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Abstract. Weibull distributions were fitted to wind speed
data from radiosonde stations in the global tropics. A sta-
tistical theory of independent wind contributions was pro-
posed to partially explain the shape parameterk obtained
over Malay Peninsula and the wider Equatorial Monsoon
Zone. This statistical dynamical underpinning provides some
justification for using empirical Weibull fits to derive wind
speed thresholds for monitoring data quality. The region-
ally adapted thresholds retain more useful data than conven-
tional ones defined from taking the regional mean plus three
standard deviations. The new approach is shown to elim-
inate reports of atypically strong wind over Malay Penin-
sula which may have escaped detection in quality control of
global datasets as the latter has assumed a larger spread of
wind speed. New scientific questions are raised in the pur-
suit of statistical dynamical understanding of meteorological
variables in the tropics.

1 Introduction

Radiosonde observations provide arguably the most reliable
long-term meteorological data, especially before the advent
of satellites. They are used for routine weather analyses and
forecasts, as well as validation of satellite retrievals (e.g. Di-
vakarla et al., 2006; Stoffelen et al., 2005). Unprocessed ra-
diosonde data contain many types of error (Gandin, 1988)
and must pass through quality control (QC) before use. Be-
cause radiosonde data are collected all over the world un-
der the auspices of World Meteorological Organization, QC
methods are usually global in perspective and statistical in
nature (e.g. Durre et al., 2006). The statistical methods are
usually based on mathematics (e.g. by the use of standard
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deviation to detect outliers) rather than on dynamics (e.g. by
examining properties emergent from statistical mechanics).
This may be because it is hard to generalize a single global
statistical dynamics that is applicable to widely different cli-
matic zones. Adopting the former “statistical mathematical”
approach results in smaller regions with denser station net-
work exerting greater influence in the formulation of QC cri-
teria and thresholds than larger regions with more sparse net-
work. The tropical landmasses in South America, Africa and
Southeast Asia are good examples of the latter regions and
the quality of radiosonde data from these regions requires
some scrutiny even after QC.

In weather forecasting, modern data assimilation tech-
niques incorporate additional QC based on the model first-
guess fields and in-built error metrics. So data values that are
too different from first guesses may be rooted out before as-
similation. However, in the tropics, the quality of first-guess
fields may sometimes be suspect because model performance
is known to be poorer and less data is assimilated prior to
making the first guess. Therefore, a QC methodology de-
pendent only on the collected data itself and underpinned by
statistical dynamical understanding may be useful, at least as
an independent check of data quality before data assimilation
and their associated QC checks.

In the recent decades, there has been emerging interest
in Southeast Asia by the international community studying
the global atmosphere. Neale and Slingo (2003) pointed
out that the diurnal cycle in the maritime continent is not
well-captured by general circulation models (GCM) de-
spite its importance to global circulation (Ramage, 1968).
Zhu and Wang (1993) showed that strong interactions ex-
ist over Southeast Asia between the Asian-Australian mon-
soon and the intra-seasonal oscillations spanning the global
tropics (Madden and Julian, 1971, 1994). There has been
more research focused on this region’s climate and weather,
e.g. on El Nĩno impacts: Hendon (2003), Juneng and Tan-
gang (2005); on Southeast Asian monsoon: Lau and Yang
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(1997), Chang et al. (2005); on tropical cyclones: Chang
et al. (2003); on sea-breeze circulation: Hadi et al. (2002);
Joseph et al. (2008). For the benefit of global and regional
atmospheric research, besides gathering more data using
non-conventional platforms in Southeast Asia (Koh and Teo,
2009), it is timely to re-examine the nature and quality of
conventional radiosonde data from this region. This paper
reports our investigations into the statistical dynamics of ra-
diosonde wind data while on-going work on temperature and
humidity data will be reported in future publications.

One may reasonably pose a general question: could the
statistics of a set of wind data be understood from underlying
regional atmospheric dynamics and thereby providing a basis
for better quality monitoring? Unlike the global problem, a
statistical dynamical approach is sound in principle here be-
cause the statistical properties of regional atmospheres are
well determined by a few controlling factors from the re-
gion’s climate (e.g. ambient stratification, humidity profile
and prevailing wind pattern) and for the planetary bound-
ary layer (PBL), from the surface characteristics (e.g. eleva-
tion, roughness, temperature, wetness). But there is a caveat:
the underlying statistical dynamics must be revealed through
data before QC; otherwise, data that could possibly reflect
new physical understanding may have already been categor-
ically rejected by existing QC methods based on statistical
mathematics.

Literature on the statistical characterization of wind speed
has mainly focused on the surface layer (e.g. Takle et al.,
1978; Labraga, 1994; Lun, 2000) and to a lesser extent, the
PBL (e.g. Frank et al., 1997). Most of the literature employed
the Weibull distribution (Wilks, 1995) to model wind speed.
Justus et al. (1978) demonstrated that Weibull distribution
fits surface wind better than the square-root-normal distribu-
tion used by Widger (1977). The Rayleigh distribution is
another commonly used empirical fit for surface wind (Man-
well et al., 2002) but this distribution is only a special case
of the Weibull distribution with shape parameterk = 2. The
authors are unaware of any published characterization of tro-
pospheric wind using Weibull distribution, but found Roney
(2007) who fitted the Weibull distribution to lower strato-
spheric wind soundings. In all the reviewed literature, no
quantitative explanation was attempted for why the Weibull
distribution is a good fit to the wind data.

The objectives of this work are two-fold: (1) to elucidate
the statistical dynamics of tropical wind by analyzing long-
term records of raw radiosonde data from selected stations in
Southeast Asia and extending the results to the wider trop-
ics; (2) to assess the feasibility of using that statistical dy-
namical understanding for monitoring the quality of regional
wind data. It is hoped that the results presented would mo-
tivate similar statistical dynamical studies in other tropical
regions with sparse data coverage.

2 Data overview

Twice daily radiosonde observations were taken from the De-
partment of Atmospheric Science, University of Wyoming
(http://weather.uwyo.edu/upperair/sounding.html). Seven
stations situated on the Malay Peninsula (MP) in Southeast
Asia (Fig. 1) were used for the first part of this study. The
peninsula spans a region of about 1200 km by 400 km ori-
ented in the NW-SE direction. It is roughly the size of Great
Britain or California, USA. It represents a conveniently sized
region for which statistical homogeneity might be expected
to underlie the prevailing mesoscale convective weather. The
seven stations span the peninsula uniformly and together pro-
vide 35 years of data from 1973 to 2007 with some gaps in-
terspersed in-between. Another 235 stations between 25◦ N
and 25◦ S were used to test the extension of the findings from
MP to the global tropics.

Wind speed at 00:00 UTC and 12:00 UTC on eleven
mandatory pressure levels (1000, 925, 850, 700, 500, 400,
300, 250, 200, 150 and 100 mb) were used for all stations.
For MP (Table 1), data was available for less than half the
time at 12:00 UTC for Phuket and Songkhla, while data from
Sepang and Phuket cover less than 20 years. Overall, the av-
erage number of stations on the peninsula reporting per day,
out of seven total, lies in the range of 3.8 to 4.4 at 00:00 UTC
and 2.6 to 3.1 at 12:00 UTC for all pressure levels excluding
925 mb (which has less data because it was only adopted as
a mandatory level in the 1990s).

Wind data were given to the nearest 1 knot and so where
relevant, bin size in statistical analyses was specified in units
of knots to avoid artificial clustering of data if otherwise
specified in units like m s−1. A bin size ofδv = 2 knots was
used for the frequency histograms (e.g. Fig. 2) throughout
this work because this was the finest resolution practically
achievable. A large difference in the data frequency was
noted between odd- and even-valuedv in knots, which may
indicate that some stations actually measure in integral num-
ber of m s−1 but record in knots after applying the conversion
1 m s−1

≈ 1.944 knots.

3 Methodology

The frequency histogram for non-zero wind speed at 850 mb
from all 7 stations on MP without quality control is shown
in Fig. 2. Measurements of zero wind speed were ignored as
they may actually denote calm condition or light wind speed
which radiosonde records do not resolve. Equation (1) below
shows the probability density function (PDF) of the Weibull
distribution that was empirically fitted to the wind speed data
at each pressure level:

P(v;k,c)dv =
k

c

(v

c

)k−1
exp

[
−

(v

c

)k
]

dv (1)

wherev is the wind speed,c is the scale parameter andk
is the shape parameter. Maximum Likelihood Estimation
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Table 1. Table shows the period for which radiosonde wind data were available at 00:00 UTC and at 12:00 UTC with the precise start and
end dates in the column Date Range. (Note that data from Kuantan came in two periods.) Within each period, the proportion of days for
which data were actually available lies within the shown percentage range for all pressure levels used in this study, except 925 mb which was
instituted as a mandatory level only in the 1990s and so the lower percentage at this level is shown in parentheses. The total period spanned
and the number of station reports per level are given in the last line. Data periods less than twenty years or data availability less than 50 %
(excluding 925 mb) are highlighted in bold italics.

00:00 UTC 12:00 UTC

Station Date Range Percentage of Data Date Range Percentage of Data
Available Available

Phuket 20 Sep 1988–31 Dec 2007 51 %–64 % (43 %) 31 Jul 1990–4 Oct 1994 24 %–46 %(4 %)
Penang 1 Jan 1973–31 Dec 2007 77 %–83 % (38 %) 1 Jan 1973–31 Dec 2007 74 %–80 % (36 %)
Sepang 16 Jul 1999–31 Dec 2007 90 %–93 % (93 %) 17 Jul 1999–31 Dec 2007 86 %–92 % (92 %)
Changi 24 Aug 1980–31 Dec 2007 84 %–88 % (54 %) 19 Jul 1983–31 Dec 2007 51 %–55 % (28 %)
Kuantan 2 Jan 1973–9 Jan 2000 65 %–77 % (26 %) 25 Oct 1973–30 Nov 2000 59 %–71 % (24 %)

5 Feb 2005–30 Dec 2007 4 Feb 2005–30 Dec 2007
Kota Bharu 1 Jan 1973–30 Dec 2007 60 %–80 % (36 %) 1 Aug 1975–30 Dec 2007 52 %–75 % (36 %)
Songkhla 1 Jan 1973–31 Dec 2007 67 %–80 % (21 %) 1 Jan 1973–24 Jun 199837 %–49 %(1 %)

Date Range Number of Date Range Number of
Station Reports Station Reports

All stations 1 Jan 1973–31 Dec 2007 48 520–55 719 (26 369) 1 Jan 1973–31 Dec 2007 33 153–39 944 (16 960)

Fig. 1. Location of radiosonde stations on the Malay Peninsula
(MP) used in this study.

(MLE) was used to determinek andc (Wilks, 1995). The
exponentk will be shown to be indicative of the underlying
statistical dynamics.
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Fig. 2. Frequency histogram of the scaled wind speed at 850 mb for
all 7 stations on MP from 1973 to 2007 using a bin size of 2 knots.
The frequency is normalized over the total number of measure-
ments. The thick curve is the empirically fitted Weibull distribution
with shape parameterk = 1.67 and scale parameterc = 12.9 knots
(or 6.62 m s−1). The bold vertical line denotes the thresholdvmax=
52.1 knots, beyond which wind speed data is flagged as erroneous.

There was a very weak dependence ofk andc on the range
of raw data [0,vfit ] to which MLE was applied for sufficiently
largevfit . This dependence is inherently weak because log-
likelihood for a set ofntot data points is defined as:
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ln`
def
=

ntot∑
i=1

lnP(vi)

⇒

∑
vi>vfit

lnP(vi )∑
v0<vi<vfit

lnP(vi )
<

n(vi>vfit)
n(v0<vi<vfit)

� 1,

for sufficiently largevfit

where v0 is such thatP(v) decreases monotonically for
v > v0 andn refers to the number of data points. The con-
tribution of extreme values to the log-likelihood is evidently
negligible and sok andc estimated by MLE are not sensitive
to erroneously large values of the data. Nonetheless, in order
to proceed in practice, the value ofvfit used for the Weibull
fit was selected by minimizing the mean absolute difference
between the fitted distribution and the frequency histogram
over all available data. (Other criteria for choosingvfit were
tested with no significant difference in the results.)

The goodness of fit of the Weibull distributions to the
histograms was tested withχ2-statistics at 90 % confidence
level:

χ2
=

ntot

τ

nb∑
b=1

(pobs,b−pfit,b)
2

pfit,b

wherepobs,b andpfit,b are the observed and fitted probability
of wind speed lying in bin b,nb is the number of bins in the
histogram andntot is the total number of data points.τ is
a scale factor that compensates for the lack of independence
among nearby data points in time and is taken as the criti-
cal number of days beyond which the lag auto-correlation of
daily wind speed is not significant at 90 % confidence level.
χ2 defined above is probably an upper bound on the trueχ2

because each station’s measurement is not independent of the
others. Thus, thisχ2-test is rather stringent, but it suffices for
our purpose.

The root-mean-square (rms) velocityσ is given by

σ 2def
=

∫
∞

0
v2P(v)dv = c2

∫
∞

0
t2/k exp(−t)dt (2)

= c20(2
k
+1)

where0 is the gamma function (Arfken, 2000). This im-
plies thatc is constrained by the climatological wind speed
measured byσ for a givenk. In this work, it was found that
k ∈ [1.3,2.6] which implies[0(2/k+1)]−1/2

∈ [0.86,1.04].
Thus in practice,c ≈ σ andc is a good indication of the cli-
matological wind speed.

From the PDF, the expected numbernfit(v) of wind speed
reports in the bin [v, v+ δv] of the frequency histogram was
computed for the size of the dataset. The wind speed thresh-
old vmax was defined such thatnfit(v) ≤ 1 for v ≥ vmax. By
the fitted Weibull distribution, wind speed records larger than
vmax are unlikely to be reliable for the given dataset size. It
was checked thatvmax was smaller thanvfit at all levels, con-
firming the validity of the Weibull fit including values around
vmax.

4 Empirical results

Maximum-likelihood estimates of the scale and shape pa-
rameters as well as thresholds for wind speed at each level
in MP are shown in Fig. 3. All Weibull fits are good ac-
cording to theχ2-test at 90 % confidence level. Within
the PBL (which for this paper is taken to be 850 mb and
below), c increases with height but above the PBL, it is
nearly invariant up to 500 mb with a value around 13 knots.
In the upper troposphere,c increases sharply with height
from 15.4± 0.1 knots at 400 mb to reach a maximum of
42.2± 0.2 knots at 150 mb.

k has the smallest value of 1.54± 0.01 at 1000 mb. The
value of kincreases upward from 1.67± 0.01 at 925 mb to
values somewhat bigger than 2 in the upper troposphere
(300 mb to 150 mb). Similar values of around 5/3 are noted
at the tropopause level (100 mb) and in the PBL (925 mb and
850 mb).

The scaled thresholdvmax/c shows the opposite vertical
trend fromk, which is expected from the threshold being
pegged tonfit = 1: a largerk implies a stronger decay in the
PDF at largev/cand hence a smaller scaled threshold.vmax/c

has the largest value of 4.6 at 1000 mb and is around 4 in the
PBL and at the tropopause. It decreases upward from 3.9 at
700 mb to values around 3 in the upper troposphere.

5 Theoretical basis

The literature mentioned in Sect. 1 rarely justified the use
of Weibull distribution beyond the fact that it does yield re-
alistic fits to the observations. Moreover, most work dealt
with surface wind for which the underlying assumptions may
not be applicable to the troposphere or even the PBL. There-
fore, the statistical dynamical underpinning of the Weibull
distribution for near-equatorial wind must be sought anew
from our understanding of statistical dynamics. The ver-
tical profile of c is largely dictated by the climatology of
planetary-scale Hadley and Walker circulation and the Asian-
Australian monsoon. The vertical profile ofk is the object of
study in this section.

5.1 Approach to Gaussian statistics

Suppose the horizontal wind vectorv may be decomposed
into numerous contributions associated with different tropi-
cal meteorological phenomena:

v =

∑
n

vn (3)

For instance,v1 can arise from diurnally excited gravity
waves (Rotunno, 1983),v2 from equatorial waves (Wheeler
and Kiladis, 1999),v3 from intra-seasonal oscillations (Mad-
den and Julian, 1971, 1994; Waliser, 2006),v4 from Asian-
Australian monsoon (Wang, 2006),v5 from Walker circu-
lation (Katz, 2002) under inter-annual variations etc. One
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Fig. 3. Plots of empirically fitted attributes of the Weibull distri-
bution for wind speed at different pressure levels in MP:(a) scale
parameterc; (b) shape parameterk, (c) scaled thresholdvmax/c for
wind speed. Error bars forc andk are estimated by MLE at 95 %
confidence level. Vertical dashed lines correspond tok = 5/3, 2 in
(b) andvmax/c = 3, 4 in(c). Crosses in(b) denote theoretical lower
bound fork for wind anomaly magnitude. Asterisks in(c) denote
the thresholdvm3sd (mean plus three standard deviations) at each
pressure level.

might even split the contributions among sub-categories, dis-
tinguishing between: land-sea and mountain-valley diurnal
circulations; Kelvin and Rossby waves of different equiva-
lent depth; monsoon cold surges and westerly wind bursts;
El Niño – Southern Oscillation (ENSO) and Indian Ocean
Dipole (IOD). But the detailed cause of eachvn is not im-
portant to the following argument as long as there are more
than a few independentvn contributing tov. Over a long time
such as 35 years, the set of values that eachvn takes may be
reproduced by the realizations of a random variable with its
own characteristic probability distribution. Note that this is
NOT saying that each contribution actually varies randomly
in time.

Assuming each random variablevn in Eq. (3) is indepen-
dent of the others, the Central Limit Theorem implies that
the PDF of

∑
vn approaches Gaussian distribution as the to-

tal number of random variables,N , increases without bound.
Note that the mean of

∑
vn is the sum of meanvn, and the

variance of
∑

vn is the sum of the variance ofvn. (Ap-

pendix A shows that the Central Limit Theorem is still ap-
plicable even in the case where the set ofvn has members
with non-zero covariance.)

Thus, in the limit of largeN , wind velocityv follows the
Gaussian distribution,

P(v =

[
vx

vy

]
) d2v =

1

π c2
exp

[
−

(
vx − v̄x

c

)2
]

(4)

·exp

[
−

(
vy − v̄y

c

)2
]

dvxdvy

wherec2 is the variance ofv and is twice the variance ofvx

or vy because the wind velocity anomaly is assumed to be
isotropic. The isotropic assumption is supported by the vir-
tual absence, or at best, weakness of anisotropy from obser-
vations (e.g. Mori, 1986; Ibarra, 1995; Koh and Ng, 2009).

For zero mean wind, integrating over all directionsθ , the
PDF for wind speedv is the Rayleigh distribution:

P(v)dv =

2π∫
0

P(v)vdvdθ ≈
2v

c2
exp

[
−

(v

c

)2
]
dv (5)

which is also Weibull distribution with shape parameterk =
2. It must be emphasized that the derivation of Eq. (5) does
not depend on the statistical dynamics of each contribution
vn (or wn) except for the empirically justifiable assumptions
of isotropy. The assumption of zero mean wind will be ex-
amined later. Thus, the statistical dynamics of many indepen-
dent contributions from tropical meteorological phenomena
may explain whyk ≈ 2 is observed generally in the upper tro-
posphere in Fig. 3b. In fact, Rayleigh distribution cannot be
rejected by theχ2-test at 90 % confidence level for levels be-
tween 500 mb and 150 mb inclusive. (Note that this does not
mean that Rayleigh distribution is the best-fit distribution.)

5.1.1 Departure from Gaussian statistics

For the levels below 500 mb and at 100 mb, theχ2-test re-
jects Rayleigh distribution at 90 % confidence level. More-
over, MLE fits of Weibull distribution did showk < 2 for
those levels and small but significant deviations fromk = 2 in
the upper troposphere. Further theoretical understanding for
such departure from Gaussian behavior is sought below by:
(1) examination the effect of non-zero mean wind; (2) intro-
ducing Shannon’s entropy as a measure of non-Gaussianity
and explaining its variation in the lower and upper tropo-
sphere.

5.1.2 Non-zero mean wind

In the presence of non-zero mean wind, Appendix B shows
that for isotropic Gaussian wind anomalies as in Eq. (4), the
PDF for wind speedv is

P(v) dv = exp

(
−

v2
m

c2

)
·I0

(
2vmv

c2

)
·
2v

c2
exp

(
−

v2

c2

)
dv (6)
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Fig. 4. (a)The Rayleigh distribution (bold dashed) is compared to
the PDF of wind speed when the mean windvm is non-zero (solid)
assuming Gaussian wind anomalies. Examples of Weibull distri-
butions withk > 2 (dashed) are also shown for comparison. Wind
speedv is normalized by its rms valueσ for each distribution to
facilitate comparison.(b) Normalized mean windvm/σ for the set
of 7 stations on Malay Peninsula (MP) and mean normalized wind
um for Equatorial Monsoon Zone (EMZ), whereu = v/σ for each
station.

wherevm is the magnitude of the mean wind vector andI0
is the modified Bessel function of the first kind. Whenvm
is zero, the underlined factor in Eq. (6) is unity, recovering
Rayleigh’s distribution. This factor comprises two terms: as
vm increases, the exponential function decreases while the
modified Bessel function increases. The two tendencies tend
to balance for smallvm, but the latter wins out for largevm
and so the PDF departs increasingly from Rayleigh distribu-
tion.

The effect of non-zero mean windvm on the PDF in Eq. (6)
was computed and is shown in Fig. 4a, where the PDFs are
expressed in terms of wind speed normalized by its rms value
σ to facilitate comparison. Forvm/σ < 0.5, the effect can be
neglected asP(v/σ) approximates that for Rayleigh distri-
bution. While forvm/σ > 0.5 the effect of non-zero mean
wind is significant, the PDF can in practice be approximated
by Weibull distributions withk > 2 (cf. dashed and solid lines
in Fig. 4a). This explains why Weibull fits are still good even
in the presence of large mean wind.

The magnitude of the mean windvm in MP is shown in
Fig. 4b, normalized by the rms wind speedσ over the region.
At 500 mb and below,vm/σ ≤ 0.49, which implies the mean
wind has negligible effect onP(v) and is not the main cause
of k 6= 2 at those levels. At 400 mb and above,vm/σ ≥ 0.84.
So, using Fig. 4a, Weibull fits toP(v) would result ink = 2.9
or larger at those levels, if the wind anomalies were Gaussian.
Thus, strong mean wind can explain whyk tends to some-
times overshoot 2 at upper levels, but it is also clear that the
wind anomalies are non-Gaussian becausek is considerably
less than 2.9 (Fig. 3b). There must be another cause fork 6= 2
in the upper troposphere that reduces the value ofk.

5.1.3 Shannon’s entropy

Shannon’s entropy for a random two-dimensional vector
variablev is defined as

Ent[P(v)]
def
=−

∫ ∫
allv

P(v)lnP(v) d2v (7)

Among all probability density functionsP(v) of unit vari-
ance, Shannon’s entropy is maximal for the Gaussian distri-
bution only (Artstein et al., 2004). Thus, the Central Limit
Theorem may be understood as an approach towards max-
imal Shannon’s entropy. Small Shannon’s entropy denotes
strong departure from Gaussianity in the distribution.

Assuming that isotropy prevails, Appendix C shows that
Shannon’s entropy of Weibull distributions of unit variance
is related to the shape parameterk,

Ent[P(v/σ)] = ln
(

2π
k

)
− ln

[
0(2

k
+1)

]
+(1−

2
k
)γ +1 (8)

where0 is again the gamma function (Arfken, 2000) and
γ is the Euler-Mascheroni constant (Whittaker and Watson,
1996). The expression shows that Shannon’s entropy has
maximum value ofEmax= lnπ + 1 at k = 2 and decreases
monotonically fork larger or smaller than two (graph not
shown). Thus, Shannon’s entropy corresponding to the k-
values at 500 mb and below in Fig. 3b was computed and
shown in Fig. 5. Shannon’s entropy at upper levels was not
computed because the effect of strong mean wind onP(v/σ)

implies that Eq. (8) is not applicable to wind speed but to
wind anomaly magnitude only.

From Eq. (8), to understand the variation ofk is to under-
stand the variation of Shannon’s entropy. In Appendix D, we
show that notwithstanding the Central Limit Theorem, when
the variances are non-uniform among the velocity contribu-
tions vn in Eq. (3), Shannon’s entropy ofP(v/σ) can de-
crease by an amount as much as1E as the number of inde-
pendent contributionsN increases, i.e. the approach to Gaus-
sianity is not monotonic in general. For largeN , the theoret-
ical lower bound for Shannon’s entropy, (Emax−1E), could
be estimated roughly (see Appendix D for details).

The vertical trend in (Emax−1E) in Fig. 5 shows that
even for largeN , wind anomalies can have the most depar-
ture from Gaussianity between 400 mb and 150 mb, which is
consistent with our deduction at the end of Sect. 5.1.2. Thus,
k 6= 2 in the upper troposphere may arise in part from the
non-uniform variance among the wind contributionsvn. For
illustration, rough estimates of the theoretical lower bound
for k for wind anomaly magnitude were computed from
(Emax−1E) by inverting Eq. (8) (crosses in Fig. 3b). The
decreasing effect onk by non-uniform variance appears to
compete with the increasing effect onk by strong mean wind
in the upper troposphere, resulting ink close to and some-
times overshooting 2.

From 925 mb to 500 mb in Fig. 5,1E is negligible be-
cause the variance is roughly uniform among wind contri-
butionsvn. But Shannon’s entropy is much less thanEmax.
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Fig. 5. Shannon’s entropy for the Weibull’s distributions fitted to the
radiosonde wind speed data from MP at 500 mb and below (solid
line). The wind speed was first normalized by its rms value. The
maximal Shannon’s entropy and the value associated withk = 5/3
(dotted lines) are shown. The theoretical bound (dashed line) for
reduction from maximal Shannon’s entropy is computed for wind
anomaly using Eq. (8).

This meansN is not large enough for the wind anomalies
to approach Gaussianity. Artstein et al. (2004) proved that
when the velocity contributionsvn have uniform variance,
Shannon’s entropy increases monotonically as the number of
contributionsN increases (see Appendix D). This is consis-
tent with the trend in Shannon’s entropy in the lower tropo-
sphere, suggesting an increase in the number of independent
contributionsN with height.

6 Application to monitoring data quality

The preceding understanding for Weibull distribution of
wind speed supports the view that beyond the empirical
threshold of validity of the distribution,vmax, wind speed
data are likely to be dominated by noise and hence are sus-
pect. It follows naturally to apply such thresholds to monitor
the quality of the radiosonde data from MP. For demonstra-
tion purpose, data at three mandatory levels, 850 mb, 500 mb
and 250 mb, were selected. Results showed that about half
a percent of 278 711 available wind speed records at these
three levels are suspect.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

55

Global Wind Speed Data (knots)

R
eg

io
na

l W
in

d 
S

pe
ed

 D
at

a 
(k

no
ts

)

Fig. 6. The 850 mb-wind speed over MP from Wyoming data
archive after screening with the thresholdvmax (52.1 knots) plotted
against the wind speed from IGRA database for the same stations
and period. Each ordered pair denoted by a cross refers to the same
0.01 %-quantile in both datasets. The straight line shows where the
crosses should lie if both datasets had the same distribution.

A common statistical threshold to reject outlying data is
the mean plus three standard deviations. For a variablev,
this threshold is denoted asvm3sd. In Fig. 3c,vmax is com-
pared withvm3sd, where the mean and standard deviation are
computed from the MP data only. At all pressure levels, the
thresholdvmax is larger than the regionalvm3sd, implying that
more useful regional data is retained in our statistical dynam-
ical approach rather than the common statistical mathemati-
cal approach.

The MP data below our wind speed thresholdvmax is com-
pared with data from Integrated Global Radiosonde Archive
(IGRA) (Durre et al., 2006) in Fig. 6. The finding is that
a theoretically sound regional data-monitoring strategy can
identify erroneously high wind speed that escapes detection
in the QC of global datasets. This is possibly because global
QC assumes a larger spread of wind values than is valid
within a specific region like MP. Similar large erroneous
wind speed in Indonesia reported over the Global Telecom-
munication System (GTS) was also noted by Okamoto et
al. (2003).

In modern data assimilation systems, such as used
by European Centre for Medium-Range Weather Forecast
(ECMWF), east-west and north-south wind components are
analyzed separately and often assumed to follow Gaussian
distributions of equal variance. The non-Gaussianity iden-
tified in the last section, especially in the lower tropo-
sphere where the mean wind is weak may be cause for re-
examination of these assumptions. Moreover, in eliminating
unrealistic wind speed (e.g.v > vmax= 52.1 knots at 850 mb
in MP, see Fig. 6), the proposed QC method would raise the
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Fig. 7. All 242 tropical radiosonde stations used in the latter part of the study (including the seven stations in MP): “+” signs denote stations
in the upper-level (500 mb to 100 mb) westerly zone; circles denote stations in the upper-level mixed wind zone; all other symbols denote
stations in the upper-level easterly zone. Within the easterly zone, stations are denoted by their geographical regions (number of stations
shown in brackets): “x” sign = Africa (6); asterisk = South Asia (4); dot = Southeast Asia (31); triangle = Indian Ocean (2); diamond = West
Pacific (6).

quality of data assimilated and incrementally improve model
analyses and re-analyses in the tropics. This would eventu-
ally contribute to the quality of model first-guess fields so
that they could be used more reliably to check tropical obser-
vations at the time of assimilation.

7 Extension to Equatorial Monsoon Zone

In this section, the preceding statistical dynamical theory
for the Weibull distribution of radiosonde wind and the data
monitoring strategy developed from it are tested for their rel-
evance to other tropical regions.

242 stations across the global tropics (including MP) were
first divided into three climatic zones according to the time-
averaged zonal wind in the upper troposphere (i.e. mandatory
levels from 500 mb to 100 mb inclusive): (a) westerly zone:
every level shows westerly mean wind; (b) mixed wind zone:
both westerly and easterly mean wind are present; (c) east-
erly zone: every level shows easterly mean wind (Fig. 7).
The existence of the mixed wind zone in the equatorial
belt and its significance to cross-equatorial propagation of
Rossby waves have been noted before (Webster and Holton,
1982). On a pressure level, each station is a point measure-
ment and would under-sample the underlying dynamics. The
k-value at each station would behave like a random variable
itself with a probability distribution. Comparison of the ver-
tical profiles of median k-values in Fig. 8 with Fig. 3b shows
that the statistical dynamics in the westerly and mixed wind
zones are probably different from that over MP, but the statis-
tics in the easterly zone warrant further investigation.

The k-values in West Pacific (diamonds in Fig. 8c) are con-
sistently larger than most other values in the easterly zone
and bear closer resemblance to those in the mixed wind zone.
The West Pacific stations are also the only ones in the easterly
wind zone that do not lie within the monsoon region accord-
ing to figure 1.2 of Ramage (1971). Therefore, the Equatorial
Monsoon Zone (EMZ) is defined to encompass the stations
in the easterly wind zone excluding the West Pacific stations.
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Fig. 8. Scatter plot showing the values ofk across vertical levels at
tropical stations in the three upper-level climatic wind zones. For
each zone: median values at each level are connected to show a ver-
tical profile; the delimited horizontal bars denote the inter-quartile
range at each level. For the easterly zone, k-values of stations in
Africa (“x” sign), South Asia (asterisk), Southeast Asia (dot), In-
dian Ocean (triangle) and West Pacific (diamond) are marked with
the same symbols as in Fig. 7.

Unlike MP, EMZ spans half the globe across varying cli-
matology of wind speed (Fig. 9a). So at each pressure
level, wind speedv from each station must be normalized
by its rms valueσ estimated in Eq. (2) before the combined
dataset ofu = v/σ can constitute a statistically homogeneous
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Fig. 9. (a)Scatter plot of rms wind speedσ computed using Eq. (2)
at all 43 stations in the Equatorial Monsoon Zone (EMZ). The verti-
cal profile connects the median values and delimited horizontal bars
denote the inter-quartile ranges.(b) The rms valueσEMZ of non-
dimensional wind speedu = v/σ computed from the fitted Weibull
distribution ofu in EMZ using Eq. (2). (c) The shape parameter
kEMZ describing the fitted Weibull distribution ofu in EMZ with
error bars shown. Crosses denote theoretical lower bound fork for
wind anomaly magnitude.(d) The spread of threshold wind speed
(symbols) among the stations in EMZ compared to (line).

population that describable by a Weibull distribution of dis-
tinct shape and scale parameters (kEMZ, cEMZ). Because the
combined dataset is the union of normalized subsets of rms
value 1,σEMZ computed fromkEMZ andcEMZ should be 1 for
a large dataset ifσ at each station correctly captures the cli-
matological wind speed. From Fig. 9b, we see thatσEMZ ≈ 1
for all levels indeed. The largest difference ofσEMZ from
one is only−0.055 and occurs at 1000 mb, possibly due to
the complicating influence of local terrain and surface char-
acteristics.

It was not possible to carry out theχ2-test for the Weibull
fit for the wind speed in the EMZ because the spatial autocor-
relation is hard to estimate reliably from an irregular station
distribution. However, the fact thatσEMZ ≈ 1 is indirect but
clear evidence that the Weibull distribution is a good fit be-
cause otherwise, Eq. (2) would have yielded wrong values
not only forσEMZ but also forσ at each station in the first
place.

The characteristic profile ofkEMZ and the associated
threshold for wind speedvEMZ

max are shown in Fig. 9c and d re-
spectively. At each station,vEMZ

max was estimated as the prod-

uct of the localσ and the regional thresholdumax derived es-
sentially fromkEMZ: the expected numbernfit(u,δu) ≤ 1 for
u ≥ umax using a bin sizeδu of 2 knots divided by the mean
σ at each level. Away from the surface,vEMZ

max is larger than
thevEMZ

m3sdfor about 90 % or more of the stations, wherevEMZ
m3sd

is the statistical mathematical threshold computed from the
union set of allv measurements in EMZ for each level. As a
threshold to flag off suspicious outlying radiosonde reports
in EMZ, vEMZ

max preserves more useful data thanvEMZ
m3sd be-

causevEMZ
max captures the region’s statistical dynamics and is

adapted to the local wind climatology. At 1000 mb,vEMZ
m3sd is

not a suitable reference for comparison as localvm3sdshould
be used instead.

To understand the values ofkEMZ, the corresponding Shan-
non’s entropy foru normalized to rms value of 1 is shown in
Fig. 10. As before, Shannon’s entropy was not computed for
400 mb and above because of the effect of strong mean wind
(um > 0.69) onP(u/σEMZ) (Fig. 4). The error bars fork in
Fig. 9c and hence for Shannon’s entropy in Fig. 10 were es-
timated by generating another two sets of best-fitkEMZ by
separately removing the stations with the top or bottom 5
percentile of k-values (i.e. top or bottom 2 stations) and com-
puting the standard deviation among the three sets of best-fit
kEMZ. The theoretical lower bound for Shannon’s entropy,
(Emax−1E), could also be estimated roughly for largeN as
before (see Appendix D for details).

Compared to the MP results in Fig. 5, the EMZ results in
Fig. 10 show that the lower troposphere (1000 mb to 500 mb)
is nearer to attaining maximal entropy because there is a
larger number of independent velocity contributionsN aris-
ing from spatial de-correlation within EMZ. Below 850 mb,
it appears that the non-uniformity of variance among the
contributions across EMZ may be keeping Shannon’s en-
tropy away from the maximal value (dashed line in Fig. 10).
Above 500 mb, competing effects from non-uniform vari-
ance among velocity contributions (that decreasek) and large
mean wind (that increasek) tend to balance leading tok ≈ 2,
although nearer the tropopause the former effect seems to
dominate (crosses in Fig. 9c). Note thatk ≈ 2 does not imply
Gaussianity (but the converse would be true).

8 Summary and discussion

Empirical Weibull distributions of wind speed were derived
by Maximum Likelihood Estimate for radiosonde data span-
ning more than 30 years from 7 stations in the Malay Penin-
sula (MP) and from 43 stations in the Equatorial Monsoon
Zone (EMZ). The Weibull distribution is governed by two
parameters: the shape parameterk is the key quantity in-
vestigated in this paper; the scale parameterc is determined
by a givenk and the rms wind speedσ which is the re-
sult of planetary-scale climate dynamics. Wind in EMZ was
non-dimensionalized by the localσ to remove the effect of
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Fig. 10. Figure 10 shows Shannon’s entropy at 500 mb and below
for the Weibull’s distributions fitted to the non-dimensional wind
speedu = v/σ from Equatorial Monsoon Zone (solid line).u was
first normalized by its rms valueσEMZ as the latter is close to but
not exactly 1. The maximal entropy and the value associated with
k = 5/3 (dotted lines) are shown, as well as the theoretical bound
(dashed line) for reduction from maximal entropy.

geographic variation of climatology before empirical fitting
of the Weibull distribution.

A statistical theory of independent physical contributions
to the observed wind was proposed to explain the observedk

as follows.

1. The increase in the number of such contributionsN

causes Shannon’s entropy to rise and the value ofk to
approach 2 from the lower to mid-troposphere.

2. In the upper troposphere,N is likely to be large. But the
non-uniformity of variance among the velocity contri-
butions prevents Shannon’s entropy from attaining the
maximal value and tends to decreasek, while strong
mean wind tends to increasek. Thus,k has values close
to 2 (EMZ) or sometimes may overshoot 2 (MP).

Best-fit Weibull distribution can be used to derive confi-
dence thresholds for monitoring radiosonde wind speeds.
The thresholds are generally larger than those obtained by
taking the mean plus three standard deviations. More data is
retained and data quality is improved because these thresh-
olds are based on an understanding of the statistical dynam-
ics of near-equatorial wind and they are adapted to the local

climatology. Such an improved dataset from EMZ would ul-
timately benefit research and forecast.

The existence of non-Gaussianity in the troposphere ap-
pears to be a natural consequence of non-linear dynamical
models. Sardeshmukh and Sura (2009) showed in an adi-
abatic GCM that skewness and excess kurtosis (which are
identically zero for Gaussian distribution and hence represent
non-Gaussian behaviour) are associated mainly with small-
scale turbulent fluxes. Interestingly, they also showed that
the statistical relation between skewness and excess kurto-
sis can be reproduced in linear stochastic models when addi-
tive (state-independent) and multiplicative (state-dependent)
Gaussian white noises are correlated. This may hint at further
investigation of the non-Gaussianity identified in this work
with linear equatorial wave models.

The current work also raises specific questions: (1) What
are the physical causes of the dominant velocity contribu-
tions? (2) Why does the number of independent velocity
contributionsN seem to increase with height? (3) Does the
seemingly common value ofk = 5/3 observed in the PBL
(850 and 925 mb) and at the tropopause (100 mb) in MP
reflect any statistical dynamics occurring at local scales at
those levels or is it mere coincidence in this dataset? (4) How
do we understand the profile ofk outside of the EMZ?
(5) What distributions do tropical temperature and humidity
follow and what are their underlying statistical dynamics?
These questions and others leave much room for exciting re-
search into the statistical dynamics of regional atmospheres.

Appendix A

Non-zero covariance between velocity contributions

If a particularvn has non-zero covariance with anothervm,
the two velocity contributions would not be independent.
However, it is easy to define two new variables as follows:

wn
def
= vn −cov(vn,vm)[var(vm)]−1vm

wm
def
=
{
1+cov(vn,vm)[var(vm)]−1}vm

where the variance and covariance for vectors are defined
in e.g. Feller (1968). The contributions tov could be re-
expressed as

vn +vm ≡ wn +wm

It is readily verified that the new random variables,wn and
wm, have zero covariance. In this way, the Central Limit
Theorem may be applied as before.
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Appendix B

PDF for Gaussian wind anomaly under non-zero
mean wind

From Eq. (4),

P(v)d2v =
1

πc2
exp

[
−

(v−v ·v−v)

c2

]
d2v

=
1

πc2
exp

(
v2

m

c2

)
·exp

(
2vmv

c2
cosθ

)
·exp

(
−

v2

c2

)
v dvdθ

wherevm is the magnitude of the mean wind andθ is the an-
gle between the wind vector and the mean wind. Integrating
over all angles, the PDF for wind speedv is

P(v)dv = exp

(
−

v2
m

c2

)
·I0

(
2vmv

c2

)
·
2v

c2
exp

(
−

v2

c2

)
dv (B1)

where I0 is the modified Bessel function of the first kind
(Arfken et al., 2000):

I0(α) ≡
1

2π

∫ 2π

0 exp(αcosθ)dθ

Appendix C

Shannon’s entropy associated with Weibull distribution

We assume that the wind velocityv is isotropic and hence has
zero mean. Equivalently, we can takev as an isotropic wind
anomaly if the mean wind is non-zero. Let the variance of
the distribution beσ 2. For the magnitudev obeying Weibull
distribution, we define a non-dimensional variableu = v/σ

that follows Weibull distribution of unit variance:

P(u) du= P(v)dv

= k

√
0(2

k
+1)

[
u

√
0(2

k
+1)

]k−1

exp

{
−

[
u

√
0(2

k
+1)

]k
}

du

= −d [ξ(u)]

where Eqs. (1 and 2) were used andξ(u) =

exp

{
−

[
u

√
0(2

k
+1)

]k
}

. From Eq. (7), Shannon’s entropy

for u is

Ent[P(u)] =−

∫
∞

0

[
P(u)

2πu
ln

P(u)

2πu

]
udu

∫ 2π

0
dθ (C1)

= −

∫
∞

0
ln

[
P(u)

2πu

]
P(u)du

= −

∫ 1

0
ln
[

k
2π

0(2
k
+1)(−lnξ)(k−2)/k ξ

]
dξ

= −ln
[

k
2π

0(2
k
+1)

]
−

(
1−

2
k

)∫ 1

0
ln(−lnξ)dξ −

∫ 1

0
lnξdξ

= ln
(

2π
k

)
− ln

[
0(2

k
+1)

]
+(1−

2
k
)γ +1

In the last step above, we made use of∫ 1
0 ln(−lnξ) dξ ≡ −γ∫ 1
0 lnξ dξ = [ξ lnξ ]10−

∫ 1
0 dξ = −1

where the first integral is one expression for Euler-
Mascheroni constantγ (Whittaker and Watson, 1996).

Appendix D

Derivation of entropy increment

Recalling Eq. (3), letσ 2
n be the variance ofvn. We define the

following average variances and partial sums ofvn normal-
ized to unit variance:

s2
N+1

def
= 1

N+1

N+1∑
n=1

σ 2
n ; uN+1

def
= 1

sN+1
√

N+1

N+1∑
n=1

vn (D1)

s2
N,m

def
= 1

N

N+1∑
n=1,n6=m

σ 2
n ; uN,m

def
= 1

sN,m

√
N

N+1∑
n=1,n6=m

vn (D2)

Theorem 2 of Artstein et al. (2004) states that the approach
of
∑

vn to Gaussian statistics with increasing number of
independent square-integrable random variablesvn (i.e. as
N → ∞) obeys the inequality:

Ent

[
P

(
1

√
N+1

N+1∑
n=1

vn

)]
≥

1

N +1

N+1∑
m=1

Ent

[
P

(
1

√
N

N+1∑
n=1,n6=m

vn

)]
(D3)

Using definitions (D2) and (D3) and the identity Ent(su) ≡

lns +Ent(u), Eq. (D3) becomes

lnsN+1+Ent[P(uN+1)] ≥ lnsN,m +Ent[P(uN,m)]

where the straight overbar denotes arithmetic mean fromm =

1 toN +1. Using the identities,

s2
N+1 ≡ s2

N,m

lns2
N,m ≡ lns̃2

N,m

where the curly overbar denotes geometric mean fromm = 1
to N +1, the expected increase in entropy is

Ent[P(uN+1)]−Ent[P(uN,m)] ≥
1
2 ln

(
s̃2
N,m

/
s2
N,m

)
def
=1E (D4)

1E is the minimal increment in Shannon’s entropy that can
be expected.

The following statements can be deduced from Eq. (D4):

1. If mean square velocityσ 2
n is invariant ofn, s̃2

N,m =

s2
N,m. Thus, Shannon’s entropy is expected to increase

monotonically withN (Artstein, 2004).

Ent[P(uN+1)]−Ent[P(uN,m)] ≥ 0 (D5)
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2. If σ 2
n varies withn, it is straightforward to show that

s̃2
N,m < s2

N,m and ln
(
s̃2
N,m

/
s2
N,m

)
< 0. Thus, Shan-

non’s entropy may even be expected to decrease asN

increases because1E < 0.

3. In all cases, the Central Limit Theorem requires that
in the limit asN → ∞, uN approaches the Gaussian
distribution which has the maximum Shannon’s entropy
Emax among any distribution of unit variance.

By supposing thatσn take with equal chance one of two
values,S0 andS1, the largest possible reduction in Shannon’s
entropy1E can be simply estimated using Eq. (D4):

1E ≈
1
2 ln

(
2S0S1
S2

0+S2
1

)
≤ 0 (D6)

For MP, we used the ratio of rms wind speedσ of neigh-
bouring levels (Eq. 2) as proxy for the ratio of variances of
velocity contributions:(

S0
S1

)
i
≈

σ(ci ,ki )
σ (ci−1,ki−1)

for i > 1 (D7)

where the level indexi increases downwards with pressure.
For EMZ, unlike for MP, the variance of wind contribu-

tions could be estimated from the extensive spatial sampling
of rms wind speed across EMZ (Fig. 9a). So we used the
following estimate:(

S0

S1

)
i

≈

(
σupp

σlow

)
i

(D8)

whereσ upp andσ low are the upper and lower quartiles of the
rms wind speed at each station in the EMZ respectively. As
the choices in Eqs. (17 and 18) are only rough estimates, the
emphasis is on the vertical trend of the theoretical bound1E

and not on the values per se.
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