This document is downloaded from DR-NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore.

Phase-sensitive surface plasmon resonance sensor based on interferometric configuration

Zhang, Shuyan

2010

Zhang, S. Y. (2010, March). Phase-sensitive surface plasmon resonance sensor based on interferometric configuration. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/94193

© 2010 The Author(s).

Downloaded on 04 Apr 2024 03:47:41 SGT

URECA

Undergraduate Research Experience on CAmpus

Category: 3 **Project ID: EEE09070 Student: Zhang Shuyan**

School of Electrical and Electronic Engineering

PHASE-SENSITIVE SURFACE PLASMON RESONANCE SENSOR **BASED ON INTERFEROMETRIC CONFIGURATION**

Background

Surface plasmon waves are quantized harmonic oscillatory motion of electrons at the surface. The criteria for excitation of surface plasmon resonance (SPR) are: the incident wave must be matched in angular frequency and momentum with that of the surface plasmon.

Simulation Results

Novelties & Applications

- **Simplified multi-reflection model** for surface plasmon
- High sensitivity by phase detection
- * Noise suppression using interferometric configuration
- Demonstrated refractive index measurement for CoCl₂
- Potential application in real time bio-molecular interactions
- Potentially useful for biosensing and bioimaging

Discussions

- S-polarized light serves as a reference
- Interferometer for phase detection
- Differential phase:

$$r_{p(s)} = \frac{r_{12} + r_{23} \exp(2ik_{z2}d)}{1 + r_{12}r_{23} \exp(2ik_{z2}d)} \quad \begin{array}{l} r_{zz} : \textit{reflectivity of prism-metal interface} \\ r_{zz} : \textit{reflectivity of metal-sample} \\ \text{interface} \\ k_{zz} : \textit{wave number vector of the} \\ \text{transmitted light in the metal layer} \end{array}$$

- Integration with microfluidics for real time detection
- Simultaneous detection of both polarizations
- Resolution (theoretical): 4.1x10⁻⁴ RIU/degree
- Resolution (experimental): 3.1x10⁻² Molar/degree

Experimental Results

- High phase detection sensitivity is obtained theoretically and demonstrated in the experiment.
- A linear relationship (R^2 =0.8994) is observed for differential phase change vs. sample concentrations.

Project Title: Surface Plasmon Resonance Measurement I **Supervisor: Professor Shum Ping**

Co-supervisor: Dr Yu Xia (SIMTech)