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Exposing Digital Image Forgeries by Detecting
Discrepancies in Motion Blur

Pravin Kakar, Student Member, IEEE, N. Sudha, Senior Member, IEEE, and Wee Ser, Senior Member, IEEE

Abstract—The widespread availability of photo manipulation
software has made it unprecedentedly easy to manipulate images
for malicious purposes. Image splicing is one such form of
tampering. In recent years, researchers have proposed various
methods for detecting such splicing. In this paper, we present a
novel method of detecting splicing in images, using discrepancies
in motion blur. We use motion blur estimation through image
gradients in order to detect inconsistencies between the spliced
region and the rest of the image. We also develop a new
measure to assist in inconsistent region segmentation in images
that contain small amounts of motion blur. Experimental results
show that our technique provides good segmentation of regions
with inconsistent motion blur. We also provide quantitative
comparisons with other existing blur-based techniques over a
database of images. It is seen that our technique gives significantly
better detection results.

Index Terms—Image forgery detection, Motion blur estimation,
Image cepstrum

I. INTRODUCTION

Fake and manipulated images have proliferated in today’s
media-driven society. The power of the visual medium is
compelling, and so, malicious tampering can have significant
impact on people’s perception of events. Misleading images
are used for introducing psychological bias, sensationalizing
news, political propaganda and propagating urban myths. The
image in Figure 1, taken from [1], is an instance of the latter.
This photograph was widely circulated via e-mail, supposedly
having been obtained from a camera found in the debris of the
World Trade Center buildings after the attacks of September
11, 2001. The approaching aircraft in the background seems
to imply that this image was captured mere seconds before
the impact. However, this image is clearly fake. There are
many clues within this photograph that help decide that it is a
hoax. Apriori knowledge may be employed to prove that this
image is unauthentic. For example, geographical knowledge or
information about the type of aircraft involved in the attacks
can be used to dismiss this image as fake. Even in the absence
of such knowledge, as the camera is focused on the person,
the aircraft should have appeared blurred in the image, due to
its speed. The complete absence of motion blur in this image
indicates a possible forgery. On the other hand, if the original
image contains motion blur, how can a spliced region that
has had motion blur introduced in it be detected? Introducing
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Fig. 1: Forged “Tourist Guy” image allegedly captured on Septem-
ber 11, 2001

motion blur into a spliced object, in general, depends on the
perception of the person creating the forgery and hence, is
unlikely to be completely consistent with the blur in the rest
of the image. In this paper, we use this fact to present a
solution to this tampering detection problem. Specifically, we
address splicing in a motion-blurred region, with the artificial
blur introduced in the spliced part similar to the background
blur, so that the inconsistency is difficult to perceive visually.

Many techniques have been developed to discover splicing
and compositing of images [2]. Statistical analyses [3], [4] and
lighting inconsistencies [5], [6] may be used in order to detect
image tampering. Other methods involve exploiting certain
features of images which are characteristic of the imaging
systems, formats and the environment [7], [8].

Many of these techniques implicitly assume the lack of
any post-processing on the image [9]. With the appearance of
sophisticated photo manipulation software, such an assumption
is unlikely to hold for most believable forgeries. Therefore,
significant research has gone into circumventing postprocess-
ing (such as blurring) of images. Some techniques [10], [11],
[12] use statistics and measures which are robust to blurring.
Others [13], [14], [15], [9], [16] use discrepancies in defocus
blur to discover forgeries. We are not aware of any existing
work that uses discrepancies in motion blur, although the
authors of [13] suggest that their methods can be extended to
motion blur as well . We provide a comparison of our results
with theirs below.

The key contributions of this paper are:
• An original forgery detection approach employing motion

blur estimation via spectral characteristics of image gra-
dients, which can detect small inconsistencies in motion
blur

• A novel blur estimate measure designed especially to deal
with very little motion blur

• A no-reference perceptual blur metric extended to direc-
tional motion blur
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• A Hausdorff distance-based cost measure for evaluating
the efficiency of our technique

This paper is an extension of our work reported in [17].
We change the motion blur estimation technique from spectral
matting to image gradients for faster processing. We refine
the segmentation process in order to provide better results,
and deal with cases of more complex blurs. We develop new
measures in order to reduce the amount of human intervention
needed in our technique, and improve its robustness. We also
provide a detailed quantitative analysis of the efficiency of our
technique, and test our technique on a database of images.

The organization of this paper is as follows. We present an
overview of the cause of motion blur in images in Section II-A,
background information about the blur estimation process in
II-B and our proposed forgery detection method is presented in
Section III. Results and comparisons are provided in Section
IV.

II. MOTION BLUR ESTIMATION

A. Overview of Motion Blur

One of the possible causes of motion blur is the slow speed
of the camera shutter relative to the object being imaged. In
many images, camera shake is found to be the culprit for the
presence of motion blur. Reducing the exposure interval of
the camera is a possible solution, but this often affects the
amount of noise or depth of field adversely. Tripods and flashes
also offer solutions to the problem of motion blur by allowing
for more stable exposures or greater illumination in a short
interval of time respectively, but these are often impractical.
Hence, many images containing motion blur do exist and so, it
is useful to utilize the inconsistencies in motion blur in order
to detect image tampering.

Motion blur can be artificially created in an image by
specifying the magnitude and direction of the desired blur.
Although perceptual clues in the image may be used to
determine the direction of the blur, the magnitude of the blur is
not, in general, based on any such clues, except the perception
of uniformity with other parts of the image having the desired
motion. Hence, it is likely that a motion-blurred spliced region
is not completely consistent with the rest of the image.

We can model motion blur by averaging the instantaneous
intensity falling on a pixel over the shutter interval. Such
an averaging process can be weighted by a “soft” Gaussian
window instead of using the idealized shutter interval, in order
to allow for non-ideal mechanical shutter effects. Alternatively,
blurs arising from motion, like other types of blur, can also be
considered as convolving an in-focus image with a blur kernel
in the spatial domain. The motion blur kernel is determined
by the relative velocities of the camera and the objects in the
image.

However, in general, neither information about the motion
nor the sharp image are available, making blind motion
estimation a difficult problem. Approaches involving multiple
images [18], [19] have been proposed, but may not be suitable
for image forensics. Instead of using spectral matting as in
[17], we employ image gradients in order to take advantage
of their simpler and faster computations

B. Blur Estimation

We use a variant of the widely recognized cepstral method
([20], [21], [22]) in order to estimate motion blur. Instead of
employing the cepstrum directly, we use the spectral char-
acteristics of the image gradients as proposed in [23]. Such
an approach has been shown to be more robust to noise and
somewhat non-uniform motion than just using the cepstrum
of the image.

For the case of uniform motion blur, the blurring process is
modelled as the convolution of a sharp image with a blurring
kernel:

I(x, y) = (H ∗ P )(x, y) +N(x, y) (1)

where I is the blurred image, H is the sharp image, P is the
blurring kernel and N is the noise present. x, y are the pixel
coordinates.

For a horizontal uniform velocity motion blur, the blurring
kernel Pu can be modeled as Pu = 1

L [1, 1, · · · , 1]1×L, where
L is the length of the kernel. Note that a directional blurring
kernel Pθ0 can be formulated by rotating Pu by θ0 degrees
about the x-axis. Taking the Fourier Transform of equation
(1),

Î = ĤP̂ + N̂ (2)

where X̂ represents the Fourier Transform of X . It is observed
that

P̂u(ω) =
sin (πωL)

πωL
= sinc(πωL) (3)

which is known to have periodic zeros at {ω = k
L , k =

±1,±2, · · · }. These periodic zeros also appear in Î if N̂ is
ignored. The blur extent L is estimated from the cepstrum of
the image C(I):

C(I) = ̂
log
∣∣∣Î
∣∣∣ (4)

which has two peaks separated by 2
L , due to the large periodic

negative spikes in P̂u.
The fast decay of the sinc function makes detecting the

periodic zero pattern difficult to discern, especially in noisy
images. However, a similar periodic pattern that is easier to
detect also exists in the blurred image’s gradient in the spectral
domain. Differentiating Equation 1, we get,

I ′ = (H ∗ P )′ +N ′ (5)

Taking the Fourier Transform and omitting the noise term,

Î ′(ω) = Ĥ(ω)P̂ ′(ω) (6)

Therefore, we obtain

P̂ ′u =
∣∣∣i2πωP̂u(ω)

∣∣∣ = 2

L
|sin (πωL)| (7)

As can be seen, this is a non-decaying term and hence,
detecting the peaks in this case should be easier. For a blurred
image, the distance between the two peaks in C(I ′) determines
the blur extent, and the orientation of the straight line through
the two peaks determines the direction of the blur. However,
this is often found to be far from ideal due to noise, poor
modeling of the blur, the presence of spurious peaks, etc.
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(a) (b)

(c) (d)

Fig. 2: Multiple motion blur segmentation using Markov random
fields [25]. The spliced regions are the Wikipedia and Youtube logos
in the top and bottom rows respectively. Left column: Tampered
images with multiple blurs; Right column: Segmentation Results.

So, instead of directly detecting the cepstral peaks, the
Radon transform, which is widely used for detecting straight
lines in noisy images, is used. For a motion-blurred image,
there are periodic large negative lines in log

∣∣∣Î ′
∣∣∣ with slope

θ0 and periodicity 1
L . Denoting the Radon Transform by R,

R(log
∣∣∣Î ′
∣∣∣) will have periodic peaks located at (± 1

L , 90 −
θ◦0), (± 2

L , 90− θ◦0), (± 3
L , 90− θ◦0), · · · . Therefore, this should

correspond to a peak in the Fourier Transform of R(log
∣∣∣Î ′
∣∣∣).

Denoting this Fourier Transform of the Radon Transform by
F , let the peak in F(log

∣∣∣Î ′
∣∣∣) occur at (ω0, ψ0). Then we have,

ω0 =
1

L
, ψ0 = 90− θ◦0 (8)

We represent this estimated motion blur as a two-element
vector φ =

[
φmag φdir

]
, where φmag = L and φdir = θ0.

An issue arises if the original image has multiple motion
blurs present. This is often the case when a moving object
is imaged against a still background or vice versa. In [24],
segmentation of an image into various regions depending on
the estimated blur model for each pixel has been proposed.
The technique is useful if the original image contains multiple
motion blurs. In this case, the blur models could be sepa-
rated. While this is appropriate for images with significantly
different blurs, it is not feasible for image forgeries. As the
region spliced into an image is desired to be concealed from
detection, the blur added to it is likely to be similar to that of
the surrounding region. In such a case, it would be difficult
to estimate a separate blur model for the suspected region at
a global level. A localized technique is necessary to separate
blur models in case of forgeries.

Examples of such multiple motion blur segmentation are
shown in Figure 2. As can be seen, motion blurs which
differ from each other to a relatively large extent are clearly
segmented using a Markov random field-based energy seg-
mentation technique [25]. However, it is important to note
that the spliced region is not segmented due to having a

different blur compared to its surrounding region in any of
these images. Therefore, such a technique is useful in dealing
with cases in which multiple motion blurs are present in the
original image itself, but not for detecting the forged region.
Each segment can then be analyzed for consistency using our
technique described below.

III. PROPOSED FORGERY DETECTION TECHNIQUE

We propose a method to detect image forgeries using motion
blur estimates. Blur estimates are first computed from the
given image, as defined in Section II-B. Our technique then
segments the image based on these estimates, giving the
regions with inconsistent blur. Although the technique seg-
ments such regions in both authentic and forged images, it is
especially useful for exposing the possible forgeries in blurred
regions, such as spliced objects with artificial blur perceptually
close to the background blur, making the inconsistency in
blur difficult to detect. A flowchart outlining the steps in our
technique is shown in Figure 3.

A. Block-level analysis

Given an image having an artificially motion-blurred spliced
region, it is not possible to extract multiple blur models over
the whole image from its gradients, especially when the blurs
are quite similar to each other. Hence, we propose estimating
the blur at a local level allowing for different blur models
to be estimated, without being lost in noisy data at a global
level. The image I is divided into Mb×Nb overlapping blocks
bm,n, m = 1 to Mb, n = 1 to Nb, and the motion blur estimate
φm,n for each block is calculated. φm,n is a two-dimensional
vector

[
φmagm,n φdirm,n

]
consisting of the motion blur estimate

magnitudes and directions. The image subdivision has two
major benefits: 1) Motion blur can be estimated at a number
of points, as opposed to just a single estimate for the entire
image, giving improved resolution and 2) Space-invariance of
motion blur can be assumed over each block, allowing for
simpler calculations.

B. Smoothing

The components of the motion blur estimates φm,n can
be represented in magnitude and direction estimate matrices
Φmag and Φdir respectively, each of size Mb ×Nb, i.e.

Φk =




φk1,1 φk1,2 · · · φk1,Nb
φk2,1 φk2,2 · · · φk2,Nb

...
...

. . .
...

φkMb,1
φkMb,2

· · · φkMb,Nb


 k = mag, dir

(9)
Since φm,n is calculated independently for each block bm,n,
we perform a smoothing operation to correct for small varia-
tions in the estimated blurs. We smooth both the magnitudes
and the directions of the estimates.

Φk
smooth = Φk ∗ hk, k = mag, dir (10)
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overlapping blocks
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Is
m ≤Mb?

n = 1m = m + 1

Calculate motion
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n = n + 1

Smooth the blur esti-
mates Φk to Φk
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Calculate PBM(I)
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PBM(I) <

τ ?

Calculate BEM
from (11) BE = BEM

BE =[
Φmag

smooth,Φ
dir
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] Interpolate BE
to size of image I

Segment BE into
different regions

Yes

No
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No

Yes

No

Image subdivision

Motion blur estimation

Smoothing

Perceptual blur
computation

Selection

Interpolation Segmentation

Fig. 3: Flowchart for proposed forgery detection technique

(a)

(b)

Fig. 4: Smoothing motion blur estimates (magnitudes and directions
indicated by arrows). (a) Image with consistent motion blur; (b)
Smoothing local motion blur estimates. Green regular arrows indicate
estimates before smoothing; bold bold arrows, after smoothing.

where Φk
smooth represent the respective smoothed estimates,

and h is the smoothing filter employed. A disk filter was used
in both cases in our technique.

Figure 4 shows an example for smoothed motion blur esti-
mates. These estimates were obtained for a region containing
different motion blurs. As can be seen, the local estimates
display some variability at the border between the two regions
due to the multiple blurs present in the same block for each
local estimate. Smoothing allows the local estimates to vary
in a non-abrupt manner, which results in better segmentation
of the image in subsequent steps.

C. Blur Estimate Measures

For images in which certain regions appear to have little
perceptible motion blur, we propose using the gradients of
I along with the motion blur estimates Φmag

smooth, generating
a new blur estimate measure (BEM), in order to improve
robustness:

BEM(m,n) =
∇I · wi,j

φmagsmooth(m,n)
(11)

where wi,j is a neighborhood window located at the centre
(i, j), in pixel coordinates, of each block bm,n of the image
I , and of the same size as the block. As formulated above,
equation (11) can distinguish between the cases where there
is little motion blur due to better focusing and where there is a
small amount of motion blur due to the lack of enough texture
to give significant information about the motion blur present.
Only the magnitudes of the motion blur are considered as the
direction estimates are perpendicular to the image gradients.
Similar to Φk in (9), BEM(m,n) can be arranged in a Mb×
Nb matrix BEM, as φkm,n and BEM(m,n) are calculated
block-wise.
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Fig. 5: Computation of edge width E(p)

In order to automate the decision of using BEMs or just mo-
tion estimates, we employ a modification of the no-reference
perceptual blur metric (PBM) presented in [26]. This metric is
intended for Gaussian and compression blurs, necessitating a
modification to deal with motion blur, which is not isotropic.

Let Sα be the set of edge pixels in the binary edge map
of I obtained by applying the Sobel operator in the direction
α. A new metric, named as oriented blur metric PBMα, is
defined as:

PBMα(I) =

∑
p∈Sα

E(p)

|Sα|
(12)

where E(p) is the width of the edge along the direction per-
pendicular to α at the edge pixel p, and |·| denotes cardinality.

In order to define E(p) in (12), let the two sides of the
line in the direction α at some p be denoted by a and b, as
shown in Figure 5. Also, let the pixel locations of the first
local maximum and minimum from this p, along the above
perpendicular line, on the side a be denoted by MAa(p)
and MIa(p) respectively. MAb(p) and MIb(p) are defined
similarly. Then, we can define the edge width as

E(p) = min(|MAa(p)−MIb(p)| ,
|MAb(p)−MIa(p)|) (13)

We compute the oriented PBMs for orientations αi, i = 1 to
t, where t is the number of orientations evaluated, and then
define the overall PBM as:

PBM(I) = max(PBMαi) ∀ αi (14)

This metric is used to determine the overall blurriness of the
image as large edge widths, indicating blurred edges, give high
values of PBM(I). BEMs are chosen when it is below a
predetermined threshold τ . The chosen blur estimate BE is
given by:

BE =

{
BEM if PBM(I) ≤ τ[
Φmag
smooth,Φ

dir
smooth

]
otherwise (15)

It is to be noted that BE is a Mb × Nb × 2 matrix in the
latter case, as both magnitude and direction estimates are
employed. In this case, all subsequent operations are carried
out independently on each of the Mb×Nb component matrices.

The PBM computed for images containing various amounts
of motion blur is plotted in the graph shown in Figure 6.
The blur metric was calculated as an average over ten random

images containing motion blur with the magnitudes specified
in Figure 6 in random directions. In calculating PBM , we
use orientations αi = 0◦, 45◦, 90◦ and 135◦. The almost linear
nature of the graph indicates that our metric works well in the
case of motion blur.

0 5 10 15 20 25 30
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20
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Motion Blur Magnitude

P
B

M

Fig. 6: Blur measurement for motion-blurred images

D. Interpolation

The motion blur estimates BE are then upsampled to
the size of I using bicubic interpolation, in order to have
an estimate of the blur at each pixel. The accuracy of the
estimate depends on the amount of upsampling done. Bicubic
interpolation provides better results than nearest neighbor
(which gives a blocky segmentation) and bilinear interpolation
(whose segmentation still has a few jagged edges that could be
adequate for certain applications). Figure 7 shows an example
of the segmentation outputs for various interpolations. The
circles are examples of regions where the improvement offered
by bicubic interpolation over the other two is most clearly
visible.

E. Segmentation

We then segment the image into two regions that exhibit
different motion blurs. This is done by adaptively thresholding
the upsampled BE using Otsu’s method [27]. This method
also provides an effectiveness metric which is used to discard
images which show consistent directions and/or magnitudes in
their motion blur estimates, and hence cannot be segmented

(a) (b) (c)

Fig. 7: Segmentation outputs for various interpolation schemes ap-
plied to blur estimates. (a) Nearest neighbor; (b) Bilinear; (c) Bicubic
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Fig. 8: Left: Energy-based segmentation output; Right: Ideal segmen-
tation obtained by supervised matting

effectively. The result of segmenting the magnitude and direc-
tion of the estimates provides us with an indication of regions
with dissimilar motion blur.

The results from this simple segmentation can be refined
by again employing an energy-based segmentation. In this
case, the pixel intensities are considered in addition to the
motion blur discrepancies, giving smoother boundaries, more
likely to correspond to the actual boundaries of the spliced
region. This assumes that the spliced region has a different
intensity than its immediate background, which is reasonable.
Otherwise, the boundary of the inconsistent region would not
be detectable at all, by any method. In order to accomplish
such a segmentation, we use the mean values of the motion
blur estimates of the two regions obtained by Otsu’s method,
and then find the Euclidean distance between this mean and
the motion blur estimate at each pixel. Using graph cuts
[28], we find a segmentation which minimizes the total cost
consisting of the cost of assigning different adjacent region
labels (based on the above Euclidean distance) and the cost of
dissimilar neighboring pixel intensities. The results of such a
segmentation are shown in Figure 8.

The ideal segmentation shown in Figure 8 is obtained by
using supervised spectral matting [29] in order to extract the
spliced regions from the image, and applying Otsu’s method
to these extracted matte. Obtaining such a segmentation re-
quires knowledge of the spliced region, making it useful only
for evaluating splicing detection. Note that the same ideal
segmentation can be used for comparison with the energy-
based segmentation approach as well, since supervised matting
ensures that the extracted region’s boundaries correspond very
closely with the spliced object’s boundaries.

IV. RESULTS AND COMPARISONS

We created a database of fifteen forged images, shown
in Figure 9, containing camera shake and motion blur. The
original images were obtained from the popular photo-sharing
website Flickr [30]. We spliced different objects into the
blurred backgrounds of the images and applied visually similar
motion blurs, using the GIMP image editor. The results of
detection of spliced regions along with the ground truths
showing the actual regions (determined by color similarity)
for some images are shown in Figure 10. An example of the
detection for a spliced region that is not blurred is shown in
Figure 11.

Fig. 9: Images in our database

Fig. 10: Detection for spliced blurred regions. Left column: Forged
images with segmentation outputs; Right column: Ideal segmentations

Fig. 11: Detection for non-blurred spliced region (a) Segmentation
of image with non-blurred spliced object (b) Ideal segmentation



7

A. Evaluation Criteria

In order to evaluate the efficacy of our technique and also
determine the various parameters used, we employ a cost
measure that is used to determine the difference between the
observed and the ideal segmentations.

As the energy-based segmentation gives rise to a boundary
dividing the image into different regions, a cost measure like
the Hausdorff distance measure which is used widely for shape
matching [31], [32] is quite suitable. In the case of both the
ideal segmentation and the segmentation from Otsu’s method,
the perimeter of the extracted region is used as the boundary
of the segmentation for evaluation purposes. However, the
conventional Hausdorff distance measure considers only the
maximum distance between two boundaries and is not robust
to outliers in the boundaries. Therefore, we use a modified
Hausdorff distance measure, D22, defined in [33].

Let X = {x1, x2, · · · , xM} and R = {r1, r2, · · · , rN} be
the observed and ideal segmentation boundaries respectively.
Then, the modified Hausdorff distance measure is given by:

D22(X,R) = max{d(X,R), d(R,X)} (16)

where

d(A,B) =
1

|A|
∑

a∈A
min
b∈B
‖a− b‖

and |·| denotes the cardinality of the set, with ‖·‖ being the
Euclidean distance.

B. Results

Table I shows the variation of the segmentation cost with
respect to the block size, and Table II with respect to the
block overlap. We calculate the motion blur estimates for
block sizes of 80×80, 100×100, 120×120, 140×140 and
160×160 pixels with overlaps of 10, 15, 20, 30 and 40
pixels. The average cost function is then evaluated over 15
images for each of the 25 possible combinations of block size
and overlap, and the minimum average cost is noted. It is
observed that the segmentation costs are fairly robust to change
in these parameters, and energy-based segmentation provides
more refined results than simply Otsu’s method. We choose
to use values of parameters corresponding to the lowest costs
for either method (shown in the highlighted cells) i.e. a block
size of 100×100 and an overlap of 20 pixels.

1) Choice of τ : We observed that BEMs generally provide
good results with images having a mean PBM value of 6.8
and a standard deviation of 1.1, while using only motion blur
estimates provides good results with a mean PBM value of 31,
and a standard deviation of 13.3. We model the probability dis-
tributions for the two cases with normal and inverse Gaussian
distributions respectively. The inverse Gaussian distribution
(Figure 12) is employed for the latter case as significant
skew towards higher PBM values is observed in this case.
We assume that the prior probabilities of better results using
BEMs or only motion blur estimates are equal. Thus, based
on the results shown in Figures 6 and 12, we set τ to 10.

TABLE I: Segmentation Cost for different Block Size

Block Size Segmentation Cost (×10−3)
Otsu’s Method Energy-based

80×80 0.9428 0.7668
100×100 0.9344 0.7402
120×120 0.9613 0.806
140×140 0.9137 0.824
160×160 0.9232 0.8657

TABLE II: Segmentation Cost for different Block Overlap

Block Overlap Segmentation Cost (×10−3)
Otsu’s Method Energy-based

10 1.0613 0.9092
15 1.6423 0.7668
20 1.2121 0.7402
30 0.9344 0.7757
40 0.9137 0.7502
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Fig. 12: Probability distributions of PBM values for using BEMs and
using only motion blur estimates.

2) BEMs vs φsmooth: Figure 13 shows that BEMs provide
greater discrimination than simply using φsmooth. The normal-
ized values of φsmooth for the patches in Figure 13(a) and (b)
are 1 and 1.03 respectively, in the same direction. On the other
hand, the normalized BEM values are 5.29 for the former and
1 for the latter. The greater discrimination is apparent in the
case of BEMs. Normalized values are used due to the different
scales of φsmooth and BEMs.

3) Using PBM for BE selection: Figure 14 shows the
advantage of BEMs in images with little perceptible motion
blur. The image in this figure has a PBM value of 6.73 which

(a) (b)

Fig. 13: Image patches with similar motion blur estimates, but
different BEM values. (a) High BEM value; (b) Low BEM value
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(a)

(b)

(c)

Fig. 14: Segmenting regions with different blur. (a) Motion blur
estimates of image; (b) Segmentation using motion blur estimates;
(c) Segmentation using BEMs

is below our threshold τ of 10, and hence, using BEMs should
result in an improved segmentation. Note that the motion blur
magnitude in the image is small, since the plane is the object
focused on, and the sky is fairly uniform and hence, does not
appear blurred to a large extent. Figures 14(b) and 14(c) show
the segmentation results based on motion blur estimates and
BEMs respectively. It can be seen that the plane is segmented
well from the sky in Figure 14(c), demonstrating the efficacy
of BEMs.

The need for using a PBM in order to activate the use of
BEMs is shown in Figure 15. The image in this figure has a
consistent motion blur and a PBM value of 20.2. It can be
seen that using BEMs does not provide a result as good as
using motion blurs only for images with significant blurring.

4) Distinguishing consistent and inconsistent regions: Fig-
ure 16 shows how subimages with consistent and inconsistent
motion blurs are represented by our method. The consistent
subimage has all the pixels belonging to the same region.
In general, most of the pixels are classified as belonging to
the same region, though some insignificant outliers may be
present. In the inconsistent subimages, the segmentation shows

(a) (b) (c)

Fig. 15: Segmenting an image with consistent blur. (a) Image;
(b) Segmentation using BEMs; (c) Segmentation using motion blur
estimates

(a)

(b) (c)

(d)

Fig. 16: Distinguishing consistent and inconsistent regions. (a) Red
box in image indicates inconsistent region, yellow box indicates
consistent region; (b) and (c) Inconsistent region detection; (d)
Consistent region detection

distinct separate regions of pixels that indicate the inconsistent
regions.

C. Comparisons

There are a few methods that detect image tampering based
on different blurs. The work in [9], [15], [14] used defocus blur
modeled with a two-dimensional circular Gaussian kernel. As
these methods are based on this isotropic kernel, they cannot
be extended directly to directional motion blur. Moreover,
all of these methods require considerable human intervention
in defining parameters and interpreting results. In another
work [16], the authors proposed a method intended for highly
localized blur, and mentioned that it is not suitable for motion
blur. In yet another work [13], the authors suggested that it is
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TABLE III: Comparison of Segmentation Costs

Method Cost
Proposed energy-based 0.7402× 10−3

segmentation technique
Proposed Otsu’s-method 0.9137× 10−3

based technique
[13] with blur-adaptive 0.9422× 10−3

threshold variation

possible to distinguish natural and artificial motion blur using
their method. So, we compare our method with [13].

The authors of [13] use discrepancies in defocus blur
to detect forgeries. We implemented their technique and
compared the results of our technique with those obtained
using their technique. The technique in [13] is based on
normalizing the DCT coefficients of 8×8 image blocks and
then computing the inverse DCT of the image. This technique
offers the advantages of speed and simplicity. Enhancements
such as threshold selection based on global blur estimates and
morphological operations may also be used in order to improve
the results of the technique. The output images for the best
thresholds are shown in Figure 17. As can be seen, while
our technique generates a blob that covers the region with
inconsistent blur, the method in [13] results in only certain
parts of the inconsistent region being identified as inconsistent.

Table III shows the performance of the DCT-based tech-
nique for various threshold choices. The average segmentation
cost for this technique is calculated on the same database
used to obtain Tables I and II. The segmentation cost for
selecting a threshold based on a global blur estimate, as in
[13], is significantly higher than that obtainable by our method.
Although our proposed technique based on Otsu’s method
offers only slightly better performance than that offered by
the DCT-based technique, applying energy-based segmentation
gives a significant improvement.

The DCT-based technique is strongly influenced by the color
and/or texture of the region with inconsistent motion blur
compared to the rest of the image. For example, the image
in Figure 17(g) shows a distinct resemblance to Figure 17(a)
in terms of shading. This indicates a strong dependence on
texture in the method of analysis used. Our method usually
generates a large blob which allows easy interpretation of
results. For images with multiple blurs as in Figure 17(b) and
(c), we are able to segment regions with inconsistent motion
blurs. The technique of [13] is not able to do so.

V. CONCLUSIONS

We have presented a technique for detecting spliced images
using discrepancies in motion blur in this paper. Motion blur
is observed in images of fast-moving subjects and may also
appear due to camera shake. We have used the fact that
introducing motion blur into a spliced object, in general,
depends on the perception of the person creating the forgery
and hence, is unlikely to be completely consistent with the
blur in the rest of the image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 17: Comparison with [13]. (a) Image with spliced motion-blurred
logo; (b) and (c) Image with multiple motion blurs; (d)-(f) Our results;
(g)-(i) Results from [13].

Our approach has been based on the method of spectral
analysis of image gradients. The image gradients of a blurred
image in the spectral domain display some periodic character-
istics which are correlated with the amount and direction of
motion blur present.

The suspected image is divided into overlapping blocks and
the motion blur for each block is estimated. This is followed
by a post-processing step of smoothing the blur estimates and
upsampling to the size of the image. The regions of the image
which show inconsistent blur are then segmented from the
image and displayed to the user. We have also developed a
blur estimate measure (BEM) to provide robust segmentation,
in the case of little perceptible blur. The presence of low blur
is determined by using a perceptual blur metric.

We have provided some results of detecting inconsistent
regions by using our technique and have compared it with
another technique applicable to motion blur. Quantitative and
qualitative comparisons show that our technique provides
better results in selecting the regions with inconsistent blur.
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