2t i
E

t i

t f
n̂~u;t !•M ~ t !•n̂~u;t ! dt. ~B2!

Here,n̂(u;t) is a unit vector always parallel to an infinites
mal vector fluid element that is anchored at one end to
particle. It rotates with the local flow around that partic
such that its orientation at timet f is in directionu. But there
is a conceptual drawback to this measure:l is a function of
u at finite times. Note that this dependence on initial orie
tation is still present in the two-vector approach of Pierre
mbert and Yang.32

In this paper, we measured the exponential deforma
experienced by a fluid elementaccumulatedover a finite
time interval@ t i ,t f # by the deformation exponentj. We de-
fine the deformation exponentj for a particle in a two-
dimensional incompressible flow as

j~ t i ,t f !5
1

t f2t i
ln

Pf

Pi
, ~B3!

wherePi is the length of a~sufficiently small! circular ma-
terial contour centered on the particle at timet i , and Pf is
the length of the contour~deformed by advection! at timet f .

From Eqs.~B2! and~B3!, the deformation exponentj is
related tol by

~B4!

Thus, the deformation exponentj of a particle measures th
cumulative exponential stretching of small vector fluid e
ments~term A!, averaged over all directions around the p
ticle while weighted by the anisotropy of the stretching~term
B!. The anisotropy~term B! is unity when the growth is
isotropic~which is incidentally impossible in a nondiverge
fluid!, and is proportional to the directional variation
stretch rates for highly anisotropic growth.

This physical interpretation ofj explains why, in prin-
ciple, it is a better finite-time Lagrangian measure of def
mation than the finite-time Lyapunov exponentl, namely
that it is an average over all directions around a particle
it includes the effects of anisotropy. In the limit ast f tends to
`, l becomes independent ofu and approaches the~proper!
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Lyapunov exponentl` . Likewise, Eq.~B4! shows thatj
also approachesl` . We suggest that as a measure of cum
lative material deformation,j is the more appropriate con
ceptual generalization ofl` to the finite-time context, as it is
unique to each particle for a given@ t i ,t f #. Of course, in
practice, the advantage is only significant for short time
tervals where (t f2t i)&1/j.

Unfortunately, the numerical computation ofj is more
expensive than that ofl, because one needs at least 3 poi
~we used 12 or more! to represent a contour around a pa
ticle, but only 1 point to represent a vector fluid eleme
anchored on a particle. In our work, the calculation ofj for
a particle was a two-stage process. First, around the par
at timet0[ Day 10, we centered a small circular contour a
advected it as a material contour forwards in time. At eve
time step, the multiplication factorG(t,t1dt) in the contour
length was calculated and then the contour was shrunk
portionately around the particle to restore its length to
initial value. The deformation exponentj(t0 ,t2) for the
forward-time advection tot2[ Day 17.5 was calculated as

j~ t0 ,t2!5
1

t22t0
(
t0

t22dt

ln G~ t,t1dt !. ~B5!

In the second stage, the same procedure was followed
with backward-time advection tot15 Day 0 to getj(t0 ,t1)
~a negative number!. Finally, we take the weighted averag
j̄(t1 ,t2 ;t0) as the deformation exponentj(t1 ,t2) for the par-
ticle over @ t1 ,t2#,

j~ t1 ,t2!'j̄~ t1 ,t2 ;t0!

[
~ t12t0!j~ t0 ,t1!1~ t22t0!j~ t0 ,t2!

t22t1
.

This approximation is good owing to the large deformatio
involved ~i.e., exp@j(t0,tk)(tk2t0)#@1, for k51,2), because
then, j(t1 ,t2), j(t0 ,t2), and 2j(t0 ,t1) all approximate to
l` .

APPENDIX C: TIME-SYMMETRIC NODE ADVECTION
SCHEME

A numerical Lagrangian advection scheme is by defi
tion an approximate way of integrating the equationdx/dt
5u. Given a particle’s positionxn at time tn , one possible
approximation for the positionxn11 at time tn11[tn1dt is

xn115xn1E
tn

tn11
u~x~ t8!,t8!dt8

'xn1dtF~xn ,tn ;xn11 ,tn11!. ~C1!

A time-symmetric advection scheme has to be impli
since it must depend on the past and the future equa
Moreover,F must be invariant when the identities of (xn ,tn)
and (xn11 ,tn11) are interchanged. For our work, we used
fourth-order time-symmetric scheme where

F5 1
2 @Frk~xn ,tn!1Frk~xn11 ,tn11!#,

whereFrk is the corresponding function toF in the fourth-
order Runge-Kutta scheme.
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However, Eq.~C1! is not easily invertible to obtain an
explicit form for xn11 , especially since the functionu comes
from a nontrivial inversion of the PV distribution. Therefor
an iterative method initialized by the fourth-order Rung
Kutta estimate was employed to approximatexn11 to a de-
sired accuracy. We chose to iterate until two consecu
estimates differ by less than 1023a5r 0 , wherea[ f 0dt/2p
50.1. Note that the state of the flowu must be known at
both tn and tn11 at every step in forward or backward a
vection. So, the scheme is only applicable to diagnostic ru
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