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Abstract 

   This paper presents a mathematical model to describe a three-fluid electroosmotic 

focusing/pumping techniques, in which an electrically non conducting fluid is focused and 

delivered by the combined interfacial viscous force of two conducting fluids and pressure 

gradient. The two conducting fluids are driven by electroosmosis and pressure gradient. The 

electrical potential in the two conducting fluids and the velocity distribution of the steady three-

fluid electroosmotic stratified flow in a rectangular microchannel were presented by assuming a 

planar interface between the three immiscible fluids. The effects of viscosity ratio, 

electroosmosis and pressure gradient on velocity profile and flow rate are analyzed to show the 

potential feasibility of this technique. 

Keywords: Three-fluid stratified flow; Electrical double layer; Electroosmotic focusing 

 

1. Introduction 

   In microfluidic devices, the flow focusing technique provides a particularly effective means of 

controlling the passage of chemical reagents or bio-samples in a microchannel network. 

   Hydrodynamic and electrokinetic focusing techniques are two popular flow focusing 

techniques. Stiles et al. [1] proposed a simple method to focus the sample stream by using either 



a single suction pump or capillary pumping effect. The focused stream width was controlled by 

varying the relative resistances of the side and inlet channel flows. Precise control of the focused 

sample stream width is crucial for different applications. For example, in cell counting and 

sorting applications performed in micromachined-based flow cytometers, the width of the 

focused stream should be at the same order of magnitude as that of the cell size [2, 3]. In 

addition, several studies [4] showed that the focused sample stream can be precisely guided and 

positioned by adjusting the relative flowrates of the two neighboring sheath flows. Lee et al. [4] 

applied flow focusing to develop various valveless microflow switches. However, the 

disadvantage of the proposed designs for pressure driven flow required a high flowrate ratio 

between the sheath and sample fluids to move the interface location or to switch the sample 

fluid. More recently, electroosmotic force was introduced to achieve switching [5, 6]. 

   Since the surface-to-volume ratio in microscale is large and electroosmotic flow (EOF) is 

governed by surface charge, EOF would be more efficient than ordinary pressure driven flows 

[7]. This feature was exploited by EOF pumps. EOF pumps are popular since they contain no 

moving parts and are relatively easy to integrate in microfluidic circuits during fabrication [8]. 

Lin et al. [9] reported a numerical model for electrokinetic control, which can adjust the volume 

of the sample fluid. Fu et al. [10, 11] presented experimental and numerical results of 

electrokinetic flow injection. By applying different voltages at different parts of the channel, the 

sample fluid could be directed into a specific outlet channel. Gao et al. [12, 13] derived the 

analytical solution of velocity profile and flowrate of two-liquid flow in microchannel which was 

driven both by electroosmotic force and pressure gradient.  

   While most of the previous theoretical studies mainly consider pressure alone for the three-

fluid flow [4, 14] or the combined effects of pressure gradient and electro-osmosis for two-liquid 

flow [12], there is few models to discuss about the focusing effect which takes into account of 

the combined effects of pressure gradient and electroosmosis. The present work proposes a 

theoretical model of three-fluid flow under conditions of electroosmosis, pressure gradient and 

the surface charge at the interfaces. 

   Fig. 1(a) shows the model of the three-fluid flow, two fluids (fluids 1 and 3) are conducting 

fluids with high electroosmotic mobility, while the focused fluid (fluid 2) is non conducting with 

a low electroosmotic mobility. For a given pressure gradient, different electric fields are applied 



across the conducting fluids, electroosmotic forces will be generated and the velocity of 

conducting fluids can be regulated depending on the directions and the strength of the applied 

electric fields. The fluid with low electroosmotic mobility is focused and delivered by the 

interfacial viscous force of the conducting fluids. 

   This paper aims to provide a theoretical analysis of the three fluids driven by the combined 

electroosmosis and pressure gradient. Analytical solutions of the EDL in the conducting fluid 

and velocities of three fluids are obtained in the fully developed section in a rectangular channel. 

The flow of the three fluids depends on the coupling effects of the three fluids which involve the 

pressure gradient and electrokinetic driven forces and the interfacial phenomenon. The model 

accounts for surface charges at the two liquid–liquid interfaces. 

 

2. Theoretical model 

2.1. Electric double layers in the conducting fluid and surface electric charges at the interface 

   To analyze the system proposed above, a Cartesian coordinate system (x, y, z) is used where 

the origin point, O, is set to be at the centre of the non conducting fluid and the symmetric line is 

shown in Fig. 1(b). Planar interfaces are assumed. The heights of the conducting fluids and of the 

non conducting fluid are denoted as h1, h3 and 2 h, respectively. Half of the width of the channel 

is denoted by w. The aspect ratio is defined as χ = (h1 + h3 + 2 h)/ 2w. As a result, of surface 



charges, electric double layers (EDLs) form next to the two liquid–liquid interfaces and the 

channel walls that are in contact with the conducting fluid. For a more general situation, the 

walls of the microchannel may be made of different materials, so that the zeta potentials at the 

bottom and top walls are denoted as ξ1, ξ4, and at the side walls as ξ2, ξ5, respectively. The zeta 

potentials at the interfaces are ξ3 and ξ6. The electroosmotic flows are along the x-direction. Due 

to symmetry, only half of the cross section (z > 0) of the rectangular channel is considered. 

   The three fluids are driven by the combined pressure and electroosmotic body forces. When the 

three-fluid flow is fully developed, the velocities of the three liquids, u1, u2 and u3 at position r 

along the channel are independent of x. The subscripts, 1, 2 and 3, denote the conducting fluid 1, 

non conducting fluid 2 and the conducting fluid 3, respectively. 

   In this case, the conducting fluids are considered as symmetric electrolyte. The electric 

potentials in the conducting fluids due to the charged walls were taken as ψ1 and ψ3, respectively. 

The net charge densities in the two conducting fluids are ρq1 and ρq3. The length scale and 

velocity scale of the flow are taken as Lref and Vref, respectively. The independent variable r and 

dependent variables u, p, ψ and ρq are expressed in terms of the corresponding dimensionless 

quantities (shown with an overbar) by 

 

where ρ is the liquid density, kb is Boltzmann constant, T is the absolute temperature, z0 is the 

valence of the ions, e is elementary charge, and n0 is the reference value of the ion concentration. 

   The fluid fractions of fluids 1, 2 and 3 are defined as and 

, respectively. 

   The electric potential in the conducting fluids is first considered. Assuming that the electric 

charge density is not affected by the external electric field due to thin EDLs and the small fluid 

velocity, the charge convection can be ignored and the electric field equation and the fluid flow 

equation are decoupled [15,16]. Based on the assumption of local thermodynamic equilibrium, 



for a small zeta potential, the electric potentials due to the charged wall are described by the 

linear Poisson–Boltzmann equation which can be written in terms of dimensionless variables as 

 

where K = Lrefκ is the ratio of the length scale Lref to the characteristic double-layer thickness 

1/κ. For this case, the reference length is chosen as Lref = w. Here, κ is the Debye–Hückel 

parameter 

 

where ε is the permittivity of the conducting fluid. Based on the linear approximation, the 

dimensionless volumetric charge density is given by 

 

   Due to the symmetry of the EDL fields in the rectangular channel, Eq. (2) is subjected to the 

following boundary conditions: 

 

   The solutions to the Poisson–Boltzmann equation subjected to the above boundary conditions 

are obtained as 

 

for conducting fluid 1 and 



 

for conducting fluid 3, where 

 

   In the above discussion of electroosmosis, the charge state of the surface is described in terms 

of surface potential at the shear plane, which is identified by the zeta potential [17]. This surface 

potential is related to the charge density at the surface [18]. From electrostatics, the normal 

component of the gradient of the electric potential, ψ, jumps by an amount proportional to the 

surface charge density, . That is 

 

   It is assumed that the gradient of electric potential in the non conducting fluid vanishes. Using 

the reference surface charge density as , we obtain the dimensionless surface charge 

densities at the liquid–liquid interface as 

 

for the surface charge at interface 1–2, and 



 

   The solutions of Eqs. (11) and (12) show that the contributions of zeta potential at the 

top/bottom walls, , are relatively small and the contributions of side walls,  are 

also relatively small except when z approaches to w. The volumetric net charge density, Eq. (4), 

and the interface charge density, Eqs. (11) and (12), are required to determine the electrostatic 

force caused by the presence of zeta potential. The bulk electrostatic force is considered as an 

additional body force exerting on the conducting fluid in the conventional Navier–Stokes 

equation. Therefore, the conducting fluids are under the action of pressure gradient, electrostatic 

force and the viscous shear force at the interface. Similarly, the non conducting fluid flows as a 

result of the pressure gradient and the external electrostatic force due to the electrokinetic charge 

density at the interface, which will be discussed in the following section. 

2.2. Momentum equations of the three-fluid flow 

   The dimensionless momentum equation for an incompressible Newtonian liquid is given by 

 

   To evaluate the electrokinetic effects, our model assumes that the flow is formed by three 

simple immiscible Newtonian liquids with constant viscosities, which are independent of shear 

rate and the local electric field strength. The model assumes: 

(1) All the three liquids are Newtonian and incompressible. 

(2) The properties of the liquids are independent of local electric field and ion concentration. The 

electric field strength and ion concentration may affect the properties of the conducting fluids. In 

the current study, these effects are neglected [19]. 



(3) The liquid’s properties are independent of temperature. Joule heating is neglected for dilute 

electrolytes and low field strength [20]. 

(4) The flow is fully developed with the non-slip boundary condition. The second term on the 

left-hand side of the Eq. (13), , will be vanished. 

(5) The pressure gradient is assumed to be uniform along the channel, and the pressure gradients 

along y- and z-directions are both zero. 

   Because EDLs only form in the conducting fluids, the momentum equations of the three liquids 

reduce to 

 

for conducting fluid 1, 

 

for the conducting fluid 3, and 

 

for the non conducting fluid 2, where and . Here, the reference 

viscosity and the density are those of the conducting fluid 1 as μref = μ1 and ρref = ρ1. Thus, 

 , and are the dynamic viscosity ratios. The continuity 

conditions of the velocities at the liquid/liquid interfaces are: 

 

   The shear stress balances, which jumps abruptly at the interface due to the presence of a certain 

surface charge density, 



 

   Here y is the direction normal to the interface of the two liquids. As planar interface is assumed, 

the normal direction of interface is along the y-direction. The dimensionless matching conditions 

become 

 

where . 

   In the rectangular-cross-section channel, the dimensionless boundary conditions for fluids 1, 2 

and 3 are respectively, 

 

   Due to linearity, the velocity of the conducting fluids and of the non-conducting fluid in Eqs. 

(14)–(16) can be decomposed into two parts: 

 

where  corresponds to the velocity driven by electroosmotic force, and  is the velocity driven 

by pressure gradient. The final velocities are the superposition of these electroosmotic and 

pressure-driven components 



 

2.3. Velocity fields of the three liquids 

   For the steady state fully developed flow, the dimensionless velocity for the conducting fluid 1, 

when Eq. (14) is combined with Eq. (4), becomes 

 

corresponding to the velocity component driven by the electroosmotic force and 

 

corresponding to the velocity component driven by the pressure gradient. Similarly, the 

velocities of the non conducting fluid 2 and the conducting fluid 3 are written in two components 

as 

 

corresponding to the velocity component influenced by the electroosmotic flow and 

 

corresponding to the velocity component driven by the pressure gradient. 

   Using the separation of variables method and substituting the solution of  from Eq. (7), the 

analytical velocity profile corresponding to the electroosmotic force, , and velocity profile 



corresponding to the pressure gradient, , are obtained from Eqs. (27) and (28), respectively. 

They are 

 

 

 

   The dimensionless velocity profiles for the non conducting fluid 2 , and the conducting 

fluid 3 are also obtained respectively as 

 

   The detailed mathematical derivation of the coefficients and is presented in 

Appendix A. 

   The matching conditions given in Eqs. (21) and (22) can also be decomposed as 



 

   At interface 1–2, substituting Eqs. (33) and (35) into Eq. (39) and substituting Eqs. (34) and 

(36) into Eq. (40); at inter-face 2–3, substituting Eqs. (35) and (37) into Eq. (41) and substituting 

Eqs. (36) and (38) into Eq. (42), we can obtain the constants 

 

 

 

   The detailed mathematical derivation of the coefficients A to V,  is presented in 

Appendix B. 

   The contribution of surface charges, , can be obtained by applying Fourier 

transform to , these are 



 

   The dimensionless volumetric flowrates through the rectangular-cross-section channel can be 

defined as   and  

   The dimensionless flowrates are given as 

 

Substituting into Eqs. (52)–(57), respectively, yields the dimensionless 

volumetric flowrates as 



 

   The detailed mathematical derivation of the coefficients is presented in Appendix B. 

 

3. Results and discussion 

   In Section 2, the analytical solutions of three fluids driven by electro-osmosis and pressure 

gradient are obtained. In the three liquids, the two conducting fluids hold the upper and bottom 

parts, and the non conducting fluid holds the middle part of the rectangular channel. Many 

methods for determining the zeta potentials at the wall and at the interface were proposed 

previously [15]. The zeta potentials at the channel walls, ξ1, ξ2, ξ4 and ξ5 depend on the material 

properties of the wall and the ionic properties of the fluid [5]. The zeta potential between two 

immiscible liquids does not only depend on the ionic properties of two fluids, but also on the pH 

and the concentration of the electrolyte [21,22]. 

3.1. EDL potential in conducting fluids 

   The dimensionless parameter K is defined as K = κDh to evaluate parameters affecting EDL 

profiles. 1/κ refers to the characteristic thickness of the EDL. As the Debye–Hückel parameter 

is proportional to the square root of the bulk ionic concentration n0, the 



variation of the ionic concentration will alter the EDL thickness. In this analysis, the 

concentration of the two conducting fluids is in the range of 10
-6

~10
-5

 M, therefore, the bulk 

concentration n0 = 6.022 x 10
20

 ~ 6.022 x 10
21

 m
-3

 and the EDL dimension parameter K = 87~ 

275. The EDL profiles are shown in Fig. 2 where K = 87 (1/κ≈300nm) and K=275(1/κ≈ 97nm). 

It shows that the value of K controls the dimensionless EDL thickness: a larger value of K 

corresponds to a thinner EDL. 

   In Fig. 1(a), the three fluids, (two conducting fluids and a non conducting fluid) are introduced 

through a constant pressure source. When an electric field is applied across the conducting fluids, 

the external electric field interacts with the net charges within the double layers and creates 

electroosmotic forces within the bulk conducting fluids. If the applied electric field varies, such 

applied electroosmotic body forces will be changed accordingly. As a result, for a given pressure 

gradient, the velocities and flowrates of the three liquids depend on the applied electroosmotic 

force. 

   From Eq. (25), the velocity  of three-fluid can be decomposed into two parts,  

corresponds to velocity driven by pressure gradient and  corresponds to velocity driven by 

electroosmotic effect. With the proposed analytical model, we investigate the following cases. (1) 

With zero pressure gradient is applied across the microchannel, the flow is simply a three-fluid 

electroosmotic flow with the flow velocity . (2) With zero applied electric, the flow is simply 

driven by pressure difference with the flow velocity . (3) When both the pressure gradient and 

the electric field are applied across the microchannel, the three-fluid is driven by the combined 

electroosmotic force and pressure gradient with the flow velocity . 

3.2. Three-fluid electroosmotic flow 

   Fig. 3(a) shows the dimensionless velocity profiles, , at the symmetric line, at zero pressure 

gradient, , and different viscosity ratios . When electric fields are 

applied across the conducting fluids, the conducting fluids 1 and 3 are driven by electroosmosis, 

which drags the non conducting fluid 2 by the hydrodynamic shear force. The flow of the three-

fluid is affected by viscosity ratios, the strength of the external electric fields and electroosmotic 

characteristics of the conducting fluids. By this way, the non conducting fluid can be delivered 

by electroosmosis. 



   In Section 2, general equations were derived for the EDL distribution in the conducting fluid 

and velocity profiles for the three-fluid electroosmotic flow through a rectangular microchannel. 

In the analysis, the reference potential and the applied electrical potential are taken at 25 °C as 

and /cm. The viscosity and density of the KCL solution is 

μref = 10
-3

 Pa’s and ρref = 10
3
 kg/m

3
, respectively. With these reference potential and viscosity, 

the Helmholtz–Smoluchowski electroosmotic velocity is chosen as the reference velocity 

 The corresponding Reynolds number is Re ≈ 0.0021. 

   The flow characteristics depend on the coupling effects of the three fluids which involve the 

electrokinetic driving force in the conducting fluids and the interfacial phenomenon. The 

interfacial phenomenon is obtained from the balance of the modified stress force as shown in Eqs. 

(21), (22), which involves the opposite electrostatic force exerted on the interface and the 

hydrodynamic shear stress at the liquid–liquid interface. The velocity at the liquid–liquid 

interface must match, i.e. the conducting fluid and the non conducting velocities must be the 

same and the forces must be balanced at the interface. To investigate the effect of viscosity ratio 

between the three fluids, the value of β3 = 1, whereas, β2 are chosen to have different values. 

   The electrical body force is resulted from the interaction of the applied electric fields and the 

net charge density. This driving force exists only within the non-neutral charge region- the 

electrical double layer (EDL) in the conducting fluids 1 and 3. Liquid outside the EDL regions is 

set in motion passively due to the frictional stresses originating from the liquid viscosity. The 

velocity profile of the non conducting fluid 2 is passive. It is purely due to the interfacial shear 

stresses dragged by the conducting fluids on the non conducting fluid. The results indicate that 

the velocity profiles of the conducting fluids are strongly dependent on the viscosity ratio, β. 

Because the viscosity ratio is small, the flow resistance of the non conducting fluid is also small. 

Thus, the non conducting fluid can be driven with less flow resistance as shown in Fig. 3(a). 

When the viscosity ratio is higher, the flow resistance of the non conducting fluid is higher, 

resulting in a steeper velocity gradient at the interface of the conducting fluids. 

 

3.3. Three-fluid flow driven by electroosmosis and pressure gradient 



   From Fig. 4, when both pressure gradient and electric field are applied, the three liquids are 

driven by electroosmotic body force and pressure gradient. For a given pressure gradient, the 

velocities and flowrates of the three liquids depend only on the applied electroosmotic force. 

 

3.3.1. Effect of the applied electric field on velocity profile 

   Figs. 4–7 show the dimensionless velocity profiles at the symmetric line of the three fluids 

driven by the combined electroosmosis and pressure gradient. In the analysis, α1 = α3 = 0.29, α2 = 

0.42 and equal applied electric fields Ex1 = Ex3 are specified. 

   The effect of applied electric fields on the dimensionless velocity profile is shown in Fig. 4. 

The results indicate that for a given pressure gradient, the velocity profile of the three-fluid 

strongly depends on the applied electroosmotic body force; hence the volumetric flowrates of the 

three-fluid can be controlled. With zero electric field, Ex1 = Ex3 = 0 V/cm the flow is in fact a 

pressure driven flow of a single liquid, showing the parabolic velocity profile, . We can 

compare the analytical solution of the three-fluid model with the one-dimensional, fully 

developed Navier–Stokes equation under the steady state condition [23] it is clearly seen that the 

results from the two different models are identical. 

   The relationship between  Ex3 = 150 V/cm and β3 = β2 = 1 is 

shown in Fig. 5. The result shows that the velocity profile,  of a three-fluid driven by the 

combined electro-osmosis and pressure gradient is the superposition of the solutions of a three-

fluid electroosmotic velocity profile  and a pressure-driven parabolic profile, . 

   Fig. 6 shows the dimensionless velocity profiles at the symmetric line when β2 = 5,β1 = β3 = 

1, . The result indicate that the velocity profile of the conducting fluid are strongly 

dependent on the viscosity ratio, β2. For a given pressure gradient, a higher viscosity ratio β2 and 

consequently a higher flow resistance of the non conducting fluid result in a steeper velocity 

gradient at the interface of the conducting fluids. 

 

3.3.2. Effect of pressure gradient, , on velocity profile 



   Fig. 7 shows the effect of applied pressure gradient on the dimen-sionless velocity profile at 

the symmetric line of the three-fluid driven by the combined electroosmosis and pressure 

gradient. In the analysis, α1 = α3 = 0.29, α 2 = 0.42, β2 = 5, β1 = β3 = 1 and equal applied electric 

fields Ex1 = Ex3 = 10 V/cm are specified. The results indicate that for a given applied electric 

field the velocity profile u of the three-fluid strongly depends on the applied pressure gradient. 

With zero pressure gradient ( =0), the flow is simply a three-fluid electroosmotic flow . 

The velocity u increases with the applied pressure gradient as shown by the linear combination 

of the electroosmotic profile , and the pressure-driven profile up. At a high pressure gradient, 

the electroosmotic flow effect becomes weaker. 

 

3.3.3. Effect of viscosity ratio, β2, on velocity profile 

   The flow characteristics depend on the coupling effect of the three fluids which involve the 

electrokinetic phenomenon of the conducting fluids and the interfacial stresses at the interface of 

adjacent fluids. To investigate the effect of viscosity ratio between the three fluids, the value of 

β3 = 1 is set to be a constant, whereas, β2 are chosen to vary. Fig. 3(b) shows the dimensionless 

velocity profiles at the symmetric line at =1000, Ex1 = Ex3 = 10 V/ cm, and different 

viscosity ratios β2 of 0.5, 1, 2 and 3 respectively. The velocity profiles of the three-fluid strongly 

depend on the viscosity ratio, β2. For a given pressure gradient and applied electric fields, if the 

viscosity ratio β2 decreases, the non conducting fluid can be driven with less flow resistance. 

      The comparison between theoretical analysis and the published two-fluid experimental data 

[24] is shown in Fig. 8. To simulate the flow, a infinite viscosity of , is assumed which make 

the conducting fluid 3 resemble that of the channel wall. Hence we can compare our theoretical 

analysis with the two-fluid data. Our results agree well with the published experimental data. 

       Fig. 9 shows the influence of the viscosity ratio β2 on the volumetric flowrate. For a given 

pressure gradient and the applied electric fields, volumetric flowrates of the three fluids increase 

with decreasing viscosity ratio β2. A rapid increase in the flowrate occurs when the viscosity 

ratio β2 decrease from 10 to 0.1. 

 



4.Conclusions 

       In this paper, we presented a theoretical model of the pressure driven three-fluid flow in 

rectangular microchannels with electroosmotic effect. Under the Debye–Hückel linear 

approximation, analytical solutions of electric distribution were obtained by solving the linear 

Poisson–Boltzmann equation. The solutions of modified Navier–Stokes equations were 

presented for a steady, fully developed laminar three-fluid flow under the combined effects of 

pressure gradient, electro-osmosis and surface charges at the liquid–liquid interface. The 

comparison between the predictions of the velocity profile from the theoretical analysis and the 

published data show good agreement. 
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Appendix A 

 

       In the following, we will define several auxiliary functions which facilitate the analytical 

evaluation of the pertinent expressions in the present work. All these functions are obtained 

through integrating matching conditions, velocity profiles and shear stress at the interface. They 

are defined as follow: 

 

 

 

 

 

 

 

 



Appendix B 

 

 



 

 



 

 

where the parameter functions are defined as 
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