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Abstract:  The influence of elastic shear deformation on the transverse shear response of 

a fully clamped beam is investigated in the present paper. The beam is made from a rigid, 

perfectly plastic material and subjected to a uniformly distributed pressure pulse loading. 

The elastic shear deformation is idealized by an elastic, perfectly plastic spring with a 

constant spring coefficient. Analytical solutions are obtained for the transverse shear 

response, which are then used to predict the occurrence of a transverse shear failure. The 

method presented in the paper may be extended to study the blast-induced shear failure of 

other structural elements when the elastic shear deformation needs to be considered.  

Keywords: blast load, elastic effect, shear response and failure, rigid-plastic beam, 

dynamic plastic response 
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Notation 

H                         Thickness of the beam 

I0                         Loading impulse per unit length 

K                         Shear stiffness of the beam at the support 

k                         
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L                         Half length of a beam 

M and Q             Bending moment and shear force 

M0 and Q0          Plastic bending and shear capacities 

P(t)                     Loading 

Pb                        Pb=4M0/L
2

 

t                          Time 
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2
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cV                        Critical impulsive velocity for the beam 

0w , 0w , 0w           Transverse displacement, velocity, acceleration at the mid-span 

1w , 1w , 1w             Transverse shear displacement, velocity, acceleration at the support 

zw , zw                 Transverse velocity, acceleration at the interface between the plastic and 

rigid regions 

max1w                    Maximum transverse shear displacement 

max1w                 Maximum plastic transverse shear displacement 

x                          Coordinate along the beam 

z                          Position of the interface between the plastic and rigid regions 
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β                          Coefficient of shear failure criterion 

                          transverse shear coefficient  

μ                          Mass per unit length of a beam 

μ                          Poisson’s ratio 

                         2/ k  

zp

wwwqm

,,,,

,,,,,




     Non-dimensional quantities defined by Eqs. (3a~j) 

 

1. Introduction 

As first observed experimentally by Menkes and Opat(1973), three response and 

failure modes may appear with the increasing impulse of an intensive pressure loading 

distributed uniformly over the entire span. These are (i) large inelastic deformations; (ii) 

tearing (tensile failure) of outer fibers, at the supports, and (iii) transverse shear failure at 

the supports. Further experiments have confirmed the existence of these failure modes in 

beams [Ross et al.(1977)], square plates [Ross et al.(1977), Olson et al.(1993)], circular 

plates [Teeling-Smith and Nurick(1991)], and cylindrical shells [Ross et al.(1977), Opat 

and Menkes(1974), Strickland et al.(1976)]. Because of the widespread applications of 

these structural elements in various engineering fields, the importance of these failure 

modes has received considerable attention in recent years. 

The structural response corresponding to a mode III failure can be predicted by using 

the rigid-plastic idealization with the consideration of transverse shear localization 

[Symonds(1968), Li(2000), Li and Jones(2000a)]. The concept of a localized shear 

deformation has been successfully applied in the dynamic plastic response analyses of 

various structural members [e.g. Jones(1976), Nonaka(1977), Jones(1989a,b), 
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Duffey(1989), Li and Jones(1994, 1995a,b)], when neglecting the elastic deformation in 

the beam.  

Among the three failure modes observed by Menkes and Opat(1973), transverse shear 

failure becomes dominant failure mode with the increase of loading rates and intensities. 

It is also the most complicated one because different failure mechanisms may be involved 

during the failure process [Kalthoff and Winkler(1987), Kalthoff(1990), Li and 

Jones(1999), Chen and Li(2003, 2005)]. Duffey(1989) pointed out that the transverse 

shear failure occurs at the hard-points of structural elements when subjected to intensive 

dynamic loads. The so-called hard points represent those points (or lines), such as a rigid 

support or the contacting periphery of projectile and target, across which significant 

contrast of deformability of the structural material exists.  

When a rigid-plastic model is employed, the idealization is based on neglecting 

elastic deformations. Elastic deformation in structural elements plays a role of reducing 

the rigidity of the structural element, and thus, reducing the maximum deformation 

predicted according to rigid-plastic assumption. The elastic effects on the dynamic plastic 

response of a beam originate from three sources, i.e. the elastic bending, membrane and 

shear effects. When transverse shear failure becomes the dominant failure mode in a 

beam, the membrane deformation is normally less significant than the bending and shear 

deformations as shown by Menks and Opat(1973). The elastic effect on the bending 

response of a rigid, perfectly plastic cantilever beam was studied by introducing a 

rotational spring at the root of the cantilever beam [Wang and Yu(1991), Yu(1993), 

Wang(1994)], in which it was found that the interactions between the root spring and the 

travelling plastic hinge cause the change of rigid-plastic response mode in the cantilever 

beam. The tip velocity increases with the decrease of the root spring stiffness [Wang and 

Yu(1991)]. 
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The elastic shear effect will be considered in the present paper for a fully clamped 

beam. The elastic shear effect throughout the beam is concentrated in the elastic 

transverse deformation of an elastic, perfectly plastic spring with a constant spring 

coefficient. Further discussion about this simplification is given in Section 5. The model 

proposed in this paper can also be used directly to study the influence of the supporting 

flexibility on the transverse shear hard-point failure in a rigid, perfectly plastic beam, 

which, although will not be referred to in the following discussion, may become 

important when flexible supports are used. Theoretical solutions are obtained for the 

transverse shear-sliding phase, which can be used together with a shear failure criterion to 

predict the occurrence of shear failure in a metal beam. The method proposed in this 

paper can also be extended to explore the importance of elastic shear effects in the 

dynamic plastic response of other structural elements subjected to blast type loads.  

 

2. Basic equations 

Consider the fully clamped beam shown in Figs.(1a,b), which is subjected to an 

idealized blast pressure loading [Fig.(1c)] distributed uniformly over the entire span. The 

negative phase of the blast loading is neglected. In Sections 2 and 3, the blast loading is 

formulated as a general descending function of time. The effect of elastic shear 

deformations is modeled by an elastic, perfectly plastic spring [Fig.(1d)] with spring 

constant K at each end of the beam. 

The equilibrium equations for the shear and bending response of a beam can be 

expressed in the form [Li and Jones(1995a)] 
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with continuity conditions 
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0][,0][,0][,0][  wwqm              (2a~d) 

at a bending interface, where the non-dimensional quantities are defined as  
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where Pb=4M0/L
2 is the plastic collapse pressure for a fully clamped beam; μ is the mass 

per unit length of a beam; I0 is the loading impulse per unit length; M0 and Q0 are plastic 

bending and shear capacities of the beam, respectively. 

The boundary conditions at the supports are  
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in which, K is the spring constant, w1 is the transverse shear displacement at the supports. 

The non-dimensional forms of Eqs.(4a,b) are  
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An independent yield condition between the bending moment and transverse shear 

force, as shown in Fig.2, is used in the following analysis in order to obtain analytical 

solution of the transverse shear response. The independent yield criterion between shear 

and bending deformations is a simplification of the plastic behaviour of beams. The 

influence of this simplification on the rigid-plastic response of beams, plates and shells 

have been discussed in Jones(1989b) where it was concluded that the use of an 

independent yield condition is adequate when the maximum transverse displacements are 

of interest. On the other hand, Yu and Chen(2000) showed that the transverse shear 

sliding based on an independent yield curve is 20-25% lower than the predictions based 
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on other interactive yield curves (circular and Hodge's yield curves). This is due to the 

fact that the independent yield curve circumscribes other yield curves and offers a lower 

bound solution of the transverse shear displacement, which should be noted in the 

application of the present analytical results. Furthermore, the independent square yield 

condition may be scaled down to obtain an inscribing yield curve of the actual interactive 

yield curve to offer an upper bound solution [Jones(1989b)].   

 

3. Theoretical analysis 

Similar to the results in Li and Jones(1995a), three flow patterns may exist, which 

will be discussed in this section. In each case, plastic shear deformation occurs when 

 
k

w
1

max 1  . Otherwise, i.e. when  
k

w
1

max 1  , only an elastic shear response exists.  

3.1 Case I,  0<ν≤2 [Fig.(3a)] 

The transverse velocity profile for case (a) in Fig.3 is uniform across the whole beam. 

The non-dimensional transverse velocity field may be obtained by solving Eq.(1a) 

together with the boundary conditions (5a,b) and a zero shear force at the mid-span of the 

beam, i.e. 0q  at ξ=0, which leads to  

pw
k

w  11
2

    for 
k

w
1

1        (6a) 

and      
2

1


 pw    when 

k
w

1
1        (6b) 

The initial conditions at τ=0 are 

01 w  and 01 w .      (7a,b) 

3.1.1 Phase 1, 0≤τ≤τ0 

The analytical solution for Eqs.(6a) and (7a,b) is  



 8 

            







  





dpdpw sincoscossin
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and                    


dpdpw sinsincoscos
00

1      (8b) 

for 
k

w
1

1   or 0   before any plastic shear deformation occurs at the beam support, 

where
2

ν
λ

k
  and 0  is determined by 

k
w

1
01  , i.e, 

           
k
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  sincoscossin
00

0

0

0

0 .   (9) 

Equation (9) has a solution when  
k

w
1

max 1   is satisfied.  

3.1.2 Phase 2, τ0≤τ≤τ1 

Equations (8a,b) give the initial conditions for 0   

k
ww

1
0110           (10a) 

and               



 dpdpww sinsincoscos
00

0

0

0

0

0110   
 .     (10b) 

Now, Eq.(6b) with Eqs.(10a,b) predicts the non-dimensional transverse shear velocity 

and displacement 
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for 0ττ  . 

The maximum transverse shear displacement occurs at 1  , which is determined by 

0
11 w  from Eq.(11a), i.e. 
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Beam responses beyond the maximum transverse shear displacement will not be 

considered. The static admissibility of the corresponding generalized stress field is proved 

in the appendix. 

3.2 Case II, 32  [Fig.3(b)] 

It may be shown that the beam response is the same as Phase 1 in Section 3.1 when 

k
w

2
1  . Therefore, we only present the solution when 

k
w

2
1   (or c  ), where c  

is the time when 
k

w
2

1   according to Eq.(8a). 

3.2.1 Phase 1, 0≤τ≤τc: Solution is given in Section 3.1.1, as mentioned above. 

3.2.2 Phase 2, τc ≤τ≤τ0 

In this case, the non-dimensional velocity profile in Fig.3(b) is assumed, or 

)1)(( 101  wwww  .       (13) 

From Eq.(13), it is easy to show that the distribution of the acceleration field is linear. By 

using Eqs.(1a, b) as well as 00 q  and 1
0




m , the generalized stresses are 
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Therefore, we have 

k
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1
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according to Eqs.(5a,b); and 
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332 01  pww         (15c) 

according to 1
1



m . Thus, the differential equations to control the non-dimensional 

transverse shear displacement 1w  are obtained 

k
wforpwvkw

1
,32 111       (16a) 

from Eqs. (15a) and (15c); 

and     
k

wforvpw
1

,23 11  ,      (16b) 

from Eqs. (15b) and (15c). 

Equation (16a) with the initial conditions at τ=τc in the first phase gives 
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for 
k

w
k

12
1 


, where  c  2 . 

0  is determined using 
k

w
1

1   in Eq.(17a). 

3.2.3 Phase 3, τ0≤τ≤τ1 

The initial conditions at τ=τ0 in the third phase are determined from Eqs.(17a,b) in the 

second phase. From Eq.(16b), the non-dimensional transverse shear displacement and 

velocity at supports in the third phase are, 
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where 10w  and 10w  are given by Eqs.( 17a,b) at 0ττ  . For the rigid perfectly plastic 

case, i.e. k, Eq.(18b) is consistent with Eq.(16) in Li and Jones(1995a).  

The non-dimensional maximum transverse shear displacement is reached at 1  when 

01 w , or  

  0))(23( 0110

1

0

  




dpw .     (19) 

3.3 Case III, 3  [Fig.3(c)] 

It may be shown that the beam response is the same as in Section 3.2 when 
k

w
3

1  . 

Therefore, we only present the solutions when 
k

w
3

1   (or a  ) where a  is the time 

when 
k

w
3

1  , which can be obtained from Section 3.2.2. 

3.3.1 Phase 1, 0≤τ≤τc: Solution is given in Section 3.2.1. 

3.3.2 Phase 2, τc≤τ≤τa: Solution is given in Section 3.2.2. 

3.3.3 Phase 3, τa≤τ≤τ0 

The velocity profile in Fig. (3c), which is assumed in order to satisfy the requirement 

of static admissibility, consists of a central plastic deformation region 0≤ ξ ≤z and an 

outer rigid region z≤ ξ ≤1. The transverse velocity distribution in the rigid region is linear, 

i.e.  

 1),(
1

1
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zww

z
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where z is the position of the interface between plastic and rigid regions and zw  is the 

transverse velocity of the local material at the interface. The central plastic region 



 12 

expands during this phase, i.e., the rigid-plastic interface travels outwards and the 

transverse velocity ( zw ) at the interface will be determined numerically. 

Taking q=0 and m=-1 in the central plastic region, Eq.(1a) gives  

 )(pw τ  for z ξ0 .       (21) 

The distribution of the material acceleration in the rigid region can be obtained by 

differentiating Eq.(20), i.e.  

1),(
)1(

1
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1

1
1211 
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which may be rewritten as  

   1,)()1()()1(
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z
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therefore, Eq.(1a) with q=0 at ξ =z predicts  
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By using 
1wkq   at ξ=1, we have 
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Equations (1b, 24) with m= -1 at ξ=z give 
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or      
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m=1 at ξ=1 predicts 

2

1

2

1 )1(3)1()(2)1)(2(3 zpzzwwzww zz   .   (27) 

It is noted from Eq.(21) that the transverse acceleration ( w ) of the local material at the 

interface is equal to )(p . Thus, by equating the right hand side of Eq. (22) to p  when 

ξ=z, we have 

    zpwwwz zz  11
 .       (28) 

Considering Eq.(28), Eqs.(25, 27) can be respectively rewritten as 

))(1( 11 pwzwk         

 (29a) 

and  )()1(3 1

2 pwz                   (29b) 

The time history of 1w  and the position of the interface can be derived from Eqs.(29a,b) 

to give 

3
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1
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pw
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1

3
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  .        (31) 

From Eqs.(22) and (28), the distribution of the acceleration field may be expressed as 

 1),(
1

1
11 




 


zwp

z
ww        (32) 

in the rigid portion. Equation (32) shows that the distribution of the acceleration field is 

linear in Section 3.2.2 for case II. 

It may be shown that the sufficient and necessary condition to maintain 0≤ z ≤1 is 

31 wk , which is satisfied in this phase when a  . It can be proved that z is an 
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increasing function of the non-dimensional time τ in this case, which implies that the 

central plastic region expands outwards. The elastic response at the supports stops when 

0  , which is determined from 11 wk . At the end of this phase, the interface reaches 

its farthest position, i.e, 



3
1max z  .        (33) 

The initial conditions for the next response phase of motion are determined from the 

end of this phase, i.e. 

k
ww

1
0110    and      

0ττ110  ww       (34) 

3.3.4 Phase 4, τ0≤τ≤τ1 

When 11 wk , the shear force at the support q=-1.0 and it is assumed that z  is fixed 

as )/31(   throughout this phase. This is a reasonable assumption since the shear force 

at the support is constant. 

From Eq. (28) and considering 0z , we have 

)(pwz 
 .                                                                                                    (35) 

By using 1q  at 1  in Eq. (24) and considering Eqs. (33) and (35), we have  

3/2

1  pw .                                                                                           (36) 

Plastic shear displacement occurs at the supports during this phase, and reaches a 

maximum value at 1   when 01 w . This response phase is different from the 

corresponding response phase in the rigid, perfectly plastic solution of Li and 

Jones(1995a) due to the existence of a central plastic deformation region developed 

during the elastic response phase at the supports. However, Eq.(33) is identical to Eq.(26) 

in Li and Jones(1995a) when the elastic response phase at the supports does not exist (i.e. 

010  ww   at 0  ). 
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The static admissibility of the generalized stress fields in case III is illustrated in the 

appendix. 

 

4. Results for impulsive loading 

In this case,   )( p  is a Dirac delta function and the corresponding results in 

Section 3 may be simplified as follows. 

4.1 20   

4.1.1 Phase 1, 00    

The non-dimensional transverse displacement and velocity at the supports are 
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, Eq.(38) has no solution for 0 , which means that 1w  can not reach 

k

1
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Therefore, the condition for the existence of a transverse plastic shear response is 1
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4.1.2 Phase 2 10    

The solutions for the non-dimensional transverse shear displacement and velocity 

from Eq.(11) are 
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and               )(
2

cos 001 


 w                                                                         (40b) 

and 1  is given by 0
11 w , i.e., 

 001 cos
2




   .       (41) 

Equation (41), when τ00, is identical to Eq.(11) in Li and Jones(1995a) for impulsive 

loading. 

4.2 32   

4.2.1 Phase 1, 0≤τ≤τc: Solutions are given in Section 3.1.1. 

The transverse displacement and velocity at supports are 

 


sin
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1 w   and   cos1 w              (42a,b) 
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4.2.2 Phase 2, 0 c  

Equations (17a,b) have the following expressions when   )( p  

     ))(2cos())(2sin(123
4
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and   ))(2sin())(2cos(12
2

1 2
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and 0  is reached when
k

w
1

1   . 

4.2.3 Phase 3, 10    

Equations (18a,b) may be simplified in this case as 

2

00101 ))(23(
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k
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and  ))(23( 0101   ww       (45b) 
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which is valid during 10   , where 1  is determined from 01 w .  

4.3 3  

According to the results in Section 3.3, there are four response phases in this case 

4.3.1 Phase 1, c 0 , where c  is reached when
k

w
2

1    

4.3.2 Phase 2, ac   , where a  is reached when
k

w
3

1    

4.3.3 Phase 3, 0 a : The transverse displacement and velocity fields are 

determined from Eq.(31) together with 



k

w
a

3
1   and the solutions in Section 4.3.2. 

This process should be solved numerically. 

4.3.4 Phase 4, 10   : 1w  and 1w  may be obtained from Eq.(36) together with initial 

condition 
k

w
1

01  .  

The above results for the impulsive loading case agree with the corresponding results 

in Li and Jones(1995a) for the rigid perfectly plastic case when k. 

 

5. Discussion 

Numerical calculations for impulsive loading are conducted to demonstrate the 

validity of the model and to present parametric analyses. Figures 4-6 show the variations 

of the non-dimensional transverse shear displacement at the supports with non-

dimensional time from the start of the response to the time when the maximum transverse 

shear displacement is reached. They show that the non-dimensional time required for the 

beam to reach its maximum transverse shear displacement increases with a decrease of 

the elastic shear stiffness, i.e. it takes a longer time to reach the peak transverse 

displacement of a beam having a flexible shear stiffness. Moreover, the maximum 

transverse shear displacement of a beam with a small elastic shear stiffness is larger than 



 18 

that for a beam having a large elastic shear stiffness. Effects of the elastic shear 

deformation are demonstrated by changing the value of non-dimensional number k from 

10 to 10001 for a range of shear and bending capacity ratios represented by the non-

dimensional number ν, as shown in Fig.7. In these figures, the range of the k value is 

selected to cover a wide span from an order representing real structure (i.e. 101) to the 

order which is sufficient to represent a rigid-plastic model (i.e. 103). An explicit 

expression of k will be given later. It shows that neglecting the elastic shear deformation 

in a rigid-plastic beam analysis generally underestimates the maximum transverse shear 

displacement in the beam. However, the influence of elastic shear deformation on the 

maximum transverse shear displacement depends on the value of . The influence is 

smaller for smaller values of . When =2.0, the relative difference of the maximum 

transverse shear displacement between k=10 and k=1000 is about 10%, which increases 

to 58% when =4.0.  

The maximum transverse plastic shear displacement is closely related to the 

maximum plastic shear strain within the localized shear deformation zone, and therefore, 

has been frequently used as an elementary transverse shear failure criterion 

[Jones(1976,1989a)]. The maximum transverse plastic shear displacement is  

K

Q
ww 0

max1max1          (46a) 

or, in non-dimensional form, 

k
ww

1
max1max1        (46b) 

where Q0/K represents the maximum elastic shear displacement for an elastic, perfectly 

plastic model; w1max is the maximum transverse shear displacement. Thus, the elementary 

transverse shear failure criterion can be expressed as 

Hw  max1        (47) 

                                                 
1
 k=1000 is essentially the rigid, perfectly plastic case. 
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in which, 10    and H is the beam thickness. It has been shown that β is dependent 

on the material properties and geometries of the cross-section of the beam [Jouri and 

Jones(1988)]. In the following calculation examples, the failure coefficient β is 

approximately taken to be 0.2 and 0.4 for a titanium-alloy beam and a mild steel beam, 

respectively. However, the exact value of the failure coefficient β should be determined 

experimentally for the materials and cross-sectional shapes of the investigated beams.  

Figure 8 illustrates the influence of the elastic shear stiffness on the non-dimensional 

maximum transverse plastic shear displacements for different values of ν. It shows 

consistently that the maximum transverse plastic shear displacement increases with an 

increase of the elastic shear stiffness K, which is contrary to the influence of K on the 

maximum transverse shear displacement shown in Fig. 7. It may be concluded that when 

the shear flexibility in the beam is considered, shear failure is more difficult. Thus, failure 

analyses based on rigid-plastic idealization are conservative. When k, the 

corresponding curves in Figs.7 and 8 approach to the same asymptotic line, i.e. the rigid, 

perfectly plastic solution. 

According to Li and Jones(1995a), the critical initial impulsive velocities for 

transverse shear failures using Eq.(47) without considering elastic shear deformation are 

2,  
a

c

V

V
      (48a) 

  32,322  
a

c

V

V
     (48b) 

3,
3

2 2

 


a

c

V

V
 ,     (48c) 

where 
2

04

L

HM
Va


 . For an impulsive loading, the critical loading impulse cc VI  .  

It is evident that parameter ν plays a very important role in governing the response 

mode of the beam. For a solid beam with rectangular cross-section, =L/H according to 
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Eq.(3i), which implies that only >3 is practically meaningful, and thus, some previous 

studies, such as Wen et al. (1995) and Yu and Chen (2000), only considered the case 

when ν is greater than 3. However, cases for <3 are met frequently for wide-flanged I-

beams and beams with sandwiched cross-sections [Jones(1989b)]. The example given in 

Jones(1989b) (pp.272) shows that =1 may correspond to a sandwiched beam with 

2L/H=11.  

The solutions in Section 4.1 can be used to obtain an explicit critical impulsive 

velocity, i.e. 

)2(
2 0

2

0 H
K

Q

L

M
Vc 




     or   








 

kV

V

a

c

2

1
   (49a,b) 

for 2ν  , where
 2

0 ac VV

k

Q

KH
k  .  Equation (49b) is identical to Eq.(48a) when 

k . 

For ν>2, numerical calculations are necessary to predict the critical impulsive 

velocities. The non-dimensional critical velocity ( ac VV ) is obtained using an iterative 

procedure, in which the maximum transverse plastic shear displacement is first calculated 

based on given values of k  and ν and an initial trial value of the non-dimensional 

impulsive velocity. The maximum transverse plastic shear displacement is then compared 

with the failure criterion and then the non-dimensional impulsive velocity is adjusted until 

Eq.(47) is satisfied. Variations of the non-dimensional impulsive velocity with k  are 

illustrated in Figure 9 for a titanium-alloy beam and Figure 10 for a mild steel beam. It is 

seen that the non-dimensional impulsive velocity decreases with an increase of k  and 

then approaches a constant value when k  is very large. The influence of the elastic shear 

stiffness on the critical impulsive velocity is significant when k  is less than 100. It is 

seen again that the rigid-plastic analysis for the shear failure of a beam is conservative 

when the elastic shear flexibility at the supports is considered.  
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The above analysis is based on an assumption that the elastic deformation in the 

plastic- dominated response of a beam can be represented by an elastic spring at the 

support, which needs to be rationalized. Meanwhile, the value of K (and k ) introduced in 

the model should be related to the material and geometric parameters of the beam with 

the aid of an elastic analysis.  

Considering a fully supported beam subjected to a uniformly-distributed pressure 

load, as shown in Fig.1(a), the shear force distribution during the shear sliding period is 

independent of time and can be determined from a plastic response analysis [e.g. Fig.5 in 

Li and Jones(1995a)]. For quasi-static deformation and for 2 in a dynamic plastic 

response, the shear force distribution is linear, i.e. from zero at mid-span to maximum at 

the support. When >2, a zero shear force zone expands, which implies that the 

corresponding elastic shear influence is reduced. In the following analysis, a linear shear 

force distribution  

  
L

x
QQ 0 ,        (50) 

where Q0 is the maximum shear force at the support, will be employed to demonstrate the 

method. Readers should use the actual shear force distribution obtained from a dynamic 

plastic response analysis [Li and Jones(1995a)] in a practical problem.  

The elastic shear stress in the beam and the corresponding average elastic shear strain 

in the beam cross-section is [Timoshenko(1921)] 

A

Q
   and   

G


         (51a,b) 

where A is the cross-sectional area of the beam; 
 


12

E
G  is the shear modulus; E 

and   are Young’s modulus and Poisson’s ratio;  is the transverse shear coefficient, 

which depends on the shape of the beam cross-section.  

Therefore, the total transverse elastic shear energy in the beam is 
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According to the energy equivalence method [Biggs(1964)], the elastic transverse shear 

deformation energy in the beam is equivalent to the elastic energy of a transversely-

placed spring with spring constant K, i.e.  

  
eWK 2

2

1
         (53) 

where the maximum transverse shear displacement  is determined by 

  
AG
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2

0

00
  ,      (54) 

and therefore,  

  
L

AG
K

3

4
 .         (55) 

On the other hand, if the beam is supported by flexible supports, K may represent the 

stiffness of the support, which should be determined using an alternative method.  

The non-dimensional parameter k  is,  
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    (56) 

when the shear capacity 
2

0
0




A
AQ y   (under Tresca yield condition, y=0/2 ) is 

employed. 0 is the uniaxial yield stress of the beam material. 

For example, a mild steel beam having E=300GPa, 300μ . , =2/3 and 0=400MPa, 

k  varies between 76.9 and 256.4 when L/H varies between 3 and 10. However, for a 

titanium-alloy beam having E=150GPa, 330μ . , =2/3 and 0=900MPa, k  varies 

between 16.7 and 55.7 for the same range of L/H. Thus, the influence of elastic shear 

deformation on the transverse shear failure of a titanium beam may be important. The 

analysis neglecting the elastic shear deformation in a rigid-plastic titanium-alloy beam 
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may cause an error between 1.3% and 5.3% when ν=4.0 and an error between 2.0% and 

7.9% when ν=1.5. However the same effect can be neglected in a steel beam where the 

error is between 0.1% and 0.6% when ν=4.0 and between 0.1% and 0.8% when ν=1.5. It 

should be mentioned that the elastic effect on the shear failure becomes less significant 

when ν is larger than 4.0. This conclusion is enhanced when the diminished transverse 

shear force distribution for large value of ν is considered. 

The explicit expression of another non-dimensional number k used in Figs.4-8 is 

 
 

2
0

0 0

V4 E L
k

3 1 H



  

   
    

     
.      (57) 

Take steel beam as an example, 0.3  , =2/3, 
3

0

E
10


, 

L
10

H
 and Johnson’s 

damage number 
2

30

0

V
10






 (using =7800kg/m3, 0=400MPa, V0=10m/s), then 

1k 10 , which is considered as the order of the value to represent a real structure in 

previous discussion. These non-dimensional numbers have actually been included in a 

more general dimensional analysis for the dynamic structural response under impact and 

blast loadings [Li and Jones(2000b)].  

The analytical model used in this study is based on rigid, perfectly plastic beam 

theory, whose accuracy decreases with the decrease of beam slenderness ratio which is 

associated with the non-dimensional number  for a beam with solid cross-section (i.e. 

=L/H). In order to support the conclusions drawn from the analytical modeling, 

numerical simulations using finite difference method through ANSYS AUTODYN 

V11.0.00 are conducted to investigate the influence of elastic shear deformation on the 

transverse shear response of the beam. The overall length and thickness of the mild steel 

beam are 4m and 2m, respectively. 40 horizontal and 4 vertical meshes were used in the 

simulation. Mesh sensitivity has been conducted for higher mesh density (i.e. 80 
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horizontal and 8 vertical meshes), and only 0.6% difference was found on maximum 

transverse displacement. Transverse shear displacement is defined as the relative 

transverse displacement across the shear hinge. Subjective factor may influence the 

determination of the boundary of a shear hinge. However, its influence on the calculation 

of the transverse shear displacement is systematic and small because shear hinge zone can 

be easily identified in a numerical simulation [Li and Jones(2000a)]. The material model 

used is an elastic, perfectly plastic von Mises model. Material property parameters used in 

numerical simulation are 300μ .  and 0=400MPa while three different Young’s 

moduli, i.e. E=300GPa, 600GPa and 30000GPa, are used corresponding to k=10, 20 and 

1000 according to Eq.(57) when =2/3, =7800 kg/m3 and V0=22.36 m/s. Comparisons 

between numerical and analytical results from k=10 to 1000 are shown in Fig.11. It is 

found that the analytical variation of the maximum transverse shear displacement with the 

shear stiffness is consistent with the numerical one although a relative difference of less 

than 15.0% between analytical and numerical predictions is observed which may be 

attributed to the rigid, perfectly plastic simplification used in the analytical model. 

 

6. Conclusions 

A theoretical model for the transverse shear response of a rigid-plastic beam with 

consideration of the influence of elastic shear deformations is proposed in this paper. The 

elastic shear deformation is taken into account by introducing elastic shear stiffness at the 

supports of a fully clamped beam. Analytical solutions are obtained for different ranges of 

the system parameters.  

The transverse shear failure of a fully clamped beam is studied for the impulsive 

loading case. By using the elementary failure criterion, i.e. a failure criterion controlled 

by the value of the transverse shear displacement, the critical impulsive velocities are 

calculated for different values of the other system parameters. It demonstrated that the 
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elastic shear stiffness has a significant influence on the maximum transverse shear 

displacement and on the critical impulsive velocity. Generally speaking, the smaller the 

non-dimensional shear stiffness of the beam, the larger the influence of the elastic shear 

deformation. Although the maximum shear displacement decreases with an increase of 

the elastic shear stiffness, the maximum plastic shear displacement increases with the 

increase of the elastic shear stiffness. Therefore, the shear failure of the beam under blast 

loading becomes more likely if the elastic shear stiffness of the beam is large. For an 

impulsive loading, the critical impulsive velocity to initiate a shear failure in the beam 

decreases with an increase of the elastic shear stiffness of the beam. When the elastic 

shear stiffness approaches infinity, the present predictions reduce to the results in Li and 

Jones(1995a) for a rigid, perfectly plastic beam model without any elastic shear effects. It 

is concluded that the rigid-plastic model generally gives conservative predictions for the 

critical loading parameters for a transverse shear failure. The proposed model can be 

extended to study the shear failures of other structural elements (e.g. plates and shells) 

when the effects of the elastic shear stiffness on the transverse shear responses of these 

elements become important.  

 

 

Appendix: Static Admissibility of the Generalized Stress Fields 

A.1 20   

For 0  , the generalized stress fields are given as follows according to Eqs.(1a,b) 

and Eq.(6a) together with q=0 at ξ=0 and m=1 at ξ=1. 




11 )(
2

wkpwq          (A1) 

)1(1 2

1   wkm .       (A2) 
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01  q  requires  
k

w
1

1   which is satisfied for 0  . 11  m  requires 

k
w



2
1  , which is satisfied automatically when 2  and 

k
w

1
1  . However, when 

2 , condition 
k

w


2
1   must be satisfied if the same velocity field is applicable. 

For 0   (or 
k

w
1

1  ), the static admissibility of the generalized stress field has 

been discussed by Li and Jones(1995a). 

  

A.2 32   

The static admissibility of the generalized stress fields for c   (or 
k

w


2
1  ) has 

been shown in Section A.1. For 0 c  (or 
k

w
k

12
1 


), Eqs.(15a,c) give 

11 23 wkpw   

and  310  pwkw  , 

by which, Eq.(14a) may be rewritten as 
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Thus, 00 q  and 11 wkq  . In order to satisfy 01  q , we need to ensure 

that 11 q , which requires 
k

w
1

1  , and 10   c
q  , where the extreme value of 

q at c  is determined from 0
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, i.e.  

)2(3

3

1

1






wk

wk
c




  .       (A4) 

The existence of c  requires 1
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, which leads to 

2

3
1 wk  or 31 wk . 
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Since 
kk 

31
  when 32  , c  does not exist for 

k
w

k

12
1 


, and thus, 

01  q  is valid in 0 c  or 
k

w
k

12
1 


.  

The above analysis is also applicable to 3 , and therefore, 01  q  can be satisfied 

in ac    or 
k

w
k 

32
1   when 3 .  

According to Eq.(1b), m is a monotonically increasing function of ξ. 10 m  

and 11 m  bound the bending moment in the range of 11  m  for 10   . 

 

A.3 3  

For 
k

w
ν

3
1  , or aττ  , the solution is the same as in Sections 3.2.1 and 3.2.2, and 

therefore, the static admissibility has been proved in Section A.2. 

For 
k

w
1

1  , or 0  , the static admissibility of the generalized stress field has been 

discussed by Li and Jones(1995a). 

For 
k

w
k 

31
1  , or 0τττ a , the static admissibility is proved here.  

Considering Eq. (28), Eq. (24) is rewritten as 
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by using Eq.(30). It can be seen from the above equation that q is a monotonically 

decreasing function of ξ .  

Therefore, in 1ξ z , 
 

1
ν3

ν1
0 1

2

1 


 wk
)wk(z

q  when Eq.(31) is used.  

The bending moment can be obtained as  
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which is a monotonically increasing function of ξ . 

When ξ=1,   
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121  ,                                                           (A7) 

according to Eq.(31). Hence 11  m , for 1ξ z . 
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Fig.1 Fully clamped beam, (a) The idealized problem, (b) Notations, (c) Blast 

loading, and (d) Relationship between shear force and shear displacement. 
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Fig.2 Independent yield condition.    
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(c) 

Fig.3 Velocity field patterns, (a) Uniform velocity distribution (case I), (b) linear velocity 

distribution (case II), and (c) Curved and linear velocity distributions with travelling 

plastic bending hinges (case III). 
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Fig.4 Variation of non-dimensional transverse shear displacements with non-dimensional 

time for case-I (ν=1.5). 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.1 0.2 0.3 0.4 0.5 0.6

k=10

k=20

k=1000

 

Fig.5 Variation of non-dimensional transverse shear displacements with non-dimensional 

time for case-II (ν=2.5).

1w  

τ 

1w  

τ 



 35 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.00 0.05 0.10 0.15 0.20 0.25 0.30

k=10

k=20

k=1000

 

Fig.6 Variation of non-dimensional transverse shear displacement with non-dimensional 

time for case-III (ν=4.0). 
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Fig.7 Variation of non-dimensional maximum transverse shear displacement with non-

dimensional elastic shear stiffness k. 
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Fig.8 Variation of non-dimensional maximum transverse plastic shear displacement with 

non-dimensional elastic shear stiffness k. 
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Fig.9 Variation of non-dimensional critical impulsive velocity with non-dimensional 

elastic shear stiffness k  for a titanium-alloy beam (β=0.2). 
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Fig.10 Variation of non-dimensional critical impulsive velocity with non-dimensional 

elastic shear stiffness k  for a mild steel beam (β=0.4). 
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Fig.11 Variation of maximum transverse displacements with non-dimensional elastic 

shear stiffness k predicted by numerical simulation and analytical model (=2.0). 
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