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Single Antenna Power Measurements Based
Direction Finding

Joni Polili Lie, Member, IEEE, Thierry Blu, Senior Member, IEEE,
and Chong Meng Samson See, Member, IEEE.

Abstract—In this paper, the problem of estimating direction-
of-arrival (DOA) of multiple uncorrelated sources from single
antenna power measurements is addressed. Utilizing the fact
that the antenna pattern is bandlimited and can be modeled
as a finite sum of complex exponentials, we first show that
the problem can be transformed into a frequency estimation
problem. Then, we explain how the annihilating filter method
can be used to solve for the DOA in the noiseless case. In the
presence of noise, we propose to use Cadzow denoising that is
formulated as an iterative algorithm derived from exploiting the
matrix rank and linear structure properties. Furthermore, we
have also derived the Cramér Rao Bound (CRB) and reviewed
several alternative approaches that can be used as a comparison
to the proposed approach. From the simulation and experimental
results, we demonstrate that the proposed approach significantly
outperforms other approaches. It is also evident from the Monte
Carlo analysis that the proposed approach converges to the CRB.

Index Terms—direction-of-arrival, annihilating filter, denois-
ing, single antenna direction finding.

I. INTRODUCTION

D IRECTION finding (DF) for multiple narrowband far-
field signal sources has been discussed intensively in the

literature. Early works exploit the directional radiation pattern
characteristics to estimate the direction-of-arrivals (DOAs) of
the signal sources by searching for the direction where the
maximum signal level is obtained. Such techniques have a
limited capability of resolving closely-spaced sources. Later
on, the well-known multiple signal classification (MUSIC)
algorithm is proposed as high-resolution DF. Instead of using
single directional antenna, it estimates the DOAs from a vector
of received signals at an antenna array [1], [2].

Although it is able to provide high-resolution DF, the MU-
SIC algorithm requires a computationally demanding spectral
search procedure. To overcome this, search-free variants of the
MUSIC algorithm are proposed. For examples, Root-MUSIC
[3], ESPRIT [4] and their extensions [5], [6]. Besides the
spectral search requirement, it is also highly sensitive to array
model errors [7]–[9]. This drawback motivates the use of
robust techniques in order to recover the high resolution per-
formance [10]–[13]. Other issues which are recently addressed
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also include the extension to arbitrary array geometry [14] and
array calibration [15]–[17].

Despite the efforts on overcoming the drawbacks of the
MUSIC algorithm, practical implementation is still challeng-
ing due to the multichannel receiver requirements [18]. This
motivates the authors in [19]–[21] to consider DF methods
using single-channel receiver. The key idea is to utilize the
switched parasitic elements connected to an antenna array in
order to construct multiple steerable beam. The DOAs can
then be estimated from the steering direction that resulted
in maximum signal level. Another recent single-channel DF
approach exploits the fact that the convolution between the
antenna radiation pattern and the DOA indicator function
results in the received signal at different rotating direction [22],
[23]. As such, the DOA indicator function can be obtained
through de-convolution process from the spatial sounding
measurement vector.

In this paper, we propose a single-antenna power measure-
ments based DF technique that estimates the DOA from a
vector of power measurements. It exploits the diversity in
the antenna radiation pattern that is captured through the
received power calculated when the antenna is pointing at
different directions. From a vector of power measurements,
the approach first utilizes a linear transformation of the power
vector into a vector of spectral observations. The DOAs are
then estimated as the solution to the spectral analysis. Due to
the similarity of the approach to the finite-rate-of-innovation
(FRI) sampling [24], the approach can be seen as performing
spatial sampling of stream of Diracs whose locations are the
DOAs.

The proposed approach belongs to the high-resolution DF
approaches due to its ability to resolve two signal sources that
are separated less than a beamwidth apart [25]. Besides the
high resolution capability, the approach does not require any
spectral search and is theoretically able to resolve as many
sources as half the number of power measurements. Since it
is not based on antenna array, the issues on array geometry
and modeling error are not under consideration. Hence, it is
very attractive from the practical implementation perspective.

II. SIGNAL MODEL AND PROBLEM STATEMENT

A. Notations

The following notations will be used in this paper:

• Matrices (uppercase letters) and vectors (lowercase let-
ters) are denoted by bold font.
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• The ij-th element of a matrix A is Aij , and (Ai:,A:j)
are the i-th row vector and j-th column vector of a matrix
A.

• diag{A} denotes the diagonal elements of matrix A
and Re{A} denotes the real component of matrix A.
Likewise, Im{A} for the imaginary component.

• The superscripts ∗, T , H , † denote the conjugate, trans-
pose, conjugate transpose, and pseudo-inverse operation
respectively.

• f ∗ g means the convolution of f and g.

B. Signal Model
We consider a single antenna receiving system with the

capability to calculate the power from the received signal.
Given that the spatial response of the antenna is non-uniform,
the received signal can be modeled as a sum of all the trans-
mitted signal attenuated with direction-dependent factor. In
mathematical form, the received signal x(t) can be expressed
as

x(t) =
K∑

k=1

g(θ̃ − θk)sk(t) + η(t) ,

where g(θ̃ − θk) is the antenna attenuation for the signal
impinging from θk direction when the orientation of the
antenna is at θ̃, sk(t) is the k-th impinging signal, η(t) is the
receiver’s noise and K is the number of impinging signals.
When the orientation of the antenna is no longer fixed, the
received signal experiences different attenuations. Let xl(t)
denote the received signal when the orientation is at θ̃l

xl(t) =
K∑

k=1

g(θ̃l − θk)sk(t) + η(t) .

The received signal power averaged over a duration T , in
which the sources of impinging signals sk(t) are assumed to
be stationary, can then be approximated as

pl =
1
T

∫

T

x2
l (t)dt ≈

K∑

k=1

|g(θ̃l − θk)|2︸ ︷︷ ︸
a(θ̃l−θk)

rk + nl , (1)

where

rk = 1
T

∫

T

|sk(t)|2dt , and nl = 1
T

∫

T

|η(t)|2dt .

This approximation is valid under the assumption that the
impinging signals are uncorrelated, hence the cross term is
negligible:

∫

T

g(θ̃l − θk1)g(θ̃l − θk1)sk1(t)sk2(t)dt ≈ 0 , k1 6= k2 .

Hence, the problem considered here can be stated as follows:
given a vector of the received power p = [p1, · · · , pL]T

measured when the sources of sk(t) are in stationary condition,
the objective is to estimate the direction-of-arrival (DOA) of
the impinging signals, θ = [θ1, · · · , θK ]T .

C. Antenna Pattern and Power Estimation Model
Let a(θ) denote the spatial power response of the antenna

(also known as antenna pattern). We have observed that it can

be well approximated (see Section VII) as a finite sum of
complex exponentials1 according to

a(θ) =
M∑

m=−M

amejmθ , (2)

where M is some finite integer. Notice that because a(θ) is a
real-valued function, the model in (2) is valid if am = a∗−m.
Also, the antenna pattern is a 2π-periodic non-negative func-
tion a(θ) = a(θ + 2π) and a(θ) ≥ 0, ∀θ.

In calculating the power of the received signal, the following
power estimation formula is used

p̂l =
1
N

N∑
n=1

|xl(n)|2 , (3)

where N is the number of snapshots and xl(n) is the n-
th discrete sample of the received signal xl(t). Note that
although the power is estimated from the discrete sample of
the received signal, only the vector of average power measure-
ments is assumed to be known. Thus, the received signal is
not available. This constraint is required in order to realize a
low-complexity low-cost direction finder. However, the power
estimation formula is necessary for numerical analysis and
in deriving Cramér-Rao Bound of the estimation problem (as
detailed in Section IV).

III. PROPOSED APPROACH

A. Transformation Into Spectral Analysis Problem

Substitute (2) into the received power expression in (1)

pl =
K∑

k=1

M∑

m=−M

amejm(θ̃l−θk)rk + nl

=
M∑

m=−M

K∑

k=1

rke−jmθk

︸ ︷︷ ︸
ym(θ)

amejmθ̃l + nl

and we can formulate a matrix equation in the linear form

p = Ay(θ) + n ,

using the following matrix and vectors definitions: n =
[n1, · · · , nL ]T are real-valued vectors of size L, y(θ) =
[ y−M (θ), · · · , yM (θ) ]T is a complex-valued vectors of size
2M + 1 and A is a L × (2M + 1) matrix with its element
given by

Alm = amejmθ̃l .

The vector y(θ) can be retrieved from the vector of received
power when L ≥ 2M + 1 using the least-square estimation
formula as follows

ŷ(θ) = A†p (4)

where the superscript † denotes pseudo-inverse operation.

1Such a decomposition of the antenna pattern has been extensively studied
in the literature and its bandwidth has been shown to be limited by the
calibration noise; see e.g. [26]–[30].
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In the case where the antenna is oriented in a regular and
uniform manner, that is

θ̃l = θ̃0 + lα

we will see that the retrieval of the angles θk is analogous to
a frequency estimation problem, typical of FRI settings [24],
[31]. When α = 2π/L, A† is actually a simple inverse DFT.
Instead of sampling in time, the system considered here is
performing spatial sampling using the power measurements
taken from different spatial orientation. Also, the sampling
kernel used here is the antenna pattern. Hence, the problem
can also be translated into spatial sampling with finite rate of
innovation where the sampling interval is non-uniform.

B. Annihilating Filter

Recall that ym is a sum of K exponentials

ym =
K∑

k=1

rke−jmθk . (5)

To obtain θ, it is possible to find a filter of length K +1 with
coefficients hm such that hm ∗ ym = 0. This filter is termed
as annihilating filter.

The z-transform of this filter is given by

H(z) = Const×
K∏

k=1

(1− zkz−1) ,

where the polynomial roots zk contains the DOA information
θk because

zk = e−jθk .

To find the coefficients hm from ym, we solve

min
hm

∑
m

|hm ∗ ym|2 subject to
∑
m

|hm|2 = 1 .

The solution can be obtained by computing the singular
value decomposition (SVD) of a Toeplitz matrix built using
ym. Then, the polynomial roots of H(z) is solved from the
coefficients hm and the DOAs can be calculated by

θ̂k = −j log(zk) (6)

The DOA estimate will be ranging from −π to π, that is:
−180o < θ̂k ≤ 180o. The negative values refer to the
directions greater than 180o. Therefore, the estimate can be
adjusted by first adding 2π and then taking the modulo-2π.
The resulting value will be ranging from 0o to 360o.

It is important to note that the above approach is capable of
resolving any pair of closely-spaced sources for the noiseless
case. In other words, there is no limitation in the DF resolution.
Nevertheless, the number of resolvable DOAs is limited by the
parameter M . This is related to the bandwidth requirement
for the sampling kernel in the FRI sampling problem. The
bandwidth of the antenna pattern with the model in (2) is
2M + 1. Thus, it is able to estimate M DOAs accurately.

However, this is not the case in practice because the received
signal is noisy. The estimation will lose its accuracy due to the
noise. As explained next, this can be overcome with denoising
algorithm which requires the parameter M to be greater than

the number of sources K. The larger the parameter M , the
better the estimation accuracy.

C. Cadzow denoising

Because the received power is calculated from the noisy
measurements of the received signal, ŷm will be subjected
to an estimation error. Hence, as the noise power from the
received signal increases, the annihilating filter coefficients hm

will not yield a good estimate of the DOAs.
To overcome this, it is necessary to include a denoising

algorithm to denoise ŷm [31]. Cadzow in [32] proposes a
composite property mapping algorithm that exploits the signal
attributes and properties of matrix representation to perform
denoising. We first show that the Toeplitz matrix built from
ym also possesses the similar attributes and properties as those
exploited in Cadzow denoising algorithm. Then, we discuss
the implementation of the denoising algorithm.

Let Ŷ denote the Toeplitz matrix of size (2M − J + 1)×
(J + 1), constructed from the element of ŷm as follows

Ŷ =




ŷ−M+J ŷ−M+J−1 · · · ŷ−M

ŷ−M+J+1
. . . . . .

...
...

. . . . . .
...

... ŷM−J−1

ŷM · · · ŷM−J+1 ŷM−J




(7)

The first property of the matrix is the matrix rank. Because ym

is modeled as sum of K exponent terms given in (5), the rank
of the Toeplitz matrix constructed from ym according to (7)
will be equal to K. Using this rank property, it is possible
to denoise the Toeplitz matrix Ŷ by using rank reduction
mapping. This matrix mapping function can be written as
follows

Ŷ(K) = F (K)(Ŷ) =
K∑

k=1

λkukvH
k , (8)

where {λ1, · · · , λK} are K largest eigenvalues and the unitary
vectors (uk,vk) are the K vectors associated to the K
eigenvalues. These vectors can be obtained through SVD.
Alternatively, this matrix mapping can be seen as reconstruct-
ing the Toeplitz matrix from only K eigen-components. It is
worth mentioning that this mapping requires the number of
sources K to be known. Otherwise, it can be estimated using
the information theoretic criterion methods, e.g. MDL or AIC
[33].

The second property is the linear structure property. This
property can be shown by utilizing a matrix re-ordering
function. Let T (·) denote the matrix re-ordering function that
reshapes a matrix into a column vector. The re-ordering can
be explained as follows

T (Ŷ) = [ ŶT
:1 ŶT

:2 · · · ŶT
:(J+1) ]T .

After the re-ordering, the resulting vector can be modeled as
over-determined linear system of equations

T (Ŷ) = Sŷ(θ) ,

where S is a selection matrix with elements 0s and 1s. Thus
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by utilizing the linear structure property, the denoising of Ŷ
can be realized by taking a least squares estimate of ŷ(θ) and
followed by inverse re-ordering to reshape back into a matrix
representation. These operations form another matrix mapping
function

ŶLS = FLS(Ŷ) = T−1(S†T (Ŷ)) (9)

By combining both matrix mapping function in (8) and (9),
an iterative composite mapping algorithm for denoising of Ŷ
can be constructed using the following composite mapping
function

F (Ŷ) = FLS(F (K)(Ŷ)) (10)

After a few iterations, the denoising algorithm will provide a
good approximation of a rank-K Toeplitz matrix. This can be
seen from the value of the eigenvalues {λK+1, λK+2, · · · }: as
iteration continues, these eigenvalues approaches zero. As will
be demonstrated via numerical experiments in Section VI, the
accuracy of the estimator improves as the iteration converges.

As stated in [32], the convergence of the Cadzow denoising
requires that the composite property mapping of Ŷ in (10)
be a closed mapping. It has also been proven in [32] that
the composite mapping is a closed mapping. Hence, it can be
concluded that the Cadzow denoising algorithm converges.

D. Summary of Proposed Approach

In summary, the proposed approach for estimating θ given
the vector of power measurements p can be listed as follows

1) Estimate ŷ(θ) using (4).
2) Form a Toeplitz matrix Ŷ from ŷ(θ using (7). The

column size of the Toeplitz matrix can be arbitrarily
set to a value larger than K but not greater than M +1.

3) Denoising: Run (10) for 20 iterations.
4) Compute the annihilating filter coefficients hm from the

K + 1 eigenvectors of the denoised Ŷ. This requires
SVD or eigen-decomposition of Ŷ.

5) Find the polynomial roots of the annihilating filter zk

from the coefficients hm.
6) The estimate of θ can be calculated from zk using (6).

IV. CRAMÉR-RAO BOUND

In this section, we will derive the Cramér-Rao Bound
(CRB) of the estimator. Previous work reported by Porat and
Friedlander [34] and subsequently adapted by Blu et. al. [31]
includes the derivation of the CRB when the noise is additive.
In the problem presented in this paper, the noise appearing
in the received power is calculated from the finite sum of
squares of the received signal. Firstly, we will investigate
the noise transformation from the power calculation to the
estimation of ym(θ). By showing that the estimation error
can be approximated as Gaussian distribution, we will then
deduce the CRB expression for θ.

A. Noise Transformation Analysis

To assess the proposed estimation, it is important to know
the noise distribution. We start by assuming that the discrete

samples of the receiver’s noise η(n) are complex-valued white
Gaussian random variables with zero mean. That is,

η(n) ∼ CN (µη, Γη, Cη) (11)

where µη = 0, Γη = 2σ2, Cη = 0 and CN denotes complex
normal distribution random variable.

Given that the received power can be estimated from the
discrete samples of the received signal using the expression in
(3), the noise at the received power is distributed according to
(see Appendix A for a detailed derivation)

p̂l ∼ N (µp̂l
, σ2

p̂l
)

µp̂l
= 1

N

∑N
n=1

∣∣∣∑K
k=1 g(θ̃l − θk)sk(n)

∣∣∣
2

+ 2σ2

σ2
p̂l

= 4σ4

N (12)

Recall that from the L estimates of the received power, the
proposed approach transforms the problem into a spectral anal-
ysis problem using the matrix multiplication in (4). Because
the matrix multiplication can be seen as a linear transformation
of a vector of random variable, we can therefore devise the
distribution of the vector ŷ as expressed in (4) with p̂ con-
structed from L elements of p̂l. Since p̂ follows a multivariate
normal distribution, we know that its linear combination will
also follow a multivariate normal distribution. Therefore, we
have

p̂ ∼ NL(µp,Σp)
µp = [µp̂1 , · · · , µp̂L

]T

Σp = diag{[σ2
p̂1

, · · · , σ2
p̂L

]} (13)

and we can obtain the distribution of ŷ

ŷ ∼ N2M+1(µy,Σy)
µy = A†µp

Σy = (A†)Σp(A†)H (14)

With the expression in (14), we can then proceed to derive
the Cramér-Rao Bound as discussed next.

B. CRB Derivation

From the distribution of ŷ, we can re-write the signal model
as

ŷ = Qr + e (15)

using the following matrix and vectors definition: r =
[ r1, · · · , rK ]T , e = [ e−M , · · · , eM ] and

Q = [ q1 · · · qK ]
qk = [ e−jMθk · · · 1 + 2σ2 · · · ejMθk ]T

Notice that the {m = 0}-th element of qk has a biased term
2σ2. This term will not affect the estimator because it is not
a function of θ. The noise vector e is a multivariate Gaussian
distribution

em ∼ N (0,Σy) .

For brevity of notation, let M̄ = 2M + 1. The likelihood
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function of the vector ŷ is given by

L(ŷ) =
1

(2π)
Ṁ
2 |Σy|

1
2

exp
(
−1

2
[ŷ −Qr]HΣ−1

y [ŷ −Qr]
)

.

The CRB can be derived following the derivation in [35]. In
fact, given the signal model in (15), our CRB can be seen as
the extension of the CRB derivation in [35] with the noise
vector being a multivariate normal distribution random vector.

CRB−1(θ) = 2 Re
{

diag[r]HDHΣ−1
y P⊥QD diag[r]

}
(16)

where P⊥Q = I−Q(QHQ)−1QH and the mk-th element of
matrix D is given by

Dmk =
d

dθk
Qmk = jmejmθk .

Hence, one can refer to [35] for a detailed derivation of
CRB. In general, the same CRB expression will be obtained
if the bias term 2σ2 is not present at the signal model.

V. ALTERNATIVE APPROACHES

Besides transforming into a spectral analysis problem, it
is possible to approach the problem in an alternative way as
described in this section. Firstly, we define a vector whose
elements are composed of sufficiently fine grid of DOAs: ϑ =
[ϑ1, · · · , ϑG ]T , where G denotes the number of DOAs that
define the grid. Then, the L-dimension vector of the received
power can be expressed in an alternative linear form given by

p̂ = Φ(ϑ)d + n (17)

where d = [ d1, · · · , dG ]T is a sparse vector consisting of
(G−K) elements of zeros and K elements of {r1, · · · , rK}
and

Φlg = a(θ̃l − ϑg) .

With this re-formulation, we can deduce a basic least
squares (LS) approach from minimizing the least squares error

min
d
‖Φ(ϑ)d− p̂‖22 .

The DOAs θ can be estimated from K largest elements of
the sparse vector estimate, d̂, obtained from solving the LS
minimization.

Since the non-zero elements of d are the received power
of individual transmission and they are strictly positive, it
is possible to impose a non-negative constraint into the LS
minimization. This optimization is still solvable and can be
written as

min
d
‖Φ(ϑ)d− p̂‖22 s.t. d ≥ 0 . (18)

The solution to this optimization is known as non-negative
least squares (NNLS) solution [36]. Similar to LS solution,
the DOA estimation is achieved by searching for K largest
elements of the NNLS solution. However, unlike the LS solu-
tion, there is no closed-form solution for the NNLS solution.
The implementation of the NNLS solution requires an iterative
algorithm.

As compared to the proposed approach described in Section
III, the resolution of the DOA estimation based on these
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Fig. 1. (a) An example of the realization of antenna pattern simulated
according to (2) with M = 9. (b) The power level versus the direction plotted
with the actual DOA locations indicated by ’—o’.

approaches are limited by the resolution of the DOA grid
defined by ϑ. Besides least squares based approaches, the
solution based on minimization of `1-norm can also be con-
sidered from the same signal model in the form (17). Due to
the high measure of sparsity, the solution based on `1-norm
minimization may yield a better estimate [37]. Nonetheless,
this approach shares the same limitation as the least squares
based approach.

VI. SIMULATION RESULTS

We consider a directional antenna with the antenna pattern
simulated using the expression g(θ) =

∑M
m=0 gmejmθ with

M = 9 and {gm, m ∈ {1, · · · ,M}} generated randomly
according to uniform distribution. Then, the g0 is set such
that the antenna pattern is a nonnegative function. Fig. 1(a)
shows an example of the antenna pattern.

The propagation environment is simulated such that two
uncorrelated sources emitting from 25.208o and 47.7191o.
When arrived at the receiving antenna, it is modeled as

sk(n) =
√

αk exp(j[2πfkn + ϕk])

with the parameters set as: αk = [0.9, 0.8], fk =
[0.253, 0.347], and ϕk = [0.0136, 0.8044]. It is important
to note that although the simulations presented in this paper
consider narrowband signal model, the proposed method does
not require narrowband assumption and is able to process
wideband signals centered at different frequencies. As many as
N = 512 samples of the received signal are used to compute
the received power and L = 76 values of the received power
are collected from different antenna orientation generated
randomly within 0o and 359o. Fig. 1(b) shows the actual DOAs
as well as the continuous and discrete power measurements
that forms the vector p for the noiseless case. The DOAs are
estimated from the discrete power measurements of the noisy
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case. Looking at the continuous power measurements plot, we
can see that high resolution DF technique is required to resolve
the two closely-spaced sources.

In our first simulation, we evaluate on five different DF
methods and show how they resolve the two closely-spaced
sources. They include the FRI method with and without the
Cadzow denoising algorithm, as well as the NNLS method
with and without the prior knowledge (on the number of
sources K) and the deconvolution with modified CLEAN [23].
The FRI method is implemented according to the procedure
listed in Section IIID with the Step (3) skipped for that
without the Cadzow denoising. The column size of the Toeplitz
matrix is set to M + 1 so that it becomes a square matrix.
For the implementation of the de-convolution method with
modified CLEAN, we use linear interpolation to obtain the
continuous function of the received power from the 76 power
measurements and then de-convolute it with the continuous
antenna pattern before going through the modified CLEAN
algorithm as proposed in [23]. The NNLS method with prior
knowledge of K is implemented by keeping only K largest
peaks.

Fig. 2 shows the stem-plot of the normalized amplitude
against the corresponding DOA estimation results when signal-
to-noise ratio (SNR) is set at -10 dB and 20 dB. The ampli-
tudes shown are not the amplitudes retrieved: the apparent
differences are only meant to make easier the viewing of
the graphs. NNLS-2 refers to the NNLS method with prior
knowledge on the number of signals. The same simulation
setting is also used to generate Fig. 3, 12, 14 and 15. The
SNR is calculated as the total power of the impinging signal
at the antenna over the noise power2:

SNR = (
K∑

k=1

αk)/2σ2.

Note that both the NNLS and the de-convolution with modified
CLEAN method belong to the peak search based method. They
require peak search procedure to identify the peak from the
DOA indicator function, while this is not the case for the FRI
based method.

When SNR is low, the DOA indicator function from the
NNLS method shows many spurious peaks. While this draw-
back is not observed in the de-convolution method, it is
unable to resolve the two sources due to the close separation.
Fig. 2 also demonstrates how our implementation of Cadzow
denoising algorithm helps to recover the performance in the
low SNR case.

Next, we simulate another realization by keeping all param-
eters unchanged except for the DOA of the sources. Instead
of having two closely-spaced sources, we simulate the case
when the two sources are well separated (θ1 = 25.208o and
θ2 = 157.7191o). In this case, we expect the de-convolution
method to be able to resolve the two sources. Fig. 3 shows
the normalized amplitude plot as a function of the DOA
estimation results. As expected, like the other methods, the
de-convolution method is able to resolve the two sources.

2The SNR expression here is calculated at the received signal x(t).
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Fig. 2. DOA estimation result for N = 512, L = 76, and θ =
{25.208o, 47.7191o}.
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Fig. 3. DOA estimation result for N = 512, L = 76, and θ =
{25.208o, 157.7191o}.

In the following simulation, we consider 1000 realizations
and calculate the root mean-square error (RMSE) from the cor-
responding 1000 estimation results. Among the peak-search-
based methods, only the NNLS-2 is compared against the
FRI-based methods in this simulation. This is because the
RMSE calculation for the de-convolution method becomes
ambiguous when it only provides single DOA estimate. Hence,
it is omitted in the following simulations. Fig. 4 shows
the DOA estimation RMSEs of the FRI method with and
without Cadzow denoising and the NNLS method with prior
knowledge of K as a function of SNR. The square root of the
CRB as derived in (16) is also shown. From this figure, it can
be observed that the use of our Cadzow denoising significantly
improves the performance. When the SNR is -5dB or higher,
the performance of the FRI method with Cadzow denoising
converges to that of the lower bound. This can be explained
due to the bandwidth of the antenna pattern used that allows
the denoising algorithm to reduce the noise effect. In addition,
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Fig. 4. DOA estimation RMSEs versus SNR for N = 512 and θ =
{25.208o, 47.7191o}, obtained from L = 26 power measurements. The
antenna pattern is modeled with M = 11.
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Fig. 5. DOA estimation bias versus SNR for N = 512 and θ =
{25.208o, 47.7191o}, obtained from L = 26 power measurements. The
antenna pattern is modeled with M = 11.

we also evaluate the bias of the estimators as shown in Fig. 5.
It is important to note that the NNLS-2 is implemented with
1o step-size. Therefore, its accuracy will be limited and this
effect can be seen in Fig. 4 and 5 when SNR>15dB.

Next, we fixed the SNR at -10 dB and vary the number of
power measurements. The estimation results shown in Fig.
6 implies that taking more power measurements can help
to further improve the estimation performance in low SNR
environment.

The next simulation helps to validate the hypothesis that
antenna pattern bandwidth affects the estimation performance
through the denoising algorithm. We keep all the param-
eters unchanged except for the antenna bandwidth, which
is varied by changing the parameter M . Fig. 7 shows the
DOA estimation RMSEs versus the antenna pattern bandwidth.
It clearly demonstrates that as the bandwidth increases, the
RMSE performance of the proposed approach converges to
the CRB.

24 26 28 30 32 34
10

0

10
1

10
2

no of power measurements, L

R
M

S
E

 (
de

gr
ee

)

 

 

Cadzow+FRI
FRI
NNLS−2
root(CRLB)

Fig. 6. DOA estimation RMSEs versus the number of power measurements
for N = 512 and θ = {25.208o, 47.7191o}. The antenna pattern is modeled
with M = 11 and the SNR is set at −10dB.
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Fig. 7. DOA estimation RMSEs versus the antenna pattern bandwidth for
N = 512, L = 26 and θ = {25.208o, 47.7191o}. The SNR is set at -5dB.

The last two simulations examine the performance of the
methods versus the angular separation between two sources
and the performances when the number of sources increases.
Fig. 8 displays the DOA estimation RMSEs versus the angular
separation simulated when the DOA of the first source is
fixed at 25.208o while the second DOA is varied. M is set
at 11 and all other parameters are chosen from the previous
example. It can be seen clearly that the proposed approach is
unable to converge to the CRB performance when the angular
separation is less than 15o. Theoretically, the approach has
no limitation on the angular resolution. However, due to the
presence of noise, the accuracy is affected. To illustrate this,
we also simulate for the higher SNR case, i.e. SNR=5dB. As
clearly shown, the approach has better resolution for the higher
SNR case.

Fig. 9 re-displays the RMSE plots versus SNR for K = 2
sources and compares them with the RMSE plots for K = 4.
Given the same antenna pattern, the approach yields better
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L = 26, M = 11 and θ1 = 25.208o while θ2 is varied.
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Fig. 9. DOA estimation RMSEs versus SNR for N = 512, L = 26,
M = 11 and θ = {25.208o, 47.7191o} for K = 2 sources and θ =
{25.208o, 47.7191o, 75.4563o, 105.2431o} for K = 4 sources.

performance for lesser sources in the low SNR case. This
can be observed from the plots at -10dB SNR. The approach
achieves CRB performance for K = 2 while it is not the case
for K = 4.

VII. EXPERIMENTAL RESULTS

In this section, we present the results from experiments
using the hardware realization of the proposed approach.
Firstly, we explain the configuration of the DF receiver and the
experimental setup in the DF experiments. Next, we describe
the antenna pattern model obtained from the anechoic chamber
experiment. And lastly, we show the results of the DF experi-
ments conducted in three different propagation environments.

To realize the proposed DF receiver, we utilize the direc-
tional GSM antenna as shown in Fig. 10. To compute the
received power, the received signal has to be first down-
converted then sampled. To achieve that, we use winRadio

Fig. 10. Schematic diagram of the direction finding receiver.
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Fig. 11. Normalized antenna pattern plots of the GSM directional antenna.
Solid line shows the plot obtained from the experimental results while the
dotted line shows the plot obtained by fitting the solid-line curve using the
polynomial model in (2) where M = 8.

RF-to-IF down-converter [38] and Red Rapids PCMCIA-based
acquisition card [39]. The acquisition card is able to supply 14-
bit discrete samples of the in-phase and quadrature phase of the
analog signal. To measure the orientation of the antenna when
the received signal is sampled, a digital compass OS5000-
US manufactured by Ocean Server is utilized [40]. It can be
connected to USB port and it stream 19200 baud rate data
which consists of its orientation with respect to true north.
As a whole, the schematic of the DF receiver can be shown
in Fig. 10. Since the directional GSM antenna is operating in
GSM band, we deploy GSM transmitters emitting single-tone
sinusoidal wave at 900 MHz. A GSM transmitter comprises
of an omnidirectional GSM antenna connected to a signal
generator.

We first utilize single GSM transmitted placed in an ane-
choic chamber at the transmitting end while the DF received
is placed at the receiving end. This experiment is conducted
in order to acquire the antenna pattern of the GSM antenna.
By taking power measurements for every 2o rotation, the
normalized pattern can be shown in Fig. 11.

From the experimental pattern, we then try to fit the pattern
to the sum of exponent terms model in (2) using least squares
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Fig. 12. Experimental results from anechoic chamber experiment.

based regression technique by varying the parameter M . When
M = 8, the residual is small enough such that increasing M
only results in insignificant further reduction in the residual.
Therefore, we select M = 8 and obtain the parameters gm

that best model the antenna pattern. The comparison between
the antenna pattern from the experimental and that from the
model-fitting is shown as well in Fig. 11.

Next, we conducted a single-source propagation experi-
ment inside the anechoic chamber. 34 power measurements
computed from 2560 discrete samples of the received signal
are collected when the antenna’s orientation is randomly
changed. The transmitter is placed at 120o with respect to
true north. The NNLS solution suffers from the present of
spurious peaks which causes ambiguity in deciding which peak
indicates the true DOA. This drawback can be overcome using
the parametric methods. This is shown from the estimation
result using the FRI and FRI with Cadzow denoising. It is
demonstrated here that the use of Cadzow denoising helps to
improve the estimation accuracy.

Although the experiment in the anechoic chamber has
demonstrated the feasibility of the proposed approach, con-
ducting experiment in a more realistic propagation environ-
ment may help to capture more non-idealities of the signal
propagation as compared to the experiment in the anechoic
chamber. With this motivation, we conducted more exper-
iments in two different propagation environments: a semi-
outdoor propagation at fire engine access field between South
Spine Academic Complex S2.1 and S2.2, Nanyang Technolog-
ical Universy (shown in Fig. 13) and an indoor propagation
setup at the foyer of Research Techno Plaza, Nanyang Tech-
nological University. The first environment is considered as
semi-outdoor due to the confined wall at the two-side of the
experiment area. For these experiments, two transmitters are
utilized.

As many as 30 and 16 power measurements are collected
together with its receiving antenna orientation for the semi-
outdoor and indoor experiments, respectively. The results are
shown in Fig. 14 and 15. In both figures, it can be observed

Fig. 13. Experimental setup in a semi-outdoor propagation environment.
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Fig. 14. Experimental results from semi-outdoor experiment.
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Fig. 15. Experimental results from indoor experiment.

that the FRI with Cadzow denoising yields better accuracy.
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VIII. CONCLUSION

We have demonstrated using simulations as well as exper-
imental results the feasibility of the proposed single power
measurements based DF. With the derived CRB, we also show
that the performance of the proposed approach converges to
the CRB. The proposed approach utilizes a linear transforma-
tion of the vector of power measurements into a vector of ob-
servations that is common in spectral analysis problem, which
can be solved using Pisarenko’s method. Due to the noise
at the received signal, the proposed approach incorporates
Cadzow denoising algorithm that exploits the matrix rank and
linear structure properties. The problem of estimating the DOA
from the power measurements of single receiving antenna can
also be seen as stream of Diracs sampling problem in spatial
domain.

APPENDIX
DERIVATION OF (12)

In the following derivation, we assume that the received
power is calculated according to (3). Given that the discrete
samples of received signal xl(n) is contaminated with complex
Gaussian distributed random variables as described in (11), we
have

|xl(n)|2 = Re{xl(n)}2 + Im{xl(n)}2
= |s̆l(n)|2 + |η(n)|2 + 2w(n)

where s̆l(n) =
∑K

k=1 g(θ̃l − θk)sk(n) and

w(n) = Re{s̆l(n)}Re{η(n)}+ Im{s̆l(n)}Im{η(n)} .

The modulus of a complex Gaussian distributed random
variable will result in a Rayleigh distributed random variable
with parameter σ2

|η(n)| ∼ Rayleigh(σ2)

Taking sum of the squares of |η(n)| over N samples will
transform the Rayleigh distribution to a Gamma distribution
with parameter N and 2σ2:

N−1∑
n=0

|η(n)|2 ∼ Γ(N, 2σ2)

Because of the large value of N , the Gamma distribution can
be approximated as a Gaussian distribution N (2Nσ2, 4Nσ4).
Therefore, we have

1
N

N−1∑
n=0

|η(n)|2 ∼ N (2σ2, 4σ4/N) (19)

The cross term w(n) is negligible since the signal is uncor-
related with the noise. From the received power expression in
(1), we are able to split the expression according to its random
variable contribution

p̂l = p̆l +
1
N

N−1∑
n=0

|η(n)|2 (20)

where p̆l = 1
N

∑N−1
n=0 |s̆l(n)|2. With the distribution definition

given in (19), we can deduce the distribution of the received

power.
p̂l ∼ N (p̆l + 2σ2, 4σ4

N ) (21)

Note that (21) can also be derived given that the probability
distribution satisfied by |xl(n)| is known as Rician distribution
(generalization of Rayleigh distribution).
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France, in 1964. He received the ”Diplôme
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