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Pressure pulsations in reciprocating pump 
piping systems 

Part 1: modelling 
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Abstract: A distributed parameter model of pipeline transmission line behaviour is presented, based on
a Galerkin method incorporating frequency-dependent friction. This is readily interfaced to an
existing model of the pumping dynamics of a plunger pump to allow time-domain simulations of pipeline
pressure pulsations in both suction and delivery lines. A new model for the pump inlet manifold is also
proposed.
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1 INTRODUCTION1 

Reciprocating plunger pumps are robust, contamination
tolerant and capable of efficiently pumping many types of
fluids at high delivery pressures. As a consequence, they
are widely used in a diverse range of industrial
applications, including mining (for powered roof supports),
chemical plant, reverse osmosis systems and food
processing systems. The most common pump construction
consists of a small number of cylinders, usually mounted
in-line, each with a reciprocating piston driven by a
rotating crank and connecting rod mechanism. During the
suction stroke, flow is drawn from the inlet manifold into
a cylinder through a self-acting non-return valve;
various valve designs are employed although spring-
load poppet or disc valves are most frequently adopted.
Fluid delivery also takes place through a self-acting non-
return valve.
It is well known that the pipeline pressure pulsations

produced by these pumps are a source of noise and
vibration and may have a significant influence on the
reliability of a given installation. Consequently, it is
highly desirable to be able to predict pressure pulsations
at the design stage of an installation so that appropriate
steps may be taken to minimize their levels and their
influence.
Considerable research effort has been devoted to the

study of pressure pulsation behaviour in delivery lines of
fluid power systems employing typically gear, vane or axial

piston pumps [e.g. see references (1) and (2)] and to a lesser
extent to the suction lines of these systems (3, 4). However,
fluid power pumps typically employ a large number of
pumping elements (nine cylinders are commonly used in
axial piston machines, for example). As a consequence they
create relatively low amplitude flow pulsations and, in most
instances, low-amplitude pressure pulsations with a
relatively high frequency content are generated. This
allows a linearized analysis to be adopted and predictions
can be conveniently conducted in the frequency domain.
In contrast, plunger pumps generally have a small

number of cylinders (three or five are common) and are
usually operated at lower speeds. This leads to very large
flow pulsations, relative to the mean flow. It is possible that
the consequent high-amplitude pressure pulsations,
particularly in resonant delivery line systems, may
invalidate the use of linear theory. Hence predictions of
behaviour need to be performed either in the time domain
or by means of an iterative scheme [e.g. see reference
(5)]. A frequency domain approach to the prediction of
suction line pulsation behaviour is likely to be invalid if
cavitation is occurring as the effects are highly non-linear.
Some useful progress has already been made by a

number of workers on the mathematical modelling of the
pumping dynamics of reciprocating plunger pumps.
Johnston (6), for example, has developed a detailed
model which accounts for both valve dynamics and
cavitation in the pump cylinders. However, inlet line
pressure is taken to be constant and the delivery line is
represented by a lumped parameter model. Vetter and



Schweinfurter (7) address the problems of delivery pipe-
line wave propagation effects, but adopt a fairly
rudimentary pump model. Most of their predictions of
pulsation behaviour are presented in terms of peak-to-
peak pulsation levels, rather than frequency spectra or
time-domain waveforms. Thus the accuracy of the model
is difficult to establish. Singh and Madavan (5) have
presented a more detailed model of pumping dynamics
which is linked to a frequency-domain model of the
delivery pipeline. An iterative process is used to
account for the interactions between the pipeline and
the pump. Predicted pressure pulsation behaviour is
compared with experimental data in terms of
amplitude spectra. Phase spectra are not included in
the paper, so, again, it is difficult to establish the
accuracy of the model in predicting behaviour. Vetter and
Schweinfurter do not attempt to predict suction line
pulsations and although Singh and Madavan claim that
their model will predict suction line behaviour, no results
are presented.
This paper aims to address the inadequacy of existing

models by describing the development of a finite element
model of pipeline dynamics (under non-cavitating and
cavitating conditions) which is integrated with an
existing generic model of pumping dynamics.

2 PUMP MODEL 

This study concentrates on a single-acting, in-line plunger
pump, one cylinder of which is shown schematically in
Fig. 1. A detailed model for such an arrangement has been
developed by Johnston (6). The model accounts for flow
continuity into and out of each cylinder, according to
whether the inlet or delivery valve is open. Inlet pressure is
taken to be constant. In Johnston's approach the flows from
cylinders on their delivery stroke are summed together and
the resultant is used as the input to a lumped parameter
model of the delivery line. Full account is taken of the
forces acting on the inlet and delivery valves to provide
comprehensive modelling of valve dynamics. Full
details of the model are given in reference (6). It should be
noted that the approach is readily adapted to suit other
pump configurations.
The modifications necessary for interfacing Johnston’s

pump model to distributed parameter models of suction
and delivery lines will now be presented.

2.1 Manifold modelling

The flows from those cylinders communicating with the
delivery manifold are assumed to be created at one discrete
location rather than being spatially distributed over the
length of the manifold. This simplifies the interfacing of
the pump model with the delivery line model. It would not
be difficult to develop a spatially distributed model of
flows into the delivery manifold but the agreement between
predictions and experimental data suggests that this is an
unnecessary refinement. The summed flows are
introduced at the internal end of the manifold and define
the boundary conditions for the delivery line model

(Section 3). The manifold itself is treated as part of the
delivery line.
Experience has shown that a more detailed model

may be required for the inlet manifold. Once again, the
flows relating to individual cylinders communicating
with the manifold are all assumed to occur at the same
location. However, it has been argued that as a result of
air release, air pockets can form in the inlet manifold.
These, combined with pressure losses, play an important
role in the suction dynamics.

Fig. 1 Schematic of one cylinder of a reciprocating pump

Fig. 2 Schematic of inlet chamber geometry used in the
mathematical model

To model such behaviour a small chamber is assumed to
be present upstream of each inlet valve, as illustrated
schematically in Fig. 2. Each chamber can contain a pocket
of air and communicates with the inlet manifold via a
square-law restrictor. This is close to many real pump
designs where the inlet valve is located at the end of a
(usually short) passageway at right angles to the manifold.
Pressure losses are introduced by the right-angled bend
and, depending on manifold geometry, air pockets could be
trapped near the inlet valve. Through the selection of
appropriate restrictor loss coefficients, some account can
be taken of the different pressure losses likely to be
experienced at different locations along the manifold.
The relevant equations for this model are

Numerical integration of equation (2) gives the chamber
pressures, which on substitution in equation (1) provide the
flows drawn from the inlet manifold. The total flow drawn
from the inlet line is



That part of the inlet manifold not incorporated in chamber
models is included as part of the inlet line.
To account for the presence of air pockets in the

chambers, an effective bulk modulus of elasticity is
required. From reference (8),

The principal problem with this detailed model is the
difficulty in selecting appropriate values for the volumes
Vln, Van and the pressure loss coefficient Kcn. This may
be eased somewhat by selecting the same parameters for
each restrictor and chamber combination, albeit at the
expense of losing the ability to model cylinder-to-
cylinder variations. However, if this approach is
acceptable, significant gains in computational
efficiency can be achieved by assuming the
existence of just one chamber with which all
cylinders communicate. This chamber is linked to the
manifold through one square-law restrictor. In the case
of a three-cylinder pump the error introduced has been
found to be acceptably small since the ‘overlap’ between
two cylinders communicating with the chamber at the
same time is small, relative to the period of each suction
stroke.

3 TRANSMISSION LINE MODELLING 

The dynamics of distributed parameter piping systems are
described by hyperbolic partial differential equations. A
commonly used numerical scheme to solve these equations
is the method of characteristics (9-11) which has been
widely and successfully employed to model fluid transient
behaviour such as waterhammer under non-cavitating and
cavitating conditions. However, because the spatial
discret ization of the line is intrinsically linked to the
time step and speed of sound in the fluid,
difficulties can be encountered in obtaining compatibility
with the small time steps required to solve the differential
equations describing components connected to the line
(12). For example, for a time step of 10-2 ms and a speed
of sound of 1000 m/s, a line 10 m long would need to
be divided into 1000 elements. Moreover, when variable
time steps are required, the calculation of intermediate
values by interpolation becomes a further computational
burden.
To avoid these problems, an alternative approach is

adopted in this study in which the Galerkin finite element

method (13, 14) is applied in the spatial variables only. This
gives rise to an initial value problem for a system of
ordinary differential equations, allowing the time step to be
decoupled from the spatial interval.
The flow within a transmission line is to be calculated

under the assumptions of one-dimensional, unsteady
compressible flow. Independent variables of space and time
are denoted by x and t. The dependent variables are
the pressure P and the flowrate Q. Hence two partial
differential equations have to be solved:

In the case of laminar flow the friction term F(Q) can be
expressed as a quasi steady term F0 plus an unsteady term
(`frequency-dependent friction'), for which an
approximation has been developed by Zielke (15) and
Kagawa et al. (16):

The constants ni and mi are given by Kagawa et al. (16)
and are reproduced in Table 1. The number of terms k
should be selected according to the frequency range of
interest.



For turbulent flow, the quasi-steady term is replaced by

The unsteady friction term developed for laminar flow
[equation (10)] has been found by Vardy et al. (17) to work
well at Reynolds numbers up to about 104 and has been
adopted here. For cases involving much higher Reynolds
numbers the model proposed by Vardy et al. (17) could be
adopted.

3.1 Galerkin finite element method 

Finite element formulations based on the Galerkin
method (18) for time domain analysis have been
presented by Rachford and Ramsey (13) and Paygude et 
al. (14) using a conventional uniformly spaced grid
system with two degrees of freedom (pressure and
flowrate). In the work that follows the method is
presented for one degree of freedom (either pressure or
flowrate), with an extension to include the effects of
frequency-dependent friction. The calculation of pressure
and flow at alternating nodes is sometimes referred to as
interlacing.
Equations (6) to (10) can be rearranged in terms of

operator equations:

where U-1 is the value for U from the previous time step.
The transmission line is divided into 2N+1 equal
elements, each ∆x in length. A minimum of five elements
is required.
The Galerkin method involves finding approximations to

U, P and Yi of the form

for j = 0, 1, . . ., N - 1. The unknown coefficients u,
p and y are nodal values of U, P and Yi respectively.

The weighting (or basis) functions w+, w- are piecewise
polynomials. Here, linear interpolation functions are
adopted:

Evaluation of these integrals results in a set of ordinary
differential equations which allow the calculation of the
pressures at the odd-numbered nodes and flows at the even-
numbered nodes. In this study it was decided to specify the
flow at one end of the line and the pressure at the other end
(although it is equally possible to formulate solutions for
the cases where either pressure is defined at both ends or
flow is defined at both ends). In order to establish each
boundary condition it is necessary to solve the
equation relating to the end condition simultaneously
within the equation describing the behaviour of the
attached component. This necessitates the use of a
different weighting function, spanning a single element
rather than two, for the elements at each end of the line.
The resultant grid is illustrated in Fig. 3.



Fig. 3 Pipeline discretization grid and weighting functions

For the interlaced nodes, the resultant ordinary
differential equations are of the following form:

where



The nodal values at the boundary conditions are obtained
by applying the same methodology but using different
weighting functions, as dictated by the grid shown in Fig.
3. This results in two further ordinary differential
equations:

(where p2N+1 ≡ POUT). For the case of the pump inlet line,
the boundary condition at the reservoir is the constant
pressure source, p2N+1. At the pump, the total
instantaneous flow drawn into the cylinders defines UIN.
However, individual cylinder flows are dictated by the
instantaneous inlet valve differential pressure. Hence,
equation (26) must be used to provide p0, thereby
allowing the flows to be calculated.
At the pump outlet, the total delivery flow is established

using the same procedure, which now provides UIN for the
delivery line. In the case of a valve terminating the delivery
line, equation (26) is solved simultaneously with the
equation describing the valve behaviour. For a simple
restrictor valve returning the flow to atmospheric pressure,
for example, the termination pressure would be described by
the square law relationship:

where QLV is established from u2N+1 at the previous time
step. This approach may be extended to include valve
dynamics if required.
To accommodate the possibility of cavitation in the

suction line, three different pipeline cavitation models were
considered, based on the work of Shinada and Kojima (19).
A vaporous cavitation model was adopted, following its
successful implementation in a previous investigation
employing the method of characteristics (11). In this
scheme the pressure at any node is constrained not to fall
below the vapour pressure. Further details of the approach
are given in reference (11).

4 CONCLUSIONS 

It has been argued that current models of plunger pumps
are inadequate in respect of the complex interactions which
take place between the pump and attached pipelines. These
arise because of the distributed parameter nature of the
pipelines and because of cavitation. A finite difference
method for modelling pipelines, based on a Galerkin
method incorporating frequency-dependent friction, has
been proposed. This approach circumvents the
computationally intensive demands associated with the use
of the method of characteristics.
A new model for the pump inlet manifold has been

developed to account for the presence of air pockets. The
pipeline models are readily interfaced to an existing model
of pumping dynamics, to allow time-domain simulations of
pressure pulsations.
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