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Effect of radar‐rainfall uncertainties on the spatial
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[1] Remotely sensed precipitation products, due to their large areal coverage and high
resolution, have been widely used to provide information on the spatiotemporal structure
of rainfall. However, it is well known that these precipitation products also suffer from
large uncertainties that originate from various sources. In this study, we selected
radar‐rainfall (RR) data corresponding to 10 warm season events over a 256 × 256 km2

domain with a data resolution of 4 × 4 km2 in space and 1 h in time. We characterized their
spatial structure using correlation function, power spectrum, and moment scaling
function. We then employed a recently developed RR error model and rainfall generator
to obtain an ensemble of probable rainfall fields that are consistent with the RR
estimation error structure. We parameterized the spatial correlation functions with a
two‐parameter power exponential function, the Fourier spectra with a power law
function, and the moment scaling functions with the universal multifractal model. The
parameters estimated from the ensemble were compared with those obtained from the
RR products to quantify the impact of radar‐rainfall estimation errors on the spatial
characterization of rainfall events. From the spatial correlation and power spectrum
analyses, we observed that RR estimation uncertainties introduce spurious correlations
with greater impact for the smaller scales. The RR errors also significantly bias the
estimation of the moment scaling functions.

Citation: Mandapaka, P. V., G. Villarini, B.‐C. Seo, and W. F. Krajewski (2010), Effect of radar‐rainfall uncertainties on the
spatial characterization of rainfall events, J. Geophys. Res., 115, D17110, doi:10.1029/2009JD013366.

1. Introduction

[2] Characterization of space‐time variability of rainfall is
paramount to many areas within the field of Earth sciences.
This study focuses on the rainfall variability in space and
the impact of radar‐rainfall (RR) estimation uncertainties on
the characterization of the spatial structure of rainfall.
Several studies have characterized the spatial variability of
rainfall by employing a variety of techniques ranging from
correlation functions and variograms [e.g., Sumner, 1982;
Nicholson, 1986; Berndtsson, 1988; Bacchi and Kottegoda,
1995; Ricciardulli and Sardeshmukh, 2002; Krajewski et
al., 2003; Gebremichael and Krajewski, 2004; Ciach and
Krajewski, 2006; Villarini et al., 2008] to multiscaling
analysis tools such as moment scaling and structure func-
tions [e.g., Schertzer and Lovejoy, 1987; Tessier et al.,
1993a; Gupta and Waymire, 1993; Menabde et al., 1997;
Nykanen and Harris, 2003; Lovejoy and Schertzer, 2006;
Gebremichael et al., 2008; Lovejoy et al., 2008; Morales

and Poveda, 2009; Mandapaka et al., 2009b]. The spatial
scales in the aforementioned studies ranged from a few
meters to continental scales [e.g., Lovejoy and Schertzer,
2006; Gebremichael et al., 2008; Lovejoy et al., 2008;
Mandapaka et al., 2009b].
[3] While some early studies employed rain gauge net-

works to characterize the spatial variability of rainfall, use of
remotely sensed data from radars and satellites has increased
due to their wide spatial coverage. However, it is well
known that rainfall products based on remotely sensed data
contain random and systematic errors from various sources
[e.g., Bell et al., 1990; Bell and Kundu, 1996; Smith et al.,
1996; Krajewski and Smith, 2002; McCollum et al., 2002;
Jordan et al., 2003; Gebremichael et al., 2005; Smith et al.,
2006; Ciach et al., 2007; Germann et al., 2009; Mandapaka
et al., 2009a; Villarini et al., 2009b; Villarini and Krajewski,
2010a; Kirstetter et al., 2010]. Because of the lack of
information on the rainfall estimation error structure, the
majority of studies on the spatial characterization of rainfall
have not accounted for the errors. Very few works [e.g.,
Krajewski et al., 1996; Villarini et al., 2007a, 2007b;
Villarini and Krajewski, 2009a] have investigated the impact
of rainfall estimation uncertainties on the spatial character-
ization of rainfall.
[4] Krajewski et al. [1996], in the first part of their study,

processed the radar reflectivity data from the Darwin
(Australia) radar using so‐called “simple” and “complex”
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algorithms and obtained rainfall fields at different scales
(rain rates, hourly, and daily). They reported that the rainfall
estimation algorithms have significant effect on the inferred
statistics at hourly and daily scales. In the second part, they
resorted to simulation experiment to better understand the
effect of the RR estimation process on the inferred statistics.
A “true” reference rainfall process (R) was simulated at a
higher spatial resolution and converted into reflectivity
fields (Z) by assuming a Z‐R relation. Assuming these Z
fields as the radar measured reflectivity fields, they simu-
lated the radar estimation procedure by performing beam
averaging, Z‐R conversion, and polar‐Cartesian grid con-
version. In the process, they added random Gaussian (zero
mean, 1 dBZ standard deviation) error fields resulting in an
ensemble of RR fields. The statistics of R and RR fields
were then compared to characterize the effect of errors
induced during the radar observation process. They reported
that the RR estimation (beam averaging, Z‐R conversion,
and polar‐Cartesian grid conversion) has significant impact
on the spatial characterization, leading to the underestima-
tion of the coefficient of variation, overestimation of the
spatial correlation distance, and underestimation of a certain
random cascade parameter that characterizes the rainfall
spatial intermittency. It is also worth mentioning that they
employed three different statistical models to obtain the
reference rainfall fields.
[5] Villarini et al. [2007a] analyzed the effect of system-

atic and random errors on the spatial multifractal properties
of rainfall. The systematic effects that they investigated
included the effect of zero‐rain threshold, distance from the
radar (range effect), and the parameters of the Z‐R equation
on the scaling behavior of the estimated statistical moments.
They reported that the zero‐rain threshold and distance from
the radar have negligible effect on the estimated scaling
functions. However, they also suggested that the range effect
could be significant if a larger distance range were investi-
gated in their study. The scaling of statistical moments was
most sensitive to the exponent b in the Z‐R relation. When
the moments were plotted against the scale parameter in the
log‐log domain, they found that the regression line fitted to
the moments was steeper for the lower values of the exponent
b. To investigate the impact of random errors, they assumed
that the RR fields were error free and convoluted them with
uncorrelated and correlated lognormal error fields. They
showed that the random errors would lead to the overesti-
mation of the moment scaling functions. Villarini et al.
[2007b] showed how nonmeteorological returns (ground
clutter) in RR estimates could affect the estimation of the
scaling function.
[6] The main limitation in the earlier two studies

[Krajewski et al., 1996; Villarini et al., 2007a] was the arbi-
trary assumptions regarding the statistical structure of the RR
error fields. Villarini and Krajewski [2009a] used a generator
of probable true rainfall fields developed by Villarini et al.
[2009a] (based on the data‐driven RR error model in the
work of Ciach et al. [2007]) and studied the combined effect
of various sources of uncertainties in the RR estimation
process on the generalized structure function of rainfall
events. For a given RR field, they generated an ensemble of
probable rainfall fields and showed that the RR estimation
errors result in the overestimation of the structure functions

for all of the 15 events considered in their study. Here we
extend the analysis of Villarini and Krajewski [2009a] by
investigating the effect of errors on the estimates of the spatial
structure of rainfall fields. Specifically, we quantify the
impact of RR errors on the spatial correlation function, power
spectrum, and moment scaling function. For a given radar‐
rainfall event, we generate an ensemble of probable true
rainfall events employing the error model by Ciach et al.
[2007] and the rainfall generator by Villarini et al. [2009a].
We then compare the spatial dependence estimates for the RR
product with those of probable rainfall events to quantify the
effect of the RR estimation errors on the spatial character-
ization of rainfall events.
[7] This paper is organized as follows: In section 2, we

describe the RR data used in this study. A short description
of the RR error model and the probable rainfall generator is
presented in section 3. Section 4 briefly describes the
analysis tools employed to characterize the rainfall events.
The results are discussed in section 5, followed by conclu-
sions in section 6.

2. Radar‐Rainfall Data

[8] Customized high‐resolution RR data with a spatial
resolution of 1 × 1 km2 and a temporal resolution of 15 min
were obtained from the Pseudo‐Precipitation Processing
System (PPPS) andHi‐Fi algorithms of the Hydro‐NEXRAD
system of data distribution [e.g.,Krajewski et al., 2010] at the
University of Iowa. Krajewski et al. [2010] provide an
overview of the Hydro‐NEXRAD system and the algorithms
used to create the RR products. Radar‐rainfall products
obtained from the Hydro‐NEXRAD system have been used
in previous studies published in the literature [e.g., Ntelekos
et al., 2008, 2009; Villarini and Krajewski, 2010b, Villarini
et al., 2010]. Here we give a brief description of the PPPS
and Hi‐Fi algorithms.
[9] PPPS is the Hydro‐NEXRAD implementation of the

National Weather Service’s (NWS) Precipitation Processing
System algorithm [e.g., Fulton et al., 1998] that enables us
to obtain PPPS radar‐rainfall products at higher spatial and
temporal resolutions (1 × 1 km2 and 15 min) than the
operational products. We refer to it as Pseudo‐PPS since,
despite using the same logic and major algorithmic steps, it
does not reproduce exactly the official NWS products that
account for predefined site‐specific information such as
clutter and terrain occultation maps.
[10] In the Hi‐Fi products, corrections are performed to

mitigate the errors due to anomalous propagation, range
effect, and storm advection. The procedure for constructing
the hybrid scan is different for the PPPS and Hi‐Fi products.
While PPPS takes reflectivity values from the angle that
corresponds to 1.0 km above radar altitude, Hi‐Fi uses kernel
smoothing to alleviate a discontinuity problem in the rainfall
maps and to suppress no‐rain echoes around the radar [Seo
et al., 2009]. The zero‐rainfall threshold for the reflectivity
values is also different for the PPPS and Hi‐Fi rainfall
products. It is equal to 18 dBZ for the former and 10 dBZ for
the latter. The factors mentioned above may result in dif-
ferences in rainfall amounts at the level of final products.
[11] We selected 10 rainfall events measured by Weather

Surveillance Radar‐88 Doppler (WSR‐88D) [e.g., Crum
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and Alberty, 1993; Klazura and Imy, 1993] radar in Wichita,
Kansas (KICT), and obtained the high‐resolution rainfall
products using the aforementioned algorithms for a square
domain of 256 × 256 km2 with the radar at its center. Table 1
lists the time of occurrence, duration, and the storm total
accumulation for the PPPS and Hi‐Fi products of the 10
rainfall events. We have selected only warm season (May–
August) events to avoid seasonal effects. The events KICT‐
05 and KICT‐06 are shorter duration events lasting for less
than a day, while KICT‐08 and KICT‐09 are longer events
lasting for more than 4 days (Table 1). The storm total varies
from about 7 to 90 mm. Table 1 illustrates that the storm
accumulation for the products based on the two algorithms
does not vary greatly.

3. Radar‐Rainfall Error Model

[12] Ciach et al. [2007] proposed a product error–driven
(PED) model for RR estimation errors, in which the relation
between true areal rainfall and radar‐rainfall was described
by two multiplicative components: a systematic distortion
function and a stochastic component. Both components
were conditioned on the RR values. While the systematic
function accounts for biases conditional on the RR values,
the stochastic component accounts for the remaining ran-
dom errors. The results in the work of Ciach et al. [2007]
were based on a large sample (6 years) of hourly accumu-
lation fields (Digital Precipitation Arrays; Fulton et al.,
1998) from the Oklahoma City radar, averaged over 4 km
pixels, and generated with the Precipitation Processing
System (PPS) [Fulton et al., 1998]. Radar‐rainfall estimates
were complemented with rain gauge measurements, which
were used as an approximation of the true ground rainfall.
To account for seasonality and range effects, the parameters
of the model were estimated for three seasons (cold, warm,
and hot) and five spatial zones at different distances from
the radar location. Ciach et al. [2007] showed how the
systematic distortion function could be approximated by a
power law function, while the random component was
parameterized by a Gaussian distribution, with mean equal to
1, standard deviation that was a hyperbolic function of rain-
fall, and with significant correlation both in space and time.
The error model by Ciach et al. [2007] was then used by
Villarini et al. [2009a] to develop a generator of probable true

rainfall fields conditioned on hourly radar‐rainfall maps. As
discussed in the work of Villarini et al. [2009a], the generator
accounts for the conditional and unconditional biases, non-
stationarity in variance, and spatial correlation of the random
component but not for the temporal dependencies.
[13] In this study, we assumed that the parameters of the

systematic and random components for the Oklahoma City
radar [Ciach et al., 2007] could be used to describe the
uncertainties in the RR products generated from the KICT
radar in Wichita, Kansas. There is no guarantee that the
parameters for the Oklahoma City radar are valid for the
KICT radar, even though there is evidence that the overall
model structure should be valid [Villarini and Krajewski,
2009b]. The transferability of the results in the work of
Ciach et al. [2007] to other radars should be investigated in
future studies. Moreover, the differences in the parameters of
the error model obtained using PPS or Pseudo‐PPS appear
not to be significant [Villarini and Krajewski, 2010b]. The
probable rainfall fields were obtained as follows: (1) the
given RR field was first corrected for the overall (uncondi-
tional) bias; (2) for each pixel, the corresponding RR esti-
mate was then corrected for conditional bias (bias function of
the RR estimate); (3) an ensemble of spatially correlated
Gaussian fields with a unit mean and standard deviation
conditional on RR field were then generated using the
Cholesky decomposition method; (4) the correlated Gaussian
ensemble was then multiplied with the bias corrected RR
fields (steps 1 and 2) to obtain an ensemble of probable
rainfall fields. The parameters required for the steps 1–3 were
obtained from the work of Ciach et al. [2007].
[14] We performed our analyses for the Pseudo‐PPS

products aggregated to 4 × 4 km2 and hourly scales since
these are the scales used in the work of Ciach et al. [2007].
The time series of hourly accumulations for the 10 events
are shown in Figure 1. It is possible to repeat the analysis
of Ciach et al. [2007] for smaller space‐time scales and use
those parameters. There are two main reasons why we
did not perform such an analysis. (1) Extending the PED
model of Ciach et al. [2007] to smaller temporal and spatial
scales represents a significant effort that is beyond the scope
of the present study. It would require generating 6 years
worth of rainfall products as well as an investigation of the
effect of the rain gauge representativeness error (Ciach et al.
[2007] neglect the subgrid rainfall variability effects). (2)

Table 1. List of the Selected Rainfall Events Indicating the Beginning, End, Duration, and the Overall
Accumulationa

Storm ID Begin mm/dd/yyyy End mm/dd/yyyy N (h)

Accumulation (mm)

PPPS Hi‐Fi

KICT‐01 06/30/2004 15:15 07/03/2004 03:00 60 32.58 30.92
KICT‐02 07/26/2005 02:15 07/27/2005 10:00 32 7.97 7.13
KICT‐03 08/12/2005 15:15 08/14/2005 12:00 45 36.89 36.78
KICT‐04 08/24/2005 02:15 08/25/2005 21:00 43 58.36 53.95
KICT‐05 06/21/2006 20:15 06/22/2006 16:00 20 22.45 21.31
KICT‐06 07/26/2006 20:15 07/27/2006 19:00 23 11.31 11.30
KICT‐07 05/05/2007 20:15 05/07/2007 11:00 39 94.32 86.18
KICT‐08 06/26/2007 12:15 07/01/2007 00:00 108 84.37 80.02
KICT‐09 07/27/2007 15:15 07/31/2007 17:00 98 26.68 26.10
KICT‐10 05/07/2008 00:15 05/08/2008 03:00 27 45.11 42.42

aThe accumulation value is shown for the rainfall events obtained from Pseudo‐PPS (PPPS) and Hi‐Fi algorithms. The size of
the domain is 256 × 256 km2 with the KICT radar at its center. The spatial resolution of the data is 4 km.
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The PED generator of Villarini et al. [2009a] generates
spatially correlated Gaussian fields based on the Cholesky
decomposition of the covariance matrix. For the same
domain size (256 km) and higher resolution, the size of the
covariance matrix is much larger and it is computationally
intensive (requiring floating point operations ∼ O(n5) for a
grid size of n × n) to solve the matrix using the Cholesky
technique. Notwithstanding the fact that the parameters of
the error model are available for the hourly scale and 4 km
pixels, our choice of 4 × 4 km2 is also a trade‐off between
computational requirements and the spatial variability.
Figure 2 shows Pseudo‐PPS hourly RR field from the event
KICT‐04, and three sample realizations were generated
using Villarini et al. [2009a].

4. Analysis Tools

[15] This section briefly describes the analysis techniques
as applied to the selected rainfall events. We start with the
description of how the spatial correlation functions were
estimated for each rainfall event and then proceed to an
estimation of scaling analysis tools such as the power
spectrum and the moment scaling function. For all of the
analysis tools, we assumed that the RR accumulation fields
are temporally independent. We checked the validity of
this assumption by estimating the temporal correlations for
the spatial scales ranging from 4 to 128 km. For the
smaller spatial scales, the “e‐folding” time (defined as the
time at which the correlation drops to 1/e) ranged from ∼1
to ∼3 h (figure not shown). For 128 km spatial scale, the
e‐folding time varied from ∼2 to ∼6 h (figure not shown).
However, it should be noted that the estimation of these
correlations suffers from the sampling issue, particularly
for larger spatial scales of 128 km.

Figure 1. Time series of hourly accumulations for the
selected storms. The radar‐rainfall fields are generated using
the Pseudo‐PPS algorithms. The storm IDs are indicated on
each panel. The maximum accumulation for KICT‐07 is
5.5 mm. However, we truncated the axis at 4.5 mm for
clarity.

Figure 2. Radar‐rainfall hourly accumulation field (in mm)
from the storm KICT‐04 (top left) and the sample realiza-
tions generated using the model described in the work of
Villarini et al. [2009a].
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4.1. Spatial Correlation Function

[16] The correlation is a normalized measure of the lin-
ear association between two random vectors. We used the
Pearson’s product moment estimator to obtain the correla-

tion of the process {Z(u): u 2 R2} for all ui and uj in an n × n
grid such that {ui – uj = d; i,j = 1,2,…,n2},

� dð Þ ¼ Z uið ÞZ uj
� �� �� Z uið Þh i Z uj

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z uið Þ2

D E
� Z uið Þh i2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z uj
� �2D E

� Z uj
� �� �2r ; ð1Þ

where h·i represents the expectation operator and r(d) is the
correlation for a distance lag d. For each storm, we esti-
mated the spatial correlation for horizontal (X) and vertical
(Y) directions. Figure 3 compares X and Y correlations with
those of isotropic scenario. The difference in directional
correlations was found to be negligible for the storms KICT‐
02, KICT‐03, and KICT‐08, while KICT‐07 displayed
highest sensitivity (Figure 3). However, we assumed isot-
ropy for all the storms including KICT‐07 for the sake of
consistency. Since this assumption is applied to the probable
rainfall fields as well, we believe that it will not have a
major impact on the main goal of this study, which is to
characterize the effect of RR errors on the estimated corre-
lations. It should also be noted that checking correlations in
just two directions is not a sufficient condition to establish
isotropy.
[17] Assuming isotropy in space and independence in

time, the averages in equation (1) were estimated by pooling
together the pixel values that correspond to the distance lag
d in all of the rainfall fields. In this study, d varied from 0 to
approximately 48 km. The estimated correlations, when
plotted against the distance lag, represent the spatial corre-
lation function. If the correlation drops rapidly with distance,
then the process is considered highly variable in space. The
correlation functions were parameterized by fitting a two‐
parameter power exponential function of the form,

� dð Þ ¼ exp½� d=�1ð Þ�2 � �1 > 0; 0 � �2 � 2 ; ð2Þ

using the Levenberg‐Marquardt algorithm. The parameter �1
in equation (2) is the correlation distance, defined as the
distance for which the correlation coefficient is equal to 1/e,
and �2 is the shape parameter that controls the correlation
function near the origin. We selected this correlation model
because it is widely used to model such spatial processes as
hydraulic conductivity and rainfall [e.g., Bacchi and
Kottegoda, 1995; Gebremichael and Krajewski, 2004;
Stauffer, 2005; Ciach and Krajewski, 2006; Villarini et al.,
2008].

4.2. Power Spectrum

[18] A physical process is said to be scale invariant or
scaling if large‐scale and small‐scale structures are related
by a scale‐changing operation that involves only the scale
ratio and an exponent [e.g., Schertzer and Lovejoy, 1987]. In
addition to understanding the rainfall process across multi-
ple scales, other attractive features of the scaling framework
are that parsimonious models can be developed to generate
synthetic rainfall fields at a given resolution and statistical
downscaling techniques can be developed to obtain rainfall
fields at much higher resolution.
[19] The Fourier power spectrum is one of the most

widely used tools to detect the presence of scale invariance

Figure 3. Spatial correlation functions estimated in the
horizontal and vertical directions. The solid dark line indi-
cates the correlations estimated assuming isotropy.
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in rainfall. The power spectrum of the rainfall event was
obtained as follows:
[20] 1. Each rainfall accumulation field is Fourier trans-

formed, and the amplitudes are modulus squared to obtain
the 2‐D power spectrum.
[21] 2. The 2‐D power spectrum, which is conjugate

symmetric, is folded about the Nyquist frequency.
[22] 3. Assuming isotropy, the folded spectrum is radially

averaged about the corner.
[23] A process is said to be scale invariant if the power

spectrum displays log‐log linearity (power law) within a
finite range of frequencies. If E(f) is the power for the fre-
quency f, then the scale‐invariant field will have a power
spectrum of the form

E fð Þ ¼ f ��; ð3Þ

where b is the slope of the spectrum in the log‐log domain.
The power spectrum slope is an indicator of the spatial
organization of the field. The higher the value of b, the
smoother and more organized the rainfall field [e.g., Purdy
et al., 2001; Nykanen and Harris, 2003]. It should be noted
that for the fields with a fixed resolution, the power spec-
trum is distributed in uniform frequency (or wave number)
bins. When such a spectrum is plotted in a double loga-
rithmic plot, most of the spectrum is concentrated towards
higher frequencies. To avoid excess weighting on the higher
frequencies, we estimated b by performing ordinary least
squares regression on the octave binned power spectrum
[e.g., Harris et al., 1997] in the double‐logarithmic
domain. The log‐log linearity was checked based on the R2

value in linear regression.

4.3. Spatial Moment Scaling Analysis

[24] The next tool we used in this study is the moment
scaling analysis to investigate the presence of multi-
fractality. For a multifractal process, it has been shown [e.g.,
Menabde et al., 1997] that the spectral slope b is always less
than the dimension (D) of the field. If b > D, which is often
the case with geophysical phenomena including rainfall,
moment scaling analysis has to be performed on either the
fractionally differentiated field [e.g., Schertzer and Lovejoy,
1987; Nykanen and Harris, 2003] or on the small‐scale
fluctuations (gradient) of the original field [e.g., Tessier et
al., 1993a; Menabde et al., 1997].
[25] In this study, we adopted the latter approach and

obtained small‐scale fluctuations as the difference between
the value at the given pixel and the mean of the four nearest
neighbors (three for edge pixels and two for the ones on the
corner). For each rainfall event, the gradient fields of reso-
lution r (= 4 km) and size L (= 256 km) were then averaged
over a range of scales l(n). The value of n varies from 0 to 6,
with l(0) equal to 4 km and l(6) equal to 256 km. The
averaged fields are referred to as ’l, where l is the ratio of
the size of the field L to the averaging scale l(n). We esti-
mated the correlations in time for different spatial scales to
check the temporal structure of hourly fluctuation fields.
The e‐folding time for smaller spatial scales ranged from ∼1
to ∼3 h while it ranged ∼2 to ∼5 h for 128 km aggregations.
Therefore, assuming that the fluctuation fields within the
rainfall event were time independent, the average values in

the ’l fields at all of the time steps were pooled together,
and the trace moments Mq(l) of various moment orders q
were estimated for each scale ratio l. The higher the value
of l, the larger the sample size available to estimate the
moments.
[26] The gradient field is multifractal if there is a scaling

relationship of the form

Mq �ð Þ ¼ ’�ðx; yÞqh i � �KðqÞ; ð4Þ

where K(q) (the slope of Mq(l) versus l in the log‐log
domain) is a nonlinear function of the moment order q.
Theoretically, K(q) is required for q values ranging from 0 to
∞ to fully characterize the multifractality in the rainfall
fluctuation fields. However, Tessier et al. [1993a] proposed
a universal multifractal (UM) model for K(q) based on
multiplicative cascades consisting of parameters a and C1,

K qð Þ ¼ C1

�� 1
q� � qð Þ 0 � � < 1 and 1 < � � 2; ð5Þ

K qð Þ ¼ C1q log q � ¼ 1: ð6Þ

The parameter a is the Levy‐stable (or multifractality) index
that characterizes the spikiness and indicates the probability
distribution from which the weights are generated in the
cascading process. The case 0 < a < 2 (a ≠ 1) corresponds
to log(Levy) multifractals, and if a = 1 the multifractal
process is log(Cauchy) [e.g., Tessier et al., 1993a]. The case
with a = 2 corresponds to lognormal multifractals. C1 is the
intermittency parameter that characterizes the sparseness of
the mean. It should be noted that the above model
(equations (5) and (6)) is for the conservative cascades for
which b < D. However, rainfall fields often display a non-
conservative, multiaffine nature with a power spectrum slope
greater than the dimension of the process. The degree of
nonconservation is quantified in terms of the Hurst exponent
H, estimated as

H ¼ � � Dþ Kð2Þ½ �
2

; ð7Þ

where K(2) is the scaling exponent corresponding to the
second moment order. The Hurst exponent is also an indi-
cator of the smoothness of the field [e.g.,Harris et al., 2003].
[27] In this study, the parameters C1 and a were obtained

using the double trace moments (DTM) technique [e.g.,
Tessier et al., 1993a]. In the DTM technique, we take var-
ious powers h of the rainfall fluctuations at their highest
resolution, average the powered fluctuations to various
spatial scales with scale ratio l, and estimate the statistical
moments (referred to as double trace moments) of various
orders q,

M�;q �ð Þ ¼ ’�ðx; yÞð Þq�
� �

: ð8Þ

In the case of universality, the double trace moments will
depend on the scale ratio as [e.g., Tessier et al., 1993a],

M�;q �ð Þ � �K q;�ð Þ ð9Þ
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and

K q; �ð Þ ¼ �� � K qð Þ: ð10Þ

Therefore, a is the slope of K(q,h) versus h in a double
logarithmic plot for a fixed q. The value of C1 can be
obtained by plugging a in equation (5) for a fixed q. For a
detailed description of the DTM technique, the reader is
referred to Tessier et al. [1993a]. Several studies have
applied the UM model over the last 15 years to describe a
variety of geophysical phenomena such as wind and atmo-
spheric temperature [e.g., Schmitt et al., 1994, 1996; Lazarev
et al., 1994], rain and clouds [Tessier et al., 1993a; Hubert
et al., 1993; Naud et al., 1996; Marsan et al., 1996], ocean
surface [Tessier et al., 1993b], hydraulic conductivity [e.g.,
Liu and Molz, 1997], and topography [e.g., Lavallee et al.,
1993; Tchiguirinskaia et al., 2000; Gagnon et al., 2006].

5. Results and Discussion

[28] First, we compared the aforementioned spatial char-
acterization estimates for the PPPS and Hi‐Fi radar‐rainfall
products of each event in Table 1 to see if corrections
involved during the generation of Hi‐Fi products altered the
estimated spatial structure. Then, we generated an ensemble
of 200 probable true events using the rainfall generator
(section 3) and conditioned on the PPPS storm data (for each
event). We compared the estimates for the PPPS product
with those of probable rainfall events to assess the impact
that the rainfall estimation errors in the PPPS product had on
the spatial characterization of rainfall events.

5.1. Effect on Spatial Correlation Function

[29] The spatial correlations were estimated for the radar‐
rainfall data using Pearson’s product moment estimator
(equation (1)). The dark solid line in Figure 4 represents the
correlation estimates plotted against the distance lag for the
rainfall products obtained using the Pseudo‐PPS algorithm.
We noticed that the correlation estimates for PPPS and Hi‐Fi
algorithms were quite close, meaning that the spatial corre-
lation structure was not sensitive to the corrections per-
formed during the creation of Hi‐Fi rainfall products. For the
sake of clarity, we did not plot the corresponding estimates
for the Hi‐Fi product. The correlation estimates were fitted
using the two‐parameter exponential function (equation (2)),
and the parameters (correlation distance and shape para-
meter) are given in Table 2 for both radar‐rainfall algo-
rithms. The correlation distance varied from a minimum
value of around 18 km for the storm KICT‐09 to a maximum
value of about 48 km for the storm KICT‐10 (Table 2). The
shape parameter ranged between 0.74 and 1.20. If the shape
parameter is smaller than 1.0, the small‐scale correlations
drop faster than exponential, while if it is greater than 1.0,
the correlations decay at a much slower rate than the
corresponding exponential one. From the values of corre-
lation distances and shape parameters, we can infer that the
storms KICT‐03, KICT‐06, and KICT‐09 are more variable
than the others. Similarly, the storms KICT‐04, KICT‐05,
and KICT‐10 are smoother than the other events considered.
[30] The gray lines in Figure 4 represent the spatial cor-

relation functions estimated from each of the 200 probable
rainfall events. From Figure 4, it can be seen that the effect

Figure 4. Effect of radar‐rainfall errors on the spatial cor-
relation function. The solid dark line represents the correla-
tion function obtained for the Pseudo‐PPS rainfall product,
whereas the gray lines are the correlation functions for the
ensemble of probable rainfall fields generated using the
model described in the work of Villarini et al. [2009a].
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of RR errors on the correlation estimates varies with each
storm. The bias is clearly evident for storms KICT‐05 and
KICT‐10, whereas the bias is not noticeable for the storms
KICT‐06 and KICT‐09 (Figure 4). We estimated the corre-
lation distance and shape parameter (�1 and �2 in equation (2))
for each of the 200 correlation functions. Table 2 lists the
average and 5th and 95th percentiles of the parameters
estimated from the ensemble of probable rainfall events.
Hereafter, we compare the parameters of the ensemble with
those of the PPPS product, as the ensemble rainfall events
were generated conditional on the PPPS product.
[31] The correlation distance for the PPPS product is

greater than the average �1 from the ensemble rainfall events
for all the storms (Table 2). Nonetheless, �1 of the PPPS
product is always within the 90% confidence interval ob-
tained from the probable rainfall events (Table 2). There-
fore, there is not enough statistical evidence (at the 10%
significance) to say that the correlation distance of the PPPS
product is overestimated. The impact of RR errors is more
pronounced for the shape parameter. The estimates of the
shape parameter for the PPPS product are always greater
than the average shape parameter from the probable rainfall
fields (Table 2). Moreover, they are always larger than the
95th percentile. From the above analysis, it can be said that
the RR estimation errors significantly affect the estimation
of spatial correlations at smaller scales.

5.2. Effect on Power Spectrum

[32] Although the spatial correlation function provides
information on the variability of the rainfall fields, it does
not tell us how the small‐scale and large‐scale structures in
rainfall interact with each other. Several studies in the lit-
erature focused on the relation between the multiscale sta-
tistical properties and the meteorological features of the
storm [e.g., Perica and Foufoula‐Georgiou, 1996; Purdy et
al., 2001; Nykanen and Harris, 2003; Nykanen, 2008]. We
estimated the power spectrum slope (b) for each accumu-
lation field using the algorithm discussed in section 4.2 and
followed its evolution (Figure 5). For all the storms, an
increasing spectral slope at the beginning stages of the storm
can be noticed followed by a stationary region and a
decreasing b (Figure 5). The falling limb was not evident for

KICT‐07, as the data pertaining to the decaying part of the
storm was not available (see Figure 1). However, for most
parts of the storms, the behavior of b is stationary. There-
fore, we did not attempt to relate the meteorological features
of a storm to its statistical characteristics. We averaged the
individual spectra estimated for each accumulation field and
estimated one power spectrum slope for each storm. The
corresponding b is shown in Figure 5 with a dotted line and
in Table 3. Similar to the correlation estimates, the correc-
tions performed in the Hi‐Fi rainfall products had negligible
effect on the power spectrum slope (Table 3).
[33] Figure 6 (dark lines) shows the average power

spectrum for the rainfall products generated using the PPPS
algorithm. Except for the slight departure towards the lower
wave numbers (e.g., dark line for event KICT‐02 in Figure 6),
caused mainly by sampling effects, the power spectrum
displayed log‐log linearity for most of the domain. The
slope b was then estimated for the region between the
spatial scales of 32 km (wave number ∼ 8) and 8 km (wave
number ∼ 32) using the octave binning technique [e.g.,
Harris et al., 1997]. Since linear regression was performed
on the octave‐binned spectrum, the sampling issue does not
significantly affect the estimation of the slope b. The R2

value in the linear regression was always greater than 0.97,
confirming log‐log linearity of the spectrum. The spectral
exponents for all of the events are listed in Table 2. The
values of b ranged from 2.05 to 2.88, with lower values for
the storms KICT‐06 and KICT‐09 and higher values for
KICT‐04 and KICT‐10. The highest value of b for KICT‐
10 indicates a smoother and more organized rainfall event,
which is in agreement with the results from the correlation
analysis that reported high values of correlation distance and
shape parameter for that particular event.
[34] The power spectra estimated for an ensemble of

probable rainfall fields (gray lines in Figure 6) also dis-
played log‐log linearity for most of the frequency domain.
Comparing the spectrum obtained from PPPS products with
those of the probable rainfall events, we notice that the er-
rors have a larger impact towards higher frequencies or
smaller scales (Figure 6). The effect of errors is to smooth
the rainfall fields at small scales, thereby decreasing the
contribution of higher frequencies and increasing the value

Table 2. Parameters of the Spatial Correlation Function Estimated From the Radar‐Rainfall Data Obtained From Pseudo‐PPS (PPPS)
and Hi‐Fi Algorithmsa

Storm ID

Correlation Distance (km) Shape Factor

PPPS Hi‐Fi

Probable Rainfall

PPPS Hi‐Fi

Probable Rainfall

Q0.05 Mean Q0.95 Q0.05 Mean Q0.95

KICT‐01 28.61 28.23 20.81 25.49 29.62 1.07 1.07 0.83 0.90 0.96
KICT‐02 27.90 28.20 18.76 23.52 27.95 1.18 1.19 0.79 0.90 1.01
KICT‐03 20.44 20.39 16.00 18.93 21.78 0.93 0.92 0.78 0.82 0.87
KICT‐04 37.59 36.53 29.66 34.54 39.54 1.09 1.10 0.83 0.89 0.94
KICT‐05 47.24 46.40 35.84 43.84 52.16 1.04 1.06 0.77 0.84 0.93
KICT‐06 21.55 22.71 14.57 19.66 25.13 0.74 0.75 0.58 0.65 0.72
KICT‐07 33.25 32.60 29.45 32.90 36.10 1.16 1.16 0.86 0.93 0.99
KICT‐08 37.53 38.02 24.09 30.84 38.03 0.90 0.91 0.66 0.71 0.77
KICT‐09 18.39 18.10 13.93 17.38 21.10 0.80 0.78 0.70 0.73 0.77
KICT‐10 48.03 50.73 38.27 46.12 52.21 1.11 1.13 0.74 0.82 0.90

aThe table also shows the mean and 5th and 95th percentiles of the corresponding parameters for the probable rainfall fields. All of the parameters are
estimated for hourly accumulations averaged over a 4 km grid.
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of b. The b value for the PPPS RR product was greater than
the average b from the probable rainfall events for all of the
storms (Table 3). Except for the storms KICT‐06 and KICT‐
09, the b value falls outside the 90% confidence interval

obtained for the probable rainfall events (Table 3). The
events KICT‐06 and KICT‐09 also happen to be the most
variable of all the events considered in the study (Tables 2
and 3). Even in the correlation analysis, the bias in shape
parameter is smaller for storms KICT‐06 and KICT‐09. With
the exception of these two storms, the RR errors result in the
overestimation of the power spectrum slope (the value is
larger than the 95th percentile). The small‐scale smoothing
effect of the RR errors is consistent with the results from the
correlation analysis.

5.3. Effect on Moment Scaling Function

[35] The value of b from the power spectrum analysis was
always greater than the dimension of the field for all the
rainfall events. Therefore, as mentioned in section 4.3,
moment scaling analysis has to be performed on the gradient
of rainfall fields. We obtained the gradient fields following
the methodology proposed by Menabde et al. [1997], which
was briefly described in section 4.3. The gradient fields were
averaged to various spatial scales, and the trace moments
(equation (4)) were estimated for moment orders ranging
from 0.1 to 4.0. The trace moments of various orders esti-
mated for all the rainfall events are shown in Figure 7. One
could obtain the error bars for trace moments at each spatial
scale by a resampling technique, but the sample size to
estimate the moments would be smaller in each iteration and
the corresponding error bars may not give the correct picture
of the sampling effect. Therefore, we chose to not show error
bars for the estimated moments.
[36] We estimated the slopes (scaling exponents) by first

considering all seven scales (l = 1, 2, 4, 8, 16, 32, and 64) in
the regression analysis and then by excluding the larger
scales of l = 1 and l = 1, 2, respectively. Figure 8 illustrates
the effect of sampling on the estimation of moment scaling
exponents: the slopes are in general steeper, when larger
scales are considered in the regression. Therefore, to mini-
mize the effect of sampling on the estimation of scaling
exponents, we excluded the larger scales of l = 1, 2 in our
study. The corresponding fitted regression lines are shown in
Figure 7. The R2 value in the regression was always greater

Table 3. The Power Spectrum Slope Estimated Using Ordinary
Least Squares Regression for the Radar‐Rainfall Data Obtained
From Pseudo‐PPS (PPPS) and Hi‐Fi Algorithmsa

Storm ID

Power Spectrum Exponent b

PPPS Hi‐Fi

Probable Rainfall

Q0.05 Mean Q0.95

KICT‐01 2.53 2.53 2.15 2.29 2.41
KICT‐02 2.71 2.73 2.17 2.35 2.51
KICT‐03 2.25 2.25 2.01 2.11 2.21
KICT‐04 2.76 2.77 2.33 2.46 2.57
KICT‐05 2.71 2.72 2.30 2.44 2.58
KICT‐06 2.05 2.10 1.80 1.94 2.09
KICT‐07 2.75 2.75 2.37 2.48 2.58
KICT‐08 2.57 2.60 2.10 2.25 2.40
KICT‐09 2.07 2.05 1.86 1.99 2.09
KICT‐10 2.88 2.94 2.36 2.49 2.61

aThe table also shows the mean and 5th and 95th percentiles of the
corresponding parameters for the probable rainfall fields. All of the
parameters are estimated for hourly accumulations averaged over a 4 km
grid.

Figure 5. Temporal evolution of the slope of the power
spectrum estimated for the Pseudo‐PPS products of 10 rain-
fall events in Table 1. The dotted line in each panel re-
presents the power spectrum slope estimated by combining
all the accumulation fields in time.
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than 0.98, confirming the log‐log linearity of moments. For
all the rainfall events, the slopes varied nonlinearly with the
moment order, indicating that the rainfall gradients were
multiscaling (Figure 8). We obtained the moment scal-
ing exponents for all of the 200 probable rainfall events
and compared them with those of PPPS product in Figure 9.

The effect of RR errors varied for each storm, with noticeable
bias for the storms KICT‐01, KICT‐08, and KICT‐10 and
small bias for the storms KICT‐02, KICT‐04, and KICT‐07
(Figure 9).
[37] We parameterized the moment scaling exponents

with the universal multifractal model (equations (5) and (6))
using the double trace moment technique described in

Figure 6. Same as Figure 4, but for the power spectrum.

Figure 7. Scaling of trace moments of different moment
orders q with the scale ratio l, for the Pseudo‐PPS products
of 10 rainfall events in Table 1. The solid lines represent the
ordinary least square regression fits. The smaller scale ratios
(l = 1, 2) are excluded in the regression analysis.
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section 4.3. In Figure 10, the DTM analysis is shown for the
PPPS products of the rainfall events KICT‐06 and KICT‐08.
The top frames of Figure 10 show the double trace moments
(estimated using equation (8)) plotted against the scale ratio
l for different moment orders h and for a fixed q value of
1.6. The double trace moments displayed log‐log linearity

Figure 9. Same as in Figure 4, but for the moment scaling
exponents.

Figure 8. Moment scaling exponents plotted against the
moment order q for the Pseudo‐PPS products of 10 rainfall
events in Table 1. Each panel compares the scaling ex-
ponents obtained for three scenarios: (1) when all the scale
ratios (l) in Figure 6 are included in regression, (2) when
l = 1 is excluded, and (3) when l = 1, 2 are excluded.
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with the scale ratio l for various h values (Figure 10, top).
We obtained the slopes K(q,h) in equation (9) by performing
ordinary least squares regression, excluding the moment
value corresponding to the lowest value of l. The slope of K
(q,h) plotted against h in the double logarithmic plot (Figure
10, bottom) gives the value of the multifractality index a.
The intermittency parameter C1 was obtained by using
equations (5) and (10) for a fixed q. In this study, we carried
out the DTM analysis for q equal to 1.2, 1.6, 2.0, and 2.4
and estimated the average UM model parameters a and C1.
Figure 11 shows the moment scaling exponents (solid dots)
and the DTM‐fitted moment scaling functions (gray lines)
for the PPPS RR products of all 10 rainfall events.
[38] The values of universal multifractal model parameters

for all 10 rainfall events and for both the algorithms (PPPS
and Hi‐Fi) are listed in Table 4. Similar to the correlation
and power spectrum analysis, the UM model parameters
were not significantly different for the PPPS and Hi‐Fi
products (Table 4). The intermittency parameter for the
PPPS product ranged from 0.21 for the event KICT‐10 to
0.40 for KICT‐09, whereas the multifractality index varied
from 0.99 for KICT‐01 to 1.39 for KICT‐08 (Table 4).
From the low value of C1 and the relatively high value of a
for the storm KICT‐10 (Table 4), we can say that the storm

is more space‐filling and has relatively fewer spikes than the
other storms; the result is consistent with correlation and
power spectrum analysis. Similarly, the high value of C1 and
relatively low value of a for the KICT‐09 suggest that the
storm is spikier and less space‐filling than other storms.
[39] We performed the DTM analysis for all 200 probable

rainfall fields and compared the UM model parameters with
those of the PPPS product to assess the impact of RR errors
(Table 4). In general (except C1 for KICT‐02 and a for
KICT‐07), the UM model parameters for the PPPS product
are greater than the corresponding average values estimated
from probable rainfall events (Table 4). The higher value of
C1 for the PPPS product meant an increase in the intermit-
tency or a decrease in the smoothness of the field, which is
contradictory to the result obtained from the correlation and
power spectrum analysis. However, it can be explained by
focusing on the behavior of a. Table 4 illustrates that the
value of a for the PPPS product is greater than the average
a from probable rainfall events, which means fewer spikes
and smoother fields. The net effect is the smoothing of the
field and is therefore consistent with the correlation and
power spectrum analysis.
[40] The explanation provided in the previous paragraph

must be taken with caution as C1 and a for the PPPS product

Figure 10. (top) Scaling of double trace moments (moment order q = 1.6) with respect to the scale ratio
for the two rainfall events. The solid lines show the ordinary least squares regression fit (the first two
points are not considered in regression). (bottom) Scaling of the double trace moment exponents with
respect to the moment order h. The solid lines show the ordinary least squares regression fit (the first
5 and last 6 points are not considered in regression).
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lie within the 90% confidence interval for some of the
selected storms. For example, although C1 and a for storms
KICT‐03 and KICT‐06 are greater than corresponding
average values from probable rainfall events, they lie within

the 5th and 95th percentile of the distribution obtained from
the probable rainfall events (Table 4). At the 10% signifi-
cance level, there is not enough evidence that the UM
parameters are overestimated for KICT‐03 and KICT‐06.
We then estimated the Hurst exponent H using equation (7)
for the RR products as well as the probable rainfall events
(Table 5). The Hurst exponent for the PPPS products is larger
than the 95th percentile for all of the storms. As the Hurst
exponent characterizes the degree of smoothness, the effect
of RR errors is to increase the smoothness of the rainfall
fields. Since the power spectrum slope was used in the
computation of the Hurst exponent, any impact of errors on b
propagated into the estimation of the Hurst exponent.

6. Summary and Conclusions

[41] Remotely sensed rainfall products, which are widely
used for the spatial and temporal characterization of rainfall
events, are affected by errors from various sources. There-
fore, it is imperative to quantify the effect of errors on the
estimated rainfall characteristics. In this study, we investi-
gated the impact of radar‐rainfall (RR) estimation errors on
the spatial characterization of RR products for warm season
rainfall events over Wichita, Kansas. For each storm, we
generated 200 probable rainfall events using the rainfall
generator developed by Villarini et al. [2009a] that was
based on a recent RR error model of Ciach et al. [2007]. We
assessed the effect of errors on different spatial character-
ization tools such as the spatial correlation function, power
spectrum, and moment scaling function. Besides performing
qualitative analysis, we also quantified the impact of errors
by parameterizing the aforementioned functions with mod-
els widely used in the rainfall literature.
[42] From the spatial correlation analysis, we found that

the shape parameter, which characterizes the behavior of the
spatial correlation function at the small separation lags, was
significantly overestimated for the RR products of all of the
storms. In general, there was a tendency for the correlation
distance (defined as the distance at which the correlation
drops to 1/e) to be also overestimated for the RR products.
The power spectrum analysis revealed that RR estimation
errors would smooth the fields at higher frequencies, leading
to the overestimation of the power spectrum slope for 8 of
10 rainfall events. The correlation and power spectrum
analysis also showed that the effect of RR errors was the
smallest for the more variable events. Moment scaling
analysis was then carried out to see the effect of errors on
the scaling of statistical moments of various orders. The
moment scaling functions were fitted with a universal
multifractal model using the double trace moment (DTM)
technique. The results from the DTM analysis also sug-
gested smoothing of rainfall fields by the RR errors. How-
ever, the results were not as conclusive as the correlation
and power spectrum analysis for some of the rainfall events.
The Hurst exponent, which characterizes the degree of
nonconservation or smoothness in the rainfall fields, was
also significantly overestimated for all of the storm events.
[43] Radar‐rainfall fields have been used in several studies

to infer spatial characteristics of the underlying unknown
areal rainfall fields. However, the effects of errors in the
radar‐rainfall fields on the inferred statistics have always

Figure 11. Moment scaling functions (solid lines) fitted to
the scaling exponents (dots) using the double trace moment
technique.
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been studied using arbitrary error models. The main strength
of our study lies in the use of a recently developed RR error
model and rainfall generator, whose parameters were
derived from 6 years of high‐quality datasets. Overall, the
results from our study indicate that the systematic and ran-
dom errors in the RR fields lead to significant overestima-
tion of the spatial characteristics, particularly at the smallest
scales. The results are in agreement with previous studies
using arbitrary models of RR errors. The study provides
quantitative information regarding the effect of RR errors on
the estimated correlation functions, power spectrum, and
scaling functions. Such information is of great value when
trying to build parsimonious models of rainfall based on
aforementioned spatial properties. Also, by propagating the
errors through hydrologic models, we can quantify the role
of RR errors in characterizing the hydrologic response.
[44] In this study, we have focused on the spatial structure

of rainfall events. The investigation of the effect of radar‐
rainfall errors on the space‐time characteristics of rainfall
would require inclusion of the temporal dependencies of the

random errors into the generator developed by Villarini et
al. [2009a], which is beyond the scope of this study.
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Table 5. Hurst Exponent Estimated Using Equation (7) for the
Radar‐Rainfall Data Obtained From Pseudo‐PPS (PPPS) and Hi‐Fi
Algorithmsa

Storm ID

Hurst Exponent H

PPPS Hi‐Fi

Probable Rainfall

Q0.05 Mean Q0.95

KICT‐01 0.50 0.51 0.28 0.35 0.40
KICT‐02 0.56 0.57 0.28 0.36 0.43
KICT‐03 0.35 0.35 0.21 0.26 0.30
KICT‐04 0.55 0.56 0.32 0.38 0.43
KICT‐05 0.54 0.55 0.31 0.37 0.43
KICT‐06 0.27 0.30 0.11 0.17 0.23
KICT‐07 0.55 0.56 0.35 0.40 0.44
KICT‐08 0.50 0.52 0.22 0.28 0.35
KICT‐09 0.33 0.32 0.19 0.24 0.29
KICT‐10 0.61 0.63 0.31 0.37 0.43

aThe table also shows the mean and 5th and 95th percentiles of the
corresponding parameters for the probable rainfall fields. All the
parameters are estimated for hourly accumulations with the spatial
resolution 4 km.

Table 4. Parameters of the Universal Multifractal Model Estimated Using the Double Trace Moment Technique From the Radar‐Rainfall
Data Obtained From Pseudo‐PPS (PPPS) and Hi‐Fi Algorithmsa

Storm ID

Intermittency Parameter C1 Multifractality Exponent a

PPPS Hi‐Fi

Probable Rainfall

PPPS Hi‐Fi

Probable Rainfall

Q0.05 Mean Q0.95 Q0.05 Mean Q0.95

KICT‐01 0.36 0.37 0.31 0.32 0.35 0.99 0.99 0.80 0.89 0.96
KICT‐02 0.27 0.28 0.25 0.28 0.32 1.09 1.07 0.86 0.98 1.08
KICT‐03 0.32 0.32 0.28 0.31 0.34 1.07 1.05 0.93 1.02 1.09
KICT‐04 0.25 0.26 0.22 0.23 0.25 1.02 1.03 0.94 1.01 1.06
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aThe table also shows the mean and 5th and 95th percentiles of the corresponding parameters for the probable rainfall fields. All of the parameters are
estimated for hourly accumulations with the spatial resolution 4 km.
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