This document is downloaded from DR-NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore.

Synthesis and application of novel β-CD derivatives as chiral stationary phases for supercritical fluid chromatography

Liu, Maolong

2009

Liu, M. (2009, March). Synthesis and application of novel β-CD derivatives as chiral stationary phases for supercritical fluid chromatography. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/95078

© 2009 The Author(s).

Downloaded on 20 Mar 2024 16:34:23 SGT

URECA

Undergraduate Research Experience on CAmpus

Category: 2

FYP-URECA Project ID: SCBE08023

Student: Liu Maolong

School of Chemical and Biomedical Engineering

Synthesis and Application of Novel β-CD Derivatives as Chiral Stationary Phases for Supercritical Fluid Chromatography

Introduction

Enantioseparation finds its greatest significance in pharmaceutical industry. Enantiomers of chiral drugs tend to show markedly different pharmacological activities. Currently, many commercial drugs are obtained as a mixture of two enantiomers through synthesis methods. In order to meet the demand of enantiometric pure drugs, chromatographic methods have been used extensively in analysis, separation and purification of chiral compounds.

Objective

- > Synthesize novel chemically bonded cationic chiral stationary phase (CSP) based on β-cyclodextrin derivative.
- ➤ Investigate CSP's enantioseparation efficiency on Supercritical Fluid Chromatography (SFC) using a range of racemic samples.

Synthesis of CSP

SFC Enantioseparation Results

Racemate	k ₁ '	k ₂ '	α	Rs	Mobile Phase
Althiazide	21.06	25.23	1.20	1.43	а
Bendroflumethiazide	13.01	19.17	1.47	3.48	а
Naringenin	28.98	30.16	1.04	0.49	b
4'-Hydroxyflavanone	6.21	7.08	1.14	0.89	b
Hesperetin	23.78	25.65	1.08	0.72	b
Indapamide	29.98	32.79	1.09	0.83	b
4-Chromanol	8.47	9.77	1.15	0.93	С
7-Methoxyflavanone	8.33	10.13	1.22	1.42	С
6-Methoxyflavanone	4.85	5.86	1.21	1.00	С
2-phenoxypropionic acid	9.03	10.54	1.17	0.63	d
2-(3-chlorophenoxy)propionic acid	16.12	17.00	1.05	0.29	d
Dansyl-DL-Norvaline	7.61	8.33	1.09	0.71	е
Dansyl-DL- α -amino-n-butyric acid	9.41	9.72	1.03	0.35	е
Dansyl-DL-phenylalanine	12.80	14.06	1.10	0.71	е
Dansyl-DL-Norleucine	7.23	8.03	1.11	0.70	е
Dansyl-DL-α-aminocaprylic acid	6.49	7.35	1.13	0.86	е
	_			_	

SFC condition: temperature=40°C, BPR pressure=15MPa, flowrate=2ml/min, mobile phase: a) CO $_2$ /Methanol=80/20; b) CO $_2$ /Methanol=90/10; c) CO $_2$ /Methanol=99/1; d) CO $_2$ /IPA=70/30; e) CO $_2$ /IPA (1%TEA, 1% acetic acid)=70/30.

Project Title: Synthesis and Application of Novel Chemically Bonded Cationic β-cyclodextrin Derivatives as Chiral Stationary Phases (CSP) for Supercritical Fluid Chromatography (SFC)
Supervisor: Prof. Ng Siu Choon
Collaborators: Wang Renqi